JP2019027834A - Radiation imaging apparatus - Google Patents

Radiation imaging apparatus Download PDF

Info

Publication number
JP2019027834A
JP2019027834A JP2017144870A JP2017144870A JP2019027834A JP 2019027834 A JP2019027834 A JP 2019027834A JP 2017144870 A JP2017144870 A JP 2017144870A JP 2017144870 A JP2017144870 A JP 2017144870A JP 2019027834 A JP2019027834 A JP 2019027834A
Authority
JP
Japan
Prior art keywords
heat
radiation
imaging apparatus
circuit board
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017144870A
Other languages
Japanese (ja)
Inventor
七平 櫻木
Shichihei Sakuragi
七平 櫻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017144870A priority Critical patent/JP2019027834A/en
Publication of JP2019027834A publication Critical patent/JP2019027834A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a radiation imaging apparatus capable of reducing influences from radiation noises from the outside while radiating heat generated by a heat source without increasing the size and weight of the radiation imaging apparatus.SOLUTION: A radiation imaging apparatus 1a comprises: a radiation detection unit 11 having an effective imaging area 101 for converting incident radiation into an electric signal; and a heat dissipation member 14a including a heat source emitting heat being in contact therewith to dissipate the heat from the heat source to the outside. The heat dissipation member 14 is provided with an outer periphery portion enclosing the outer side of the effective imaging area 101 in a view from a direction perpendicular to the plane of the effective imaging area 101 and at least the outer periphery has conductivity.SELECTED DRAWING: Figure 1

Description

本発明は、放射線撮影装置に関する。   The present invention relates to a radiation imaging apparatus.

医療分野では、被検者に放射線を照射し、被検者を透過した放射線の強度分布によって放射線画像を得る放射線撮影装置が用いられている。近年は、デジタル放射線画像を生成するデジタル方式の放射線撮影装置が用いられている。デジタル方式の放射線撮影装置は、外部から放射ノイズが入射すると、放射線検出器においてノイズが発生することがある。また、デジタル方式の放射線撮影装置には、放射線検出器を制御するための回路基板や、動作のための電力を供給するバッテリーが設けられている。これら回路基板やバッテリーは発熱することがあるため、これらが発する熱を外部に放熱しなければならない。また、医療分野では、可搬型の放射線撮影装置が用いられることがある。可搬型の放射線撮影装置は、使用者が携帯・搬送するため、小型で形状であることが求められる。   In the medical field, a radiographic apparatus that irradiates a subject with radiation and obtains a radiographic image based on the intensity distribution of the radiation transmitted through the subject is used. In recent years, digital radiography apparatuses that generate digital radiographic images have been used. When radiation noise enters the digital radiography apparatus from the outside, noise may be generated in the radiation detector. The digital radiographic apparatus is provided with a circuit board for controlling the radiation detector and a battery for supplying power for operation. Since these circuit boards and batteries may generate heat, the heat generated by these must be dissipated to the outside. In the medical field, a portable radiographic apparatus may be used. A portable radiation imaging apparatus is required to be small and have a shape so that the user can carry and carry it.

特開2004−327825号公報JP 2004-327825 A 特開平11−345956号公報Japanese Patent Application Laid-Open No. 11-34595

特許文献1には、放射線の入射面側から入射する放射ノイズを遮蔽するために、放射線の入射面側にシールド機能を有するシールド部材が設けられた放射線撮影装置が開示されている。しかしながら、このような構成では、放射線の入射面側とは異なる方向、例えば入射面とは反対側からの放射ノイズの影響を低減できない。このため、入射面側に設けられるシールド部材とは別に、さらにシールド部材が必要になる。また、特許文献1に記載の構成では、シールド機能については開示されているが、放熱機能については開示されていない。特許文献2には、ヒートパイプによる放熱機能は開示されているが、放射ノイズに対するシールド機能については開示されていない。   Patent Document 1 discloses a radiation imaging apparatus in which a shielding member having a shielding function is provided on the radiation incident surface side in order to shield radiation noise incident from the radiation incident surface side. However, with such a configuration, it is not possible to reduce the influence of radiation noise from a direction different from the radiation incident surface side, for example, from the side opposite to the incident surface. For this reason, a shield member is further required separately from the shield member provided on the incident surface side. Further, in the configuration described in Patent Document 1, the shield function is disclosed, but the heat dissipation function is not disclosed. Patent Document 2 discloses a heat dissipation function by a heat pipe, but does not disclose a shield function against radiation noise.

シールド機能と放熱機能の2つの機能を有する放射線撮影装置の需要があるが、これらの機能を有する部材が別個に設けられる構成では、放射線撮影装置の大型化や重量の増加を招く。上述した実情に鑑み、本発明が解決しようとする課題は、放射線撮影装置の大型化や重量の増加を抑制しつつ、外部から入射する放射ノイズの影響の低減でき、熱源が発する熱の放熱できるようにすることである。   There is a demand for a radiographic apparatus having two functions of a shield function and a heat dissipation function. However, in the configuration in which members having these functions are separately provided, the radiographic apparatus is increased in size and weight. In view of the above situation, the problem to be solved by the present invention is that the influence of radiation noise incident from the outside can be reduced and the heat generated by the heat source can be dissipated while suppressing the increase in size and weight of the radiation imaging apparatus. Is to do so.

上述の課題を解決するため、本発明は、入射した放射線を電気信号に変換する有効撮影領域が設けられた放射線検出器と、熱を発する熱源とを有する放射線撮影装置であって、前記熱源に接触しており前記熱源の熱を外部に放熱する放熱部材をさらに有し、前記放熱部材には、前記有効撮影領域の面方向に直角な方向視において前記有効撮影領域の外側を囲む外周部が設けられており、少なくとも前記外周部は導電性を有することを特徴とする。   In order to solve the above-described problems, the present invention provides a radiation imaging apparatus having a radiation detector provided with an effective imaging region for converting incident radiation into an electrical signal, and a heat source that generates heat, A heat radiating member that is in contact and radiates heat of the heat source to the outside, and the heat radiating member has an outer peripheral portion that surrounds the outside of the effective imaging region in a direction perpendicular to the surface direction of the effective imaging region. Provided, and at least the outer peripheral portion has conductivity.

本発明によれば、放射線撮影装置の大型化や重量の増加を抑制しつつ、外部から入射する放射ノイズの影響の低減でき、熱源が発する熱の放熱できる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of the radiation noise which injects from the outside can be reduced, and the heat | fever which a heat source emits can be thermally radiated, suppressing the enlargement and weight increase of a radiography apparatus.

第1実施形態に放射線撮影装置の構成例を示す図。The figure which shows the structural example of the radiography apparatus in 1st Embodiment. 第1実施形態に係る放熱部材の構成例を示す図。The figure which shows the structural example of the heat radiating member which concerns on 1st Embodiment. 第2実施形態に係る放熱部材の構成例を示す図。The figure which shows the structural example of the heat radiating member which concerns on 2nd Embodiment. 第3実施形態に係る放射線撮影装置の構成例を示す図。The figure which shows the structural example of the radiography apparatus which concerns on 3rd Embodiment.

以下、添付の図面を参照して、本発明の各実施形態について説明する。なお、各実施形態で共通の構成要素には、同じ符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the component common in each embodiment.

本発明の各実施形態では、本発明が適用された放射線撮影装置の例として、医療分野で用いられる携帯型の電子カセッテ(デジタル方式のカセッテ型放射線撮影装置)を示す。医療分野で用いられる電子カセッテは、放射線源から曝射されて被検者を透過した放射線を検出し、検出した放射線の強度分布に応じて放射線画像を生成する。ただし、本発明が適用できる放射線撮影装置は、医療分野で用いられる電子カセッテに限定されない。例えば、本発明は、非破壊検査装置や分析装置など、各種分野で用いられる放射線撮影装置に適用できる。   In each embodiment of the present invention, a portable electronic cassette (digital cassette type radiation imaging apparatus) used in the medical field is shown as an example of a radiation imaging apparatus to which the present invention is applied. An electronic cassette used in the medical field detects radiation that has been exposed from a radiation source and transmitted through a subject, and generates a radiation image according to the intensity distribution of the detected radiation. However, the radiographic apparatus to which the present invention can be applied is not limited to an electronic cassette used in the medical field. For example, the present invention can be applied to radiation imaging apparatuses used in various fields such as a nondestructive inspection apparatus and an analysis apparatus.

<第1実施形態>
まず、本発明の第1実施形態に係る放射線撮影装置1aの構成例について、図1を参照して説明する。図1は、第1実施形態に係る放射線撮影装置1aの構成例を模式的に示す図であり、(a)は分解斜視図、(b)は断面図である。説明の便宜上、撮影時に放射線を入射させる側を「入射側」と称し、その反対側を「背面側」と称する。図1においては、図中の上側が入射側であり、下側が背面側である。
<First Embodiment>
First, a configuration example of the radiation imaging apparatus 1a according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram schematically illustrating a configuration example of a radiation imaging apparatus 1a according to the first embodiment, in which (a) is an exploded perspective view and (b) is a cross-sectional view. For convenience of explanation, the side on which radiation is incident during imaging is referred to as “incident side”, and the opposite side is referred to as “back side”. In FIG. 1, the upper side in the figure is the incident side, and the lower side is the back side.

図1に示すように、第1実施形態に係る放射線撮影装置1aの主要ユニットは、放射線検出器11と、回路基板12と、バッテリー13と、放熱部材14aと、入射側筐体15と、背面側筐体16とを有する。   As shown in FIG. 1, the main units of the radiation imaging apparatus 1a according to the first embodiment are a radiation detector 11, a circuit board 12, a battery 13, a heat radiating member 14a, an incident side housing 15, and a rear surface. Side housing 16.

放射線検出器11には、フラットパネル検出器(FPD)が適用される。ただし、放射線検出器11の具体的な構成は特に限定されない。放射線検出器11は、直接変換方式であってもよく、間接変換方式であってもよい。直接変換方式の放射線検出器は、a−Si(アモルファスシリコン)などの放射線感応型の半導体とTFTなどのスイッチング素子(電子素子)とが二次元状に配置されている有効撮影領域101(画素領域とも称する)を有する。そして、有効撮影領域101に入射した放射線を電気信号に変換する。間接変換方式の放射線検出器は、入射した放射線の強度に応じて蛍光を発する波長変換部(シンチレータなど)と、波長変換部が発する蛍光を光電変換する(電気信号に変換する)半導体とスイッチング素子とが二次元状に配置されている有効撮影領域101とを有する。   A flat panel detector (FPD) is applied to the radiation detector 11. However, the specific configuration of the radiation detector 11 is not particularly limited. The radiation detector 11 may be a direct conversion method or an indirect conversion method. The direct-conversion radiation detector has an effective imaging region 101 (pixel region) in which a radiation-sensitive semiconductor such as a-Si (amorphous silicon) and a switching element (electronic element) such as a TFT are two-dimensionally arranged. Also called). Then, the radiation incident on the effective imaging region 101 is converted into an electrical signal. The indirect conversion type radiation detector includes a wavelength conversion unit (such as a scintillator) that emits fluorescence according to the intensity of incident radiation, a semiconductor that converts the fluorescence emitted by the wavelength conversion unit (converts it into an electrical signal), and a switching element. And an effective imaging region 101 arranged two-dimensionally.

なお、いずれの方式の放射線検出器においても、外部からの放射ノイズなどの影響によって、有効撮影領域101において生成される電気信号(電圧や電流)にノイズが発生することがある。医療分野では有効撮影領域101の面積が大きい放射線検出器が用いられることがあるが、有効撮影領域101の面積が大きいほど外部からの放射ノイズの影響を受けやすくなる。このため、第1実施形態では、後述する放熱部材14aに、外部からの放射ノイズの影響を低減させる機能を持たせる。   In any type of radiation detector, noise may be generated in an electrical signal (voltage or current) generated in the effective imaging region 101 due to the influence of radiation noise from the outside. In the medical field, a radiation detector having a large area of the effective imaging region 101 may be used. However, the larger the area of the effective imaging region 101, the more easily affected by radiation noise from the outside. For this reason, in 1st Embodiment, the function to reduce the influence of the radiation noise from the outside is given to the thermal radiation member 14a mentioned later.

回路基板12とバッテリー13は、放射線撮影装置1aに含まれる熱源の例である。回路基板12は、放射線検出器11を制御する回路などが設けられた基板である。図1においては、放射線撮影装置1aに設けられる回路基板12として、第1の回路基板121と、第2の回路基板122と、第3の回路基板123を例に示す。第1の回路基板121は、放射線検出器11の長辺に沿うように配置される。第1の回路基板121には、例えば、有効撮影領域101に設けられるスイッチング素子などを駆動する駆動回路が設けられる。第2の回路基板122は、放射線検出器11の短辺に沿うように配置される。第2の回路基板122には、例えば、有効撮影領域101において生成された電気信号を読み出す読出し回路が設けられる。第3の回路基板123は、第1の回路基板121と第2の回路基板122とは別の回路基板である。なお、第1の回路基板121と第2の回路基板122と第3の回路基板123の具体的な構成は、特に限定されない。また、放射線撮影装置1aに設けられる回路基板12は、前述の第1の回路基板121と第2の回路基板122と第3の回路基板123に限定されない。さらに、放射線撮影装置1aには、前述の第1の回路基板121と第2の回路基板122と第3の回路基板123のうちのいずれか一部のみが設けられる構成であってもよい。   The circuit board 12 and the battery 13 are examples of heat sources included in the radiation imaging apparatus 1a. The circuit board 12 is a board on which a circuit for controlling the radiation detector 11 is provided. In FIG. 1, as a circuit board 12 provided in the radiation imaging apparatus 1a, a first circuit board 121, a second circuit board 122, and a third circuit board 123 are shown as an example. The first circuit board 121 is disposed along the long side of the radiation detector 11. For example, the first circuit board 121 is provided with a drive circuit that drives a switching element or the like provided in the effective imaging region 101. The second circuit board 122 is arranged along the short side of the radiation detector 11. For example, the second circuit board 122 is provided with a readout circuit that reads an electrical signal generated in the effective imaging region 101. The third circuit board 123 is a circuit board different from the first circuit board 121 and the second circuit board 122. The specific configurations of the first circuit board 121, the second circuit board 122, and the third circuit board 123 are not particularly limited. The circuit board 12 provided in the radiation imaging apparatus 1a is not limited to the first circuit board 121, the second circuit board 122, and the third circuit board 123 described above. Furthermore, the radiation imaging apparatus 1a may be configured to include only some of the first circuit board 121, the second circuit board 122, and the third circuit board 123 described above.

バッテリー13は、放射線撮影装置1aの各部に駆動用の電力を供給する。バッテリー13の構成も特に限定されず、公知の各種二次電池が適用できる。   The battery 13 supplies driving power to each part of the radiation imaging apparatus 1a. The configuration of the battery 13 is not particularly limited, and various known secondary batteries can be applied.

放熱部材14aは、熱源の例である回路基板12とバッテリー13が発する熱を放射線撮影装置1aの外部に放熱するための部材である。また、放熱部材14aは、外部からの放射ノイズの影響を低減する機能も有する。放熱部材14aは、放射線撮影装置1aに設けられる放射線検出器11の平面視(放射線検出器11の有効撮影領域101の面方向に直角な方向視をいう。以下、単に平面視と称する)の外形が略四辺形で、内周側に開口部143が設けられる枠状(ループ状)の構成を有する。すなわち、放熱部材14aは、略四辺形の外周部140を有し、外周部140の内周側には開口部143が設けられる。平面視において、放熱部材14aの開口部143の内寸は放射線検出器11の外形寸法よりも大きく、その内周側に放射線検出器11を配置できる。   The heat radiating member 14a is a member for radiating heat generated by the circuit board 12 and the battery 13 which are examples of heat sources to the outside of the radiation imaging apparatus 1a. Moreover, the heat radiating member 14a also has a function of reducing the influence of external radiation noise. The heat dissipating member 14a is a plan view of the radiation detector 11 provided in the radiation imaging apparatus 1a (referred to as a direction view perpendicular to the surface direction of the effective imaging region 101 of the radiation detector 11. Hereinafter, simply referred to as a plan view). Is substantially quadrilateral and has a frame-like (loop-like) configuration in which an opening 143 is provided on the inner peripheral side. That is, the heat radiating member 14 a has a substantially quadrangular outer peripheral portion 140, and an opening 143 is provided on the inner peripheral side of the outer peripheral portion 140. In plan view, the inner dimension of the opening 143 of the heat radiating member 14a is larger than the outer dimension of the radiation detector 11, and the radiation detector 11 can be arranged on the inner peripheral side thereof.

放熱部材14aは、伝熱部145と放熱部146とを有する。伝熱部145は、回路基板12とバッテリー13が発する熱を放熱部146に移動させるための経路となる部分である。放熱部146は、伝熱部145を介して回路基板12やバッテリー13から伝達された熱を外部に放熱する部分である。図1では、放熱部材14aの外周部140の4辺のうちの3辺(2つの長辺と一方の短辺)が伝熱部145であり、残りの1辺(他方の短辺)が放熱部146である構成を例に示す。   The heat radiating member 14 a includes a heat transfer portion 145 and a heat radiating portion 146. The heat transfer part 145 is a part that becomes a path for moving the heat generated by the circuit board 12 and the battery 13 to the heat dissipation part 146. The heat radiating unit 146 is a part that radiates heat transferred from the circuit board 12 and the battery 13 through the heat transfer unit 145 to the outside. In FIG. 1, three of the four sides of the outer peripheral portion 140 of the heat radiating member 14a (two long sides and one short side) are heat transfer portions 145, and the remaining one side (the other short side) is radiating heat. A configuration that is the unit 146 is shown as an example.

伝熱部145は、ヒートパイプ144によって形成される。ヒートパイプ144は、一般的に直線状の形状にものとL字形状のものがある。ただし、いずれの形状であっても熱を移動させる原理は同様である。具体的には、ヒートパイプ144の内部には作動液が封入されている。そして、「作動液が、高温部において蒸発して気体となって低温部へ移動し、低温部において気体が冷却されて液体となって高温部に移動する」というサイクルを繰り返す。これにより、ヒートパイプ144の高温部から低温部に熱が移動する。また、ヒートパイプ144は、例えば、銅やアルミの合金などといった、熱伝導率の高い材料により形成される。さらに、ヒートパイプ144は、導電性材料により形成される。   The heat transfer unit 145 is formed by a heat pipe 144. The heat pipe 144 is generally in a linear shape and in an L shape. However, the principle of transferring heat is the same regardless of the shape. Specifically, a working fluid is sealed inside the heat pipe 144. Then, the cycle of “the working fluid evaporates in the high temperature part and becomes gas and moves to the low temperature part, and the gas is cooled in the low temperature part and becomes liquid and moves to the high temperature part” is repeated. Thereby, heat moves from the high temperature part of the heat pipe 144 to the low temperature part. The heat pipe 144 is formed of a material having high thermal conductivity such as copper or aluminum alloy. Furthermore, the heat pipe 144 is formed of a conductive material.

放熱部146は、たとえば金属などの熱伝導率の高い材料により形成され、例えば棒状の構成を有する。放熱部146は、熱源の熱を放射線撮影装置1aの外部に放熱できるように、入射側筐体15と背面側筐体16の外部に露出している。   The heat radiating portion 146 is formed of a material having high thermal conductivity such as metal, and has a rod-like configuration, for example. The heat radiation part 146 is exposed to the outside of the incident side housing 15 and the back side housing 16 so that the heat of the heat source can be radiated to the outside of the radiation imaging apparatus 1a.

放熱部材14aの外周部140の4辺のうちの少なくとも1辺からは、開口部143の内周側に向かってヒートパイプ144が延出している。説明の便宜上、このような部分を「延出部141」と称する。図1においては、2本の延出部141が設けられる構成を例に示す。ただし、延出部141の数や寸法は特に限定されるものではない。延出部141の数や寸法は、第3の回路基板123の数や寸法、バッテリー13の寸法などに応じて適宜設定される。   A heat pipe 144 extends from at least one of the four sides of the outer peripheral portion 140 of the heat radiating member 14 a toward the inner peripheral side of the opening 143. For convenience of explanation, such a portion is referred to as an “extension portion 141”. In FIG. 1, a configuration in which two extending portions 141 are provided is shown as an example. However, the number and dimensions of the extending portions 141 are not particularly limited. The number and dimensions of the extending portions 141 are appropriately set according to the number and dimensions of the third circuit board 123, the dimensions of the battery 13, and the like.

そして、放熱部材14aの開口部143の内周側に放射線検出器11が配置され、放熱部材14aおよび放射線検出器11の背面側に回路基板12とバッテリー13とが配置される。前述のとおり、放熱部材14aの開口部143の内寸は、放射線検出器11の外寸より大きく、放熱部材14aの開口部143の内周側に放射線検出器11を入れ込むように配置できる。放射線検出器11が放熱部材14aの開口部143の内周側に配置された状態では、平面視において、放熱部材14aの外周部140が放射線検出器11の周囲をループ状に囲む。このため、平面視において、放射線検出器11の有効撮影領域101の外側が、ループ状の外周部140によって囲まれる。換言すると、放熱部材14aの外周部140の4辺は、平面視において、放射線検出器11の有効撮影領域101の外側に位置することになる。   And the radiation detector 11 is arrange | positioned at the inner peripheral side of the opening part 143 of the heat radiating member 14a, and the circuit board 12 and the battery 13 are arrange | positioned at the back side of the heat radiating member 14a and the radiation detector 11. FIG. As described above, the inner dimension of the opening 143 of the heat radiating member 14a is larger than the outer dimension of the radiation detector 11, and the radiation detector 11 can be disposed so as to be inserted into the inner peripheral side of the opening 143 of the heat radiating member 14a. In a state where the radiation detector 11 is disposed on the inner peripheral side of the opening 143 of the heat dissipation member 14a, the outer peripheral portion 140 of the heat dissipation member 14a surrounds the periphery of the radiation detector 11 in a loop shape in plan view. For this reason, in plan view, the outside of the effective imaging region 101 of the radiation detector 11 is surrounded by the loop-shaped outer peripheral portion 140. In other words, the four sides of the outer peripheral portion 140 of the heat radiation member 14a are located outside the effective imaging region 101 of the radiation detector 11 in plan view.

また、放熱部材14aにヒートパイプ144の延出部141が設けられる構成においては、放射線検出器11はヒートパイプ144の延出部141の入射側に配置され、回路基板12とバッテリー13はヒートパイプ144の延出部141の背面側に配置される。   In the configuration in which the extended portion 141 of the heat pipe 144 is provided on the heat radiating member 14a, the radiation detector 11 is disposed on the incident side of the extended portion 141 of the heat pipe 144, and the circuit board 12 and the battery 13 are connected to the heat pipe. It is arranged on the back side of the extended portion 141 of 144.

第1の回路基板121は、放熱部材14aの外周部140の4辺のうち、ヒートパイプ144によって形成される長辺の背面側に接触している。第2の回路基板122は、放熱部材14aの外周部140の4辺のうち、ヒートパイプ144によって形成される短辺の背面側に接触している。第3の回路基板123は、ヒートパイプ144の延出部141の背面側に接触している。バッテリー13は、ヒートパイプ144の延出部141の少なくとも1つの背面側に接触している。図1においては、バッテリー13がヒートパイプ144の1本の延出部141に接触している構成を示すが、2本以上の延出部141に接触している構成であってもよい。   The first circuit board 121 is in contact with the back side of the long side formed by the heat pipe 144 among the four sides of the outer peripheral portion 140 of the heat dissipation member 14a. The second circuit board 122 is in contact with the back side of the short side formed by the heat pipe 144 among the four sides of the outer peripheral portion 140 of the heat radiating member 14a. The third circuit board 123 is in contact with the back side of the extended portion 141 of the heat pipe 144. The battery 13 is in contact with at least one back side of the extending portion 141 of the heat pipe 144. Although FIG. 1 shows a configuration in which the battery 13 is in contact with one extending portion 141 of the heat pipe 144, a configuration in which two or more extending portions 141 are in contact may be used.

このように、熱源である回路基板12とバッテリー13は、ヒートパイプ144に熱を伝達するために、ヒートパイプ144の近傍に配置されてヒートパイプ144に接触している。ヒートパイプ144に伝達された熱は、放熱部146に移動して放熱部146から放射線撮影装置1aの外部に放熱される。回路基板12およびバッテリー13と放熱部材14aのヒートパイプ144とを接近して配置することによって、回路基板12やバッテリー13が発する熱を、効率よくヒートパイプ144に伝達できる。なお、第1の実施形態では、熱源の例として回路基板12とバッテリー13の両方を示すが、一方のみであってもよい。すなわち、回路基板12とバッテリー13の少なくとも一方が、放熱部材14aに接触して放熱される構成であればよい。また、回路基板12が熱源の例である場合についても、第1の回路基板121と第2の回路基板122と第3の回路基板123の全てが放熱部材14aに接触している構成でなくてもよい。すなわち、第1の回路基板121と第2の回路基板122と第3の回路基板123の少なくとも一部が放熱部材14aに接触して放熱される構成であればよい。   As described above, the circuit board 12 and the battery 13 which are heat sources are disposed in the vicinity of the heat pipe 144 and are in contact with the heat pipe 144 in order to transfer heat to the heat pipe 144. The heat transmitted to the heat pipe 144 moves to the heat radiating unit 146 and is radiated from the heat radiating unit 146 to the outside of the radiation imaging apparatus 1a. By arranging the circuit board 12 and the battery 13 and the heat pipe 144 of the heat radiating member 14a close to each other, heat generated by the circuit board 12 and the battery 13 can be efficiently transmitted to the heat pipe 144. In the first embodiment, both the circuit board 12 and the battery 13 are shown as examples of the heat source, but only one of them may be used. That is, it is only necessary that at least one of the circuit board 12 and the battery 13 is in contact with the heat radiating member 14a to radiate heat. Further, even when the circuit board 12 is an example of a heat source, the first circuit board 121, the second circuit board 122, and the third circuit board 123 are not all in contact with the heat dissipation member 14a. Also good. That is, it is sufficient if at least a part of the first circuit board 121, the second circuit board 122, and the third circuit board 123 is in contact with the heat radiating member 14a to radiate heat.

また、放熱部材14aの外周部140(伝熱部145と放熱部146)は、導電性材料によって形成される。このため、放熱部材14aの開口部143の内周側に放射線検出器11が配置された状態では、放熱部材14aの外周部140によって、放射線検出器11の周囲を囲むようにループ状の回路が形成される。このような構成であると、外部から放射ノイズが入射した場合には、放熱部材14aの外周部140には、誘導起電力によって入射した放射ノイズを打ち消す方向の電流が発生する。したがって、例えば、放射線検出器11が生成する電気信号に、ノイズが発生することを防止または抑制できる。   Moreover, the outer peripheral part 140 (the heat-transfer part 145 and the heat radiating part 146) of the heat radiating member 14a is formed of a conductive material. For this reason, in a state where the radiation detector 11 is arranged on the inner peripheral side of the opening 143 of the heat radiating member 14a, a loop-shaped circuit is formed so as to surround the radiation detector 11 by the outer peripheral portion 140 of the heat radiating member 14a. It is formed. With this configuration, when radiation noise is incident from the outside, a current in a direction that cancels the radiation noise incident on the outer peripheral portion 140 of the heat dissipation member 14a is generated by the induced electromotive force. Therefore, for example, it is possible to prevent or suppress the generation of noise in the electrical signal generated by the radiation detector 11.

放射線検出器11と放熱部材14aと回路基板12とバッテリー13の入射側には、入射側筐体15が設けられ、背面側には背面側筐体16が設けられる。そして、放射線検出器11と放熱部材14aと回路基板12とバッテリー13は、入射側筐体15と背面側筐体16との間に収容される。なお、入射側筐体15と背面側筐体16は、それらの間に放射線検出器11と放熱部材14aと回路基板12とバッテリー13を収容できる構成であればよく、具体的な構成は特に限定されない。また、放射線撮影装置1aの軽量化を図るため、入射側筐体15と背面側筐体16には、例えば、ABS、ポリカーボネート、エポキシ樹脂などの樹脂材料が適用できる。さらに、強度の向上を図るために、例えば、CFRPやGFRPなどの繊維強化樹脂を適用してもよい。なお、本発明の第1実施形態では、放熱部材14aが放射ノイズを打ち消す機能を有するため、入射側筐体15や背面側筐体16に金属を用いなくてもよい。   An incident side casing 15 is provided on the incident side of the radiation detector 11, the heat radiation member 14 a, the circuit board 12, and the battery 13, and a back side casing 16 is provided on the back side. The radiation detector 11, the heat radiating member 14 a, the circuit board 12, and the battery 13 are accommodated between the incident-side casing 15 and the back-side casing 16. In addition, the incident side housing | casing 15 and the back side housing | casing 16 should just be the structure which can accommodate the radiation detector 11, the thermal radiation member 14a, the circuit board 12, and the battery 13 among them, and a specific structure is especially limited. Not. In order to reduce the weight of the radiation imaging apparatus 1a, resin materials such as ABS, polycarbonate, and epoxy resin can be applied to the incident-side casing 15 and the back-side casing 16, for example. Furthermore, in order to improve the strength, for example, a fiber reinforced resin such as CFRP or GFRP may be applied. In the first embodiment of the present invention, the heat radiating member 14a has a function of canceling radiation noise, and therefore, it is not necessary to use metal for the incident side casing 15 and the back side casing 16.

入射側筐体15と背面側筐体16の少なくとも一方には開口部(説明の便宜上、筐体開口部161と称する)が設けられており、放熱部材14aの放熱部146はこの筐体開口部161を介して外部に露出している。図1においては、背面側筐体16に筐体開口部161が設けられる構成を例に示すが、入射側筐体15に筐体開口部161が設けられる構成であってもよく、背面側筐体16と入射側筐体15の両方に筐体開口部161が設けられる構成であってもよい。要は、放熱部材14aの放熱部146が、入射側筐体15と背面側筐体16の外部(すなわち、放射線撮影装置1aの外部)に露出する構成であればよい。   At least one of the incident-side casing 15 and the back-side casing 16 is provided with an opening (referred to as a casing opening 161 for convenience of description), and the heat radiating portion 146 of the heat radiating member 14a is provided in the case opening. 161 is exposed to the outside through 161. In FIG. 1, a configuration in which the housing opening 161 is provided in the rear housing 16 is shown as an example, but a configuration in which the housing opening 161 is provided in the incident housing 15 may be used. A configuration in which the housing opening 161 is provided in both the body 16 and the incident-side housing 15 may be employed. The point is that the heat radiating portion 146 of the heat radiating member 14a may be configured to be exposed to the outside of the incident side housing 15 and the back side housing 16 (that is, outside the radiation imaging apparatus 1a).

次に、ヒートパイプ144の接合構造の例について、図2を参照して説明する。図2は、ヒートパイプ144の連結構造の例を示す模式図である。図2に示す例では、4つのL型のヒートパイプ144が接合部147において接合され、全体として「コ」の字形状に形成される。すなわち、4つのL型のヒートパイプ144が接合部147において接合されることによって、外周部140の四辺形の3辺が形成される。さらに、「コ」の字の端部(3辺のうちの平行な2辺の端部)に、放熱部146の長尺方向の端部が接合部147によって接合される。これにより、1つの放熱部146が、外周部140の一方の短辺を形成する。このように、4つのL型のヒートパイプ144と1つの放熱部146とが、全体として略四辺形の外形を有するように互いに接合される。これにより、放熱部材14aの外周部140が形成されるとともに、開口部143の内周側に延出する延出部141が形成される。なお、図2においては、放熱部材14aにL型のヒートパイプ144が適用される例を示すが、直線状のヒートパイプ144が適用される構成であってもよい。   Next, an example of the joining structure of the heat pipe 144 will be described with reference to FIG. FIG. 2 is a schematic diagram illustrating an example of a connection structure of the heat pipes 144. In the example shown in FIG. 2, four L-shaped heat pipes 144 are joined at the joint portion 147 and formed as a “U” shape as a whole. That is, the four L-shaped heat pipes 144 are joined at the joint portion 147, so that the three sides of the outer peripheral portion 140 are formed. Further, the end portion in the longitudinal direction of the heat radiating portion 146 is joined to the end portion of the “U” shape (the end portions of two parallel sides of the three sides) by the joining portion 147. Thereby, one heat radiating portion 146 forms one short side of the outer peripheral portion 140. In this way, the four L-shaped heat pipes 144 and the one heat radiating portion 146 are joined to each other so as to have a substantially quadrilateral outline as a whole. Thereby, while the outer peripheral part 140 of the thermal radiation member 14a is formed, the extension part 141 extended to the inner peripheral side of the opening part 143 is formed. 2 shows an example in which the L-shaped heat pipe 144 is applied to the heat dissipation member 14a, a configuration in which a linear heat pipe 144 is applied may be used.

なお、ヒートパイプ144どうしの接合や、ヒートパイプ144と放熱部146との接合には、熱および電気イナートガス溶接、ガス溶接、アーク溶接、ロウ付けなどが適用できる。要は、熱伝達率が高く電気的に導通するように接合される構成であればよい。   Note that heat and electric inert gas welding, gas welding, arc welding, brazing, and the like can be applied to the joining of the heat pipes 144 and the joining of the heat pipe 144 and the heat radiating portion 146. In short, any structure may be used as long as it has a high heat transfer rate and is joined so as to be electrically conductive.

ヒートパイプ144は、いずれも放熱部146に近い側が低温部となり、放熱部146から遠い側が高温部となるように配置される。したがって、放熱部材14aにおける熱移動の向きは、図2中の矢印で示すように、放熱部146に遠い側から放熱部146に向かう向きとなる。放熱部146は、熱伝導率の高い材料からなり、放射線撮影装置1aの外部(入射側筐体15と背面側筐体16の外部)に露出している。このような構成によれば、ヒートパイプ144から放熱部146に伝わった熱は、放射線撮影装置1aの外部へと放熱される。   The heat pipes 144 are all arranged so that the side near the heat radiating portion 146 is a low temperature portion and the side far from the heat radiating portion 146 is a high temperature portion. Therefore, the direction of heat transfer in the heat radiating member 14a is the direction from the side far from the heat radiating portion 146 toward the heat radiating portion 146, as shown by the arrow in FIG. The heat radiating portion 146 is made of a material having high thermal conductivity, and is exposed to the outside of the radiation imaging apparatus 1a (outside of the incident-side housing 15 and the back-side housing 16). According to such a configuration, the heat transmitted from the heat pipe 144 to the heat radiating unit 146 is radiated to the outside of the radiation imaging apparatus 1a.

このように、放熱部材14aによって、回路基板12やバッテリー13といった熱源が発する熱を、放射線撮影装置1aの外部に放熱できる。また、放熱部材14aの外周部140が放射線検出器11(特に有効撮影領域101)を囲むように設けられる構成である。このため、外周部140には放射ノイズが入射した場合に誘導起電力によって放射ノイズを打ち消す方向に電流が流れ、放射ノイズの影響を低減できる。このような構成であれば、金属製の筐体を用いたり、放熱部材14aとは別にシールド部材を設けたりしなくても、放射線撮影装置1aに放射ノイズに対するシールド機能を持たせることができる。したがって、放射線撮影装置1aの大型化や重量の増加を抑制しつつ、回路基板12やバッテリー13などの熱源が発する熱を放熱する機能と、放射ノイズに対するシールド機能とを併せて持たせることができる。   Thus, the heat radiating member 14a can radiate the heat generated by the heat source such as the circuit board 12 and the battery 13 to the outside of the radiation imaging apparatus 1a. Further, the outer peripheral portion 140 of the heat radiating member 14a is provided so as to surround the radiation detector 11 (particularly the effective imaging region 101). For this reason, when radiation noise is incident on the outer peripheral portion 140, a current flows in a direction to cancel the radiation noise by the induced electromotive force, and the influence of the radiation noise can be reduced. With such a configuration, the radiation imaging apparatus 1a can be provided with a shielding function against radiation noise without using a metal casing or providing a shield member separately from the heat dissipation member 14a. Therefore, it is possible to provide both a function of radiating heat generated by a heat source such as the circuit board 12 and the battery 13 and a shielding function against radiation noise while suppressing an increase in size and weight of the radiation imaging apparatus 1a. .

例えば、医療分野で用いられる放射線撮影装置に対しては、心臓などの循環器系の診断やIVR技術の発達に伴い、連続撮影や動画撮影の需要も高まっている。このような需要に応えるため、アンギオグラフイシステムとしてCアーム撮影装置や、透視撮影の放射線テレビの開発が進められている。連続撮影や動画撮影をする場合には、静止画を撮影する場合と比較して、放射線撮影装置の連続動作時間が長くなる。連続動作時間が長くなると、放射線撮影装置に設けられる回路基板やバッテリーなどが高温になりやすく、これらを冷却するための放熱機構を設けなければならない。また、動画撮影機能を備えた放射線撮影装置は、操作者が携帯・運搬する携帯型の放射線撮影装置(携帯型の電子カセッテ)にも需要が広まりつつある。携帯型の放射線撮影装置は、使用者が携帯・運搬するため、小型・軽量であることが求められている。本発明の第1実施形態によれば、放熱部材14aにシールド機能を持たせることによって、放熱部材14aとは別にシールド部材を設けなくてもよいから、放射線撮影装置1aの大型化や重量の増加を抑制できる。   For example, for radiographic apparatuses used in the medical field, demands for continuous imaging and video imaging have increased along with the development of cardiovascular systems such as the heart and the development of IVR technology. In order to meet such demand, development of an angiographic system such as a C-arm imaging apparatus and a radiographic television for fluoroscopy has been underway. When continuous shooting or moving image shooting is performed, the continuous operation time of the radiation imaging apparatus becomes longer than when shooting a still image. If the continuous operation time becomes long, circuit boards and batteries provided in the radiation imaging apparatus are likely to become high temperature, and a heat dissipation mechanism for cooling them must be provided. In addition, the demand for radiographic apparatuses equipped with a moving image capturing function is spreading to portable radiographic apparatuses (portable electronic cassettes) carried and carried by an operator. A portable radiographic apparatus is required to be small and lightweight for the user to carry and carry. According to the first embodiment of the present invention, by providing the heat radiating member 14a with a shielding function, it is not necessary to provide a shield member separately from the heat radiating member 14a. Therefore, the radiation imaging apparatus 1a is increased in size and weight. Can be suppressed.

<第2実施形態>
次に、本発明の第2実施形態に係る放射線撮影装置1bの構成例について、図3を参照して説明する。図3は、第2実施形態に係る放射線撮影装置1bにおける熱源(回路基板12とバッテリー13)と放熱部材14bの構成例を模式的に示す図である。第2実施形態は、第1実施形態と比較すると、熱源の例である第3の回路基板123とバッテリー13の配置位置が相違する。また、放熱部材14bにはヒートパイプ144の延出部141が設けられない。図3に示すように、放熱部材14bは、平面視において略四辺形の枠状(ループ状)の構成を有する。また、放熱部材14bは、外周部140を有するが延出部141を有さない。そして、第3の回路基板123とバッテリー13は、それぞれ少なくとも一部が放熱部材14bの外周部140の4辺のうちのヒートパイプ144により形成される辺(すなわち、伝熱部145)のいずれかに沿って配置され、ヒートパイプ144の背面側に接触している。
Second Embodiment
Next, a configuration example of the radiation imaging apparatus 1b according to the second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a diagram schematically illustrating a configuration example of the heat source (the circuit board 12 and the battery 13) and the heat dissipation member 14b in the radiation imaging apparatus 1b according to the second embodiment. The second embodiment is different from the first embodiment in the arrangement positions of the third circuit board 123, which is an example of a heat source, and the battery 13. Further, the extending portion 141 of the heat pipe 144 is not provided on the heat radiating member 14b. As shown in FIG. 3, the heat radiating member 14b has a substantially quadrangular frame shape (loop shape) in plan view. The heat radiating member 14b has the outer peripheral portion 140 but does not have the extending portion 141. And each of the third circuit board 123 and the battery 13 is any one of sides (that is, the heat transfer portion 145) formed by the heat pipe 144 out of the four sides of the outer peripheral portion 140 of the heat radiating member 14b. And is in contact with the back side of the heat pipe 144.

すなわち、第1実施形態は、少なくとも一部の回路基板12(第3の回路基板123)とバッテリー13がヒートパイプ144の延出部141に接触する構成である。これに対し、第2実施形態は、すべての回路基板12とバッテリー13が、外周部140の4辺のうちのヒートパイプ144により形成される辺(伝熱部145)に接触する構成である。なお、第2実施形態において、第3の回路基板123とバッテリー13は、第1の回路基板121や第2の回路基板122と同様に、放熱部材14bの背面側に配置されており、放熱部材14bのヒートパイプ144の背面側に接触している。   In other words, in the first embodiment, at least a part of the circuit board 12 (third circuit board 123) and the battery 13 are in contact with the extending portion 141 of the heat pipe 144. On the other hand, in the second embodiment, all the circuit boards 12 and the batteries 13 are in contact with the side (the heat transfer unit 145) formed by the heat pipe 144 among the four sides of the outer peripheral part 140. In the second embodiment, the third circuit board 123 and the battery 13 are arranged on the back side of the heat radiating member 14b, like the first circuit board 121 and the second circuit board 122, and the heat radiating member It contacts the back side of the heat pipe 144 of 14b.

第2実施形態によれば、第1実施形態と同様の効果を奏することができる。さらに、第2実施形態によれば、ヒートパイプ144の容量を減らすことができ、放射線撮影装置1bの全体の軽量化を図ることができる。また、熱の移動方向が一方向に定まるため、放熱の効果を高めることができる。   According to the second embodiment, the same effects as those of the first embodiment can be obtained. Furthermore, according to the second embodiment, the capacity of the heat pipe 144 can be reduced, and the overall weight of the radiation imaging apparatus 1b can be reduced. Moreover, since the heat moving direction is determined in one direction, the effect of heat dissipation can be enhanced.

<第3実施形態>
次に、本発明の第3実施形態に係る放射線撮影装置1cの構成例について、図4を参照して説明する。図4は、第3実施形態に係る放射線撮影装置1cの構成例を模式的に示す図であり、(a)は分解斜視図、(b)は断面図である。第3実施形態に係る放射線撮影装置1cは、第1実施形態や第2実施形態と比較すると、シールド部材17を有する構成が相違する。それ以外は、第1実施形態や第2実施形態と共通の構成が適用できる。なお、図4においては、放熱部材14cの構成が第1実施形態と共通である構成を例に示すが、第2実施形態と共通であってもよい。
<Third Embodiment>
Next, a configuration example of a radiation imaging apparatus 1c according to the third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram schematically illustrating a configuration example of a radiation imaging apparatus 1c according to the third embodiment, in which (a) is an exploded perspective view and (b) is a cross-sectional view. The radiation imaging apparatus 1c according to the third embodiment is different from the first embodiment or the second embodiment in the configuration having the shield member 17. Other than that, a configuration common to the first embodiment and the second embodiment can be applied. In FIG. 4, a configuration in which the configuration of the heat dissipation member 14 c is common to the first embodiment is shown as an example, but may be common to the second embodiment.

図4に示すように、放射線撮影装置1cは、入射側筐体15と放射線検出器11との間に配置されるシールド部材17を有する。シールド部材17は、導電性の高い材料、例えば銅やアルミなどといった導電性合金によって形成される。また、シールド部材17は、平面視において、内周側に開口部(説明の便宜上、シールド開口部171と称する)が設けられた略四辺形状の枠状の形状を有しており、継ぎ目を有さない連続した構造を有している。放射線の入射方向視におけるシールド開口部171の内寸は、放射線検出器11の有効撮影領域101の外寸よりも大きい寸法である。そして、シールド部材17は、平面視において、放射線検出器11の入射面側に配置した状態で放射線検出器11の有効撮影領域101には重ならず、有効撮影領域101の外側の領域(いわゆる額縁領域)に重なるように配置される。   As shown in FIG. 4, the radiation imaging apparatus 1 c includes a shield member 17 disposed between the incident side housing 15 and the radiation detector 11. The shield member 17 is formed of a highly conductive material, for example, a conductive alloy such as copper or aluminum. Further, the shield member 17 has a substantially quadrilateral frame shape in which an opening (referred to as a shield opening 171 for convenience of explanation) is provided on the inner peripheral side in a plan view, and has a seam. It has a continuous structure that does not. The inner dimension of the shield opening 171 in the radiation incident direction is larger than the outer dimension of the effective imaging region 101 of the radiation detector 11. The shield member 17 does not overlap the effective imaging area 101 of the radiation detector 11 in a state of being arranged on the incident surface side of the radiation detector 11 in a plan view, but is an area outside the effective imaging area 101 (a so-called frame). It is arranged so as to overlap the area.

このようなシールド部材17は、放射線源から曝射される放射線と同じ方向からノイズが入射した場合に、シールド部材17の4辺に沿って誘導起電力による電流が流れることで、放射ノイズに対するシールド機能を有する。また、シールド部材17にはシールド開口部171が設けられており、放射線の入射方向視において、放射線検出器11の有効撮影領域101には重ならない。このため、有効撮影領域101に入射する放射線を遮蔽しない。また、図4(b)に示すように、放射線検出器11が放熱部材14cの開口部143の内周側に収まらずに入射側に配置される構成であれば、入射側からの放射ノイズはシールド部材17がシールドし、背面側からの放射ノイズは放熱部材14cがシールドする。すなわち、第3の実施形態においては、放射線検出器11が放熱部材14cの開口部143に入れ込まれるように配置される構成でなくてもよい。この場合、放射線検出器11は、放熱部材14cとシールド部材17との間に配置される構成であればよい。   Such a shield member 17 shields against radiation noise by causing a current due to induced electromotive force to flow along the four sides of the shield member 17 when noise is incident from the same direction as the radiation emitted from the radiation source. It has a function. Further, the shield member 17 is provided with a shield opening 171 and does not overlap the effective imaging region 101 of the radiation detector 11 when viewed in the incident direction of radiation. For this reason, radiation incident on the effective imaging region 101 is not shielded. Further, as shown in FIG. 4B, if the radiation detector 11 is arranged on the incident side instead of being located on the inner peripheral side of the opening 143 of the heat radiating member 14c, the radiation noise from the incident side is The shield member 17 shields, and the radiation noise from the back side is shielded by the heat radiating member 14c. That is, in 3rd Embodiment, the structure arrange | positioned so that the radiation detector 11 may be inserted in the opening part 143 of the thermal radiation member 14c may not be sufficient. In this case, the radiation detector 11 should just be the structure arrange | positioned between the heat radiating member 14c and the shield member 17. FIG.

以上、本発明の各実施形態について図面を参照して詳細に説明したが、前記実施形態は、本発明の実施にあたっての具体例を示したに過ぎない。本発明の技術的範囲は、前記各実施形態に限定されるものではない。本発明は、その趣旨を逸脱しない範囲において、種々の変更が可能であり、それらも本発明の技術的範囲に含まれる。   As mentioned above, although each embodiment of this invention was described in detail with reference to drawings, the said embodiment only showed the specific example in implementation of this invention. The technical scope of the present invention is not limited to the above embodiments. The present invention can be variously modified without departing from the spirit thereof, and these are also included in the technical scope of the present invention.

例えば、前記各実施形態では、医療用の放射線撮影装置を例に示したが、本発明は、回路基板やバッテリーなどの熱源を有する放射線撮影装置であれば適用可能である。例えば、本発明は、非破壊検査装置や分析装置など、各種分野で用いられる放射線撮影装置に適用できる。   For example, in each of the above-described embodiments, a medical radiographic apparatus has been described as an example. However, the present invention can be applied to any radiographic apparatus having a heat source such as a circuit board or a battery. For example, the present invention can be applied to radiation imaging apparatuses used in various fields such as a nondestructive inspection apparatus and an analysis apparatus.

本発明は、放射線撮影装置に好適な技術である。本発明によれば、放射線撮影装置の大型化や重量の増加を招くことなく、外部からの放射ノイズによる影響の低減と、熱源が発する熱の放熱を図ることができる。   The present invention is a technique suitable for a radiation imaging apparatus. According to the present invention, it is possible to reduce the influence of external radiation noise and to radiate the heat generated by the heat source without increasing the size and weight of the radiation imaging apparatus.

1a,1b,1c:放射線撮影装置、11:放射線検出器、101:有効撮影領域、12:回路基板、121:第1の回路基板、122:第2の回路基板、123:第3の回路基板、13:バッテリー、14a,14b,14c:放熱部材、140:外周部、141:延出部、143:開口部、144:ヒートパイプ、145:伝熱部、146:放熱部、147:接合部、15:入射側筐体、16:背面側筐体、161:筐体開口部、17:シールド部材、171:シールド開口部 1a, 1b, 1c: Radiation imaging apparatus, 11: Radiation detector, 101: Effective imaging area, 12: Circuit board, 121: First circuit board, 122: Second circuit board, 123: Third circuit board , 13: battery, 14a, 14b, 14c: heat radiating member, 140: outer periphery, 141: extension, 143: opening, 144: heat pipe, 145: heat transfer, 146: heat radiating, 147: joint , 15: incident side case, 16: back side case, 161: case opening, 17: shield member, 171: shield opening

Claims (7)

入射した放射線を電気信号に変換する有効撮影領域が設けられた放射線検出器と、熱を発する熱源とを有する放射線撮影装置であって、
前記熱源に接触しており前記熱源の熱を外部に放熱する放熱部材をさらに有し、
前記放熱部材には、前記有効撮影領域の面方向に直角な方向視において前記有効撮影領域の外側を囲む外周部が設けられており、少なくとも前記外周部は導電性を有することを特徴とする放射線撮影装置。
A radiation imaging apparatus having a radiation detector provided with an effective imaging region for converting incident radiation into an electrical signal, and a heat source that generates heat,
A heat dissipating member that contacts the heat source and dissipates heat from the heat source to the outside;
The heat radiation member is provided with an outer peripheral portion that surrounds the outside of the effective imaging region in a direction perpendicular to the surface direction of the effective imaging region, and at least the outer peripheral portion has conductivity. Shooting device.
前記放熱部材は、前記外周部の内周側に開口部が設けられたループ状の構成を有しており、
前記放射線検出器は、前記開口部の内周側に配置されることを特徴とする請求項1に記載の放射線撮影装置。
The heat radiating member has a loop-like configuration in which an opening is provided on the inner peripheral side of the outer peripheral portion,
The radiation imaging apparatus according to claim 1, wherein the radiation detector is disposed on an inner peripheral side of the opening.
前記放熱部材は、外部に放熱する放熱部と、前記熱源が発する熱を前記放熱部に移動させる伝熱部とを有し、
前記熱源は前記伝熱部に接触していることを特徴とする請求項2に記載の放射線撮影装置。
The heat dissipating member includes a heat dissipating part that dissipates heat to the outside, and a heat transfer part that moves heat generated by the heat source to the heat dissipating part.
The radiation imaging apparatus according to claim 2, wherein the heat source is in contact with the heat transfer unit.
前記伝熱部は、前記外周部から前記開口部の内周側に延出する延出部を有し、
前記熱源は、前記延出部に接触していることを特徴とする請求項3に記載の放射線撮影装置。
The heat transfer part has an extending part extending from the outer peripheral part to the inner peripheral side of the opening part,
The radiation imaging apparatus according to claim 3, wherein the heat source is in contact with the extending portion.
前記外周部の少なくとも一部に前記伝熱部が含まれ、
前記熱源は、前記有効撮影領域の面方向に直角な方向視において前記外周部に含まれる前記伝熱部に沿って配置され、前記外周部に含まれる前記伝熱部に接触していることを特徴とする請求項3に記載の放射線撮影装置。
The heat transfer part is included in at least a part of the outer peripheral part,
The heat source is disposed along the heat transfer portion included in the outer peripheral portion in a direction perpendicular to the surface direction of the effective imaging region, and is in contact with the heat transfer portion included in the outer peripheral portion. The radiation imaging apparatus according to claim 3.
前記熱源は、前記放射線検出器の放射線を入射させる側とは反対側に配置され、
前記放射線検出器の放射線を入射させる側には、入射する放射ノイズを遮蔽するためのシールド部材が、前記有効撮影領域の面方向に直角な方向視において前記有効撮影領域の外側の領域に重ねて配置されることを特徴とする請求項1から5のいずれか1項に記載の放射線撮影装置。
The heat source is disposed on a side opposite to the side on which the radiation of the radiation detector is incident,
On the radiation incident side of the radiation detector, a shielding member for shielding incident radiation noise is overlapped with an area outside the effective imaging area in a direction perpendicular to the surface direction of the effective imaging area. The radiation imaging apparatus according to claim 1, wherein the radiation imaging apparatus is arranged.
前記熱源は、回路基板とバッテリーの少なくとも一方であることを特徴とする請求項1から6のいずれか1項に記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, wherein the heat source is at least one of a circuit board and a battery.
JP2017144870A 2017-07-26 2017-07-26 Radiation imaging apparatus Pending JP2019027834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144870A JP2019027834A (en) 2017-07-26 2017-07-26 Radiation imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144870A JP2019027834A (en) 2017-07-26 2017-07-26 Radiation imaging apparatus

Publications (1)

Publication Number Publication Date
JP2019027834A true JP2019027834A (en) 2019-02-21

Family

ID=65478101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144870A Pending JP2019027834A (en) 2017-07-26 2017-07-26 Radiation imaging apparatus

Country Status (1)

Country Link
JP (1) JP2019027834A (en)

Similar Documents

Publication Publication Date Title
US6323891B1 (en) Imaging apparatus with thermal discharger for transferring heat to cool photoelectric transfer elements
JP7071083B2 (en) Radiation imaging device
JP5675062B2 (en) X-ray imaging device
US10061042B2 (en) Radiation imaging apparatus and radiation imaging system
JP4733092B2 (en) Radiation imaging equipment
JP5627049B2 (en) Electronic cassette
JP6791238B2 (en) Portable radiation imaging device
US20130301808A1 (en) Electronic cassette for radiographic imaging
JP2013122906A (en) Radiation generating apparatus and radiation photography apparatus
JP2013055041A (en) Radiation generating apparatus and radiographic apparatus
US10722195B2 (en) Radiographic apparatus including heat-generating member, lower housing including recess, and heat-transfer portion disposed between heat-generating member and recess
JP2012103268A (en) Radiation image photographing apparatus
JP2012042302A (en) Cassette for radiography
US7742274B2 (en) X-ray detector grounding and thermal transfer system and method
JP3131827U (en) Radiation detector
JP2012088152A (en) Radiation detection device
JP2019027834A (en) Radiation imaging apparatus
JP6457874B2 (en) Radiation imaging apparatus and imaging system
JP2014166263A (en) Radiation image capturing device
JP2014000314A (en) Heat radiation structure of endoscope distal end
JP6723806B2 (en) Radiation detector and radiation detector
JP5606273B2 (en) Radiation imaging equipment
JP2017086768A (en) Radiation imaging apparatus and radiation imaging system
JP2016151446A (en) Radiation imaging device and radiation imaging system
JP2008282998A (en) Structure of radiating heat from electronic component