JP2019026823A - Antifogging composition and antifogging film - Google Patents

Antifogging composition and antifogging film Download PDF

Info

Publication number
JP2019026823A
JP2019026823A JP2018014358A JP2018014358A JP2019026823A JP 2019026823 A JP2019026823 A JP 2019026823A JP 2018014358 A JP2018014358 A JP 2018014358A JP 2018014358 A JP2018014358 A JP 2018014358A JP 2019026823 A JP2019026823 A JP 2019026823A
Authority
JP
Japan
Prior art keywords
particle size
inorganic particles
antifogging
size distribution
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018014358A
Other languages
Japanese (ja)
Inventor
夏樹 平
Natsuki Taira
夏樹 平
道子 田畑
Michiko Tabata
道子 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Agri Dream Co Ltd
Original Assignee
Mitsubishi Chemical Agri Dream Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Agri Dream Co Ltd filed Critical Mitsubishi Chemical Agri Dream Co Ltd
Publication of JP2019026823A publication Critical patent/JP2019026823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Greenhouses (AREA)

Abstract

To provide an antifogging composition and an antifogging film each of which has excellent antifogging property, is excellent in transparency and allows for suppression of blocking between coated films before spread during storage in a warehouse.SOLUTION: The antifogging composition is provided that contains a synthetic resin (A) and an inorganic compound as main components, the inorganic compound including at least inorganic particles (B) and inorganic particles (C), the inorganic compound has multi-peaked particle size distribution having at least two peaks in particle size distribution, the peak of the particle size distribution of the inorganic particles (B) is within a range of less than 150 nm of the particles size, the peak of the particle size distribution of the inorganic particles (C) is within a range of 150 nm or more of the particle size, and a content of the inorganic particles with a particle size of 150 nm or more is 0.01 mass% or more and 25 mass% or less based on the total mass of a solid component of the antifogging composition.SELECTED DRAWING: None

Description

本発明は、透明性、ブロッキング防止性に優れ、かつ長期間使用される環境においても優れた防曇性を備える防曇組成物、および当該防曇組成物からなる層を備える防曇性フィルムに関する。   The present invention relates to an antifogging composition having excellent transparency and antiblocking properties and having an antifogging property even in an environment used for a long period of time, and an antifogging film comprising a layer comprising the antifogging composition. .

近年、様々な分野で種々の熱可塑性樹脂が使用されている。これらの熱可塑性樹脂より製造された成形品の多くは、その表面が疎水性であるため、成形品の使用温度等の使用条件によっては、成形品の表面に曇りを発生させるという問題がある。具体的には、食品包装用フィルムにおいては、曇りが発生すると、内容物が見えにくくなる。また、温室に用いられる農業用フィルムでは、曇りが発生すると、太陽光線の透過が悪くなり、植物の生育が悪くなったり、曇りの微細水滴が集合して生じた大粒の水滴が温室内で栽培する植物に落下することにより、幼芽が害をうけたり、病害の発生の原因となったりする。   In recent years, various thermoplastic resins have been used in various fields. Many of the molded products produced from these thermoplastic resins have a problem that the surface of the molded product is fogged depending on the use conditions such as the use temperature of the molded product because the surface is hydrophobic. Specifically, in a food packaging film, when fogging occurs, the contents become difficult to see. In addition, in agricultural films used in greenhouses, when cloudy weather occurs, the transmission of sunlight rays deteriorates, so that the growth of plants deteriorates, or large water droplets generated by cloudy fine water droplets gather in the greenhouse. Falling into a plant that causes damage to the young buds or causes disease.

このような問題点を解決する方法として、熱可塑性樹脂成形品の表面に、防曇性を付与する方法が知られている。この防曇性を付与する方法としては、熱可塑性樹脂に界面活性剤のような親水性物質を練り込み成形品とする方法、または、熱可塑性樹脂成形品の表面に、例えば、シリカやアルミナと界面活性剤との混合物を塗布する方法が各種提案されている。   As a method for solving such problems, a method for imparting antifogging properties to the surface of a thermoplastic resin molded product is known. As a method for imparting this antifogging property, a thermoplastic material is kneaded with a hydrophilic substance such as a surfactant to form a molded product, or the surface of the thermoplastic resin molded product is, for example, silica or alumina. Various methods for applying a mixture with a surfactant have been proposed.

しかし、前者の方法は、熱可塑性樹脂に練り込んだ親水性物質が成形品の表面に噴き出した状態で配位し、成形品に防曇性を付与することができるものの、練り込んだ界面活性剤のような親水性物質は、水によって流出し易く、短期間のうちに防曇性が消失する。一方、後者の方法においては、塗布によって設けられた塗膜は、熱可塑性樹脂との密着性に乏しいため、時間の経過とともに塗膜が脱落することがあるという問題点がある。   However, the former method can coordinate with the hydrophilic substance kneaded in the thermoplastic resin being ejected on the surface of the molded product, and can impart antifogging properties to the molded product, but the kneaded surface activity A hydrophilic substance such as an agent easily flows out by water, and the antifogging property disappears in a short period of time. On the other hand, the latter method has a problem in that the coating film provided by coating has poor adhesion to the thermoplastic resin, and thus the coating film may fall off over time.

近年においては、熱可塑性樹脂成形品の表面に、例えば、シリカやアルミナと界面活性剤との混合物を塗布する方法は改良され、熱可塑性樹脂との密着性を向上させる技術が発明されている(例えば、特許文献1及び2)。   In recent years, for example, a method for applying a mixture of silica or alumina and a surfactant to the surface of a thermoplastic resin molded article has been improved, and a technique for improving the adhesion with a thermoplastic resin has been invented ( For example, Patent Documents 1 and 2).

しかし、防曇塗料コートタイプの農業用フィルムなどでは、製造後、フィルムが巻き取られた状態で、輸送時、加工所や倉庫に保管される際、又は、加工後のフィルムを展張前に使用者が保管している時に、結露水や雨水等水分の存在下で塗膜同士がブロッキングする問題があり、その改良も求められていた。この現象は、親水性を付与した防曇塗膜同士が水分を介して接触し、フィルム自重による圧力及び熱等の効果で剥がれにくくなってしまうことが原因である。   However, for agricultural films with anti-fogging paint coat type, etc., after the production, the film is wound up, transported, stored in a processing place or warehouse, or the processed film is used before spreading. There is a problem that the coating films block in the presence of moisture such as dew condensation water and rain water when the person is storing it, and the improvement thereof has been demanded. This phenomenon is caused by the fact that the anti-fogging coatings imparted with hydrophilicity come into contact with each other through moisture, and are difficult to peel off due to effects such as pressure and heat due to the film's own weight.

これら防曇性改良及び塗膜同士のブロッキング防止性については、各社で盛んに研究がなされているが、塗膜の親水性を向上すると防曇性は向上するものの、水を介したブロッキングが発生しやすくなり、逆にブロッキングを抑制するために疎水性を上げると、防曇性が低下するという問題がある。   Although various companies have been actively researching these anti-fogging properties and anti-blocking properties between coatings, anti-fogging properties are improved by improving the hydrophilicity of coatings, but blocking via water occurs. However, if the hydrophobicity is increased in order to suppress blocking, there is a problem that the antifogging property is lowered.

また、基材フィルムに凹凸を付与することで塗工後の塗膜にも凹凸が生じブロッキングを防止する方法も知られているが、表面の散乱により透明性を損なってしまうという問題がある。   In addition, there is also known a method in which unevenness is generated in the coated film by imparting unevenness to the base film to prevent blocking, but there is a problem that transparency is impaired due to scattering of the surface.

このように、防曇性能、透明性、ブロッキング防止性能をバランスよく有する技術は未だ十分に確立されておらず、これら性能をバランスよく具備した農業用フィルムが求められている。   As described above, a technology having a good balance of anti-fogging performance, transparency and anti-blocking performance has not been established yet, and an agricultural film having a good balance of these properties is demanded.

この課題を解決するため、例えば特許文献3(特開2007−282625号公報)には、展張時にハウスの内側となる基体フィルムの面に、合成樹脂バインダーを含む下層塗膜を形成し、更に無機微粒子を主成分として含む上層塗膜を形成することで、防曇性を向上し、かつ優れたブロッキング防止性を有する技術が開示されている。   In order to solve this problem, for example, in Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-282625), a lower layer coating film containing a synthetic resin binder is formed on the surface of the base film that becomes the inside of the house at the time of expansion. A technique for improving anti-fogging properties and forming excellent anti-blocking properties by forming an upper layer coating film containing fine particles as a main component is disclosed.

しかしながら、このような多層コートは、製造工程において塗布及び乾燥工程が複数回必要となる為、プロセスが煩雑であり、コスト的にも不利になる傾向があった。またブロッキング性能としても十分なものではなかった。   However, such a multi-layer coating requires a plurality of coating and drying steps in the production process, so that the process is complicated and the cost tends to be disadvantageous. Further, the blocking performance was not sufficient.

特開平9−87615号公報JP-A-9-87615 特開2001−89751号公報JP 2001-89751 A 特開2007―282625号公報JP 2007-282625 A

本発明は、上記技術的課題を解決するためになされたものであり、一回の塗工工程で製造でき、優れた防曇性を有し、更に、透明性に優れ、倉庫に保管する際等に発生する塗膜同士のブロッキングを抑制することを可能とする防曇組成物および防曇性フィルムを提供することを目的とする。   The present invention has been made to solve the above technical problem, and can be produced by a single coating process, has excellent anti-fogging properties, has excellent transparency, and is stored in a warehouse. An object of the present invention is to provide an antifogging composition and an antifogging film that make it possible to suppress blocking between coating films that occur in the above.

本発明者らは、鋭意検討を進めた結果、合成樹脂(A)と無機化合物を主成分として含有し、前記無機化合物は、少なくとも無機粒子(B)と無機粒子(C)とを含み、かつ、粒度分布において少なくとも2つのピークを持つ多峰性の粒度分布を有し、無機粒子(B)の粒度分布のピークは、粒子径が150nm未満の範囲内にあり、無機粒子(C)の粒度分布のピークは、粒子径が150nm以上の範囲内にあり、粒子径が150nm以上である無機粒子を特定量含有する防曇組成物、及び、展張時にハウスの内側となる基材フィルムの面に当該防曇組成物からなる層を設けることで、上記目的が達成されることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the inventors of the present invention contain a synthetic resin (A) and an inorganic compound as main components, and the inorganic compound contains at least inorganic particles (B) and inorganic particles (C), and , Having a multimodal particle size distribution having at least two peaks in the particle size distribution, and the particle size distribution peak of the inorganic particles (B) is in the range of less than 150 nm, and the particle size of the inorganic particles (C) The peak of the distribution is on the surface of the base film that has a particle size in the range of 150 nm or more and contains a specific amount of inorganic particles having a particle size of 150 nm or more, and the base film that is inside the house at the time of stretching. By providing the layer which consists of the said anti-fogging composition, it discovered that the said objective was achieved and came to complete this invention.

即ち、本発明は、
[1]合成樹脂(A)と無機化合物を主成分として含有し、前記無機化合物は、少なくとも無機粒子(B)と無機粒子(C)とを含む防曇組成物であって、
前記無機化合物は、粒度分布において少なくとも2つのピークを持つ多峰性の粒度分布を有し、
無機粒子(B)の粒度分布のピークは、粒子径が150nm未満の範囲内にあり、
無機粒子(C)の粒度分布のピークは、粒子径が150nm以上の範囲内にあり、
粒子径が150nm以上である無機粒子の含有量は、前記防曇組成物の固形成分の全質量に対して、0.01質量%以上25質量%以下であることを特徴とする、該防曇組成物。
[2]前記無機粒子(C)の粒度分布のピークは、粒子径が150nm以上、1000nm以下の範囲内にあることを特徴とする[1]に記載の防曇組成物。
[3]前記無機粒子(C)の粒度分布のピークの値X(nm)と、防曇組成物の固形成分の全質量に対する粒子径が150nm以上である無機粒子の含有量Y(質量%)の積である値Kは、10以上8000以下であることを特徴とする[1]または[2]に記載の防曇組成物。
[4]基材フィルムを備え、[1]〜[3]のいずれか1項に記載の防曇組成物からなる層が、前記基材フィルムの少なくとも片面側に設けられていることを特徴とする防曇性フィルム。
[5]前記基材フィルムがポリオレフィン系樹脂を含むことを特徴とする[4]に記載の防曇性フィルム。
[6]農業用途であることを特徴とする[4]または[5]に記載の防曇性フィルム。
を、提供するものである。
That is, the present invention
[1] A synthetic resin (A) and an inorganic compound as main components, and the inorganic compound is an antifogging composition containing at least inorganic particles (B) and inorganic particles (C),
The inorganic compound has a multimodal particle size distribution having at least two peaks in the particle size distribution;
The peak of the particle size distribution of the inorganic particles (B) is in the range where the particle size is less than 150 nm,
The peak of the particle size distribution of the inorganic particles (C) is in the range where the particle size is 150 nm or more,
Content of the inorganic particle whose particle diameter is 150 nm or more is 0.01 mass% or more and 25 mass% or less with respect to the total mass of the solid component of the said antifogging composition. Composition.
[2] The antifogging composition as described in [1], wherein the particle size distribution peak of the inorganic particles (C) is in the range of 150 nm or more and 1000 nm or less.
[3] The value X (nm) of the particle size distribution peak of the inorganic particles (C) and the content Y (mass%) of inorganic particles having a particle diameter of 150 nm or more with respect to the total mass of the solid components of the antifogging composition. The antifogging composition according to [1] or [2], wherein a value K which is a product of is from 10 to 8000.
[4] A substrate film is provided, and the layer made of the antifogging composition according to any one of [1] to [3] is provided on at least one side of the substrate film. Anti-fogging film.
[5] The antifogging film as described in [4], wherein the base film contains a polyolefin resin.
[6] The antifogging film as described in [4] or [5], which is used for agriculture.
Is provided.

本発明の防曇組成物および防曇性フィルムは、長期間の使用に対しても優れた防曇性を有し、かつ結露による視界性不良や水滴落下を抑制し、更に透明性を損なうことなく塗膜同士のブロッキングを抑制することができる。   The anti-fogging composition and anti-fogging film of the present invention have excellent anti-fogging properties even for long-term use, and suppress poor visibility and water drop due to condensation, and further impair transparency. And blocking between coating films can be suppressed.

以下に、本発明の防曇組成物および防曇性フィルムを詳細に説明する。   Below, the antifogging composition and antifogging film of this invention are demonstrated in detail.

本発明の防曇組成物は、合成樹脂(A)と無機化合物を主成分として含有し、前記無機化合物は、少なくとも無機粒子(B)と無機粒子(C)とを含み、かつ、粒度分布において少なくとも2つのピークを持つ多峰性の粒度分布を有し、無機粒子(B)の粒度分布のピークは、粒子径が150nm未満の範囲内にあり、無機粒子(C)の粒度分布のピークは、粒子径が150nm以上の範囲内にあり、粒子径が150nm以上である無機粒子の含有量は、防曇組成物の固形成分の全質量に対して、0.01質量%以上25質量%以下とすることが重要である。   The antifogging composition of the present invention contains a synthetic resin (A) and an inorganic compound as main components, and the inorganic compound contains at least inorganic particles (B) and inorganic particles (C), and has a particle size distribution. The particle size distribution has a multimodal particle size distribution having at least two peaks, the particle size distribution peak of the inorganic particles (B) is in the range of less than 150 nm, and the particle size distribution peak of the inorganic particles (C) is The content of inorganic particles having a particle diameter in the range of 150 nm or more and a particle diameter of 150 nm or more is 0.01% by mass or more and 25% by mass or less with respect to the total mass of the solid component of the antifogging composition. Is important.

<無機化合物>
本発明の防曇剤に含まれる無機化合物は、少なくとも無機粒子(B)と無機粒子(C)とを含み、かつ、粒度分布において少なくとも2つのピークを持つ多峰性の粒度分布を有する。
<Inorganic compounds>
The inorganic compound contained in the antifogging agent of the present invention includes at least inorganic particles (B) and inorganic particles (C), and has a multimodal particle size distribution having at least two peaks in the particle size distribution.

<無機粒子(B)>
本発明に使用する無機粒子(B)の粒度分布のピークは、粒子径が150nm未満の範囲内にあれば特に限定されることはないが、10nm以上150nm未満の範囲内にあることが好ましく、15nm以上150nm未満の範囲内にあることがより好ましく、20nm以上130nm未満の範囲内にあることが更に好ましい。無機粒子(B)の粒度分布のピークが上記の範囲内にあることで分散性に優れ、また、フィルムに塗布した際、塗膜の透明性が劣ることを抑制することができる。
また、無機粒子(B)は、粒子径が150nm未満の範囲内に粒度分布のピークを2つ以上有していてもよい。
なお、本発明の無機粒子(B)の粒度分布のピークの測定は、動的光散乱式粒度分布測定装置により測定される体積基準の粒度分布を測定してピークの位置を求めるか、または、走査電子顕微鏡(日本FEI社製:NovaNanoSEM)により粒子を拡大した写真を撮影し、ついでこの写真に基づいて画像解析ソフトウエア(日本ローパー社製:Image−Pro Premier)を使用して写真画像の解析を行い、画像中のノイズを除去し、複数の写真画像を用いることで、任意に2000個の粒子を選択し、得られた粒子径データを用いて、横軸に粒子径、縦軸に体積をとったヒストグラムを作成し、体積基準の粒度分布を求めてピークの位置を求めることができる。
<Inorganic particles (B)>
The peak of the particle size distribution of the inorganic particles (B) used in the present invention is not particularly limited as long as the particle diameter is in the range of less than 150 nm, but is preferably in the range of 10 nm or more and less than 150 nm, More preferably, it is within the range of 15 nm or more and less than 150 nm, and further preferably within the range of 20 nm or more and less than 130 nm. When the peak of the particle size distribution of the inorganic particles (B) is within the above range, it is excellent in dispersibility, and when applied to a film, it can be suppressed that the transparency of the coating film is inferior.
In addition, the inorganic particles (B) may have two or more particle size distribution peaks in a range where the particle size is less than 150 nm.
Incidentally, the measurement of the peak of the particle size distribution of the inorganic particles (B) of the present invention is to determine the position of the peak by measuring the volume-based particle size distribution measured by a dynamic light scattering particle size distribution measuring device, or The photograph which expanded the particle | grains with the scanning electron microscope (Nippon FEI company: NovaNanoSEM) was image | photographed, and the analysis of a photographic image was then based on this photograph using image analysis software (Nippon Roper company: Image-Pro Premier). By removing noise in the image and using a plurality of photographic images, arbitrarily select 2000 particles, and using the obtained particle size data, the horizontal axis represents the particle size and the vertical axis represents the volume. The peak position can be obtained by creating a histogram based on the above and obtaining a volume-based particle size distribution.

本発明の防曇組成物に使用する無機粒子(B)として、粒子径が150nm未満の範囲内に粒度分布のピークを有する無機粒子を一種又は二種以上を組み合わせたものを使用することが出来る。   As the inorganic particles (B) used in the antifogging composition of the present invention, those in which one or a combination of two or more inorganic particles having a particle size distribution peak within a range of particle diameter of less than 150 nm can be used. .

本発明に使用する無機粒子(B)としては、シリカ、アルミナ、水不溶性リチウムシリケート、酸化亜鉛、酸化ジルコニウム、水酸化鉄、水酸化スズ、酸化チタン、酸化アンチモン、硫酸バリウム、アンチモン酸亜鉛等の粒子が挙げられる。中でも好ましく用いられるのは、シリカとアルミナの粒子で、これらは、単独で用いても併用してもよい。   Examples of the inorganic particles (B) used in the present invention include silica, alumina, water-insoluble lithium silicate, zinc oxide, zirconium oxide, iron hydroxide, tin hydroxide, titanium oxide, antimony oxide, barium sulfate, and zinc antimonate. Particles. Among them, silica and alumina particles are preferably used, and these may be used alone or in combination.

また、防曇組成物における合成樹脂(A)と粒子径が150nm未満である無機粒子の質量比は、5:95〜75:25であることが好ましく、5:95〜70:30であることがより好ましく、5:95〜65:35であることが更に好ましい。合成樹脂(A)と粒子径が150nm未満の無機粒子の質量比を上記とすることで、十分な防曇性を得ることができる。
ここで、粒子径が150nm未満である無機粒子の質量は、無機粒子(B)及び無機粒子(C)のうち、粒子径が150nm未満である無機粒子群の全質量を言う。
Further, the mass ratio of the synthetic resin (A) and the inorganic particles having a particle diameter of less than 150 nm in the antifogging composition is preferably 5:95 to 75:25, and 5:95 to 70:30. Is more preferable, and it is still more preferable that it is 5: 95-65: 35. By setting the mass ratio of the synthetic resin (A) and the inorganic particles having a particle diameter of less than 150 nm to the above, sufficient antifogging properties can be obtained.
Here, the mass of the inorganic particles having a particle diameter of less than 150 nm refers to the total mass of the inorganic particle group having a particle diameter of less than 150 nm among the inorganic particles (B) and the inorganic particles (C).

<無機粒子(C)>
本発明の無機粒子(C)の粒度分布のピークは、粒子径が150nm以上の範囲内にあれば特に限定されることはないが、150nm〜1000nmの範囲内にあることが好ましく、170nm〜700nmの範囲内にあることがより好ましく、180nm〜600nmの範囲内にあることが更に好ましい。無機粒子(C)の粒度分布のピークが上記の範囲内にあることで、ブロッキング防止性に優れ、かつフィルムに塗布した際、塗膜の透明性が劣ることを抑制することができる。
また、無機粒子(C)は、粒子径が150nm以上の範囲内に粒度分布のピークを2つ以上有していてもよい。
なお、本発明の無機粒子(C)の粒度分布のピークの測定は、動的光散乱式粒度分布測定装置により測定される体積基準の粒度分布を測定してピークの位置を求めるか、または、走査電子顕微鏡(日本FEI社製:NovaNanoSEM)により粒子を拡大した写真を撮影し、ついでこの写真に基づいて画像解析ソフトウエア(日本ローパー社製:Image−Pro Premier)を使用して写真画像の解析を行い、画像中のノイズを除去し、複数の写真画像を用いることで、任意に2000個の粒子を選択し、得られた粒子径データを用いて、横軸に粒子径、縦軸に体積をとったヒストグラムを作成し、体積基準の粒度分布を求めてピークの位置を求めることができる。
<Inorganic particles (C)>
The peak of the particle size distribution of the inorganic particles (C) of the present invention is not particularly limited as long as the particle diameter is in the range of 150 nm or more, but is preferably in the range of 150 nm to 1000 nm, preferably 170 nm to 700 nm. More preferably, it is in the range of 180 nm to 600 nm. When the peak of the particle size distribution of the inorganic particles (C) is within the above range, it is possible to prevent the coating film from being inferior when coated on a film with excellent antiblocking properties.
In addition, the inorganic particles (C) may have two or more particle size distribution peaks within a particle diameter range of 150 nm or more.
In addition, the measurement of the peak of the particle size distribution of the inorganic particles (C) of the present invention is to determine the position of the peak by measuring the volume-based particle size distribution measured by a dynamic light scattering particle size distribution measuring device, or The photograph which expanded the particle | grains with the scanning electron microscope (Nippon FEI Co., Ltd .: Nova Nano SEM) was image | photographed, and the analysis of a photographic image using image analysis software (Nippon Roper: Image-Pro Premier) based on this photograph was carried out. By removing noise in the image and using a plurality of photographic images, arbitrarily select 2000 particles, and using the obtained particle size data, the horizontal axis represents the particle size and the vertical axis represents the volume. The peak position can be obtained by creating a histogram based on the above and obtaining a volume-based particle size distribution.

本発明の防曇剤組成物に使用する無機粒子(C)として、粒子径が150nm以上の範囲内に粒度分布のピークを有する無機粒子を一種又は二種以上を組み合わせたものを使用することが出来る。   As the inorganic particles (C) used in the antifogging agent composition of the present invention, it is possible to use one or a combination of two or more inorganic particles having a particle size distribution peak within a particle diameter range of 150 nm or more. I can do it.

本発明に使用する無機粒子(C)としては、シリカ、アルミナ、水不溶性リチウムシリケート、酸化亜鉛、酸化ジルコニウム、水酸化鉄、水酸化スズ、酸化チタン、酸化アンチモン、硫酸バリウム、アンチモン酸亜鉛等の粒子が挙げられる。中でも好ましく用いられるのは、シリカとアルミナの粒子で、これらは、単独で用いても併用してもよい。   Examples of the inorganic particles (C) used in the present invention include silica, alumina, water-insoluble lithium silicate, zinc oxide, zirconium oxide, iron hydroxide, tin hydroxide, titanium oxide, antimony oxide, barium sulfate, and zinc antimonate. Particles. Among them, silica and alumina particles are preferably used, and these may be used alone or in combination.

また、粒子径が150nm以上である無機粒子は、防曇組成物の固形成分の全質量に対する含有量を0.01質量%以上25質量%以下とすることが重要である。また、粒子径が150nm以上である無機粒子の含有量の下限は、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。また、粒子径が150nm以上である無機粒子の含有量の上限は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、11質量%以下であることが更に好ましく、8質量%以下であることが特に好ましい。粒子径が150nm以上である無機粒子の含有量を上記の範囲とすることでブロッキング防止性に優れ、かつフィルムに塗布した際、塗膜の透明性が低下することをより抑制することができる。
ここで、粒子径が150nm以上である無機粒子の質量は、無機粒子(B)及び無機粒子(C)のうち、粒子径が150nm以上である無機粒子群の全質量を言う。
Further, it is important that the inorganic particles having a particle diameter of 150 nm or more have a content of 0.01% by mass to 25% by mass with respect to the total mass of the solid components of the antifogging composition. Moreover, the lower limit of the content of inorganic particles having a particle diameter of 150 nm or more is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. Further, the upper limit of the content of inorganic particles having a particle diameter of 150 nm or more is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 11% by mass or less, It is particularly preferably 8% by mass or less. By making content of the inorganic particle whose particle diameter is 150 nm or more into said range, it is excellent in antiblocking property, and when apply | coating to a film, it can suppress more that the transparency of a coating film falls.
Here, the mass of the inorganic particles having a particle diameter of 150 nm or more refers to the total mass of the inorganic particles having a particle diameter of 150 nm or more among the inorganic particles (B) and the inorganic particles (C).

また、本発明の無機粒子(C)は、無機粒子(C)の粒度分布におけるピークの値X(nm)と、防曇組成物の固形成分の全質量に対する粒子径が150nm以上である無機粒子の含有量Y(質量%)の積である値K(粒度分布におけるピークの値X(nm)×含有量Y(質量%))が10以上8000以下であることが好ましく、20以上7000以下であることがより好ましく、25以上3000以下であることが更に好ましい。前記Kの値を上記の範囲とすることで、ブロッキングをより抑制することが可能となり、かつ、透明性にも更に優れるものとすることができる。   In addition, the inorganic particles (C) of the present invention are inorganic particles having a peak value X (nm) in the particle size distribution of the inorganic particles (C) and a particle size of 150 nm or more with respect to the total mass of the solid components of the antifogging composition. The value K (peak value in particle size distribution X (nm) × content Y (mass%)) is preferably 10 or more and 8000 or less, and preferably 20 or more and 7000 or less. More preferably, it is 25 or more and 3000 or less. By setting the value of K in the above range, blocking can be further suppressed and transparency can be further improved.

また、本発明に使用する無機粒子(B)及び無機粒子(C)は、乾燥時における無機粒子同士や無機粒子と合成樹脂間の接着性向上の為に、基材フィルム表面への親水性付与を阻害しない範囲で、表面処理を施すことが出来る。シリカやアルミナの表面への表面処理の方法としては、公知のものが使用できるが、中でもシランカップリング剤を始めとするシラン化合物を好適に用いることが出来る。   In addition, the inorganic particles (B) and inorganic particles (C) used in the present invention impart hydrophilicity to the surface of the base film in order to improve the adhesion between the inorganic particles during drying or between the inorganic particles and the synthetic resin. Surface treatment can be performed within a range that does not impede. As a surface treatment method for the surface of silica or alumina, known methods can be used, and among them, a silane compound such as a silane coupling agent can be preferably used.

無機化合物は、本発明の防曇組成物を防曇層として使用した場合に、良好な防曇性を付与することが出来る上、更に塗膜表面において合成樹脂等によるブロッキングを防止する機能を果たすものである。   The inorganic compound can provide good antifogging properties when the antifogging composition of the present invention is used as an antifogging layer, and further functions to prevent blocking by a synthetic resin or the like on the surface of the coating film. Is.

本発明に使用する無機化合物は、無機粒子(B)及び無機粒子(C)以外にも、本発明の効果を損なわない範囲で、他の無機化合物、例えば、シリカ、アルミナ、水不溶性リチウムシリケート、酸化亜鉛、酸化ジルコニウム、水酸化鉄、水酸化スズ、酸化チタン、酸化アンチモン、硫酸バリウム、アンチモン酸亜鉛等を含むことができる。   In addition to the inorganic particles (B) and the inorganic particles (C), the inorganic compound used in the present invention is not limited to the effects of the present invention, and other inorganic compounds such as silica, alumina, water-insoluble lithium silicate, Zinc oxide, zirconium oxide, iron hydroxide, tin hydroxide, titanium oxide, antimony oxide, barium sulfate, zinc antimonate and the like can be included.

本発明の無機粒子(B)と無機粒子(C)は、同じ種類の化合物からなる粒子であっても、異なる種類の化合物からなる粒子であってもよい。   The inorganic particles (B) and the inorganic particles (C) of the present invention may be particles made of the same kind of compound or particles made of different kinds of compounds.

<合成樹脂(A)>
本発明に使用する合成樹脂(A)としては、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリエステル系樹脂等が挙げられるが、合成樹脂からなる基材フィルムとの相性から、特に、アクリル系樹脂、及び/又はウレタン系樹脂を用いることが好ましく、更に好ましくは後述する(i)親水性アクリル系重合体からなるもの、(ii)疎水性アクリル系樹脂からなるもの、(iii)疎水性アクリル系樹脂と、ポリウレタンエマルジョンからなるもの、が各々の特質を持ち、好ましい。また、(iv)前記樹脂に使用されるモノマーの共重合体樹脂についても、好ましく使用することが出来る。(iv)については、例えば、ウレタン変性ポリエステル系ウレタン等を挙げる事が出来る。
<Synthetic resin (A)>
Examples of the synthetic resin (A) used in the present invention include acrylic resins, epoxy resins, urethane resins, polyester resins, and the like. It is preferable to use a resin and / or a urethane-based resin, and more preferably (i) one made of a hydrophilic acrylic polymer, (ii) one made of a hydrophobic acrylic resin, and (iii) a hydrophobic acrylic. A resin composed of a polyurethane resin and a polyurethane emulsion are preferred because of their respective characteristics. Also, (iv) a copolymer resin of a monomer used for the resin can be preferably used. Examples of (iv) include urethane-modified polyester urethane.

アクリル系樹脂としては、(a)親水性アクリル系重合体からなるもの、(b)疎水性アクリル系樹脂からなるもの、または、(a)と(b)を含む共重合体からなるものが挙げられるが、特に(a)が、初期の防曇濡れが早い点で好ましいが、流失しやすい傾向にあるので、架橋反応等で塗膜にある程度の耐水性を付与することが必要となる。一方、(b)については、耐水性に優れており、防曇持続性に関しては好ましいが、疎水性アクリルによる表面疎水化を抑制する為に、合成樹脂(A)と無機粒子(B)の比率を調整する必要がある。   Examples of the acrylic resin include (a) those made of a hydrophilic acrylic polymer, (b) those made of a hydrophobic acrylic resin, or those made of a copolymer containing (a) and (b). However, (a) is particularly preferable in terms of early initial antifogging wetness, but it tends to be washed away, so that it is necessary to impart some water resistance to the coating film by a crosslinking reaction or the like. On the other hand, (b) is excellent in water resistance and preferable in terms of antifogging durability, but the ratio of the synthetic resin (A) to the inorganic particles (B) in order to suppress surface hydrophobicity by hydrophobic acrylic. Need to be adjusted.

(a)の親水性アクリル系重合体としては、水酸基含有ビニル単量体成分を主成分(好ましくは60質量%〜99.9質量%、更に好ましくは65質量%〜95質量%とし)、酸基含有ビニル単量体成分を0.1〜30質量%含有する共重合体、その部分中和物または完全中和物が挙げられる。水酸基含有ビニル単量体成分としては、ヒドロキシアルキル(メタ)アクリレート類があげられ、例えば、ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシペンチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート等があげられる。これらは単独重合体であってもよく、これらヒドロキシアルキル(メタ)アクリレート類を主成分とし、これらと共重合しうる他の単量体との共重合体であってもよい。   As the hydrophilic acrylic polymer of (a), a hydroxyl group-containing vinyl monomer component is a main component (preferably 60 mass% to 99.9 mass%, more preferably 65 mass% to 95 mass%), acid Examples thereof include a copolymer containing 0.1 to 30% by mass of a group-containing vinyl monomer component, a partially neutralized product or a completely neutralized product thereof. Examples of the hydroxyl group-containing vinyl monomer component include hydroxyalkyl (meth) acrylates, such as hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) An acrylate etc. are mention | raise | lifted. These may be homopolymers, or may be copolymers of these hydroxyalkyl (meth) acrylates as main components and other monomers that can be copolymerized therewith.

これらヒドロキシアルキル(メタ)アクリレート類と共重合しうる酸基含有単量体としては、カルボン酸類、スルホン酸類、ホスホン酸類が挙げられ、特に好ましくは、カルボン酸に属する(メタ)アクリル酸である。   Examples of the acid group-containing monomer copolymerizable with these hydroxyalkyl (meth) acrylates include carboxylic acids, sulfonic acids and phosphonic acids, and (meth) acrylic acid belonging to carboxylic acids is particularly preferred.

その他の共重合体成分としては、たとえばスチレン、ビニルトルエン、塩化ビニル、塩化ビニリデン、酸化ビニル、(メタ)アクリル酸エステル類、N,N−ジメチルアミノエチル(メタ)アクリルアミド、ビニルピリジン等があげられる。これらに加え架橋部位を含有するモノマーを共重合させておき、適切な架橋剤を適切な架橋温度で反応させることにより、架橋密度を向上させ、耐水性を向上させることが出来る。   Examples of other copolymer components include styrene, vinyl toluene, vinyl chloride, vinylidene chloride, vinyl oxide, (meth) acrylic acid esters, N, N-dimethylaminoethyl (meth) acrylamide, vinyl pyridine, and the like. . In addition to these, a monomer containing a crosslinking site is copolymerized and an appropriate crosslinking agent is reacted at an appropriate crosslinking temperature, whereby the crosslinking density can be improved and the water resistance can be improved.

(b)の疎水性アクリル系樹脂としては、少なくとも合計60質量%のアクリル酸またはメタクリル酸のアルキルエステル類からなる単量体、またはアクリル酸またはメタクリル酸のアルキルエステル類とアルケニルベンゼン類との単量体混合物及び0〜40質量%の共重合しうるα、β−エチレン性不飽和単量体とを、通常の重合条件に従って、例えば乳化剤の存在下に、水系媒質中で乳化重合させて得られる水分散性の重合体または共重合体を挙げることができる。   As the hydrophobic acrylic resin (b), at least a total of 60% by weight of a monomer comprising an alkyl ester of acrylic acid or methacrylic acid, or a single unit of an alkyl ester of acrylic acid or methacrylic acid and an alkenylbenzene. A monomer mixture and 0 to 40% by mass of a copolymerizable α, β-ethylenically unsaturated monomer are obtained by emulsion polymerization in an aqueous medium in the presence of an emulsifier, for example, according to normal polymerization conditions. And water dispersible polymers or copolymers.

疎水性アクリル系樹脂の製造に用いられるアクリル酸またはメタクリル酸のアルキルエステル類としては、アクリル酸メチルエステル、アクリル酸エチルエステル、アクリル酸−n−プロピルエステル、アクリル酸イソプロピルエステル、アクリル酸−n−ブチルエステル、アクリル酸−2−エチルヘキシルエステル、アクリル酸デシルエステル、メタクリル酸メチルエステル、メタクリル酸エチルエステル、メタクリル酸−n−プロピルエステル、メタクリル酸イソプロピルエステル、メタクリル酸−n−ブチルエステル、メタクリル酸−2−エチルヘキシルエステル、メタクリル酸デシルエステル等が挙げられ、一般には、アルキル基の炭素数が1〜20個のアクリル酸アルキルエステル及び/又はアルキル基の炭素数が1〜20個のメタクリル酸アルキルエステルが使用される。アルケニルベンゼン類としては、スチレン、α−メチルスチレン、ビニルトルエン等が挙げられる。   Examples of alkyl esters of acrylic acid or methacrylic acid used in the production of hydrophobic acrylic resins include acrylic acid methyl ester, acrylic acid ethyl ester, acrylic acid-n-propyl ester, acrylic acid isopropyl ester, acrylic acid-n- Butyl ester, acrylic acid-2-ethylhexyl ester, acrylic acid decyl ester, methacrylic acid methyl ester, methacrylic acid ethyl ester, methacrylic acid-n-propyl ester, methacrylic acid isopropyl ester, methacrylic acid-n-butyl ester, methacrylic acid- 2-ethylhexyl ester, methacrylic acid decyl ester, and the like. Generally, an alkyl alkyl group having 1 to 20 carbon atoms and / or a methyl group having 1 to 20 carbon atoms is used. Acrylic acid alkyl esters are used. Examples of alkenylbenzenes include styrene, α-methylstyrene, vinyltoluene and the like.

疎水性アクリル系樹脂を得るために用いるα、β−エチレン性不飽和単量体としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸等のα、β−エチレン性不飽和カルボン酸類;エチレンスルホン酸等のα、β−エチレン性不飽和スルホン酸類;2−アクリルアミド−2−メチルプロパン酸;α、β−エチレン性不飽和ホスホン酸類;アクリル酸又はメタクリル酸のヒドロキシエチル等の水酸基含有ビニル単量体;アクリロニトリル類;アクリルアマイド類;アクリル酸又はメタクリル酸のグリシジルエステル類等が挙げられる。これら単量体は、単独で用いても、または2種以上の併用でもよく、0〜40質量%の範囲で使用するのが好ましい。使用量を上記の範囲とすることで、防曇性能が低下することを抑制することができる。   Examples of α, β-ethylenically unsaturated monomers used to obtain hydrophobic acrylic resins include α, β such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, and itaconic acid. -Ethylenically unsaturated carboxylic acids; α, β-ethylenically unsaturated sulfonic acids such as ethylene sulfonic acid; 2-acrylamido-2-methylpropanoic acid; α, β-ethylenically unsaturated phosphonic acids; acrylic acid or methacrylic acid Hydroxyl group-containing vinyl monomers such as hydroxyethyl; acrylonitriles; acrylic amides; glycidyl esters of acrylic acid or methacrylic acid, and the like. These monomers may be used alone or in combination of two or more, and are preferably used in the range of 0 to 40% by mass. It can suppress that anti-fogging performance falls by making the usage-amount into said range.

アクリル系樹脂は、公知の乳化剤、例えば陰イオン系界面活性剤、陽イオン系界面活性剤、非イオン系界面活性剤の中から選ばれる1種もしくは2種以上の存在下、水系媒質中で、乳化重合させる方法、反応性乳化剤を用いて重合させる方法、乳化剤を含有せずオリゴソープ理論に基づいて重合させる方法等によって得ることができる。乳化剤の存在下での重合方法の場合、これら乳化剤は、単量体の仕込み合計量に対し0.1〜10質量%の範囲で使用するのが、重合速度の調整、合成される樹脂の分散安定性の点から好ましい。   The acrylic resin is a known emulsifier, for example, an anionic surfactant, a cationic surfactant, or a nonionic surfactant, in the presence of one or more kinds in an aqueous medium. It can be obtained by a method of emulsion polymerization, a method of polymerization using a reactive emulsifier, a method of polymerizing based on an oligo soap theory without containing an emulsifier. In the case of the polymerization method in the presence of an emulsifier, these emulsifiers are used in the range of 0.1 to 10% by mass with respect to the total amount of charged monomers, to adjust the polymerization rate and to disperse the resin to be synthesized. It is preferable from the viewpoint of stability.

アクリル系樹脂の製造に好ましく用いられる重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩;アセチルパーオキサイド、過酸化ベンゾイル等の有機過酸化物等が挙げられる。これらは、単量体の仕込み合計量に対して0.1〜10質量%の範囲で使用することができる。   Examples of the polymerization initiator preferably used for the production of the acrylic resin include persulfates such as ammonium persulfate and potassium persulfate; organic peroxides such as acetyl peroxide and benzoyl peroxide. These can be used in the range of 0.1 to 10% by mass relative to the total amount of monomers charged.

疎水性アクリル系樹脂は、ガラス転移温度が低いものが好ましく、限定することはないが、たとえば−50〜110℃のものが好ましく、−30〜80℃のものを用いるのが好ましい。ガラス転移温度を上記の範囲とすることで無機粒子(B)が凝集して不均一な分散状態となることを抑制することができ、また透明性のある均一な塗膜を得やすくなる。   The hydrophobic acrylic resin preferably has a low glass transition temperature and is not limited. For example, a hydrophobic acrylic resin preferably has a temperature of −50 to 110 ° C., and preferably has a temperature of −30 to 80 ° C. By setting the glass transition temperature within the above range, the inorganic particles (B) can be prevented from agglomerating and becoming a non-uniform dispersion state, and a transparent uniform coating film can be easily obtained.

疎水性アクリル系樹脂は水系エマルジョンとして用いるのが好ましい。各単量体を水系媒質中での重合によって得られた水系エマルジョンをそのまま使用してもよく、更にこのものに液状分散媒を加えて希釈したものでもよく、また上記のような重合によって生じた重合体を分別採取し、これを液状分散媒に再分散させて水系エマルジョンとしたものでもよい。   The hydrophobic acrylic resin is preferably used as an aqueous emulsion. An aqueous emulsion obtained by polymerization of each monomer in an aqueous medium may be used as it is, or may be diluted by adding a liquid dispersion medium to this, and also produced by the polymerization as described above. A polymer may be collected separately and re-dispersed in a liquid dispersion medium to form an aqueous emulsion.

一方、本発明に使用することができるウレタン系樹脂としては、ポリエーテル系、ポリエステル系、ポリカーボネート系のアニオン性ポリウレタンの水性組成物、エマルジョンが挙げられるが、防曇組成物と基材フィルムとの密着性、耐水性及び耐傷付き性の点でポリカーボネート系のアニオン性ポリウレタンエマルジョンが好ましい。また、防曇被膜の耐水性及び耐傷付き性の更なる向上並びに防曇性を発現するまでの時間及び防曇持続性の点でシラノール基を含有するポリカーボネート系のアニオン性ポリウレタンエマルジョンがより好ましい。これらは1種または2種以上を組み合わせて使用してもよい。   On the other hand, examples of urethane resins that can be used in the present invention include polyether-based, polyester-based, and polycarbonate-based anionic polyurethane aqueous compositions and emulsions. A polycarbonate-based anionic polyurethane emulsion is preferred in terms of adhesion, water resistance and scratch resistance. In addition, a polycarbonate-based anionic polyurethane emulsion containing a silanol group is more preferable from the viewpoints of further improving the water resistance and scratch resistance of the antifogging coating, the time until the antifogging property is developed, and the antifogging durability. These may be used alone or in combination of two or more.

シラノール基を含有するポリカーボネート系のアニオン性ポリウレタンエマルジョンとは分子内に少なくとも1個のシラノール基を含有するポリウレタン樹脂と、硬化触媒として強塩基性第3級アミンとを含有してなり、具体的には水相中にシラノール基含有ポリウレタン樹脂及び前記強塩基性第3級アミンが溶解しているもの、又は微粒子状に分散しているコロイド分散系のもの(エマルジョン)をいう。   A polycarbonate-based anionic polyurethane emulsion containing a silanol group comprises a polyurethane resin containing at least one silanol group in the molecule and a strongly basic tertiary amine as a curing catalyst. Refers to a colloidal dispersion system (emulsion) in which the silanol group-containing polyurethane resin and the strongly basic tertiary amine are dissolved in the aqueous phase, or a colloidal dispersion system in which fine particles are dispersed.

ポリウレタン水性組成物は、その配合量を固形分質量比で疎水性アクリル系樹脂に対して0.01以上、2以下、更に好ましくは0.01以上1以下にすることが好ましい。0.01以上とすることで耐傷付き性が向上し、また、防曇性を発現するまでの時間が長くなることを抑制することができる。また、2以下とすることで、耐傷付き性が配合量に比例して向上しやすくなり、塗布後に形成される塗膜が白濁化し光線透過率が低下することを抑制することができる。   It is preferable that the amount of the polyurethane aqueous composition is 0.01 or more and 2 or less, more preferably 0.01 or more and 1 or less, with respect to the hydrophobic acrylic resin in terms of solid mass ratio. By setting it to 0.01 or more, the scratch resistance can be improved, and it is possible to suppress an increase in the time until the antifogging property is exhibited. Moreover, by setting it as 2 or less, it becomes easy to improve damage resistance in proportion to a compounding quantity, and it can suppress that the coating film formed after application | coating becomes white turbidity and a light transmittance falls.

防曇組成物には、必要に応じて、溶媒、消泡剤、可塑剤、造膜助剤、増粘剤、顔料、顔料分散剤、耐候性改良剤、熱安定剤等の慣用の添加剤を含有させることができる。   For anti-fogging compositions, conventional additives such as solvents, antifoaming agents, plasticizers, film-forming aids, thickeners, pigments, pigment dispersants, weather resistance improvers, heat stabilizers, etc. Can be contained.

本発明の防曇組成物を調製する方法は特に限定されるものではないが、たとえば、合成樹脂(A)、無機粒子(B)、無機粒子(C)、及び必要に応じて任意の添加剤を混合することにより調製することができる。
また、防曇組成物の層と基材フィルムの層からなるフィルムの場合は、防曇組成物を水、有機溶媒(2種以上の有機溶媒からなる混合溶媒を含む)又は水と1種以上の有機溶媒との混合溶媒中で分散又は溶解し、防曇組成物を含む分散液又は溶液(以下「防曇剤組成物」とも言う。)を調製し、当該防曇剤組成物を基材フィルムの表面に塗布等することにより防曇組成物の層を形成することが好ましい。また、防曇剤組成物を調製する場合に、合成樹脂(A)、無機粒子(B)、無機粒子(C)、及び必要に応じて任意の添加剤(以下「防曇組成物の構成成分」とも言う)を予め混合してから、水、有機溶媒(2種以上の有機溶媒からなる混合溶媒を含む)又は水と1種以上の有機溶媒との混合溶媒中で分散又は溶解してもよいし、合成樹脂(A)、無機粒子(B)、無機粒子(C)、及び必要に応じて任意の添加剤のいずれか1以上を、水、有機溶媒(2種以上の有機溶媒からなる混合溶媒を含む)又は水と1種以上の有機溶媒との混合溶媒中で分散又は溶解し、その後、調製した分散液又は溶液に残りの防曇組成物の構成成分を添加してもよい。
前記防曇剤組成物は合成樹脂(A)、無機粒子(B)、無機粒子(C)を含有するものであるが、この防曇剤組成物中での合成樹脂(A)の分散性をより良好にするため分散液中では溶解物、もしくはエマルジョンとすることが好ましい。また、無機化合物の分散性をより良好にするために、無機化合物を無機質コロイド状物質とすることが好ましい。
The method for preparing the antifogging composition of the present invention is not particularly limited. For example, the synthetic resin (A), inorganic particles (B), inorganic particles (C), and optional additives as necessary Can be prepared by mixing.
In the case of a film composed of an antifogging composition layer and a base film layer, the antifogging composition is composed of water, an organic solvent (including a mixed solvent composed of two or more organic solvents) or water and one or more kinds. A dispersion or solution containing an antifogging composition (hereinafter also referred to as “antifogging agent composition”) is prepared by dispersing or dissolving in a mixed solvent with an organic solvent, and the antifogging agent composition is used as a base material. It is preferable to form a layer of the antifogging composition by coating on the surface of the film. Further, when preparing the antifogging agent composition, the synthetic resin (A), the inorganic particles (B), the inorganic particles (C), and optional additives (hereinafter referred to as “constituent components of the antifogging composition”). )) In advance, and then dispersed or dissolved in water, an organic solvent (including a mixed solvent composed of two or more organic solvents), or a mixed solvent of water and one or more organic solvents. In addition, any one or more of the synthetic resin (A), the inorganic particles (B), the inorganic particles (C), and any optional additives may be added with water, an organic solvent (two or more organic solvents). (Including a mixed solvent) or dispersed or dissolved in a mixed solvent of water and one or more organic solvents, and then the remaining components of the antifogging composition may be added to the prepared dispersion or solution.
The antifogging agent composition contains a synthetic resin (A), inorganic particles (B), and inorganic particles (C). The dispersibility of the synthetic resin (A) in the antifogging agent composition is as follows. In order to make it better, it is preferable to use a dissolved product or an emulsion in the dispersion. In order to make the dispersibility of the inorganic compound better, the inorganic compound is preferably an inorganic colloidal substance.

本発明において、防曇組成物の層を基材の表面に形成する方法としては、特に限定するものではなく一般に用いられる方法を使用することができる。たとえば、防曇組成物の溶液または分散液をそれぞれドクターブレードコート法、ロールコート法、ディップコート法、スプレーコート法、ロッドコート法、バーコート法、ナイフコート法、ハケ塗り法等それ自体公知の塗布方法を用いて基材の表面に塗布し、塗布後乾燥すればよい。   In the present invention, the method for forming the antifogging composition layer on the surface of the substrate is not particularly limited, and a generally used method can be used. For example, a solution or dispersion of an antifogging composition is known per se, such as doctor blade coating, roll coating, dip coating, spray coating, rod coating, bar coating, knife coating, brush coating, etc. What is necessary is just to apply | coat to the surface of a base material using an application | coating method, and to dry after application | coating.

塗布後の乾燥方法は、自然乾燥及び強制乾燥のいずれの方法を採用してもよく、強制乾燥方法を採用する場合、通常50〜200℃、好ましくは70〜180℃の温度範囲で乾燥することができる。基材に合成樹脂を使用したフィルムにおいては、乾燥温度を200℃以下とすることにより、融解や熱収縮等変形の発生を抑制することができる。
また、加熱乾燥には、熱風乾燥法、赤外線乾燥法、遠赤外線乾燥法、及び紫外線硬化法等適宜の方法を採用すればよく、乾燥速度、安定性を勘案すれば熱風乾燥法を採用するのが好ましい。
As a drying method after coating, either a natural drying method or a forced drying method may be employed. When the forced drying method is employed, the drying method is usually 50 to 200 ° C, preferably 70 to 180 ° C. Can do. In a film using a synthetic resin as a base material, the occurrence of deformation such as melting and heat shrinkage can be suppressed by setting the drying temperature to 200 ° C. or lower.
In addition, for drying by heating, an appropriate method such as a hot air drying method, an infrared drying method, a far infrared drying method, and an ultraviolet curing method may be employed, and the hot air drying method is employed in consideration of drying speed and stability. Is preferred.

本発明のもう一つの態様は、本発明の防曇組成物からなる層が基材フィルムの少なくとも片面側の表面に設けられた防曇性フィルムである。   Another aspect of the present invention is an antifogging film in which a layer comprising the antifogging composition of the present invention is provided on the surface of at least one side of the base film.

本発明に使用できる基材フィルムを構成する樹脂は、熱可塑性樹脂であれば、特に限定することはないが、たとえば、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリアミド、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンナフタレート、エチレン・酢酸ビニル共重合体、アイオノマー、アクリル酸エステル、メタアクリル酸エステル等を使用することができる。
また、これらの樹脂を単独で使用してもよく、2種類以上を組み合わせて使用することもできる。
The resin constituting the base film that can be used in the present invention is not particularly limited as long as it is a thermoplastic resin. For example, polyvinyl chloride, polyethylene terephthalate, polyamide, polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, Ethylene / vinyl acetate copolymer, ionomer, acrylic ester, methacrylic ester and the like can be used.
These resins may be used alone or in combination of two or more.

また、基材フィルムは単層でもよく、2層以上の層を有する多層であってもよく、たとえば内層、中間層及び外層を有する3層、またはそれ以上の多層とすることもできる。   The base film may be a single layer or a multilayer having two or more layers, for example, a three-layer having an inner layer, an intermediate layer and an outer layer, or a multilayer having three or more layers.

また、基材フィルムは、必要に応じて、可塑剤、造膜助剤、増粘剤、顔料、顔料分散剤、耐候性改良剤、熱安定剤等の慣用の添加剤を混合することができる。   The base film can be mixed with conventional additives such as plasticizers, film-forming aids, thickeners, pigments, pigment dispersants, weather resistance improvers, heat stabilizers, etc., as necessary. .

<実施例1〜7、比較例1〜2>
以下、本発明を実施例、比較例に基づいてさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の例に限定されるものではない。
<Examples 1-7, Comparative Examples 1-2>
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to the following examples, unless the summary is exceeded.

(1)基材フィルムの作製
3層インフレーション成形装置として3層ダイに100mmφ((株)プラ工研製)を用い、押出機はチューブ外内層を30mmφ((株)プラ技研製)2台、中間層を40mmφ((株)プラ技研製)として、外内層押出し機温度180℃、中間層押出し機温度170℃、ダイス温度180〜190℃、ブロー比2.0〜3.0、引取り速度3〜7m/分、の加工条件で、外層/中間層/内層が30/90/30の厚み比となる、厚さ0.15mmの3層の積層フィルムを作製した。なお、これらのフィルムは、ハウス展張時にチューブの端部を切り開いて使用するため、展開した際に製膜時のチューブ外層が展張時にはハウスの内層(内面)となる。
(1) Production of base film As a three-layer inflation molding device, 100 mmφ (made by Pla Koken Co., Ltd.) was used for a three-layer die, and the extruder had an inner tube outer layer of 30 mmφ (made by Pla Giken Co., Ltd.), intermediate The layer is 40 mmφ (manufactured by Pla Giken Co., Ltd.), outer and inner layer extruder temperature 180 ° C., intermediate layer extruder temperature 170 ° C., die temperature 180 to 190 ° C., blow ratio 2.0 to 3.0, take-off speed 3 A three-layer laminated film having a thickness of 0.15 mm was produced under the processing conditions of ˜7 m / min, where the outer layer / intermediate layer / inner layer had a thickness ratio of 30/90/30. Since these films are used with the end of the tube cut open when the house is stretched, the tube outer layer during film formation becomes the inner layer (inner surface) of the house when stretched when unfolded.

<基材フィルムに使用した材料>
・低密度ポリエチレン(LDPE):宇部丸善ポリエチレン社製「F022NH」(MFR:0.8g/10分、密度0.922)
・メタロセンPE(Me−PE):日本ポリエチレン社製カーネル「KF270」(MFR:2g/10分、密度0.907)
・エチレン・酢酸ビニル共重合体(EVA1):(酢酸ビニル含有量5質量%、MFR2g/10分)
・エチレン・酢酸ビニル共重合体(EVA2):(酢酸ビニル含有量15質量%、MFR2g/10分)
・紫外線吸収剤A:サイテック社製「トリアリールトリアジン系紫外線吸収剤UV1164」
・合成ハイドロタルサイトA:協和化学社製「DHT4A」
・光安定剤A:チバ・スペシャルティ・ケミカルズ社製光安定剤 「chimassorb944」
・エチレン・環状アミノビニル共重合体:日本ポリエチレン社製「ノバテックLD・XJ100H」(MFR=3g/10分、密度=0.931g/cm、 融点=111℃)
<Material used for base film>
Low density polyethylene (LDPE): “F022NH” manufactured by Ube Maruzen Polyethylene Co., Ltd. (MFR: 0.8 g / 10 min, density 0.922)
-Metallocene PE (Me-PE): Kernel “KF270” manufactured by Nippon Polyethylene Co., Ltd. (MFR: 2 g / 10 min, density 0.907)
・ Ethylene / vinyl acetate copolymer (EVA1): (vinyl acetate content 5 mass%, MFR 2 g / 10 min)
・ Ethylene / vinyl acetate copolymer (EVA2): (vinyl acetate content 15% by mass, MFR 2 g / 10 min)
・ Ultraviolet absorber A: “Triaryltriazine UV absorber UV1164” manufactured by Cytec Corporation
・ Synthetic hydrotalcite A: “DHT4A” manufactured by Kyowa Chemical Co., Ltd.
-Light stabilizer A: Light stabilizer "chimassorb944" manufactured by Ciba Specialty Chemicals
-Ethylene / Cyclic aminovinyl copolymer: “Novatech LD / XJ100H” manufactured by Nippon Polyethylene Co., Ltd. (MFR = 3 g / 10 min, density = 0.931 g / cm 3 , melting point = 111 ° C.)

<基材フィルムの各層の配合>
内層:LDPE(10質量部)、Me−PE(90質量部)、エチレン・環状アミノビニル共重合体(6質量部)
中間層:LDPE(2質量部)、EVA1(98質量部)、合成ハイドロタルサイトA(6質量部)、紫外線吸収剤A(0.06質量部)、光安定剤A(0.4質量部)
外層:LDPE(10質量部)、EVA2(90質量部)、エチレン・環状アミノビニル共重合体(6質量部)
<Composition of each layer of base film>
Inner layer: LDPE (10 parts by mass), Me-PE (90 parts by mass), ethylene / cyclic aminovinyl copolymer (6 parts by mass)
Intermediate layer: LDPE (2 parts by mass), EVA1 (98 parts by mass), synthetic hydrotalcite A (6 parts by mass), ultraviolet absorber A (0.06 parts by mass), light stabilizer A (0.4 parts by mass) )
Outer layer: LDPE (10 parts by mass), EVA2 (90 parts by mass), ethylene / cyclic aminovinyl copolymer (6 parts by mass)

(2)フィルムの表面処理
得られた基材フィルムのハウス内層側にあたる表面(外層)を、放電電圧120V、放電電流4.7A、ラインスピード10m/minでコロナ放電処理を行った。濡れ指数は、46dyn/cmとした(JIS−K6768)。
(2) Surface Treatment of Film The surface (outer layer) corresponding to the house inner layer side of the obtained base film was subjected to corona discharge treatment at a discharge voltage of 120 V, a discharge current of 4.7 A, and a line speed of 10 m / min. The wetting index was 46 dyn / cm (JIS-K6768).

(3)防曇組成物の分散液(防曇剤組成物)の調製
分散媒として水とイソプロピルアルコールを用いて、合成樹脂(A)、無機粒子(B)、無機粒子(C)を表1に示す配合とし、固形分濃度10質量%、水:イソプロピルアルコール=60:40(質量比)となるよう調整し、分散液を調製した。
(3) Preparation of antifogging composition dispersion (antifogging agent composition) Using water and isopropyl alcohol as a dispersion medium, synthetic resin (A), inorganic particles (B), and inorganic particles (C) are shown in Table 1. The dispersion was prepared by adjusting the solid content concentration to 10% by mass and water: isopropyl alcohol = 60: 40 (mass ratio).

<防曇組成物に使用した材料>
<合成樹脂(A)>
合成樹脂(A):日本NSC(株)製「A−612」(疎水性アクリル系樹脂)
<無機粒子(B)>
無機質コロイドゾル(B−1):日産化学工業(株)製「スノーテックス20L」(コロイダルシリカ、粒度分布のピーク値:65nm)
無機質コロイドゾル(B−2):日産化学工業(株)製「スノーテックスZL」(コロイダルシリカ、粒度分布のピーク値:125nm)
<無機粒子(C)>
無機質コロイドゾル(C−1):日産化学工業(株)製「スノーテックスMP−2040」(コロイダルシリカ、粒度分布のピーク値:200nm)
無機質コロイドゾル(C−2):(株)日本触媒製「シーホスターKE−W30」(コロイダルシリカ、粒度分布のピーク値:270nm)
無機質コロイドゾル(C−3):(株)日本触媒製「シーホスターKE−W50」(コロイダルシリカ、粒度分布のピーク値:540nm)
<Materials used for antifogging composition>
<Synthetic resin (A)>
Synthetic resin (A): “A-612” (hydrophobic acrylic resin) manufactured by NSC Japan
<Inorganic particles (B)>
Inorganic colloidal sol (B-1): “Snowtex 20L” manufactured by Nissan Chemical Industries, Ltd. (colloidal silica, peak value of particle size distribution: 65 nm)
Inorganic colloidal sol (B-2): “Snowtex ZL” manufactured by Nissan Chemical Industries, Ltd. (colloidal silica, peak value of particle size distribution: 125 nm)
<Inorganic particles (C)>
Inorganic colloidal sol (C-1): “Snowtex MP-2040” manufactured by Nissan Chemical Industries, Ltd. (colloidal silica, peak value of particle size distribution: 200 nm)
Inorganic colloidal sol (C-2): “Chihoster KE-W30” manufactured by Nippon Shokubai Co., Ltd. (colloidal silica, peak value of particle size distribution: 270 nm)
Inorganic colloidal sol (C-3): “Chihoster KE-W50” manufactured by Nippon Shokubai Co., Ltd. (colloidal silica, peak value of particle size distribution: 540 nm)

(4)塗膜の形成
「(1)」の基材フィルムを「(2)」の方法で表面処理し、「(3)」の防曇組成物の分散液をそれぞれ#8バーコーターを用いて塗布した。塗布したフィルムを80℃のオーブン中に1分間保持して、液状分散媒を揮発させ防曇組成物の層を形成した。
(4) Formation of coating film The base film of “(1)” is surface-treated by the method of “(2)”, and the dispersion of the antifogging composition of “(3)” is used with a # 8 bar coater. And applied. The coated film was kept in an oven at 80 ° C. for 1 minute to volatilize the liquid dispersion medium to form a layer of the antifogging composition.

表1に示す配合で作製した防曇組成物を塗布した防曇性フィルムの各サンプルを使用し、以下の評価を行った。   Each sample of the anti-fogging film which apply | coated the anti-fogging composition produced with the mixing | blending shown in Table 1 was used, and the following evaluation was performed.

<評価方法>
<透明性>
塗工後の防曇性フィルムの波長555nmにおける直進光線透過率を分光光度計(日立製作所製、U3500型)により測定し、その結果を表1に示す。
<ヘーズ>
塗工後の防曇性フィルムのヘーズ値をヘーズメーター(東京電色製:TC−H3DP)により測定し、その結果を表1に示す。
<防曇性>
水を入れた水槽の上部に、防曇組成物を塗布した面側を水槽内部に向けて防曇性フィルムを配置し、外気温23℃、水槽内水温50℃に設定し、1ヶ月養生した後、水を入れた水槽の上部に、防曇組成物を塗布した面側を水槽内部に向けて防曇性フィルムを地表水平面に対して10度の角度で配置し、外気温を12℃、水槽内気温を22℃に保持し、水滴が流れ始める迄の時間を測定した。
また、得られた結果の評価は以下の基準で実施し、その結果を表1に示す。
○:水滴が流れ始める迄の時間が240分以下。
×:水滴が流れ始める迄の時間が240分より長いもの。
<ブロッキング防止性>
得られた防曇性フィルムから10cm四方のサンプルを採取したものを使用し、50℃に保たれた恒温室の中で、サンプルを塗膜の表面同士が接するように設置し、サンプルの塗膜間に水が均一に広がる様に1ccの水を含ませた。この状態で100cmあたり150kgの荷重をかけて50℃の恒温室の中で1か月放置した後のフィルムを重ねた状態で2.5cm×10cmに切断し、二枚のフィルムを長手方向に剥離するときの荷重をJIS−K6732に記載の引張試験機を用い、試験速度500mm/分、温度23℃においてT字剥離強度を測定し、その結果を表1に示す。
<粒度分布のピーク値測定方法>
走査電子顕微鏡(日本FEI社製:NovaNanoSEM)により粒子を拡大した写真を撮影し、ついでこの写真に基づいて画像解析ソフトウエア(日本ローパー社製:Image−Pro Premier)を使用して写真画像の解析を行い、画像中のノイズを除去し、複数の写真画像を用いることで、任意に2000個の粒子を選択し、得られた粒子径データを用いて、横軸に粒子径、縦軸に体積をとったヒストグラムを作成し、体積基準の粒度分布を求めてピークの位置を求めた。
<150nm以上の無機粒子の含有量>
粒度分布のピーク値測定方法で得られた無機粒子のヒストグラムから、無機粒子の全含有量から粒径150nm以上の体積値の割合を求め、無機粒子の全含有量から算出した。
<Evaluation method>
<Transparency>
The straight light transmittance at a wavelength of 555 nm of the antifogging film after coating was measured with a spectrophotometer (manufactured by Hitachi, U3500 type), and the results are shown in Table 1.
<Haze>
The haze value of the antifogging film after coating was measured with a haze meter (manufactured by Tokyo Denshoku Co., Ltd .: TC-H3DP), and the results are shown in Table 1.
<Anti-fogging property>
An anti-fogging film was placed on the top of the water tank containing the anti-fogging composition facing the inside of the water tank, and the outside temperature was set to 23 ° C and the water temperature in the water tank was set to 50 ° C. Then, on the upper part of the water tank containing water, the surface side coated with the antifogging composition is directed to the inside of the water tank, and the antifogging film is arranged at an angle of 10 degrees with respect to the surface horizontal plane, the outside air temperature is 12 ° C The temperature in the water tank was kept at 22 ° C., and the time until the water droplets started to flow was measured.
Moreover, the obtained results were evaluated according to the following criteria, and the results are shown in Table 1.
○: Time until water droplets start to flow is 240 minutes or less.
X: The time until the water droplet starts flowing is longer than 240 minutes.
<Blocking prevention>
A sample obtained by collecting a 10 cm square sample from the obtained antifogging film was used, and the sample was placed in a temperature-controlled room maintained at 50 ° C. so that the surfaces of the coatings were in contact with each other. 1 cc of water was included so that the water spread evenly between them. In this state, a load of 150 kg per 100 cm 2 is applied and the film after being left for one month in a constant temperature room at 50 ° C. is cut into 2.5 cm × 10 cm in a state where the films are stacked, and the two films are cut in the longitudinal direction. Using a tensile tester described in JIS-K6732, the T-peel strength was measured at a test speed of 500 mm / min and a temperature of 23 ° C. The results are shown in Table 1.
<Measurement method of peak value of particle size distribution>
The photograph which expanded the particle | grains with the scanning electron microscope (Nippon FEI company: NovaNanoSEM) was image | photographed, and the analysis of a photographic image was then based on this photograph using image analysis software (Nippon Roper company: Image-Pro Premier). By removing noise in the image and using a plurality of photographic images, arbitrarily select 2000 particles, and using the obtained particle size data, the horizontal axis represents the particle size and the vertical axis represents the volume. A histogram based on the above was created, a volume-based particle size distribution was determined, and a peak position was determined.
<Content of inorganic particles of 150 nm or more>
From the histogram of the inorganic particles obtained by the method for measuring the peak value of the particle size distribution, the ratio of the volume value having a particle size of 150 nm or more was determined from the total content of the inorganic particles and calculated from the total content of the inorganic particles.

Figure 2019026823
Figure 2019026823

実施例1〜7の結果より、本発明に規定する無機粒子の配合量を含有した組成物を塗布した防曇フィルムは、ブロッキングを抑制する性能に優れ、かつ透明性や防曇性も優れる結果となった。一方、比較例1は、無機粒子(C)を含有していないため、剥離する際の強度が大きくブロッキング性に劣ることがわかる。また、比較例2は、粒子径が150nm以上の無機粒子の含有量が多いため、透明性に劣ることがわかる。   From the results of Examples 1 to 7, the antifogging film coated with the composition containing the blended amount of the inorganic particles defined in the present invention is excellent in performance to suppress blocking, and is excellent in transparency and antifogging properties. It became. On the other hand, since Comparative Example 1 does not contain inorganic particles (C), it can be seen that the strength at the time of peeling is large and the blocking property is poor. Moreover, since the comparative example 2 has much content of the inorganic particle whose particle diameter is 150 nm or more, it turns out that it is inferior to transparency.

以上の結果から明らかなように、本発明に規定する防曇組成物は、透明性と防曇性を損なうことなくブロッキング防止性が優れる結果となった。   As is clear from the above results, the antifogging composition defined in the present invention was excellent in antiblocking properties without impairing transparency and antifogging properties.

Claims (6)

合成樹脂(A)と無機化合物を主成分として含有し、前記無機化合物は、少なくとも無機粒子(B)と無機粒子(C)とを含む防曇組成物であって、
前記無機化合物は、粒度分布において少なくとも2つのピークを持つ多峰性の粒度分布を有し、
無機粒子(B)の粒度分布のピークは、粒子径が150nm未満の範囲内にあり、
無機粒子(C)の粒度分布のピークは、粒子径が150nm以上の範囲内にあり、
粒子径が150nm以上である無機粒子の含有量は、前記防曇組成物の固形成分の全質量に対して、0.01質量%以上25質量%以下であることを特徴とする、該防曇組成物。
It contains a synthetic resin (A) and an inorganic compound as main components, and the inorganic compound is an antifogging composition containing at least inorganic particles (B) and inorganic particles (C),
The inorganic compound has a multimodal particle size distribution having at least two peaks in the particle size distribution;
The peak of the particle size distribution of the inorganic particles (B) is in the range where the particle size is less than 150 nm,
The peak of the particle size distribution of the inorganic particles (C) is in the range where the particle size is 150 nm or more,
Content of the inorganic particle whose particle diameter is 150 nm or more is 0.01 mass% or more and 25 mass% or less with respect to the total mass of the solid component of the said antifogging composition. Composition.
前記無機粒子(C)の粒度分布のピークは、粒子径が150nm以上、1000nm以下の範囲内にあることを特徴とする請求項1に記載の防曇組成物。   2. The antifogging composition according to claim 1, wherein the peak of the particle size distribution of the inorganic particles (C) has a particle size in a range of 150 nm or more and 1000 nm or less. 前記無機粒子(C)の粒度分布のピークの値X(nm)と、防曇組成物の固形成分の全質量に対する粒子径が150nm以上である無機粒子の含有量Y(質量%)の積である値Kは、10以上8000以下であることを特徴とする請求項1または2に記載の防曇組成物。   The product of the peak value X (nm) of the particle size distribution of the inorganic particles (C) and the content Y (mass%) of the inorganic particles having a particle diameter of 150 nm or more with respect to the total mass of the solid components of the antifogging composition. The antifogging composition according to claim 1 or 2, wherein the certain value K is 10 or more and 8000 or less. 基材フィルムを備え、請求項1〜3のいずれか1項に記載の防曇組成物からなる層が、前記基材フィルムの少なくとも片面側に設けられていることを特徴とする防曇性フィルム。   An anti-fogging film comprising a base film, wherein the layer made of the anti-fogging composition according to any one of claims 1 to 3 is provided on at least one side of the base film. . 前記基材フィルムがポリオレフィン系樹脂を含むことを特徴とする請求項4に記載の防曇性フィルム。   The antifogging film according to claim 4, wherein the base film contains a polyolefin-based resin. 農業用途であることを特徴とする請求項4または5に記載の防曇性フィルム。   The antifogging film according to claim 4 or 5, wherein the film is used for agriculture.
JP2018014358A 2017-07-28 2018-01-31 Antifogging composition and antifogging film Pending JP2019026823A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017146384 2017-07-28
JP2017146384 2017-07-28

Publications (1)

Publication Number Publication Date
JP2019026823A true JP2019026823A (en) 2019-02-21

Family

ID=65477792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014358A Pending JP2019026823A (en) 2017-07-28 2018-01-31 Antifogging composition and antifogging film

Country Status (1)

Country Link
JP (1) JP2019026823A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069181A (en) * 1983-09-26 1985-04-19 Mitsubishi Monsanto Chem Co Demisting agent composition
JP2007063477A (en) * 2005-09-01 2007-03-15 Asahi Glass Co Ltd Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2009132880A (en) * 2007-10-30 2009-06-18 Dainippon Printing Co Ltd Curable resin composition for hard coating layer, and hard coat film
WO2012018087A1 (en) * 2010-08-06 2012-02-09 大日本印刷株式会社 Curable resin composition for hardcoat layer, process for production of hardcoat film, hardcoat film, polarizing plate, and display panel
JP2015067681A (en) * 2013-09-27 2015-04-13 住友大阪セメント株式会社 Hard coat film, plastic substrate, composition for forming hard coat film, and touch panel
WO2015147013A1 (en) * 2014-03-26 2015-10-01 日本ゼオン株式会社 Multilayered film and method for manufacturing same
KR20150113405A (en) * 2014-03-28 2015-10-08 (주)엘지하우시스 Antiblocking hard coating layer composition, antiblocking hard coating layer and transparent conductive film including the same
JP2017115115A (en) * 2016-06-06 2017-06-29 三菱ケミカルアグリドリーム株式会社 Antifogging composition and antifogging film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069181A (en) * 1983-09-26 1985-04-19 Mitsubishi Monsanto Chem Co Demisting agent composition
JP2007063477A (en) * 2005-09-01 2007-03-15 Asahi Glass Co Ltd Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2009132880A (en) * 2007-10-30 2009-06-18 Dainippon Printing Co Ltd Curable resin composition for hard coating layer, and hard coat film
WO2012018087A1 (en) * 2010-08-06 2012-02-09 大日本印刷株式会社 Curable resin composition for hardcoat layer, process for production of hardcoat film, hardcoat film, polarizing plate, and display panel
JP2015067681A (en) * 2013-09-27 2015-04-13 住友大阪セメント株式会社 Hard coat film, plastic substrate, composition for forming hard coat film, and touch panel
WO2015147013A1 (en) * 2014-03-26 2015-10-01 日本ゼオン株式会社 Multilayered film and method for manufacturing same
KR20150113405A (en) * 2014-03-28 2015-10-08 (주)엘지하우시스 Antiblocking hard coating layer composition, antiblocking hard coating layer and transparent conductive film including the same
JP2017115115A (en) * 2016-06-06 2017-06-29 三菱ケミカルアグリドリーム株式会社 Antifogging composition and antifogging film

Similar Documents

Publication Publication Date Title
JP5948482B1 (en) Antifogging composition and antifogging film
CN101652435A (en) Peel-coat compositions
JP6619696B2 (en) Antifogging composition and antifogging film
JPH1025468A (en) Antifogging agent composition
JP3367190B2 (en) Agricultural film excellent in antifogging property and method for producing the same
JPS62246984A (en) Anti-fogging agent composition
JP2019026823A (en) Antifogging composition and antifogging film
JP2009148267A (en) Agricultural multilayer film
JPS62283136A (en) Polyethylene terephthalate film for agriculture
JP2017115046A (en) Antifogging composition and antifogging film
JP2017115045A (en) Antifogging composition and antifogging film
JP6334318B2 (en) Antifogging film and laminate
JP2001095395A (en) Multilayered film for agricultural purproses
JP2005248091A (en) Antifogging coating composition
JP3988335B2 (en) Anti-fogging agent composition and agricultural resin film
JPH0478670B2 (en)
JP6323108B2 (en) Antifogging agent composition and laminated film.
JP2009296893A (en) Agricultural resin film
JP6518170B2 (en) Fluorine-containing laminated film for agriculture and coating material for agriculture using the same
JP2003253242A (en) Coating antimisting agent and agricultural film
JPWO2019004007A1 (en) Coating type anti-fog agent for agricultural film and agricultural film
JPH09104773A (en) Agricultural polyolefin resin film
JP3120713B2 (en) Agricultural polyethylene terephthalate film
JP4503159B2 (en) Polyolefin resin film for agriculture
JP2021147429A (en) Coating-type anti-fogging agent for agricultural films and agricultural film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208