JP2019026687A - Chemical treatment method and production method of film, and production method and production device of ion exchange membrane - Google Patents

Chemical treatment method and production method of film, and production method and production device of ion exchange membrane Download PDF

Info

Publication number
JP2019026687A
JP2019026687A JP2017145172A JP2017145172A JP2019026687A JP 2019026687 A JP2019026687 A JP 2019026687A JP 2017145172 A JP2017145172 A JP 2017145172A JP 2017145172 A JP2017145172 A JP 2017145172A JP 2019026687 A JP2019026687 A JP 2019026687A
Authority
JP
Japan
Prior art keywords
chemical
film
solution
chemical solution
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017145172A
Other languages
Japanese (ja)
Other versions
JP7009815B2 (en
Inventor
誠司 福田
Seiji Fukuda
誠司 福田
純平 山口
Junpei Yamaguchi
純平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017145172A priority Critical patent/JP7009815B2/en
Publication of JP2019026687A publication Critical patent/JP2019026687A/en
Application granted granted Critical
Publication of JP7009815B2 publication Critical patent/JP7009815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a method of preventing a foreign matter from attaching during chemical treatment of a film that is a precursor in production of a functional film such as ion exchange membrane or the like.SOLUTION: In a chemical treatment method of a film, in which the film is dipped in a dipping tank storing a chemical selected from an acidic solution and an alkaline solution, the chemical is fed from a chemical feed tank into a dipping tank and circulated through a circulation path constituted so as to return from the dipping tank to the chemical feed tank, and is subjected to a filtration operation for removing the foreign matter in the chemical at least in one point in the circulation path.SELECTED DRAWING: Figure 1

Description

本発明は、主としてイオン交換膜を得るためにフィルムを薬液処理する方法、および薬液処理する装置、ならびにイオン交換膜を製造する方法および装置に関する。   The present invention mainly relates to a method for chemical treatment of a film to obtain an ion exchange membrane, an apparatus for chemical treatment, and a method and an apparatus for producing an ion exchange membrane.

電解質膜等のイオン交換膜を製造する過程において、フィルムを強酸や強アルカリなどの薬液中に浸漬する薬液処理を行うことがある。   In the process of manufacturing an ion exchange membrane such as an electrolyte membrane, a chemical treatment may be performed in which the film is immersed in a chemical solution such as a strong acid or a strong alkali.

特許文献1では、液処理部に処理液加熱機構と処理液循環機構を設け、処理液を所望の温度に過熱すると共に循環させながら薬液処理を行う装置が開示され、これを用いて、高分子電解質膜を製造する際、硫酸への浸漬によりイオン性基を酸型に変換する操作を行うことが記載されている。   Patent Document 1 discloses an apparatus for providing a treatment liquid heating mechanism and a treatment liquid circulation mechanism in a liquid treatment unit, and performing a chemical treatment while heating and circulating the treatment liquid to a desired temperature. It is described that when an electrolyte membrane is produced, an operation of converting an ionic group into an acid form by immersion in sulfuric acid is described.

特許文献2では、高分子電解質膜の製造において、イオン性基を塩型から酸型に変換してイオン伝導性を付与するために、酸性溶液を満たした複数の浸漬槽に順にフィルムを浸漬しながら搬送する一方、酸性溶液をフィルムの搬送方向と逆方向にカスケード式にオーバーフローさせながら連続供給する高分子電解質膜の薬液処理方法が記載されている。   In Patent Document 2, in the production of a polymer electrolyte membrane, in order to convert an ionic group from a salt type to an acid type to impart ion conductivity, the films are sequentially immersed in a plurality of immersion tanks filled with an acidic solution. On the other hand, a chemical solution treatment method for a polymer electrolyte membrane is described in which an acidic solution is continuously fed while overflowing in a cascade manner in a direction opposite to the film conveyance direction.

特許文献3では、F型電解質樹脂(末端基が−SOF)をアルカリ性溶液と酸性溶液に順次浸漬することで加水分解を行い、H型電解質樹脂(末端基が−SOH)を得る電解質膜の製造方法が記載されている。 In Patent Document 3, hydrolysis is performed by sequentially immersing an F-type electrolyte resin (terminal group is —SO 2 F) in an alkaline solution and an acidic solution to obtain an H-type electrolyte resin (terminal group is —SO 3 H). A method for producing an electrolyte membrane is described.

特開2011−194593号公報JP 2011-194593 A 特開2013−56993号公報JP 2013-56993 A 特開2016−81682号公報Japanese Patent Laid-Open No. 2006-81682

このようなイオン交換膜は、特に精密な用途に適用される場合、異物の付着を可能な限り防止する必要がある。空中搬送時の浮遊塵付着にはクリーン環境に設置するなどの対策や、浮遊塵の付着を防止するためフィルムの静電除去を行うなどの対策が行われている。しかし、このような対策によっても、異物付着の問題は十分に解決されていなかった。   When such an ion exchange membrane is applied to a precise application, it is necessary to prevent adhesion of foreign matters as much as possible. Countermeasures such as installing in a clean environment are taken for airborne dust adhering during air transport, and measures such as electrostatic removal of the film are taken to prevent airborne dust from adhering. However, even with such measures, the problem of foreign matter adhesion has not been sufficiently solved.

本発明は、特にイオン交換膜の製造において、前駆体となるフィルムの薬液処理中の異物の付着を防止することを目的とする。   An object of the present invention is to prevent adhesion of foreign matters during chemical treatment of a film serving as a precursor, particularly in the production of an ion exchange membrane.

上記課題を解決するための本発明は、下記(1)〜(15)に記載したものである。
(1)酸性溶液およびアルカリ性溶液から選択される薬液が貯留された浸漬槽にフィルムを浸漬させるフィルムの薬液処理方法において、
前記薬液は、薬液供給槽から前記浸漬槽に供給され、かつ前記浸漬槽から再び前記薬液供給槽へと還流されるよう構成された循環経路を循環するとともに、
該循環経路中の少なくとも1箇所において前記薬液中の異物を除去する濾過操作を行うことを特徴とするフィルムの薬液処理方法。
(2)前記循環経路中、送液ポンプにより薬液が加圧送液される経路において前記濾過操作を行う、(1)に記載のフィルムの薬液処理方法。
(3)前記濾過操作を、前記薬液に対する長期耐性を有するフィルタにより行う、(1)または(2)に記載のフィルムの薬液処理方法。
(4)前記薬液供給槽への薬液の還流を、前記浸漬槽からオーバーフローした薬液が供給槽に流入するよう構成することにより行う、(1)〜(3)のいずれかに記載のフィルムの薬液処理方法。
(5)前記浸漬槽に前記フィルムを連続的に搬送しながら浸漬するとともに、前記オーバーフローが、フィルム面に平行かつフィルムの搬送方向と垂直な方向に行われる、(4)に記載のフィルムの薬液処理方法。
(6)前記フィルムが、陰イオン性基を有する陽イオン交換膜の前駆体膜であり、前記薬液が酸性溶液である、(1)〜(5)のいずれかに記載のフィルムの薬液処理方法。
(7)前記フィルムが、陽イオン性基を有する陰イオン交換膜の前駆体フィルムであり、前記薬液がアルカリ性溶液である、(1)〜(5)のいずれかに記載のフィルムの薬液処理方法。
(8)(1)〜(6)のいずれかに記載のフィルムの薬液処理方法によりフィルムを薬液処理する工程を有するイオン交換膜の製造方法。
(9)強酸性溶液および強アルカリ性溶液から選択される薬液が貯留された浸漬槽にフィルムを浸漬させるフィルムの薬液処理装置であって、前記薬液が薬液供給槽から前記浸漬槽に供給され、かつ前記浸漬槽から再び前記薬液供給槽へと還流されるように構成された循環経路を有するとともに、当該循環経路中の少なくとも1箇所に薬液中の異物を除去する薬液濾過機構を有するフィルムの薬液処理装置。
(10)前記薬液濾過機構が、送液ポンプにより薬液が加圧送液される経路に設置されている、(9)に記載のフィルムの薬液処理装置。
(11)前記薬液濾過機構が、前記薬液に対する長期耐性を有するフィルタを含む薬液濾過機構である、(9)または(10)に記載のフィルムの薬液処理装置。
(12)前記薬液供給槽への薬液の還流を、前記浸漬槽からオーバーフローした薬液が薬液供給槽に流入するよう構成することにより行う、(9)〜(11)のいずれかに記載のフィルムの薬液処理装置。
(13)前記フィルタがpH=−0.6の強酸性溶液への長期薬液耐性を持つフィルタである、(11)に記載のフィルムの薬液処理装置。
(14)前記フィルタが水酸化物イオン濃度pKa=−0.6の強アルカリ溶液への長期薬液耐性を持つフィルタである、(11)に記載のフィルムの薬液処理装置。
(15)(9)〜(14)のいずれかに記載のフィルムの薬液処理装置を含むイオン交換膜の製造装置。
This invention for solving the said subject is described in following (1)-(15).
(1) In the chemical treatment method for a film, wherein the film is immersed in an immersion tank in which a chemical selected from an acidic solution and an alkaline solution is stored,
The chemical liquid is circulated through a circulation path configured to be supplied from the chemical liquid supply tank to the immersion tank and to be refluxed from the immersion tank to the chemical liquid supply tank again.
A chemical treatment method for a film, comprising performing a filtering operation to remove foreign substances in the chemical solution at least at one place in the circulation path.
(2) The chemical solution treatment method for a film according to (1), wherein the filtration operation is performed in a route in which the chemical solution is pressurized and fed by a liquid feed pump in the circulation route.
(3) The chemical treatment method for a film according to (1) or (2), wherein the filtration operation is performed with a filter having long-term resistance to the chemical.
(4) The chemical solution of the film according to any one of (1) to (3), wherein the chemical solution is refluxed to the chemical solution supply tank so that the chemical liquid overflowed from the immersion tank flows into the supply tank. Processing method.
(5) The film chemical solution according to (4), wherein the film is immersed in the immersion tank while being continuously conveyed, and the overflow is performed in a direction parallel to the film surface and perpendicular to the film conveyance direction. Processing method.
(6) The chemical solution treatment method for a film according to any one of (1) to (5), wherein the film is a precursor membrane of a cation exchange membrane having an anionic group, and the chemical solution is an acidic solution. .
(7) The chemical solution treatment method for a film according to any one of (1) to (5), wherein the film is a precursor film of an anion exchange membrane having a cationic group, and the chemical solution is an alkaline solution. .
(8) A method for producing an ion exchange membrane, comprising a step of subjecting a film to chemical treatment by the chemical treatment method for a film according to any one of (1) to (6).
(9) A film chemical treatment apparatus for immersing a film in an immersion tank in which a chemical liquid selected from a strong acid solution and a strong alkaline solution is stored, wherein the chemical liquid is supplied from the chemical liquid supply tank to the immersion tank, and A chemical solution treatment of a film having a circulation path configured to be recirculated from the immersion tank to the chemical solution supply tank, and having a chemical filtration mechanism for removing foreign substances in the chemical liquid in at least one place in the circulation path apparatus.
(10) The chemical treatment apparatus for a film according to (9), wherein the chemical filtration mechanism is installed in a path through which the chemical is pressurized and fed by a liquid feed pump.
(11) The chemical treatment apparatus for a film according to (9) or (10), wherein the chemical filtration mechanism is a chemical filtration mechanism including a filter having long-term resistance to the chemical.
(12) The film according to any one of (9) to (11), wherein the chemical liquid is refluxed to the chemical liquid supply tank by configuring the chemical liquid that has overflowed from the immersion tank to flow into the chemical liquid supply tank. Chemical processing equipment.
(13) The chemical treatment apparatus for a film according to (11), wherein the filter is a filter having long-term chemical resistance to a strongly acidic solution having pH = −0.6.
(14) The chemical treatment apparatus for a film according to (11), wherein the filter is a filter having a long-term chemical resistance to a strong alkali solution having a hydroxide ion concentration pKa = −0.6.
(15) An apparatus for producing an ion exchange membrane, including the chemical treatment apparatus for a film according to any one of (9) to (14).

本発明によれば、薬液処理中におけるフィルムへの異物の付着が低減される。その結果、異物に起因するフィルムの損傷や欠陥が低減され、最終的に得られるフィルムの品位を高めることができる。   According to the present invention, the adhesion of foreign matter to the film during chemical treatment is reduced. As a result, damage and defects of the film due to foreign matters are reduced, and the quality of the finally obtained film can be improved.

本発明の薬液処理方法の一実施形態を示す図である。It is a figure which shows one Embodiment of the chemical | medical solution processing method of this invention. 複数の浸漬槽を用いた本発明の薬液処理方法の一実施形態を示す図である。It is a figure which shows one Embodiment of the chemical | medical solution processing method of this invention using a some immersion tank. 本発明の薬液処理装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the chemical | medical solution processing apparatus of this invention.

以下に、本発明のフィルムの薬液処理方法およびフィルムの薬液処理装置を、図1ないし図3に示す実施形態を適宜参照しつつ説明するが、これらの実施形態は何ら本発明を限定するものではない。   Hereinafter, the chemical treatment method for a film and the chemical treatment apparatus for a film of the present invention will be described with reference to the embodiments shown in FIGS. 1 to 3 as appropriate, but these embodiments do not limit the present invention. Absent.

本発明のフィルムの薬液処理方法および薬液処理装置は、特に限定されるものではないが、典型的には、イオン性基を有するポリマーを含むイオン交換膜の前駆体膜に対する酸処理またはアルカリ処理に適用される。前駆体膜とは、酸処理もしくはアルカリ処理またはこれらの処理を組み合わせた処理を行うことによってイオン交換膜となるフィルムを指すものとする。また、薬液とは酸性溶液およびアルカリ性溶液を指すものとする。   The chemical treatment method and chemical treatment apparatus for a film of the present invention are not particularly limited, but typically, for acid treatment or alkali treatment on a precursor membrane of an ion exchange membrane containing a polymer having an ionic group. Applied. A precursor film | membrane shall refer to the film used as an ion exchange film by performing the process which combined the acid process or the alkali process, or these processes. Moreover, a chemical | medical solution shall point out an acidic solution and an alkaline solution.

例えば、陽イオン交換膜の一形態である陽イオン伝導性電解質膜の製造においては、特許文献2に示されるように、金属塩型になっている前駆体膜の酸基を酸処理によって酸型に変換することによって陽イオン伝導性の電解質膜とする。同じく陰イオン交換膜の一形態である陰イオン伝導性の電解質膜の製造においては、陽イオン性基に陰イオン(アニオン)がイオン結合して塩型になっている前駆体膜をアルカリ処理することによって陰イオンを取り除いて陰イオン伝導性の電解質膜とする。また、フッ素系陽イオン伝導性電解質膜の製造においては、特許文献3に示されるように、−SOF基(フロオロスルフィン酸アニオン基)をアルカリ処理によって−SO 基(スルホン酸基)の金属塩型に変換し、その後、酸処理によってさらに酸型スルホン酸基(−SOH)に変換する。本発明の薬液処理方法は、少なくともこれらの場合における酸処理およびアルカリ処理の両者に適用することができる。 For example, in the production of a cation-conducting electrolyte membrane that is one form of a cation exchange membrane, as shown in Patent Document 2, the acid group of the precursor membrane in a metal salt form is acid-treated by acid treatment. By converting into a cation conductive electrolyte membrane. In the production of an anion-conducting electrolyte membrane, which is also a form of anion exchange membrane, an alkali treatment is applied to a precursor membrane in which an anion (anion) is ionically bonded to a cationic group to form a salt form. Thus, the anion is removed to form an anion conductive electrolyte membrane. In addition, in the production of a fluorine-based cation conductive electrolyte membrane, as shown in Patent Document 3, an —SO 2 F group (fluorosulfuric acid anion group) is treated with an alkali to form —SO 3 group (sulfonic acid group). ), And then further converted to an acid sulfonic acid group (—SO 3 H) by acid treatment. The chemical treatment method of the present invention can be applied to both acid treatment and alkali treatment in at least these cases.

なお、以下、イオン交換膜を製造するための薬液処理を例にさらに本発明を説明するが、本発明は何らこれに限定されるものではなく、具体的に説明された各要素の任意の組み合わせや、イオン交換膜以外のフィルムへ適用する態様も発明と捉え得る。   In the following, the present invention will be further described by way of an example of a chemical treatment for producing an ion exchange membrane, but the present invention is not limited to this, and any combination of the components specifically described. And the aspect applied to films other than an ion exchange membrane can also be regarded as invention.

本発明により製造されるイオン交換膜に含まれるポリマーの基本骨格は特に制限されないが、好ましい例としては、パーフルオロアルキレンに代表されるフッ素系ポリマーや、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルホスフィンオキシド、ポリエーテルエーテルホスフィンオキシド、ポリフェニレンスルフィド、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミダゾール、ポリオキサゾール、ポリフェニレンなどの、芳香族炭化水素骨格を有するポリマーが挙げられる。また、スチレン、エチルスチレン、ビニルピリジン、ビニルピラジン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼンなどを重合して得られるポリマーあるいは共重合ポリマーも挙げられる。イオン性基を有するポリマーとは、このような基本骨格にイオン性基が結合したポリマーである。   The basic skeleton of the polymer contained in the ion exchange membrane produced according to the present invention is not particularly limited. Preferred examples include fluorine-based polymers such as perfluoroalkylene, polyphenylene oxide, polyether ketone, and polyether ether ketone. , Polyethersulfone, Polyetherethersulfone, Polyetherphosphine oxide, Polyetheretherphosphine oxide, Polyphenylene sulfide, Polyamide, Polyimide, Polyetherimide, Polyimidazole, Polyoxazole, Polyphenylene, etc. Is mentioned. Moreover, the polymer or copolymer obtained by superposing | polymerizing styrene, ethyl styrene, vinyl pyridine, vinyl pyrazine, divinyl benzene, divinyl toluene, divinyl xylene, trivinyl benzene etc. is also mentioned. The polymer having an ionic group is a polymer in which an ionic group is bonded to such a basic skeleton.

イオン性基は、陽イオン性基と陰イオン性基に大別される。陽イオン伝導性を有する陽イオン交換膜においては陰イオン性基を有するポリマーが用いられ、陰イオン性基と陽イオンがイオン対(イオンペア)を形成することで陽イオン交換能を有する。陰イオン伝導性を有する陰イオン交換膜においては陽イオン性基を有するポリマーが用いられ、陽イオン性基と陰イオンがイオン対(イオンペア)を形成することで陰イオン交換能を有する。   The ionic group is roughly classified into a cationic group and an anionic group. In the cation exchange membrane having cation conductivity, a polymer having an anionic group is used, and the anionic group and the cation form an ion pair to have a cation exchange ability. In the anion exchange membrane having anion conductivity, a polymer having a cationic group is used, and the cationic group and the anion form an ion pair, thereby having anion exchange ability.

陰イオン性基を有するポリマーの陰イオン性基としては、陽イオン交換能を有し、陽イオン伝導性を発揮する限り特に制限はない。陰イオン性基の好ましい例としては、スルホン酸基(−SO(OH))、硫酸基(−OSO(OH))、スルホンイミド基(−SONHSOR(Rは有機基を表す。))、ホスホン酸基(−PO(OH))、リン酸基(−OPO(OH))、カルボン酸基(−CO(OH))、パーフルオロスルホン酸基(−O−(CFSO(OH))を挙げることができる。また、陰イオン性基を有するポリマーは、これらの基を2種類以上有するものであってもよい。陰イオン性基を有するポリマーは、水素イオン伝導度が高いことから、パーフルオロスルホン酸基、スルホン酸基、スルホンイミド基、硫酸基またはホスホン酸基のいずれかを有することがより好ましく、耐加水分解性の点からパーフルオロスルホン酸基あるいはスルホン酸基を有することが最も好ましい。 The anionic group of the polymer having an anionic group is not particularly limited as long as it has a cation exchange ability and exhibits cation conductivity. Preferred examples of the anionic group include a sulfonic acid group (—SO 2 (OH)), a sulfuric acid group (—OSO 2 (OH)), and a sulfonimide group (—SO 2 NHSO 2 R (R represents an organic group). )), Phosphonic acid groups (—PO (OH) 2 ), phosphoric acid groups (—OPO (OH) 2 ), carboxylic acid groups (—CO (OH)), perfluorosulfonic acid groups (—O— (CF 2) n SO 2 (OH) ) can be exemplified. Further, the polymer having an anionic group may have two or more of these groups. Since the polymer having an anionic group has a high hydrogen ion conductivity, it is more preferable to have a perfluorosulfonic acid group, a sulfonic acid group, a sulfonimide group, a sulfuric acid group, or a phosphonic acid group. Most preferably, it has a perfluorosulfonic acid group or a sulfonic acid group from the viewpoint of degradability.

陽イオン性基を有するポリマーの陽イオン性基としては、陰イオン交換能を有し、陰イオン伝導性を発揮する限り特に制限はない。陽イオン性基の好ましい例としては、3級アミノ基、4級アンモニア基、3級ホスホニウム基、4級ホストニウム基を挙げることができる。また、陽イオン性基を有するポリマーは、これらの基を2種類以上有するものであっても良い。陽イオン性基を有するポリマーは、水酸化物イオン伝導度が高いことから、4級アンモニア基、4級ホスホニウム基のいずれかを有することがより好ましい。   The cationic group of the polymer having a cationic group is not particularly limited as long as it has anion exchange ability and exhibits anion conductivity. Preferable examples of the cationic group include a tertiary amino group, a quaternary ammonia group, a tertiary phosphonium group, and a quaternary hostnium group. The polymer having a cationic group may have two or more of these groups. The polymer having a cationic group preferably has either a quaternary ammonia group or a quaternary phosphonium group because of its high hydroxide ion conductivity.

一般に、イオン交換膜の製造においては、前駆体膜のイオン性基の大部分は、最終的に酸処理またはアルカリ処理によってイオン交換されることで除去されるイオン(以下、「不純物イオン」という)とイオン結合した塩の状態で存在している。不純物イオンは洗浄では除去することが困難であるため、最終的に酸処理またはアルカリ処理によってイオン交換されることで除去されてイオン交換膜が得られる。   In general, in the production of an ion exchange membrane, most of the ionic groups in the precursor membrane are finally removed by ion exchange by acid treatment or alkali treatment (hereinafter referred to as “impurity ions”). Exists in the form of an ion-bonded salt. Since the impurity ions are difficult to remove by washing, the ion exchange membrane is finally obtained by ion exchange by acid treatment or alkali treatment.

例えば、陰イオン性基を持つポリマーの重合反応やポリマーに陰イオン性基を導入する付加反応においては金属カチオンが触媒として用いられるため、反応直後においてはこの金属カチオンが前駆体膜中に不純物イオンとして残留する。このような金属カチオンとしては、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Wのカチオンが挙げられ、中でもアルカリ金属またはアルカリ土類金属のカチオンが良く使用される。さらに、価格および環境負荷の点から、Li、Na、K、Ca、Sr、Baのカチオンが好ましく使用され、Li、Na、Kのカチオンが最も好ましく使用される。   For example, in a polymerization reaction of a polymer having an anionic group or an addition reaction in which an anionic group is introduced into the polymer, a metal cation is used as a catalyst. Remains as. Examples of such metal cations include Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, and W cations. Among them, alkali metal or alkaline earth metal cations are often used. Furthermore, from the viewpoint of cost and environmental load, cations of Li, Na, K, Ca, Sr, and Ba are preferably used, and cations of Li, Na, and K are most preferably used.

同様に、陽イオン性基を持つポリマーの合成反応においては、反応触媒として使用する金属カチオンの対イオンである陰イオン(アニオン)と、ポリマー中の陽イオン性基とがイオン結合を形成し、アニオンが前駆体膜中に不純物イオンとして残留する。このようなアニオンとしては、硫酸イオン、硝酸イオン、ハロゲンイオン、炭酸イオン、炭酸水素イオンが挙げられる。陽イオン性基を高分子反応でポリマーに導入する場合は、陽イオン性基と交換反応する官能基としてハロゲノアルキル基が良く用いられ、この場合塩化物イオンやフッ化物イオンなどのハロゲンイオンがポリマー中の陽イオン性基とイオン結合を形成して前駆体膜中に不純物イオンとして残留する。   Similarly, in the synthesis reaction of a polymer having a cationic group, an anion (anion) which is a counter ion of a metal cation used as a reaction catalyst and a cationic group in the polymer form an ionic bond, Anions remain as impurity ions in the precursor film. Examples of such anions include sulfate ions, nitrate ions, halogen ions, carbonate ions, and bicarbonate ions. When a cationic group is introduced into a polymer by a polymer reaction, a halogenoalkyl group is often used as a functional group that exchanges with the cationic group. In this case, halogen ions such as chloride ions and fluoride ions are used in the polymer. An ionic bond is formed with the cationic group therein and remains as impurity ions in the precursor film.

特に限定されるものではないが、典型的には、前駆体膜においてはイオン交換膜のイオン交換容量の50%以上が不純物イオンと結合した状態で存在する。   Although not particularly limited, typically, in the precursor membrane, 50% or more of the ion exchange capacity of the ion exchange membrane is present in a state of being bonded to impurity ions.

薬液処理において、前駆体膜に含まれる不純物イオンはイオン交換により除去される。典型的には、陰イオン性基を持つ前駆体膜は、酸性溶液で液処理され水素イオンにイオン交換されて陽イオン交換膜となり、陽イオン性基を持つ前駆体膜は、アルカリ溶液で液処理され水酸化物イオンにイオン交換されて陰イオン交換膜となる。あるいは、陽イオン性基を持つ前駆体膜を炭酸などの弱酸溶液で液処理して炭酸イオンあるいは炭酸水素イオンにイオン交換して陰イオン交換膜とすることも可能である。本発明において特に限定されるものではないが、薬液処理の終了後に、塩の状態で存在するイオン性基がイオン交換膜のイオン交換容量の0.1%以下になるようイオン交換を行うことが好ましい。   In the chemical treatment, impurity ions contained in the precursor film are removed by ion exchange. Typically, a precursor film having an anionic group is liquid-treated with an acidic solution and ion-exchanged with hydrogen ions to form a cation exchange film, and a precursor film having a cationic group is liquid in an alkaline solution. It is processed and ion exchanged with hydroxide ions to form an anion exchange membrane. Alternatively, a precursor film having a cationic group can be liquid-treated with a weak acid solution such as carbonic acid, and ion-exchanged to carbonate ions or hydrogen carbonate ions to form an anion exchange membrane. Although not particularly limited in the present invention, the ion exchange may be performed after the chemical solution treatment so that the ionic group present in the salt state is 0.1% or less of the ion exchange capacity of the ion exchange membrane. preferable.

前駆体膜を浸漬槽中の薬液に浸漬させる方法としては、特に限定されないが、長尺形状の前駆体膜を連続的に搬送しながら浸漬する方法が好ましい。図1に示す実施形態においては、ロール状に巻かれた長尺形状のフィルム(前駆体膜)は、浸漬槽に連続的に搬送されて薬液に浸漬される。なお、前駆体膜を枚葉に切断してバッチ式で浸漬槽に浸漬する方法も用いることができるが、生産性の観点からは連続的に搬送しながら行う方法が好ましい。連続搬送される前駆体膜は単独でも良いし、強度が不足する場合や取り扱いを容易にする目的で搬送用フィルムに貼り付けた状態であっても良い。膜の耐久性をさらに高める目的で、多孔質膜や充填材で補強された前駆体膜であっても良い。   The method of immersing the precursor film in the chemical solution in the immersion tank is not particularly limited, but a method of immersing the elongated precursor film while continuously conveying is preferable. In the embodiment shown in FIG. 1, a long film (precursor film) wound in a roll shape is continuously conveyed to an immersion tank and immersed in a chemical solution. In addition, although the method of cut | disconnecting a precursor film | membrane into a sheet | seat and immersing in a dipping tank by a batch type can also be used, the method performed while conveying continuously from a viewpoint of productivity is preferable. The precursor film that is continuously transported may be a single film, or may be in a state of being stuck on a transport film for the purpose of facilitating handling or when the strength is insufficient. For the purpose of further enhancing the durability of the membrane, it may be a porous membrane or a precursor membrane reinforced with a filler.

前述のような薬液処理に用いる酸性溶液としては、強酸の希釈溶液であれば特に限定されないが、塩酸、硫酸、燐酸、硝酸など無機酸の水溶液が好適であり、特に生産性や作業性の観点から硫酸が好ましい。強酸を希釈する際に使用する水は、カチオン性不純物を除去低減した精製水、蒸留水、RO水または脱イオン水を用いることが好ましい。   The acidic solution used for the chemical treatment as described above is not particularly limited as long as it is a dilute solution of a strong acid, but an aqueous solution of an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid is preferable, and particularly in terms of productivity and workability. To sulfuric acid is preferred. The water used when diluting the strong acid is preferably purified water, distilled water, RO water or deionized water from which cationic impurities are removed and reduced.

酸性溶液は、pH=0.3以下の酸性溶液を用いることが好ましい。イオン交換性膜が優れた性能を発揮する目安は、イオン交換容量として0.5ミリ当量/g以上、より好ましくは1.0ミリ当量/g以上、さらに好ましくは2.0ミリ当量/g以上であり、フィルムの比重を1として概算すると、水素イオン濃度としてはそれぞれ0.5モル/リットル以上、1.0モル/リットル以上、2.0モル/リットル以上となる。この水素イオン濃度をpHに換算すると、それぞれpH=0.3以下、pH=0.0以下、pH=−0.3以下となる。優れた性能を有するイオン交換膜を得るためには、pH=0.0以下の酸性溶液を用いることがより好ましく、pH=−0.3以下の酸性溶液を用いることがさらに好ましい。   It is preferable to use an acidic solution having a pH of 0.3 or less as the acidic solution. An indication that the ion exchange membrane exhibits excellent performance is that the ion exchange capacity is 0.5 meq / g or more, more preferably 1.0 meq / g or more, and even more preferably 2.0 meq / g or more. Assuming that the specific gravity of the film is 1, the hydrogen ion concentrations are 0.5 mol / liter or more, 1.0 mol / liter or more, and 2.0 mol / liter or more, respectively. When this hydrogen ion concentration is converted into pH, pH = 0.3 or less, pH = 0.0 or less, and pH = −0.3 or less, respectively. In order to obtain an ion exchange membrane having excellent performance, it is more preferable to use an acidic solution with pH = 0.0 or less, and it is more preferable to use an acidic solution with pH = −0.3 or less.

また、前述のような薬液処理に用いるアルカリ性溶液としては、水酸化イオン濃度で規定されるpKa=0.3以下のアルカリ性溶液であることが好ましい。前述のイオン交換容量を得るための水酸化物イオン濃度は、0.5モル/リットル以上、より好ましくは1.0モル/リットル以上、さらに好ましくは2.0ミリ/リットル以上となる。このイオン濃度をpKaに換算すると、それぞれpKa=0.3以下、pKa=0.0以下、pKa=−0.3以下となる。優れた性能を有するイオン交換膜を製造するためには、pKa=0.0以下のアルカリ性溶液を用いることがより好ましく、pKa=−0.3以下のアルカリ性溶液を用いることがさらに好ましい。   The alkaline solution used for the chemical treatment as described above is preferably an alkaline solution having a pKa = 0.3 or less defined by the hydroxide ion concentration. The hydroxide ion concentration for obtaining the above-described ion exchange capacity is 0.5 mol / liter or more, more preferably 1.0 mol / liter or more, and further preferably 2.0 mm / liter or more. When this ion concentration is converted into pKa, pKa = 0.3 or less, pKa = 0.0 or less, and pKa = −0.3 or less, respectively. In order to produce an ion exchange membrane having excellent performance, it is more preferable to use an alkaline solution having a pKa of 0.0 or less, and even more preferable to use an alkaline solution having a pKa of −0.3 or less.

本実施形態において、薬液処理前のフィルム(前駆体膜)は、巻出機構により巻き出されて浸漬槽に搬送され、浸漬槽において前述の薬液に浸漬され、薬液処理される。   In the present embodiment, the film (precursor film) before the chemical treatment is unwound by the unwinding mechanism and conveyed to the immersion tank, and is immersed in the above-described chemical liquid in the immersion tank and subjected to the chemical treatment.

薬液供給槽は、浸漬槽に供給するための薬液を貯留する槽であって、薬液供給槽から浸漬槽へと連続して薬液を供給する供給経路と、浸漬槽から薬液供給槽へと連続して薬液が還流する還流経路との二つの経路で構成される循環経路によって浸漬槽と接続されている。そして、本発明の薬液処理方法においては、循環経路の少なくとも1箇所において、薬液中の異物を除去する濾過操作が行われる。言い換えれば、本発明の薬液処理装置は、当該循環経路中の少なくとも1箇所に薬液中の異物を除去する薬液濾過機構を有する。   The chemical solution supply tank is a tank for storing a chemical solution to be supplied to the immersion tank. The chemical solution supply tank continuously supplies the chemical solution from the chemical solution supply tank to the immersion tank, and continuously from the immersion tank to the chemical solution supply tank. In this way, it is connected to the immersion tank by a circulation path composed of two paths, a reflux path through which the chemical solution is refluxed. And in the chemical | medical solution processing method of this invention, the filtration operation which removes the foreign material in a chemical | medical solution is performed in at least one place of a circulation path. In other words, the chemical treatment apparatus of the present invention has a chemical filtration mechanism for removing foreign substances in the chemical at at least one location in the circulation path.

薬液中の異物とは、フィルムへの押し付けによる損傷やフィルムへの付着により品質欠陥を生じさせる固体であって、その形状は、粒状あるいは繊維状など様々である。これら異物を除去する濾過操作(濾過機構)としては、捕捉率90%で規定される濾過サイズを少なくとも1μm以上5μm以下とすることが好ましい。濾過サイズが1μm未満になると濾過操作が煩雑になるからであり、5μmを超えるとフィルムへの致命的な損傷が生じやすくなるからである。   The foreign matter in the chemical liquid is a solid that causes a quality defect due to damage caused by pressing on the film or adhesion to the film, and the shape thereof is various such as granular or fibrous. As a filtration operation (filtration mechanism) for removing these foreign substances, it is preferable that the filtration size defined by a capture rate of 90% is at least 1 μm to 5 μm. This is because if the filtration size is less than 1 μm, the filtration operation becomes complicated, and if it exceeds 5 μm, fatal damage to the film tends to occur.

図1に示す実施形態においては、薬液は、供給経路に設置された送液ポンプにより薬液供給槽から浸漬槽に送液される過程で、供給経路の途中に設置された濾過機構により濾過操作を受ける。濾過機構は、供給経路に設置しても還流経路に設置してもよいが、いずれにせよ送液ポンプにより薬液が加圧送液される経路に設置することが好ましい。薬液が加圧されるため、濾過操作中に圧力損失が生じて閉塞しやすい濾過サイズの小さいフィルタを使用する際に、追加の加圧操作を省略でき簡便になるためである。   In the embodiment shown in FIG. 1, the chemical solution is filtered by a filtration mechanism installed in the middle of the supply path in the process of being fed from the chemical solution supply tank to the immersion tank by a liquid feed pump installed in the supply path. receive. The filtration mechanism may be installed in the supply path or the reflux path, but in any case, it is preferably installed in the path where the chemical solution is pressurized and fed by the liquid feed pump. This is because the chemical liquid is pressurized, so that when using a filter with a small filtration size that easily becomes clogged due to a pressure loss during the filtration operation, the additional pressure operation can be omitted and it becomes simple.

濾過操作は、薬液に対する長期耐性を有するフィルタによって行うことが好ましい。薬液処理を連続で実施した場合や、長期間に渡って連続運転する際に、フィルタが劣化すると異物捕捉に支障をきたすからである。薬液に対する長期耐性を有するフィルタは、使用する薬液の種類に応じ、pH=0.3以下の酸性溶液あるいは水酸化物イオン濃度のpKa=0.3以下のアルカリ性溶液への6ヶ月以上の長期耐性を有するフィルタであることが好ましい。より好ましくは、pH=0.0以下の酸性溶液あるいはpKa=0.0以下のアルカリ性溶液への6ヶ月以上の長期耐性を有するフィルタであり、さらに好ましくはpH=−0.3以下の酸性溶液あるいはpKa=−0.3以下のアルカリ性溶液への6ヶ月以上の長期耐性を有するフィルタである。さらには、イオン交換容量が4ミリ当量/gと極めて優れた機能フィルムの薬液処理にも対応するため、pH=−0.6の酸性溶液あるいは水酸化物イオン濃度pKa=−0.6のアルカリ性溶液への6ヶ月以上の長期耐性を有するフィルタであることが最も好ましい。   The filtration operation is preferably performed with a filter having long-term resistance to the chemical solution. This is because, when the chemical treatment is continuously performed or when the filter is continuously operated for a long period of time, foreign matter capture is hindered when the filter deteriorates. A filter having a long-term resistance to a chemical solution has a long-term resistance of 6 months or more to an acidic solution having a pH = 0.3 or less or an alkaline solution having a hydroxide ion concentration of pKa = 0.3 or less depending on the type of the chemical solution used. It is preferable that the filter has More preferably, it is a filter having a long-term resistance of 6 months or more to an acidic solution having pH = 0.0 or less or an alkaline solution having pKa = 0.0 or less, and more preferably an acidic solution having pH = −0.3 or less. Alternatively, it is a filter having a long-term resistance of 6 months or more to an alkaline solution of pKa = −0.3 or less. Furthermore, in order to cope with the chemical solution treatment of a functional film having an extremely excellent ion exchange capacity of 4 meq / g, an alkaline solution having a pH = −0.6 or a hydroxide ion concentration pKa = −0.6. Most preferably, the filter has a long-term resistance of 6 months or more to the solution.

薬液処理を連続で実施した場合や、長期間に渡って連続運転する際に、フィルタ交換が必要になると薬液処理装置が稼動停止になる。従って、2式以上のフィルタを並列に配置されてなる濾過機構により濾過操作を行うよう構成すると、フィルタ交換中であっても連続稼動が可能になるため好ましい。   When the chemical treatment is continuously performed or when the filter is replaced during continuous operation over a long period of time, the chemical treatment apparatus is stopped. Therefore, it is preferable to perform the filtration operation by a filtration mechanism in which two or more filters are arranged in parallel, since continuous operation is possible even during filter replacement.

薬液の循環供給状況を把握するとともに、フィルタの閉塞を検知する目的で、フィルタと同等の長期薬液耐性を有する流量計を備えることが好ましい。より好ましくは、薬液に非接触で薬液配管内の薬液流量を測定する流量計である。フィルタと同等以上の長期薬液耐性を有する薬液配管の外側に装着すれば、薬液による流量計劣化の懸念がなく、酸性溶液およびアルカリ性溶液の何れに対しても使用できるためである。静電容量や超音波を利用した非接触流量計などが利用できる。   For the purpose of grasping the circulation supply status of the chemical liquid and detecting the blockage of the filter, it is preferable to provide a flow meter having a long-term chemical liquid resistance equivalent to that of the filter. More preferably, it is a flowmeter that measures the chemical flow rate in the chemical pipe without contacting the chemical liquid. This is because if installed outside the chemical pipe having a long-term chemical resistance equal to or greater than that of the filter, there is no concern about deterioration of the flowmeter due to the chemical, and it can be used for both acidic solutions and alkaline solutions. Non-contact flowmeters using electrostatic capacity or ultrasonic waves can be used.

浸漬槽から薬液供給槽への薬液の還流は、供給経路と同様の送液ポンプを用いてもよいが、浸漬槽からオーバーフローした薬液が薬液供給槽に流入するよう構成することにより行うことが好ましい。浸漬槽への落下塵に起因して、浸漬槽の薬液表面に浮遊異物が発生しがちであり、薬液をオーバーフローすることで浮遊異物を浸漬槽から容易に取り除くことができるためである。浸漬槽から薬液がオーバーフローする方向は、前述のようにフィルムを連続搬送しながら浸漬する場合、フィルム面に平行かつフィルムの搬送方向と垂直な方向であることがより好ましい。浮遊異物が移動してフィルム面に付着し難くなるからである。   The reflux of the chemical liquid from the immersion tank to the chemical liquid supply tank may be performed by using a liquid feed pump similar to that in the supply path, but it is preferable that the chemical liquid overflowed from the immersion tank is configured to flow into the chemical liquid supply tank. . This is because floating foreign substances tend to be generated on the surface of the chemical solution in the immersion tank due to the falling dust in the immersion tank, and the floating foreign substances can be easily removed from the immersion tank by overflowing the chemical solution. The direction in which the chemical overflows from the immersion tank is more preferably parallel to the film surface and perpendicular to the film transport direction when the film is immersed while being continuously transported as described above. This is because the floating foreign matter moves and becomes difficult to adhere to the film surface.

本発明の薬液処理方法において、複数の浸漬槽を用いて順次薬液処理を行う場合、各浸漬槽に薬液供給槽と循環経路を設け、それぞれ独立に薬液の循環および濾過操作を行うことが好ましい。   In the chemical solution treatment method of the present invention, when chemical treatment is sequentially performed using a plurality of immersion tanks, it is preferable to provide a chemical solution supply tank and a circulation path in each immersion tank and perform the chemical liquid circulation and filtration operations independently of each other.

図2に示す複数の浸漬槽を用いた本発明の薬液処理方法の一例では、巻き出されたフィルムは、浸漬槽(1)、浸漬槽(2)、浸漬槽(3)で順次薬液処理される。そして、薬液供給槽(1)と浸漬槽(1)の間、薬液供給槽(2)と浸漬槽(2)の間、薬液供給槽(3)と浸漬槽(3)の間に、それぞれ独立に循環経路および濾過機構が設けられている。そして、新規薬液槽から薬液供給槽(3)に新規薬液が供給され、薬液供給槽(3)で余剰となった薬液は薬液供給槽(2)に送液され、薬液供給槽(2)で余剰となった薬液は薬液供給槽(1)に送液され、薬液供給槽(2)で余剰となった薬液は薬液供給槽(1)に送液され、薬液供給槽(1)で余剰となった薬液は、廃液として廃液処理部に送液される。すなわち、下流の浸漬槽に設けられた薬液供給槽から、上流の浸漬槽に設けられた薬液供給槽へと薬液を送液するカスケード式の送液機構を有する。従って、薬液の使用量を削減することができるとともに、液処理槽ごとに薬液を交換する必要がないため、製造工程の効率を高めることができる。このような送液機構は、下流の薬液供給槽から溢れた薬液が上流の薬液供給槽へと流れ込むように構成することで実現することが好ましいが、送液ポンプを用いて送液するよう構成してもよい。また、最下流の薬液供給槽から溢れた薬液が、廃液として廃液処理部へ流入するよう構成することが好ましい。   In an example of the chemical treatment method of the present invention using a plurality of immersion tanks shown in FIG. 2, the unwound film is sequentially subjected to chemical treatment in the immersion tank (1), the immersion tank (2), and the immersion tank (3). The And between the chemical solution supply tank (1) and the immersion tank (1), between the chemical solution supply tank (2) and the immersion tank (2), and between the chemical solution supply tank (3) and the immersion tank (3), respectively. Are provided with a circulation path and a filtration mechanism. Then, the new chemical solution is supplied from the new chemical solution tank to the chemical solution supply tank (3), and the surplus chemical solution in the chemical solution supply tank (3) is sent to the chemical solution supply tank (2), and the chemical solution supply tank (2) The surplus chemical liquid is fed to the chemical liquid supply tank (1), the surplus chemical liquid in the chemical liquid supply tank (2) is fed to the chemical liquid supply tank (1), and the surplus chemical liquid is sent to the chemical liquid supply tank (1). The resulting chemical is sent to the waste liquid treatment unit as waste liquid. That is, it has a cascade type liquid feeding mechanism that feeds a chemical solution from a chemical solution supply tank provided in the downstream immersion tank to a chemical solution supply tank provided in the upstream immersion tank. Therefore, it is possible to reduce the amount of the chemical solution used and to increase the efficiency of the manufacturing process because it is not necessary to exchange the chemical solution for each liquid treatment tank. Such a liquid feeding mechanism is preferably realized by configuring so that the chemical liquid overflowing from the downstream chemical liquid supply tank flows into the upstream chemical liquid supply tank, but is configured to send liquid using a liquid feed pump. May be. Further, it is preferable that the chemical liquid overflowing from the most downstream chemical liquid supply tank flows into the waste liquid treatment unit as waste liquid.

各浸漬槽における薬液の循環経路は、送液速度を個別に制御する機構を備えることが好ましい。除去すべき異物サイズに応じて適切な濾過フィルタを選択したり、濾過フィルタの使用時間に対応して送液量を調節したりすることが容易になるからである。   It is preferable that the chemical liquid circulation path in each immersion tank includes a mechanism for individually controlling the liquid feeding speed. This is because it becomes easy to select an appropriate filtration filter according to the size of the foreign matter to be removed, and to adjust the liquid feeding amount in accordance with the usage time of the filtration filter.

図3(A)および(B)は、薬液が浸漬槽から薬液供給槽にオーバーフローする方向を、フィルム面に平行かつフィルムの搬送方向と垂直な方向とした実施形態の薬液処理装置の模式図である。図3(A)において、フィルムの搬送方向は、紙面手前から奥へ向かう方向である。薬液供給槽1から加圧送液ポンプ2を用いて濾過機構3に薬液を送液して異物を除去し、流量計4で薬液供給量を計測して浸漬槽5に薬液が供給される。フィルムMは搬送ローラー(液中)6と搬送ローラー(上部)7により浸漬槽5に搬送される。そして、フィルムMの膜面と平行な方向に薬液は浸漬槽からオーバーフローして薬液供給槽に還流循環する。これにより浮遊異物もフィルムMの膜面に平行に移動し、浸漬槽から速やかに取り除かれる。図3(A)において、オーバーフローする方向8は、紙面右側であり、そのときの薬液の流れを11で示している。浸漬槽から排除された浮遊異物は、この場合には薬液供給槽に一旦蓄積されるが、これら浮遊異物が液中に没すると、濾過機構3により次々と捕集される。   FIGS. 3A and 3B are schematic views of the chemical processing apparatus of the embodiment in which the direction in which the chemical overflows from the immersion tank to the chemical supply tank is parallel to the film surface and perpendicular to the film transport direction. is there. In FIG. 3A, the film transport direction is a direction from the front side to the back side. The chemical solution is fed from the chemical solution supply tank 1 to the filtration mechanism 3 using the pressurized liquid feed pump 2 to remove foreign substances, the chemical solution supply amount is measured by the flow meter 4, and the chemical solution is supplied to the immersion tank 5. The film M is conveyed to the immersion tank 5 by a conveyance roller (in liquid) 6 and a conveyance roller (upper part) 7. Then, the chemical liquid overflows from the immersion tank in a direction parallel to the film surface of the film M, and circulates in the chemical liquid supply tank. As a result, the floating foreign matter also moves parallel to the film surface of the film M, and is quickly removed from the immersion tank. In FIG. 3A, the overflow direction 8 is the right side of the page, and the flow of the chemical at that time is indicated by 11. In this case, the suspended foreign matter removed from the immersion tank is once accumulated in the chemical solution supply tank, but when these suspended foreign substances are immersed in the liquid, they are collected one after another by the filtration mechanism 3.

複数の浸漬槽と複数の薬液供給槽が備えられた場合でも、それぞれを膜の搬送方向に並べることで、全ての浸漬槽からフィルム面と平行方向に薬液がオーバーフローするように薬液供給槽を配置することが可能である。ここで、フィルムの搬送方向とは、イオン交換膜の製造装置を真上から見たときに、フィルムが搬送される方向である。図3(B)は、このような実施形態の薬液処理装置の浸漬槽5および薬液供給槽1を上方からみた模式図である。図3(B)におけるフィルムの搬送方向9は、紙面下方から上方に向かう方向である。フィルムMは、4つの搬送ローラー(上部)7ならびに薬液中に没しているため図示していない搬送ローラー(液中)により3つの浸漬槽で順次薬液処理されながら搬送される。本実施形態においても、フィルムMが薬液に没する際、および薬液から脱する際のフィルム面と、薬液がオーバーフローする方向8とが平行な関係にある。さらには、膜面は搬送ローラー(上部)7の回転軸方向10と平行である。薬液が浸漬槽5から薬液供給槽1にオーバーフローする方向8が膜面と平行な方向であることで、浸漬槽の薬液表面の流れ12が略同方向の流れとなり、浮遊異物を速やかに浸漬槽から薬液供給槽に排除することが可能になる。   Even when multiple immersion tanks and multiple chemical supply tanks are provided, the chemical supply tanks are arranged so that the chemicals overflow from all immersion tanks in the direction parallel to the film surface by arranging them in the film transport direction. Is possible. Here, the film transport direction is the direction in which the film is transported when the ion exchange membrane manufacturing apparatus is viewed from directly above. FIG. 3B is a schematic view of the immersion tank 5 and the chemical liquid supply tank 1 of the chemical liquid processing apparatus according to the embodiment as viewed from above. The film transport direction 9 in FIG. 3B is a direction from the bottom to the top of the page. Since the film M is submerged in the four transport rollers (upper part) 7 and the chemical liquid, the film M is transported while being sequentially processed in the three immersion tanks by a transport roller (in liquid) (not shown). Also in this embodiment, the film surface when the film M is immersed in the chemical solution and when the film M is removed from the chemical solution and the direction 8 in which the chemical solution overflows are in a parallel relationship. Furthermore, the film surface is parallel to the rotation axis direction 10 of the transport roller (upper part) 7. The direction 8 in which the chemical liquid overflows from the immersion tank 5 to the chemical supply tank 1 is a direction parallel to the film surface, so that the flow 12 on the chemical liquid surface in the immersion tank becomes a flow in substantially the same direction, and the floating foreign matter is rapidly immersed in the immersion tank. Can be excluded from the chemical solution supply tank.

本発明のイオン交換膜の製造装置は、本発明のフィルム薬液処理装置を含むイオン交換膜の製造装置である。典型的には、本発明のイオン交換膜の製造装置は、前述の浸漬槽に続いて、薬液処理されたイオン交換膜を洗浄するフィルム洗浄部、洗浄された前記フィルムを乾燥するフィルム乾燥部、および乾燥された前記フィルムを巻き取るフィルム巻き取り部を備える。一連の工程を連続して実施することで、連続した機能フィルムの品質が安定し、イオン交換膜を効率的に量産することができる。   The ion exchange membrane manufacturing apparatus of the present invention is an ion exchange membrane manufacturing apparatus including the film chemical solution processing apparatus of the present invention. Typically, in the ion exchange membrane production apparatus of the present invention, following the immersion tank, a film washing unit for washing the ion exchange membrane treated with a chemical solution, a film drying unit for drying the washed film, And a film take-up unit for taking up the dried film. By continuously performing the series of steps, the quality of the continuous functional film is stabilized, and the ion exchange membrane can be mass-produced efficiently.

M:前駆体膜
1:薬液供給槽
2:加圧送液ポンプ
3:濾過機構
4:流量計
5:浸漬槽
6:搬送ローラー(液中)
7:搬送ローラー(上部)
8:薬液のオーバーフロー方向
9:前駆体膜の搬送方向
10:回転軸方向
11:薬液のオーバーフロー
12:薬液表面の流れ
M: Precursor film 1: Chemical solution supply tank 2: Pressurized liquid feed pump 3: Filtration mechanism 4: Flow meter 5: Immersion tank
6: Transport roller (in liquid)
7: Transport roller (upper part)
8: Overflow direction of chemical liquid 9: Transport direction of precursor film 10: Direction of rotation axis 11: Overflow of chemical liquid 12: Flow of chemical liquid surface

Claims (15)

酸性溶液およびアルカリ性溶液から選択される薬液が貯留された浸漬槽にフィルムを浸漬させるフィルムの薬液処理方法において、
前記薬液は、薬液供給槽から前記浸漬槽に供給され、かつ前記浸漬槽から再び前記薬液供給槽へと還流されるよう構成された循環経路を循環するとともに、
該循環経路中の少なくとも1箇所において前記薬液中の異物を除去する濾過操作を行うことを特徴とするフィルムの薬液処理方法。
In the film chemical treatment method of immersing a film in a dipping tank in which a chemical selected from an acidic solution and an alkaline solution is stored,
The chemical liquid is circulated through a circulation path configured to be supplied from the chemical liquid supply tank to the immersion tank and to be refluxed from the immersion tank to the chemical liquid supply tank again.
A chemical treatment method for a film, comprising performing a filtering operation to remove foreign substances in the chemical solution at least at one place in the circulation path.
前記循環経路中、送液ポンプにより薬液が加圧送液される経路において前記濾過操作を行う、請求項1に記載のフィルムの薬液処理方法。 The film chemical treatment method according to claim 1, wherein the filtration operation is performed in a path in which the chemical liquid is pressurized and fed by a liquid feed pump in the circulation path. 前記濾過操作を、前記薬液に対する長期耐性を有するフィルタにより行う、請求項1または2に記載のフィルムの薬液処理方法。 The chemical solution treatment method for a film according to claim 1 or 2, wherein the filtering operation is performed with a filter having long-term resistance to the chemical solution. 前記薬液供給槽への薬液の還流を、前記浸漬槽からオーバーフローした薬液が供給槽に流入するよう構成することにより行う、請求項1〜3のいずれかに記載のフィルムの薬液処理方法。 The chemical | medical solution processing method of the film in any one of Claims 1-3 which performs the recirculation | reflux of the chemical | medical solution to the said chemical | medical solution supply tank by comprising so that the chemical | medical solution overflowed from the said immersion tank may flow in into a supply tank. 前記浸漬槽に前記フィルムを連続的に搬送しながら浸漬するとともに、前記オーバーフローが、フィルム面に平行かつフィルムの搬送方向と垂直な方向に行われる、請求項4に記載のフィルムの薬液処理方法。 5. The chemical treatment method for a film according to claim 4, wherein the film is immersed in the immersion tank while being continuously conveyed, and the overflow is performed in a direction parallel to the film surface and perpendicular to the film conveyance direction. 前記フィルムが、陰イオン性基を有する陽イオン交換膜の前駆体膜であり、前記薬液が酸性溶液である、請求項1〜5のいずれかに記載のフィルムの薬液処理方法。 The chemical solution treatment method for a film according to claim 1, wherein the film is a precursor membrane of a cation exchange membrane having an anionic group, and the chemical solution is an acidic solution. 前記フィルムが、陽イオン性基を有する陰イオン交換膜の前駆体フィルムであり、前記薬液がアルカリ性溶液である、請求項1〜5のいずれかに記載のフィルムの薬液処理方法。 The chemical solution treatment method for a film according to claim 1, wherein the film is a precursor film of an anion exchange membrane having a cationic group, and the chemical solution is an alkaline solution. 請求項1〜6のいずれかに記載のフィルムの薬液処理方法によりフィルムを薬液処理する工程を有するイオン交換膜の製造方法。 The manufacturing method of the ion exchange membrane which has the process of carrying out a chemical | medical solution process of the film by the chemical | medical solution processing method of the film in any one of Claims 1-6. 強酸性溶液および強アルカリ性溶液から選択される薬液が貯留された浸漬槽にフィルムを浸漬させるフィルムの薬液処理装置であって、前記薬液が薬液供給槽から前記浸漬槽に供給され、かつ前記浸漬槽から再び前記薬液供給槽へと還流されるように構成された循環経路を有するとともに、当該循環経路中の少なくとも1箇所に薬液中の異物を除去する薬液濾過機構を有するフィルムの薬液処理装置。 A chemical treatment apparatus for a film that immerses a film in an immersion tank in which a chemical solution selected from a strong acid solution and a strong alkaline solution is stored, wherein the chemical solution is supplied from the chemical solution supply tank to the immersion tank, and the immersion tank A chemical processing apparatus for a film having a circulation path configured to be recirculated to the chemical liquid supply tank again and having a chemical filtration mechanism for removing foreign substances in the chemical liquid in at least one place in the circulation path. 前記薬液濾過機構が、送液ポンプにより薬液が加圧送液される経路に設置されている、請求項9に記載のフィルムの薬液処理装置。 The chemical solution processing apparatus for a film according to claim 9, wherein the chemical solution filtering mechanism is installed in a path through which the chemical solution is pressurized and fed by a liquid feeding pump. 前記薬液濾過機構が、前記薬液に対する長期耐性を有するフィルタを含む薬液濾過機構である、請求項9または10に記載のフィルムの薬液処理装置。 The chemical solution processing apparatus for a film according to claim 9 or 10, wherein the chemical solution filtration mechanism is a chemical solution filtration mechanism including a filter having long-term resistance to the chemical solution. 前記薬液供給槽への薬液の還流を、前記浸漬槽からオーバーフローした薬液が薬液供給槽に流入するよう構成することにより行う、請求項9〜11のいずれかに記載のフィルムの薬液処理装置。 The chemical solution processing apparatus for a film according to any one of claims 9 to 11, wherein the chemical solution is refluxed to the chemical solution supply tank so that the chemical solution overflowed from the immersion tank flows into the chemical solution supply tank. 前記フィルタがpH=−0.6の強酸性溶液への長期薬液耐性を持つフィルタである、請求項11に記載のフィルムの薬液処理装置。 The chemical treatment apparatus for a film according to claim 11, wherein the filter is a filter having a long-term chemical resistance to a strongly acidic solution having pH = −0.6. 前記フィルタが水酸化物イオン濃度pKa=−0.6の強アルカリ溶液への長期薬液耐性を持つフィルタである、請求項11に記載のフィルムの薬液処理装置。 12. The chemical treatment apparatus for a film according to claim 11, wherein the filter is a filter having a long-term chemical resistance to a strong alkaline solution having a hydroxide ion concentration pKa = −0.6. 請求項9〜14のいずれかに記載のフィルムの薬液処理装置を含むイオン交換膜の製造装置。
An apparatus for producing an ion exchange membrane, comprising the chemical treatment apparatus for a film according to claim 9.
JP2017145172A 2017-07-27 2017-07-27 Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane. Active JP7009815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017145172A JP7009815B2 (en) 2017-07-27 2017-07-27 Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017145172A JP7009815B2 (en) 2017-07-27 2017-07-27 Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane.

Publications (2)

Publication Number Publication Date
JP2019026687A true JP2019026687A (en) 2019-02-21
JP7009815B2 JP7009815B2 (en) 2022-02-10

Family

ID=65475806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017145172A Active JP7009815B2 (en) 2017-07-27 2017-07-27 Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane.

Country Status (1)

Country Link
JP (1) JP7009815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337965A (en) * 2022-07-07 2022-11-15 山东东岳高分子材料有限公司 Experimental perfluorinated ion exchange membrane hydrolysis transformation reaction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580303B1 (en) 2014-06-16 2015-12-28 한국세라믹기술원 Method for bonding alpha alumina and beta alumina

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039783A (en) * 2005-08-03 2007-02-15 Korea Inst Of Industrial Technology System and method for producing flexible copper foil laminated film
JP2008019413A (en) * 2006-06-12 2008-01-31 Nitto Denko Corp Method for producing sulfonated polymer film, electrolyte membrane for fuel cell, and method for recycling sulfonation agent-containing solution
JP2016081682A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Method of manufacturing electrolyte membrane
JP2017145272A (en) * 2016-02-15 2017-08-24 東レ株式会社 Apparatus for producing polymer film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039783A (en) * 2005-08-03 2007-02-15 Korea Inst Of Industrial Technology System and method for producing flexible copper foil laminated film
JP2008019413A (en) * 2006-06-12 2008-01-31 Nitto Denko Corp Method for producing sulfonated polymer film, electrolyte membrane for fuel cell, and method for recycling sulfonation agent-containing solution
JP2016081682A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Method of manufacturing electrolyte membrane
JP2017145272A (en) * 2016-02-15 2017-08-24 東レ株式会社 Apparatus for producing polymer film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337965A (en) * 2022-07-07 2022-11-15 山东东岳高分子材料有限公司 Experimental perfluorinated ion exchange membrane hydrolysis transformation reaction device

Also Published As

Publication number Publication date
JP7009815B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP4786393B2 (en) Cleaning device and production device for film with plating film
CN110382091B (en) Method for washing hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production system, and washing device
JP4841996B2 (en) Cleaning device, manufacturing apparatus for film with plating film, cleaning method, and manufacturing method for film with plating film
KR102287709B1 (en) Ultrapure Water Manufacturing System
JP2007270321A5 (en)
JP7009815B2 (en) Chemical solution treatment method and chemical solution treatment device for film, and manufacturing method and manufacturing device for ion exchange membrane.
JP2008188513A (en) Method and device for manufacturing base material with interlaminated film
US6682646B2 (en) Electrochemical process for decontamination of radioactive materials
CN207748952U (en) A kind of electroplating wastewater reclaimer
KR102623799B1 (en) Manufacturing method and manufacturing device for ion conductive membrane
JP6740629B2 (en) Polymer film manufacturing equipment
JP2005536644A (en) Apparatus and method for regenerating an electroless metal plating bath
JP2013074252A (en) Substrate processing apparatus and substrate processing method
JP6962190B2 (en) Ion Conductive Functional Membrane Manufacturing Method and Equipment
WO2021166368A1 (en) Ion exchange equipment
JP4196222B2 (en) Cleaning device for membrane separator for ultrapure water production
Jamaluddin et al. Salt extraction from hydrogen‐sulfide scrubber solution using electrodialysis
CN220564436U (en) Electrochemical auxiliary ion exchange water treatment device with electrochemical cells arranged in series
KR20170038714A (en) Film production method and film production device
CN115207161A (en) Backwashing equipment
JP6027881B2 (en) Method and apparatus for regenerating electroless nickel phosphorus plating solution
JP2010099613A (en) Method of cleaning ion-exchange resin in condensate demineralizer and device thereof
TWM465986U (en) Roll-to-roll electrochemical polishing device
JP2004097897A (en) Electrodialyzing type desalting apparatus
JP2009018289A (en) Operation method of electric demineralizer, and electric demineralizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R151 Written notification of patent or utility model registration

Ref document number: 7009815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151