JP2019025841A - Fiber-reinforced resin composite, and production apparatus thereof - Google Patents

Fiber-reinforced resin composite, and production apparatus thereof Download PDF

Info

Publication number
JP2019025841A
JP2019025841A JP2017149412A JP2017149412A JP2019025841A JP 2019025841 A JP2019025841 A JP 2019025841A JP 2017149412 A JP2017149412 A JP 2017149412A JP 2017149412 A JP2017149412 A JP 2017149412A JP 2019025841 A JP2019025841 A JP 2019025841A
Authority
JP
Japan
Prior art keywords
fiber reinforced
fiber
reinforced resin
resin
suture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017149412A
Other languages
Japanese (ja)
Inventor
雄二 諏訪
Yuji Suwa
雄二 諏訪
博之 香川
Hiroyuki Kagawa
博之 香川
剛資 近藤
Goshi Kondo
剛資 近藤
利昭 石井
Toshiaki Ishii
利昭 石井
房郎 北條
Fusao Hojo
房郎 北條
ゆり 梶原
Yuri Kajiwara
ゆり 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017149412A priority Critical patent/JP2019025841A/en
Priority to PCT/JP2018/010505 priority patent/WO2019026329A1/en
Publication of JP2019025841A publication Critical patent/JP2019025841A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/62Stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a durable fiber-reinforced resin composite that is obtained by combining each fiber-reinforced resin and can be produced at a low cost, and a production apparatus thereof.SOLUTION: A fiber-reinforced resin composite 20 is produced by combining a plurality of fiber-reinforced resins 10,11 having a resin containing a dynamic covalent bond as a matrix resin and reinforcing fibers arranged in the matrix resin. The fiber-reinforced resins 11, 11 are formed by sewing each fiber-reinforced resin 10, 11 with sewing threads 21. A production apparatus of the fiber-reinforced resin composite 20 is equipped with a sewing device having a sewing needle 22 to sew each fiber-reinforced resin 10, 11 with the sewing threads 21 and a heating device to heat and soften a resin located at least either before and below or before and after the sewing needle in the sewing direction of the sewing device.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化樹脂複合体及びその製造装置に関する。   The present invention relates to a fiber reinforced resin composite and an apparatus for manufacturing the same.

繊維により強化された樹脂である繊維強化樹脂(FRP)は、軽量で、機械的強度に優れていることから、構造材として、或いは高強度部材として幅広い分野にわたり用途開発され、また実用化されている。この材料を用いた構造体の製造方法としては、繊維にあらかじめ熱硬化性樹脂が含浸されて半硬化状態となっているシート状のプリプレグを成型し、加熱して硬化する方法や、繊維を敷き詰めた合わせ型に樹脂を注入し、加熱して硬化するRTM法(Resin Transfer Molding)が良く知られている。   Fiber reinforced resin (FRP), which is a resin reinforced with fibers, is lightweight and excellent in mechanical strength. Therefore, it has been developed and put into practical use as a structural material or as a high-strength member over a wide range of fields. Yes. As a method for producing a structure using this material, a method is used in which a fiber is pre-impregnated with a thermosetting resin and a sheet-like prepreg is molded and heated to be cured, or the fiber is spread. An RTM method (Resin Transfer Molding) in which a resin is poured into a mating mold and cured by heating is well known.

しかし、大型の構造体の製造のためには加熱装置も構造体全体が入る様に大型化する必要があり、製造コストが高くなるという問題がある。小さなパーツを加熱硬化した後で接合すれば大型加熱装置は不要だが、接着剤による接合だけでは2つのパーツの間で繊維がつながっておらず強度が低い。穴を空けてボルト又はリベット等で留めることも可能だが、穴の部分に応力が集中するため、ひび割れ等による劣化が懸念される。   However, in order to manufacture a large-sized structure, it is necessary to increase the size of the heating device so that the entire structure can be accommodated, resulting in an increase in manufacturing cost. If small parts are heat-cured and then joined, a large heating device is not required, but bonding with an adhesive alone does not connect the fibers between the two parts, resulting in low strength. It is possible to make a hole and fasten it with a bolt or rivet, but since stress concentrates on the hole part, there is a concern about deterioration due to cracking or the like.

繊維を含む織物同士を接合する技術として、特許文献1に記載の技術が知られている。特許文献1には、超高分子量ポリエチレン繊維からなる織物と、プリプレグとを、交互に重ね合わせる重ね合わせ工程と、前記織物と前記プリプレグとを縫合する縫合工程と、前記プリプレグを構成する熱硬化性樹脂を熱硬化させる熱硬化工程とを備えたことを特徴とする超高分子量ポリエチレン繊維織物の接合方法が記載されている。特許文献1に記載の技術では、半硬化状態のプリプレグであれば針が容易に貫通するので、あらかじめ穴を空けることなく縫合を行うことができる。   As a technique for joining fabrics including fibers, a technique described in Patent Document 1 is known. Patent Document 1 discloses a superimposing step of alternately superimposing a woven fabric made of ultrahigh molecular weight polyethylene fibers and a prepreg, a suturing step of stitching the woven fabric and the prepreg, and a thermosetting that constitutes the prepreg. A method for joining ultra-high molecular weight polyethylene fiber fabrics characterized by comprising a thermosetting step of thermosetting a resin is described. In the technique described in Patent Document 1, since a needle penetrates easily in a semi-cured prepreg, it is possible to perform suturing without making a hole in advance.

特開2013−946号公報JP 2013-946 A

繊維強化樹脂を用いた構造体は軽量で強度が高い点が優れているが、大型な構造体の作製はコストが高くつく。このような大型構造体を安価に製造する場合や、圧縮成型機によるプレスだけでは成形できないような複雑構造を安価に製造する場合の方法としては、まず小さなパーツを成型してから接合するという方法がある。しかし、前記の特許文献1の技術では、その接合箇所の強度が低下するか耐久性が低下するという課題がある。また、接着材を用いただけの接合では繊維が結合していないので、他の部分に比べて強度が落ちるという課題がある。   A structure using a fiber reinforced resin is excellent in terms of light weight and high strength, but the production of a large structure is expensive. When manufacturing such a large structure at a low cost, or as a method for manufacturing a complex structure that cannot be formed simply by pressing with a compression molding machine at a low cost, a method of first molding small parts and then joining them There is. However, the technique disclosed in Patent Document 1 has a problem that the strength of the joint portion decreases or the durability decreases. In addition, since the fibers are not bonded in the bonding using only the adhesive, there is a problem that the strength is lowered as compared with other portions.

また、縫合による接合を行おうとしても、強度の高い通常の熱硬化樹脂を用いた繊維強化樹脂複合体では、縫合のために穴を空けるとその穴が開いたままになって、穴の存在が強度を弱める。また、穴の部分からクラックが発生し易くなるし、そもそも穴を開ける際にもクラックが発生し易くなる。   In addition, when trying to join by stitching, in a fiber reinforced resin composite using a high-strength ordinary thermosetting resin, if a hole is made for stitching, the hole remains open and the presence of the hole Decreases the strength. In addition, cracks are likely to occur from the hole portion, and cracks are also likely to occur when a hole is originally formed.

本発明はこのような課題に鑑みて為されたものであり、本発明が解決しようとする課題は、繊維強化樹脂同士を接合した繊維強化樹脂複合体において十分な耐久性を有し、かつ、安価に製造可能な繊維強化樹脂複合体及びその製造装置を提供することである。   The present invention has been made in view of such problems, and the problem to be solved by the present invention has sufficient durability in a fiber reinforced resin composite in which fiber reinforced resins are joined together, and It is to provide a fiber reinforced resin composite that can be manufactured at low cost and a manufacturing apparatus thereof.

本発明者らは前記課題を解決するために鋭意検討を行った。その結果、以下の知見を見出して本発明を完成させた。即ち、本発明の要旨は、マトリックス樹脂として動的共有結合を含む樹脂と、当該樹脂の内部に配置された強化繊維とを有する繊維強化樹脂が複数接合されることで構成され、前記繊維強化樹脂同士が縫合糸により縫合されることで繊維強化樹脂複合体同士が接合していることを特徴とする、繊維強化樹脂複合体に関する。その他の解決手段は発明を実施するための形態において後記する。   The present inventors have intensively studied to solve the above problems. As a result, the following knowledge was found and the present invention was completed. That is, the gist of the present invention is constituted by joining a plurality of fiber reinforced resins having a resin including a dynamic covalent bond as a matrix resin and reinforcing fibers arranged inside the resin, the fiber reinforced resin. The present invention relates to a fiber reinforced resin composite characterized in that the fiber reinforced resin composites are joined together by being sewn together by a suture thread. The other means for solving will be described later in the mode for carrying out the invention.

本発明によれば、繊維強化樹脂同士を接合した繊維強化樹脂複合体において十分な耐久性を有し、かつ、安価に製造可能な繊維強化樹脂複合体及びその製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the fiber reinforced resin composite which has sufficient durability in the fiber reinforced resin composite which joined fiber reinforced resin, and can be manufactured cheaply, and its manufacturing apparatus.

2枚の繊維強化樹脂を重ね合わせ縫合により接合して得られた繊維強化樹脂複合体の模式図である。It is a schematic diagram of the fiber reinforced resin composite obtained by superposing | stacking two fiber reinforced resin, and joining by stitching | suture. 平板の繊維強化樹脂と折り曲げられた繊維強化樹脂とを重ね合わせ縫合により接合して得られた繊維強化樹脂複合体の模式図である。It is a schematic diagram of a fiber reinforced resin composite obtained by superposing and joining a flat fiber reinforced resin and a folded fiber reinforced resin by stitching. 2枚の繊維強化樹脂を縫合することで得られた繊維強化樹脂複合体の断面図である。It is sectional drawing of the fiber reinforced resin composite obtained by sewing up two fiber reinforced resins. 縫合時に縫合糸を強く引くことで縫合糸を繊維強化樹脂に埋没させて得られた繊維強化樹脂複合体の断面図である。It is sectional drawing of the fiber reinforced resin composite obtained by burying a suture in fiber reinforced resin by pulling a suture strongly at the time of stitching. 図3と同様に通常の縫合を行った後、縫合部分に硬化前のDCB樹脂を塗って加熱及び硬化させることで保護膜を形成した繊維強化樹脂複合体の断面図である。FIG. 4 is a cross-sectional view of a fiber-reinforced resin composite in which a protective film is formed by applying DCB resin before curing to a stitched portion and heating and curing after performing normal stitching as in FIG. 3.

以下、図面を適宜参照しながら、本発明を実施するための形態(本実施形態)を説明する。   Hereinafter, a form for carrying out the present invention (this embodiment) will be described with reference to the drawings as appropriate.

本実施形態の繊維強化樹脂複合体では、マトリックス樹脂として、動的共有結合(Dynamic Covalent Bond)を利用した樹脂(以下「DCB樹脂」という)が使用される。そして、このDCB樹脂の内部を強化繊維で強化したものが繊維強化樹脂であり、この繊維強化樹脂が複数接合されたものが繊維強化樹脂複合体である。   In the fiber reinforced resin composite of this embodiment, a resin using dynamic covalent bonding (hereinafter referred to as “DCB resin”) is used as the matrix resin. And what reinforce | strengthened the inside of this DCB resin with the reinforced fiber is a fiber reinforced resin, and what joined this fiber reinforced resin in multiple numbers is a fiber reinforced resin composite.

動的共有結合により形成される構造は、熱力学的に安定である一方で、温度、光、圧力等の特定の外部刺激によりその構造を変化させることができる。関与する結合が共有結合であるため、強度も強い。動的共有結合を実現する樹脂としては、例えばエステル結合交換反応を利用したものが考えられる。エステル交換反応を利用するために、硬化時にエステル結合を形成するモノマーとして多官能のエポキシ基を有するエポキシ化合物、硬化剤としてカルボン酸無水物あるいは多価カルボン酸、水酸基を保護する保護基、エステル交換反応を促進する触媒が使用される。   While the structure formed by the dynamic covalent bond is thermodynamically stable, the structure can be changed by specific external stimuli such as temperature, light, and pressure. Since the bond involved is a covalent bond, the strength is also strong. As a resin that realizes a dynamic covalent bond, for example, a resin utilizing an ester bond exchange reaction can be considered. In order to utilize the transesterification reaction, an epoxy compound having a polyfunctional epoxy group as a monomer that forms an ester bond at the time of curing, a carboxylic acid anhydride or polyvalent carboxylic acid as a curing agent, a protecting group for protecting a hydroxyl group, transesterification A catalyst that promotes the reaction is used.

エポキシ化合物の例としては、ビスフェノールAジグリシジルエーテルフェノール、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、レゾシノールジグリシジルエーテル、ヘキサヒドロビスフェノールAジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、フタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシレンジアミン、クレゾールノボラックポリグリシジルエーテル、テトラブロムビスフェノールAジグリシジルエーテル、ビスフェノールヘキサフロロアセトンジグリシジルエーテル等が挙げられる。   Examples of epoxy compounds include bisphenol A diglycidyl ether phenol, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, resorcinol diglycidyl ether, hexahydrobisphenol A diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol Diglycidyl ether, phthalic acid diglycidyl ester, dimer acid diglycidyl ester, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, tetraglycidyl metaxylenediamine, cresol novolac polyglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol hexafluoroacetone And diglycidyl ether.

硬化剤であるカルボン酸無水物あるいは多価カルボン酸の例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3−ドデセニル無水コハク酸、オクテニルコハク酸無水物、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)、メチルシクロヘキセンテトラカルボン酸無水物、無水トリメリット酸、ポリアゼライン酸無水物、エチレングリコール ビスアンヒドロトリメリテート、1,2,3,4−ブタンテトラカルボン酸、4−シクロヘキセン−1,2−ジカルボン酸、多価脂肪酸等が挙げられる。   Examples of the carboxylic acid anhydride or polyvalent carboxylic acid as the curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3-dodecenyl succinic anhydride, octenyl succinic anhydride, Methyl hexahydrophthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis (anhydrotrimate), methylcyclohexene tetracarboxylic acid Anhydride, trimellitic anhydride, polyazeline acid anhydride, ethylene glycol bisanhydro trimellitate, 1,2,3,4-butanetetracarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, polyvalent fatty acid Etc.

保護基の例としては、トリクロロ酢酸エステル、蟻酸エステル、酢酸エステル、イソ酪酸エステル、ピバル酸エステル、安息香酸エステル、メトキシメチルエーテル、テトラヒドロピラニルエーテル、テトラヒドロチオピラニルエーテル、4−メトキシテトラヒドロピラニルエーテル、4−メトキシテトラヒドロチオピラニルエーテル、テトラヒドルフラニルエーテル、テトラヒドロチオフラニルエーテル、1−メチル−1−メトキシエチルエーテエル、2−(フェニルセレニル)エチルエーテル、t−ブチルエーテル、アリルエーテル、ベンジルエーテル、o−ニトロベンジルエーテル、トリフェニルメチルエーテル、α−ナフチルジフェニルメチルエーテル等が挙げられる。   Examples of protecting groups include trichloroacetic acid ester, formic acid ester, acetic acid ester, isobutyric acid ester, pivalic acid ester, benzoic acid ester, methoxymethyl ether, tetrahydropyranyl ether, tetrahydrothiopyranyl ether, 4-methoxytetrahydropyranyl ether, 4 -Methoxytetrahydrothiopyranyl ether, tetrahydrofuranyl ether, tetrahydrothiofuranyl ether, 1-methyl-1-methoxyethyl ether, 2- (phenylselenyl) ethyl ether, t-butyl ether, allyl ether, benzyl ether, o -Nitrobenzyl ether, triphenyl methyl ether, α-naphthyl diphenyl methyl ether and the like.

触媒の例としては、酢酸亜鉛(II)、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛(II)、アセチルアセトン鉄(III)、アセチルアセトンコバルト(II)、アセチルアセトンコバルト(III)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、メトキシド(トリフェニルホスフィン)銅(I)錯体、エトキシド(トリフェニルホスフィン)銅(I)錯体、プロポキシド(トリフェニルホスフィン)銅(I)錯体、イソプロポキシド(トリフェニルホスフィン)銅(I)錯体、メトキシドビス(トリフェニルホスフィン)銅(II)錯体、エトキシドビス(トリフェニルホスフィン)銅(II)錯体、プロポキシドビス(トリフェニルホスフィン)銅(II)錯体、イソプロポキシドビス(トリフェニルホスフィン)銅(II)錯体、トリス(2,4−ペンタンジオナト)コバルト(III)、ナフテン酸コバルト(II)、ステアリン酸コバルト(II)、二酢酸すず(II)、ジ(2−エチルヘキサン酸)すず(II)、N,N−ジメチル−4−アミノピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、トリアザビシクロデセン、トリフェニルホスフィン、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール等が挙げられる。   Examples of catalysts include zinc acetate (II), zinc (II) acetylacetonate, zinc naphthenate (II), acetylacetone iron (III), acetylacetone cobalt (II), acetylacetone cobalt (III), aluminum isopropoxide, Titanium isopropoxide, methoxide (triphenylphosphine) copper (I) complex, ethoxide (triphenylphosphine) copper (I) complex, propoxide (triphenylphosphine) copper (I) complex, isopropoxide (triphenylphosphine) Copper (I) complex, methoxide bis (triphenylphosphine) copper (II) complex, ethoxide bis (triphenylphosphine) copper (II) complex, propoxide bis (triphenylphosphine) copper (II) complex, isopropoxide bis (tri Phenylphosphine) copper (II) complex, tri (2,4-pentanedionato) cobalt (III), cobalt (II) naphthenate, cobalt (II) stearate, tin diacetate (II), di (2-ethylhexanoic acid) tin (II), N , N-dimethyl-4-aminopyridine, diazabicycloundecene, diazabicyclononene, triazabicyclodecene, triphenylphosphine, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2- Examples include phenylimidazole and 1-cyanoethyl-2-phenylimidazole.

なお、動的共有結合としては、光環化付加反応、イミン結合、ジスルフイド結合、アシルヒドラゾン結合、エステル結合等も挙げられるが、これらに限られない。   Examples of the dynamic covalent bond include, but are not limited to, a photocycloaddition reaction, an imine bond, a disulfide bond, an acyl hydrazone bond, and an ester bond.

繊維強化樹脂を構成する強化繊維としては、炭素繊維、ガラス繊維、金属繊維をはじめ、合成繊維、半合成繊維、天然繊維等が考えられる。織物状となり四方への引っ張りに対して強度があるものを基本とするが、繊維強化樹脂複合体の使用箇所・使用目的に依っては1方向にだけ沿って並べた繊維を使用する場合もある。   Examples of the reinforcing fiber constituting the fiber reinforced resin include carbon fiber, glass fiber, metal fiber, synthetic fiber, semi-synthetic fiber, natural fiber, and the like. Basically, it is woven and has strength against pulling in all directions, but depending on the use location and purpose of the fiber reinforced resin composite, fibers arranged in only one direction may be used. .

繊維強化樹脂複合体を構成する繊維強化樹脂は、強化繊維を使用しつつDCB樹脂の板を作製後、加熱して硬化処理を行うことで、得られる。次に、得られた板状のDCB樹脂に対して加熱あるいは光照射等、共有結合の交換反応を活性化させる処理が施され、プレス等により必要な形状に加工される。これらの工程により、繊維強化樹脂が得られる。そして、複数の繊維強化樹脂をあらかじめ設計した箇所で所定に重ね合わせ、加熱あるいは光照射等で再度共有結合の交換反応を活性化しながらこれらが縫合される。この工程により、繊維強化樹脂複合体が得られる。なお、縫合の代わりに金属の針を用いてステープラで留めてもよい。このようにすることで、強化繊維部分を絡めて接合するため強度が強く、小規模な製造装置のみで大型の構造体を作製できるため、製造コストを低く抑えることができる。   The fiber reinforced resin constituting the fiber reinforced resin composite is obtained by producing a DCB resin plate while using the reinforced fibers and then heating and performing a curing treatment. Next, the obtained plate-like DCB resin is subjected to a treatment for activating a covalent bond exchange reaction, such as heating or light irradiation, and processed into a required shape by a press or the like. By these steps, a fiber reinforced resin is obtained. Then, a plurality of fiber reinforced resins are preliminarily overlapped at predesigned locations, and these are sewn together while activating the exchange reaction of the covalent bond again by heating or light irradiation. By this step, a fiber reinforced resin composite is obtained. In addition, you may fasten with a stapler using a metal needle instead of stitching. By doing so, the strength is strong because the reinforcing fiber portions are entangled and joined, and a large structure can be manufactured with only a small manufacturing apparatus, so that the manufacturing cost can be kept low.

繊維強化樹脂の作製の際、樹脂を含浸した強化繊維を重ねて加圧及び加熱するか、強化繊維を敷いた金型内に樹脂を注入して加熱するか、手順はいくつか考えられる。そこで、熱硬化性樹脂を用いたFRPの作製手順として知られている従来法のいずれかを選択すればよい。   When producing a fiber reinforced resin, several procedures are conceivable: reinforcing fibers impregnated with the resin are stacked and pressurized and heated, or the resin is injected into a mold laid with the reinforcing fibers and heated. Therefore, any conventional method known as a procedure for producing FRP using a thermosetting resin may be selected.

このとき、繊維強化樹脂を特定の構造体の作製に特化した部品として作製する場合と、様々な構造体の作製に応用可能な汎用材料として作製する場合の二通りが考えられる。前者の場合、最終的な構造体をどのように分割して成形し接合するかという設計に基づき、この後の工程での成形と縫合に都合が良く、無駄のない形と厚さで作製すればよい。後者の場合、基本的には四角い板の形状で作製される。大きさは30cm四方から2m四方程度と考えられる。ただし、正方形である必要は無く長方形でもよい。また、周期的に並べて接合する事により大面積の構造を作製できるような、6角形であってもよい。6角形の繊維強化樹脂を多数並べて接合した場合、接合箇所が一直線にならないという特徴があり、強度向上の観点から長方形を並べたものより望ましい場合がある。汎用的な繊維強化樹脂の厚さは、例えば0.5mmから2cm程度の範囲と考えられる。   At this time, there are two cases where the fiber reinforced resin is manufactured as a part specialized for manufacturing a specific structure and when it is manufactured as a general-purpose material applicable to the manufacture of various structures. In the former case, based on the design of how the final structure will be divided, molded and joined, it will be convenient for molding and stitching in the subsequent process, and will be produced in a lean shape and thickness. That's fine. In the latter case, it is basically produced in the shape of a square plate. The size is considered to be about 30 cm square to 2 m square. However, it does not have to be square and may be rectangular. Further, it may be hexagonal so that a structure with a large area can be manufactured by periodically arranging and joining. When a large number of hexagonal fiber reinforced resins are joined side by side, there is a feature that the joining portions do not become a straight line, which may be more desirable than those in which rectangles are arranged in order to improve strength. The thickness of the general-purpose fiber reinforced resin is considered to be in a range of about 0.5 mm to 2 cm, for example.

なお、接合箇所に段差ができる事が問題となる場合は、あらかじめ接合のために重ね合わせる重ね合わせ部分(のりしろ部分)の厚さを他の部分の半分程度に薄くしておくとよい。汎用の繊維強化樹脂にも、単純に接合して延長する事を想定して周囲の一定の幅の部分を薄くしたタイプがあってよい。   In addition, when it becomes a problem that a level | step difference is made in a joining location, it is good to make the thickness of the superimposition part (margin part) superposed for joining beforehand thin about half of other parts. The general-purpose fiber reinforced resin may be of a type in which a portion having a constant width is thinned by assuming that it is simply joined and extended.

このようにして作製した繊維強化樹脂は、所望の構造体を作製する前の強化繊維と樹脂との混合物という意味ではプリプレグと似ているが、既に熱硬化処理が済んでいる点が大きく異なる。プリプレグを用いる場合、硬化前の状態で保存するには冷却が行われるが、1ヶ月程度の間には成型及び硬化処理を行わないと機能が損なわれ易い。これに対し、繊維強化樹脂は硬化済みのため容易に扱うことが可能で、常温で保存でき、使用すべき期限もない。   The fiber reinforced resin produced in this way is similar to a prepreg in the sense of a mixture of reinforced fiber and resin before producing a desired structure, but differs greatly in that it has already been thermoset. In the case of using a prepreg, cooling is performed in order to preserve it in a state before curing, but the function tends to be impaired unless molding and curing are performed within about one month. In contrast, the fiber reinforced resin can be easily handled because it has been cured, can be stored at room temperature, and has no time limit to be used.

次に繊維強化樹脂を加熱してプレス等の方法により所望の形状に加工する。曲がった状態で応力を緩和させるため、プレスの最中も共有結合交換反応が活性化する温度に保つ事が好ましい。なお、場合に依ってはこの段階での成形を省略し、繊維強化樹脂の接合後に成形を行う手順としてもよい。   Next, the fiber reinforced resin is heated and processed into a desired shape by a method such as pressing. In order to relieve the stress in a bent state, it is preferable to keep the temperature at which the covalent bond exchange reaction is activated even during pressing. In some cases, the molding at this stage may be omitted, and the molding may be performed after the fiber reinforced resin is joined.

次に、繊維強化樹脂同士を加熱し縫合することにより繊維強化樹脂同士が接合され、繊維強化樹脂複合体が得られる。この点を図1を参照しながら説明する。   Next, the fiber reinforced resins are joined together by heating and stitching the fiber reinforced resins together to obtain a fiber reinforced resin composite. This point will be described with reference to FIG.

図1は、2枚の繊維強化樹脂10,10(パッチワークマルチマテリアル)を重ね合わせ縫合により接合して得られた繊維強化樹脂複合体30の模式図である。繊維強化樹脂10,10は、一本の縫合糸21により連続的に縫合されている。縫合糸21には、炭素繊維、ガラス繊維、金属繊維、合成繊維、半合成繊維、天然繊維等、繊維強化樹脂10,10に埋め込まれている強化繊維12(図3参照)と同等あるいはそれ以上の強度を持つものが使用される。縫合糸21は、繊維強化樹脂10,10との親和性が高くなじみ易い素材が好ましい。   FIG. 1 is a schematic view of a fiber reinforced resin composite 30 obtained by joining two pieces of fiber reinforced resins 10 and 10 (patchwork multi-material) and joining them by stitching. The fiber reinforced resins 10 and 10 are continuously stitched by a single suture 21. The suture 21 is equivalent to or more than the reinforcing fiber 12 (see FIG. 3) embedded in the fiber reinforced resin 10, 10 such as carbon fiber, glass fiber, metal fiber, synthetic fiber, semi-synthetic fiber, natural fiber, or the like. The one with the strength of is used. The suture 21 is preferably made of a material that has a high affinity with the fiber reinforced resins 10 and 10 and is easy to adjust.

図1では、縫合糸21は直線状に1列縫合しているだけだが、複数列縫い付けてもよい。また、重ね合わせ目に並行でなく直角な縫い目としてもよいし、ジグザグな運針としてもよい。図1は手縫いの並み縫いと同等の縫い方を例示しているが、実際にはミシンを使用して縫うことが想定され、その場合には本縫いや環縫い等、図1と異なる縫い方になってもよい。表側及び裏側に縫合糸21を1本ずつ使用して2本で縫う場合もある(図3参照)。縫い合わせるべき重ね合わせ部分の形状は直線状とは限らず、折れ曲がっている場合やカーブしている場合もあるし、平面的でなく立体的なうねりがある場合もありうる。   In FIG. 1, the suture thread 21 is only stitched in one line in a straight line, but a plurality of rows may be sewn. Moreover, it is good also as a seam which is not parallel to a superimposition at a right angle, and is good also as a zigzag hand movement. FIG. 1 illustrates a sewing method equivalent to hand-stitched plain stitching, but it is assumed that sewing is actually performed using a sewing machine. In that case, sewing methods such as main sewing and chain stitching are different from FIG. It may be. In some cases, one suture thread 21 is used on each of the front side and the back side and the two stitches are sewn (see FIG. 3). The shape of the overlapped portion to be sewn is not limited to a straight line, and may be bent or curved, and may have a three-dimensional swell rather than a flat surface.

繊維強化樹脂10を軟化するために行われる繊維強化樹脂10の加熱は、加熱装置により行われる。また、繊維強化樹脂10,10同士を縫合するために行われる繊維強化樹脂10,10同士の縫合は縫合装置により行われる。加熱及び縫合は、縫合すべき箇所にマイクロ波あるいは赤外線を照射することによって加熱するか、電気ヒータによって加熱されたアイロンと同様の板を押し当てて加熱を行ってから、時間を置かずにミシンを用いて縫合することにより行われる。温度は接合前に成形を行う時と同程度にすることが好ましい。好適な温度は、繊維強化樹脂10の材料組成及び配合比率によって異なるが、典型的な温度は150℃から300℃程度である。   The heating of the fiber reinforced resin 10 performed to soften the fiber reinforced resin 10 is performed by a heating device. Further, the stitching between the fiber reinforced resins 10 and 10 performed for stitching the fiber reinforced resins 10 and 10 is performed by a stitching device. Heating and sewing are performed by irradiating microwaves or infrared rays to the area to be stitched, or by pressing a plate similar to an iron heated by an electric heater and heating the sewing machine without taking time. It is performed by sewing using The temperature is preferably set to the same level as when forming before joining. A suitable temperature varies depending on the material composition and blending ratio of the fiber reinforced resin 10, but a typical temperature is about 150 ° C. to 300 ° C.

ここで使用するミシン(縫合装置)は、加熱によって軟化した繊維強化樹脂10,10に縫合針22を刺し、縫合糸21を使って縫合可能なものである。逆に、そのミシンの性能で縫合できる様に加工温度を設定するという方針も有り得る。どれだけの温度で縫合が可能となるかは、繊維強化樹脂10,10の厚さと使用されている繊維強化樹脂の材料の配合により決定される。なお、縫合針22を刺して空いた穴は、加熱により軟化した繊維強化樹脂10,10によって再び埋められるので、縫合針22はできるだけ細い方が望ましい。   The sewing machine (suture device) used here can be sutured by inserting a suture needle 22 into fiber reinforced resins 10 and 10 softened by heating and using a suture 21. Conversely, there may be a policy of setting the processing temperature so that sewing can be performed with the performance of the sewing machine. The temperature at which stitching is possible is determined by the thickness of the fiber reinforced resins 10 and 10 and the composition of the fiber reinforced resin material used. In addition, since the hole pierced with the suture needle 22 is filled again with the fiber reinforced resins 10 and 10 softened by heating, the suture needle 22 is desirably as thin as possible.

中でも、加熱用のマイクロ波照射機あるいは加熱板(加熱装置)とミシンを一体化し、縫合針22の運針前方部分を局所的に加熱しながら縫合を行うことで、接合の作業効率が向上する。特に、マイクロ波照射機を使用することで内部からの加熱が可能となり、熱伝導率の低いDCB樹脂を使用する場合であっても十分に軟化させることができる。更に、運針前方部分に加えて、縫合針22の運針後方をも加熱すると、縫合によって空いた穴の埋め戻しの促進や、縫合糸21と繊維強化樹脂10,10との接着性をより向上させる効果が期待できる。また、縫合針22の下方を加熱することで、縫合針22を刺さり易くしつつ、かつ、加熱部分を少なくすることができる。これらの場所は、適宜組み合わせて加熱することができる。   Above all, by joining the heating microwave irradiator or the heating plate (heating device) and the sewing machine and performing suturing while locally heating the front portion of the suture needle 22, the joining work efficiency is improved. In particular, by using a microwave irradiator, heating from the inside becomes possible, and even when a DCB resin having a low thermal conductivity is used, it can be sufficiently softened. Furthermore, when the back of the suture needle 22 is heated in addition to the front part of the needle, the backfilling of the hole vacated by the stitching is promoted and the adhesion between the suture 21 and the fiber reinforced resins 10 and 10 is further improved. The effect can be expected. In addition, by heating the lower portion of the suture needle 22, the heated portion can be reduced while making the suture needle 22 easier to pierce. These places can be appropriately combined and heated.

なお、繊維強化樹脂10を構成するDCB樹脂では、加熱により共有結合の組み替えが起こる。そのため、重ね合わせて加熱処理をするだけで、接着材を使わなくても2つの繊維強化樹脂10,10は強く接着する。ただし、重ね合わせる前に接着面に繊維強化樹脂10の成分である触媒又は硬化剤を塗っておくと、界面での共有結合の組み替えがより促進され、2つの繊維強化樹脂10,10の接着性を更に向上させる事ができる。   In addition, in DCB resin which comprises the fiber reinforced resin 10, recombination of a covalent bond occurs by heating. For this reason, the two fiber reinforced resins 10 and 10 are strongly bonded to each other without using an adhesive only by performing a heat treatment by superimposing them. However, if a catalyst or a curing agent that is a component of the fiber reinforced resin 10 is applied to the adhesive surface before superimposing, the recombination of the covalent bond at the interface is further promoted, and the adhesive properties of the two fiber reinforced resins 10 and 10 are increased. Can be further improved.

図2は、平板の繊維強化樹脂10と折り曲げられた繊維強化樹脂10とを重ね合わせ縫合により接合して得られた繊維強化樹脂複合体40の模式図である。前記の図1では、平板の2枚の繊維強化樹脂10,10について、それぞれの端と端とを接合する場合したが、図2に示すように異なる形状の繊維強化樹脂10,10同士を接合してもよい。このような接合をすることで、平板をプレスしただけでは決して得られない複雑な構造で、強い強度を持つものを作製する事が可能である。   FIG. 2 is a schematic view of a fiber reinforced resin composite 40 obtained by superposing and joining the flat fiber reinforced resin 10 and the bent fiber reinforced resin 10 together by stitching. In FIG. 1 described above, the two ends of the flat fiber reinforced resins 10 and 10 are joined to each other, but the fiber reinforced resins 10 and 10 having different shapes are joined to each other as shown in FIG. May be. By joining in this way, it is possible to produce a complex structure with strong strength that can never be obtained by simply pressing a flat plate.

図3は、2枚の繊維強化樹脂10,10を縫合することで得られた繊維強化樹脂複合体50の断面図である。この図3の例は、前記の図1とは異なり、ミシンで本縫いとした場合を想定している。2枚の繊維強化樹脂10,10のそれぞれにおいて、それらの内部には強化繊維12,12がそれぞれ存在する。強化繊維12,12は、それぞれ、DCB樹脂11,11の面方向に延びている。   FIG. 3 is a cross-sectional view of a fiber reinforced resin composite 50 obtained by stitching two fiber reinforced resins 10 and 10 together. In the example of FIG. 3, unlike the case of FIG. 1 described above, it is assumed that a sewing machine is used for the main sewing. In each of the two fiber reinforced resins 10 and 10, the reinforcing fibers 12 and 12 are present inside thereof. The reinforcing fibers 12 and 12 extend in the surface direction of the DCB resins 11 and 11, respectively.

縫合糸21は、繊維強化樹脂10,10の表側と裏側にそれぞれ1本ずつある。そして、繊維強化樹脂10,10の重ね合わせ部分において、上側の繊維強化樹脂10の表面から内部(下方)に向かって下側の繊維強化樹脂10との境界部23(境界部23の近傍を含む)までの間を往復するように縫合糸21が配置される。また、同様に、繊維強化樹脂10,10の重ね合わせ部分において、下側の繊維強化樹脂10の表面から内部(上方)に向かって上側の繊維強化樹脂10との境界部23(境界部23の近傍を含む)までの間を往復するように縫合糸21が配置される。そして、これら2本の縫合糸21同士が、2つの繊維強化樹脂10,10の境界部23(接合界面。境界部23の近傍を含む)において編まれることで、繊維強化樹脂10,10同士が重ね合わされて接合している。ただし、交差する位置は2枚重ねの繊維強化樹脂10,10の中央(境界部23、及びその近傍)である必要はなく、繊維強化樹脂10,10のそれぞれの内部等、どこでもよい。   One suture 21 is provided on each of the front and back sides of the fiber reinforced resins 10 and 10. And in the overlap part of fiber reinforced resin 10 and 10, boundary part 23 (the neighborhood of boundary part 23 is included) with lower fiber reinforced resin 10 toward the inside (downward) from the surface of upper fiber reinforced resin 10 The suture thread 21 is arranged so as to reciprocate between. Similarly, in the overlapping portion of the fiber reinforced resins 10, 10, the boundary portion 23 (the boundary portion 23 of the boundary portion 23) with the upper fiber reinforced resin 10 from the surface of the lower fiber reinforced resin 10 toward the inside (upward). The suture thread 21 is arranged so as to reciprocate between (including the vicinity). And these two sutures 21 are knitted at the boundary part 23 (joining interface including the vicinity of the boundary part 23) of the two fiber reinforced resins 10 and 10, so that the fiber reinforced resins 10 and 10 are connected to each other. Are overlapped and joined. However, the crossing position does not need to be the center of the two-layered fiber reinforced resins 10 and 10 (the boundary portion 23 and the vicinity thereof), and may be anywhere such as the inside of each of the fiber reinforced resins 10 and 10.

通常のFRP板を接着しただけでは、その接着面を介して強化繊維がつながっていないため、2枚を剥がす方向への強度が弱い。しかし、このように縫合を行うと、強化繊維12が縫合糸21でつなぎ止められるため、強度が大幅にアップする。   By simply bonding a normal FRP plate, the reinforcing fibers are not connected via the bonding surface, so the strength in the direction of peeling the two sheets is weak. However, when the stitching is performed in this manner, the reinforcing fiber 12 is fastened by the suture thread 21, so that the strength is significantly increased.

図4は、縫合時に縫合糸21を強く引くことで縫合糸を繊維強化樹脂10,10に埋没させて得られた繊維強化樹脂複合体60の断面図である。この図4に示す例では、縫合糸21のうち繊維強化樹脂10の表面近傍部分は、繊維強化樹脂10,10を構成するDCB樹脂11,11に埋没している。縫合針22(図4では図示しない)によって空いた穴と繊維強化樹脂10,10の内部に食い込んだ縫合糸21上部の割れ目とは、軟化した繊維強化樹脂10,10が自然に埋め、接合完了後には縫合糸21が全く露出していない構造とすることができる。なお、加熱用の板を縫合後に再度押し当てることにより、埋没縫合によって生じた凹凸を平坦化し、穴の埋め戻しを積極的に促進することも可能である。   FIG. 4 is a cross-sectional view of a fiber reinforced resin composite 60 obtained by burying the suture 21 in the fiber reinforced resins 10 and 10 by pulling the suture 21 strongly at the time of suturing. In the example shown in FIG. 4, the surface vicinity portion of the fiber reinforced resin 10 in the suture thread 21 is buried in the DCB resins 11 and 11 constituting the fiber reinforced resin 10 and 10. The softened fiber reinforced resin 10 and 10 are naturally filled with the hole vacated by the suture needle 22 (not shown in FIG. 4) and the crack in the upper part of the suture 21 digging into the fiber reinforced resin 10 and 10, and the joining is completed. Later, the structure can be such that the suture 21 is not exposed at all. Note that by pressing the heating plate again after sewing, the unevenness caused by the buried stitching can be flattened and the backfilling of the holes can be actively promoted.

図4では縫い始め及び縫い終わりの地点で縫合糸21の端が露出しているが、結び目を作って埋没させる等すれば、これらの縫合糸21の端をも埋没させる事が可能である。縫合糸21が露出しないことにより、大気や水分、固形物との擦れ等による縫合糸21の劣化を防ぐ事ができ、繊維強化樹脂10,10同士の接合部分の強度の耐久性が向上する。   In FIG. 4, the ends of the suture 21 are exposed at the start and end of sewing. However, if the knot is tied and buried, the ends of the suture 21 can be buried. Since the suture thread 21 is not exposed, deterioration of the suture thread 21 due to air, moisture, rubbing with a solid matter, or the like can be prevented, and the durability of the strength of the joint portion between the fiber reinforced resins 10 and 10 is improved.

このような埋没縫合が可能であるためには、繊維強化樹脂10,10が加熱により十分に軟化していることが好ましい。そのため、前記の図3では、縫合針22が無理なく貫通するだけの柔らかさがあれば十分であったが、この図4のように縫合糸21を埋没させるには引っ張り力だけで縫合糸21が埋没するだけの柔らかさを有することが好ましい。繊維強化樹脂10,10を構成するDCB樹脂、硬化剤、触媒の配合の調節及び縫合作業を行う際の温度の設定により、このような柔軟性を実現する事が可能である。ただし、柔軟性が高い配合とすると硬化時の強度が低下する傾向があるので、繊維強化樹脂複合体60として必要な強度を満たす範囲で調節するようにすることが好ましい。   In order to enable such buried sutures, it is preferable that the fiber reinforced resins 10 and 10 are sufficiently softened by heating. For this reason, in FIG. 3 described above, it is sufficient that the suture needle 22 is soft enough to penetrate easily. However, as shown in FIG. It is preferable to have a softness enough to be buried. Such flexibility can be realized by adjusting the composition of the DCB resin, the curing agent, and the catalyst constituting the fiber reinforced resins 10 and 10 and setting the temperature at the time of sewing operation. However, since the strength at the time of curing tends to decrease when the composition is highly flexible, it is preferable to adjust the strength within a range satisfying the strength required for the fiber reinforced resin composite 60.

図5は、図3と同様に通常の縫合を行った後、縫合部分に硬化前のDCB樹脂を塗って加熱及び硬化させることで保護膜13を形成した繊維強化樹脂複合体70の断面図である。この場合では、DCB樹脂11,11の加熱の度合いが前記の図1〜図4の程度よりも低く、縫合糸21を通し、表面に残った穴は、DCB樹脂11,11の溶融によっては塞がらない。そこで、残った穴を覆うように、硬化前のDCB樹脂を塗って加熱及び硬化させることで、残った穴が塞がり、かつ、縫合糸21が保護膜13で覆われる。なお、この保護膜13は、前記の繊維強化樹脂10のうちのDCB樹脂11と同様の材料(即ち、動的共有結合を含む樹脂)により構成される。そのため、硬化後に得られる保護膜13(被膜)は、繊維強化樹脂10と一体となって、即ち、繊維強化樹脂10の一部となって構成される。   FIG. 5 is a cross-sectional view of a fiber reinforced resin composite 70 in which a protective film 13 is formed by applying a DCB resin before curing to a stitched portion and heating and curing after normal stitching as in FIG. is there. In this case, the degree of heating of the DCB resin 11, 11 is lower than the degree shown in FIGS. 1 to 4, and the hole left on the surface through the suture 21 is blocked by the melting of the DCB resin 11, 11. Absent. Therefore, by applying DCB resin before curing so as to cover the remaining holes, and heating and curing, the remaining holes are closed and the suture 21 is covered with the protective film 13. In addition, this protective film 13 is comprised with the material (namely, resin containing a dynamic covalent bond) similar to the DCB resin 11 among the said fiber reinforced resin 10. FIG. Therefore, the protective film 13 (coating) obtained after curing is integrated with the fiber reinforced resin 10, that is, a part of the fiber reinforced resin 10.

塗ったDCB樹脂を硬化させる温度は、通常、再加熱により軟化させて成形や縫合を行う時の温度より低く、例えば100℃〜200℃程度である。そして、硬化のためには、この温度にて2時間〜12時間程度保持することが好ましい。   The temperature at which the applied DCB resin is cured is usually lower than the temperature at which the DCB resin is softened by reheating and molding or stitching is performed, for example, about 100 ° C. to 200 ° C. And it is preferable to hold | maintain at this temperature for about 2 hours-12 hours for hardening.

なお、縫合と関連する接合方法として、図示はしないが、加熱後又は加熱と同時にステープラを使って金属の針(ステープラ用針)で2枚の繊維強化樹脂10,10を留める(接合する)という方法もある。針が2枚の繊維強化樹脂10,10に含まれる強化繊維12を貫通して留める形になることにより、剥がれる方向への引っ張りに対する強度は、繊維強化樹脂10,10を接着しただけの場合に比べて向上する。ステープラ用針を使用する際、ステープラ用針により留められる部分の繊維強化樹脂10,10は、前記加熱装置と同様の加熱装置により予め加熱軟化されることが好ましい。   In addition, although not illustrated as a joining method related to the stitching, the two fiber reinforced resins 10 and 10 are fastened (joined) with a metal needle (stapler needle) using a stapler after heating or simultaneously with heating. There is also a method. Since the needle penetrates and holds the reinforcing fibers 12 included in the two fiber reinforced resins 10 and 10, the strength against pulling in the peeling direction is only when the fiber reinforced resins 10 and 10 are bonded. Compared to improvement. When using the stapler needle, it is preferable that the fiber reinforced resins 10 and 10 of the portion to be fastened by the stapler needle are heated and softened in advance by a heating device similar to the heating device.

また、ミシンと比べてステープラの方が構造が単純となり、安価である。また、ステープラによる接合箇所を増やすことで、接合強度も増加する。そこで、構造体の用途及び必要な耐久性、製造コストのバランスに応じて、ステープラによる接合も選択肢の一つとなる。なお、ステープラの圧着部分に樹脂を加熱する装置を付けて一体化すると、加熱と接合を一つの動作で行うことが可能となり、接合の作業効率が向上する。   Also, the structure of the stapler is simpler and less expensive than the sewing machine. Moreover, the joint strength increases by increasing the number of joints by the stapler. Therefore, depending on the balance between the use of the structure, the required durability, and the manufacturing cost, joining with a stapler is also an option. In addition, when the apparatus which heats resin is attached to the crimping | compression-bonding part of a stapler, it becomes possible to perform heating and joining by one operation | movement, and the working efficiency of joining improves.

また、目的の構造体の構造によっては、繊維強化樹脂10,10の接合の後に折り曲げや型押しによる成形が行われる。この場合には、変形が必要な箇所を加熱し、成形が行われる。これにより、目的の構造体が完成する。そして、繊維強化樹脂10,10で作製された構造体は、耐クラック性が高く、クラックが発生しても再加熱による補修が可能であるという利点も備えている。   Depending on the structure of the target structure, the fiber-reinforced resin 10 or 10 is joined after being bent or stamped. In this case, the part that needs to be deformed is heated and molded. Thereby, the target structure is completed. And the structure produced with the fiber reinforced resin 10 and 10 has the advantage that repair by reheating is possible even if a crack resistance is high and a crack generate | occur | produces.

以上の例によれば、取り扱いが容易で、保存も利き、汎用性が高く安価な硬化済み繊維強化樹脂を材料として、安価な加工及び接合工程により、軽量で強度が高く大型で複雑な構造体を提供することができる。また、この構造体は、繊維強化樹脂の特徴である耐クラック性が高く、もしクラックが発生しても再加熱により修復可能であるという利点も併せ持つ。   According to the above example, a lightweight, high-strength, large and complex structure made of a hardened fiber reinforced resin that is easy to handle, conserves, is versatile and inexpensive, and is inexpensively processed and bonded. Can be provided. This structure also has the advantage of high crack resistance, which is a characteristic of fiber reinforced resin, and can be repaired by reheating even if cracks occur.

前記の例では、加熱により動的共有結合が活性化する繊維強化樹脂を例示した。そこで、次に、光照射により動的共有結合が活性するDCB樹脂を用いて繊維強化樹脂を作製し、これを用いて軽量で強度の高い大型で複雑な構造体を安価に製造する方法を示す。   In the above example, the fiber reinforced resin whose dynamic covalent bond is activated by heating is exemplified. Therefore, a method for producing a fiber reinforced resin using a DCB resin whose dynamic covalent bond is activated by light irradiation and manufacturing a large and complex structure with light weight and high strength at low cost will be shown. .

光照射により活性化するDCB樹脂には様々な材料が考えられるがその一例としては、四官能性のチオール誘導体と二官能性のビニルエーテル誘導体とをラジカル重付加反応することで得られる架橋高分子に、開環重合性のモノマーを添加して共重合を行わせたもの等が挙げられる。光照射を行うと、高分子マトリクス中に残存する光開始剤よりラジカルが発生し、アリルスルフィド結合の交換反応が活性化する。   Various materials can be considered for the DCB resin activated by light irradiation. One example is a crosslinked polymer obtained by radical polyaddition reaction of a tetrafunctional thiol derivative and a bifunctional vinyl ether derivative. And those obtained by copolymerization by adding a ring-opening polymerizable monomer. When light irradiation is performed, radicals are generated from the photoinitiator remaining in the polymer matrix, and the allyl sulfide bond exchange reaction is activated.

繊維強化樹脂の大まかな作製方法は、前記の加熱により動的共有結合が活性する樹脂材料を使用する場合と同じであるが、使用する樹脂材料が異なるので、その材料に適切な温度、時間等の条件を適用して作製される。   The rough production method of the fiber reinforced resin is the same as that in the case of using the resin material in which the dynamic covalent bond is activated by the heating, but the resin material to be used is different. It is produced by applying the above conditions.

プレス等により繊維強化樹脂の形状の加工を行う際には、加工を容易にするために、プレスの前に十分に光照射を行うことが好ましい。特に、加熱によって活性化する場合と異なり、プレスを行っている最中に光を照射する事は困難である。そのため、プレス終了後、応力緩和が十分でなく元の形に戻ろうとする力が働く場合には、繊維強化樹脂を部分的に保持して変形した形状を保ちつつ、光照射を行って応力が十分に緩和するのが促される。   When processing the shape of the fiber reinforced resin by a press or the like, it is preferable to sufficiently irradiate light before pressing in order to facilitate the processing. In particular, unlike the case of activation by heating, it is difficult to irradiate light during pressing. For this reason, after the press is completed, if stress relaxation is not sufficient and a force to return to the original shape is applied, the fiber reinforced resin is partially held and the deformed shape is maintained while light irradiation is performed to reduce the stress. It is encouraged to relax sufficiently.

次いで、光照射を行いながら縫合作業が行われる。その作業の進め方は加熱の代わりに光照射を行う点を除いて前記の例と同様である。また、部分的な変形や補修が必要な場合には、前記の例では部分的に加熱していた工程で、部分的光照射が行われる。このようにしても、繊維強化樹脂同士を接合した後であっても十分な耐久性を有し、かつ、安価に製造可能な繊維強化樹脂複合体が得られる。   Next, a suturing operation is performed while performing light irradiation. The operation is the same as in the above example except that light irradiation is performed instead of heating. Further, when partial deformation or repair is necessary, partial light irradiation is performed in a process in which heating is partially performed in the above example. Even if it does in this way, even after fiber reinforced resin is joined, the fiber reinforced resin composite which has sufficient durability and can be manufactured cheaply is obtained.

10 繊維強化樹脂
11 DCB樹脂
12 強化繊維
13 保護膜
20 繊維強化樹脂複合体
21 縫合糸
22 針
23 境界部
30 繊維強化樹脂複合体
40 繊維強化樹脂複合体
50 繊維強化樹脂複合体
60 繊維強化樹脂複合体
70 繊維強化樹脂複合体
DESCRIPTION OF SYMBOLS 10 Fiber reinforced resin 11 DCB resin 12 Reinforced fiber 13 Protective film 20 Fiber reinforced resin composite 21 Suture 22 Needle 23 Boundary part 30 Fiber reinforced resin composite 40 Fiber reinforced resin composite 50 Fiber reinforced resin composite 60 Fiber reinforced resin composite Body 70 Fiber-reinforced resin composite

Claims (8)

マトリックス樹脂として動的共有結合を含む樹脂と、当該樹脂の内部に配置された強化繊維とを有する繊維強化樹脂が複数接合されることで構成され、
前記繊維強化樹脂同士が縫合糸により縫合されることで繊維強化樹脂複合体同士が接合していることを特徴とする、繊維強化樹脂複合体。
It is constituted by joining a plurality of fiber reinforced resins having a resin including a dynamic covalent bond as a matrix resin and a reinforcing fiber disposed inside the resin,
A fiber reinforced resin composite, wherein the fiber reinforced resin composites are joined together by stitching the fiber reinforced resins together with a suture thread.
前記繊維強化樹脂同士は一本の前記縫合糸により連続的に縫合されていることを特徴とする、請求項1に記載の繊維強化樹脂複合体。   The fiber-reinforced resin composite according to claim 1, wherein the fiber-reinforced resins are continuously stitched together by a single suture. 前記縫合糸のうち、前記繊維強化樹脂の表面近傍部分は、前記繊維強化樹脂を構成する前記樹脂に埋没していることを特徴とする、請求項1又は2に記載の繊維強化樹脂複合体。   The fiber reinforced resin composite according to claim 1 or 2, wherein a portion of the suture thread near the surface of the fiber reinforced resin is buried in the resin constituting the fiber reinforced resin. 二つの前記繊維強化樹脂が所定に重ね合わされて接合され、
当該重ね合わされた重ね合わせ部分において、
一方の繊維強化樹脂の表面から内部に向かって他方の繊維強化樹脂までの間を往復するように前記縫合糸が配置され、
前記他方の繊維強化樹脂の表面から内部に向かって前記一方の繊維強化樹脂までの間を往復するように前記縫合糸が配置され、
前記一方の繊維強化樹脂の表面から縫合された縫合糸と、前記他方の繊維強化樹脂の表面から縫合された縫合糸とが編まれることで、前記繊維強化樹脂同士が接合していることを特徴とする、請求項1又は2に記載の繊維強化樹脂複合体。
Two of the above-mentioned fiber reinforced resins are overlapped and bonded together in a predetermined manner,
In the superposed overlapping part,
The suture is arranged so as to reciprocate between the surface of one fiber reinforced resin and the other fiber reinforced resin toward the inside,
The suture is arranged so as to reciprocate between the surface of the other fiber reinforced resin and the one fiber reinforced resin toward the inside,
The fiber reinforced resin is bonded to each other by knitting a suture sutured from the surface of the one fiber reinforced resin and a suture sutured from the surface of the other fiber reinforced resin. The fiber-reinforced resin composite according to claim 1 or 2, characterized by the above.
前記繊維強化樹脂の表面に形成された、前記縫合糸が通る穴を覆うように、前記動的共有結合を含む樹脂の被膜が形成されていることを特徴とする、請求項1又は2に記載の繊維強化樹脂複合体。   The resin film including the dynamic covalent bond is formed so as to cover a hole through which the suture thread is formed, which is formed on the surface of the fiber reinforced resin. Fiber reinforced resin composite. 請求項1又は2に記載の繊維強化樹脂複合体を製造する装置であって、
前記繊維強化樹脂同士を前記縫合糸により縫合する縫合用針を備えた縫合装置と、
当該縫合装置により運針される方向において、前記縫合用針の前方、下方、並びに、前記縫合用針の前方及び後方の、うちの少なくともいずれかに存在する樹脂を加熱軟化させる加熱装置とを備えることを特徴とする、繊維強化樹脂複合体の製造装置。
An apparatus for producing the fiber-reinforced resin composite according to claim 1 or 2,
A suturing device comprising a suturing needle for suturing the fiber-reinforced resins with the suture;
A heating device that heats and softens the resin existing in at least one of the front and lower sides of the suturing needle and the front and rear sides of the suturing needle in a direction in which the needle is moved by the suturing device; An apparatus for producing a fiber reinforced resin composite, characterized in that:
マトリックス樹脂として動的共有結合を含む樹脂と、当該樹脂の内部に配置された強化繊維とを有する繊維強化樹脂が複数接合されることで構成され、
前記繊維強化樹脂同士がステープラ用針により留められていることを特徴とする、繊維強化樹脂複合体。
It is constituted by joining a plurality of fiber reinforced resins having a resin including a dynamic covalent bond as a matrix resin and a reinforcing fiber disposed inside the resin,
A fiber reinforced resin composite, wherein the fiber reinforced resins are fastened with a stapler needle.
請求項7に記載の繊維強化樹脂複合体を製造する装置であって、
前記繊維強化樹脂同士を前記ステープラ用針により留めるステープラと、
当該ステープラにより留められる位置に存在する前記樹脂を加熱軟化させる加熱装置とを備えることを特徴とする、繊維強化樹脂複合体の製造装置。
An apparatus for producing the fiber-reinforced resin composite according to claim 7,
A stapler for fastening the fiber reinforced resins together with the stapler needle;
An apparatus for producing a fiber-reinforced resin composite, comprising: a heating device that heats and softens the resin present at a position fastened by the stapler.
JP2017149412A 2017-08-01 2017-08-01 Fiber-reinforced resin composite, and production apparatus thereof Pending JP2019025841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017149412A JP2019025841A (en) 2017-08-01 2017-08-01 Fiber-reinforced resin composite, and production apparatus thereof
PCT/JP2018/010505 WO2019026329A1 (en) 2017-08-01 2018-03-16 Fiber-reinforced resin composite and manufacturing device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017149412A JP2019025841A (en) 2017-08-01 2017-08-01 Fiber-reinforced resin composite, and production apparatus thereof

Publications (1)

Publication Number Publication Date
JP2019025841A true JP2019025841A (en) 2019-02-21

Family

ID=65232422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017149412A Pending JP2019025841A (en) 2017-08-01 2017-08-01 Fiber-reinforced resin composite, and production apparatus thereof

Country Status (2)

Country Link
JP (1) JP2019025841A (en)
WO (1) WO2019026329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411493B2 (en) 2020-04-22 2024-01-11 株式会社日立製作所 Fiber reinforced resin and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6942000B2 (en) * 2017-08-01 2021-09-29 株式会社日立製作所 Fiber reinforced plastic and its manufacturing method
CN111485447B (en) * 2020-04-17 2021-07-20 华南理工大学 Cellulose paper/dynamic covalent polymer composite packaging material and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164822A (en) * 1980-05-21 1981-12-18 Matsushita Electric Works Ltd Production of laminate
JPS5933112A (en) * 1982-08-20 1984-02-22 Mitsubishi Rayon Co Ltd Method for joining fiber reinforced plastic
JPH03286841A (en) * 1990-04-02 1991-12-17 Mitsubishi Heavy Ind Ltd Production of composite-material structure
JP3893514B2 (en) * 2001-11-29 2007-03-14 平岡織染株式会社 Polyolefin-based resin sheet joined body for tent film structure excellent in heat-resistant creep property of joined portion and method for producing the same
JP2005341988A (en) * 2004-05-31 2005-12-15 Toyota Boshoku Corp Sewing method and apparatus, and sewn body
JP2011143038A (en) * 2010-01-14 2011-07-28 Espoir:Kk Puckering prevention device
JP5273209B2 (en) * 2011-06-15 2013-08-28 立行 西川 Joining method of ultra high molecular weight polyethylene fiber fabric
WO2015138804A1 (en) * 2014-03-12 2015-09-17 The Regents Of The Univerity Of Colorado, A Body Corporate Novel covalently cross-linked malleable polymers and methods of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411493B2 (en) 2020-04-22 2024-01-11 株式会社日立製作所 Fiber reinforced resin and its manufacturing method

Also Published As

Publication number Publication date
WO2019026329A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP2019025841A (en) Fiber-reinforced resin composite, and production apparatus thereof
US8312827B1 (en) Inter/pre-cured layer/pre-cured embroidered composite laminate and method of producing same
JP2008290421A (en) Manufacturing method of molding comprising prepreg laminate
KR102332550B1 (en) Fabrication of composite laminates using temporarily stitched preforms
JP5311444B2 (en) Manufacturing method of resin prepreg, fiber sheet for resin prepreg, resin prepreg and composite material thereof
US8303761B2 (en) Method of manufacturing a curved element made of composite material
JP2008543670A (en) Method for manufacturing reinforcing beams and reinforcing beams and fiber laminates
JP2010150685A (en) Bent-shaped reinforcing fiber base material, laminate using the same, preform, fiber-reinforced resin composite material and methods for producing them
CN107075138A (en) Method for preparing composite product
JP2013535356A (en) Method for producing components from fiber composites, preforms therefor, and components
CN109923253A (en) The manufacturing method of composite material enhancing base materials, composite material and composite material enhancing base materials
ES2332629B1 (en) USEFUL AND PROCEDURE FOR THE MANUFACTURE OF STRUCTURES OF MATERIALS COMPOSITES OUT OF AUTOCLAVE.
JP7087337B2 (en) Reinforced fiber base material, reinforcing fiber laminate and fiber reinforced resin
JP6912316B2 (en) Method of disassembling resin-metal complex
JP2011025626A (en) Method for producing fiber-reinforced resin composite material
JP6755645B2 (en) Manufacture of composite laminates with thin intermediate layers
JP5151499B2 (en) Method for forming fiber-reinforced composite material and fiber-reinforced composite material
JP4713780B2 (en) Reinforcing panel manufacturing method
JP3271957B2 (en) Manufacturing method of composite material
JP6790023B2 (en) Method of manufacturing composite materials and composite materials
JPS5933112A (en) Method for joining fiber reinforced plastic
CN104093537B (en) Curing composite materials comprising latent-cure resins
US20170137982A1 (en) Nonwoven
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
JP2010076356A (en) Preform, and molding method for fiber-reinforced plastic