JP2019023349A - Manufacturing method of electrode for water electrolyte - Google Patents

Manufacturing method of electrode for water electrolyte Download PDF

Info

Publication number
JP2019023349A
JP2019023349A JP2018178511A JP2018178511A JP2019023349A JP 2019023349 A JP2019023349 A JP 2019023349A JP 2018178511 A JP2018178511 A JP 2018178511A JP 2018178511 A JP2018178511 A JP 2018178511A JP 2019023349 A JP2019023349 A JP 2019023349A
Authority
JP
Japan
Prior art keywords
electrode
atomic
soluble salt
alloy
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018178511A
Other languages
Japanese (ja)
Other versions
JP6638044B2 (en
Inventor
橋本 功二
Koji Hashimoto
功二 橋本
祐介 佐々木
Yusuke Sasaki
祐介 佐々木
善大 加藤
Yoshihiro Kato
善大 加藤
博之 四宮
Hiroyuki Shinomiya
博之 四宮
泉屋 宏一
Koichi Izumiya
宏一 泉屋
熊谷 直和
Naokazu Kumagai
直和 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2018178511A priority Critical patent/JP6638044B2/en
Publication of JP2019023349A publication Critical patent/JP2019023349A/en
Application granted granted Critical
Publication of JP6638044B2 publication Critical patent/JP6638044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide an industrially advantageous manufacturing method of an alloy electrode that has high activity for a generation of oxygen when it is used for an electrolysis system of alkaline aqueous solution.SOLUTION: The method includes forming an alloy composed of the composition of Fe-Ni-(Co)-C on an appropriate electrode substrate in an electrodeposition, while maintaining a constant current with an electric current density of 100-300 A/m, using plating solution prepared into pH 2 or lower by adding acids, containing aminocarboxylic acid and boric acid as well as iron soluble salt, nickel soluble salt, and, if necessary, cobalt soluble salt.SELECTED DRAWING: Figure 1

Description

本発明は、アルカリ水溶液を電解して水素および酸素を発生させるために使用する陰極および陽極を、電析により製造する方法に関する。   The present invention relates to a method for producing, by electrodeposition, a cathode and an anode used for electrolysis of an alkaline aqueous solution to generate hydrogen and oxygen.

再生可能エネルギーを利用するために、太陽光発電や風力発電をはじめとする技術が開発されつつあるが、これらの再生可能エネルギーを起源とする電力に伴う問題は、その電力の発生量が刻々変動ないし断続することにある。この問題に対処するひとつの方策として、その電力を用いて、水電解、とくにアルカリ水溶液の電解を行なって水素を製造し、それをエネルギー源とすることが検討されている。電解を効率よく実施するためには、少ない電力消費で水溶液の電解が進む陰極および陽極が要求され、そうした電極を製造する技術が開発されつつある。   In order to use renewable energy, technologies such as solar power generation and wind power generation are being developed, but the problem with the power derived from these renewable energy is that the amount of generated power fluctuates every moment. Or to be intermittent. As one measure for coping with this problem, it has been studied that water is electrolyzed using the electric power, in particular, electrolysis of an alkaline aqueous solution to produce hydrogen, which is used as an energy source. In order to efficiently perform electrolysis, a cathode and an anode in which electrolysis of an aqueous solution proceeds with low power consumption is required, and a technique for manufacturing such an electrode is being developed.

発明者らの一人は、他の共同発明者らとともに、高活性で耐久性にすぐれた水素発生用合金電極を発明し、あわせてその製造を、簡便でコストの低い電極製造技術である電析法を利用して行なう方法を発明し、早期に開示した(特許文献1)。その水素発生用合金電極は、鉄:2.9〜45原子%および炭素:0.6〜10原子%を含有し、残部を5原子%以上のニッケルと0.1原子%以上のコバルトとが占める組成の合金を、電極活物質として、適宜の電極基材の表面に形成した電極である。また、この水素発生用合金電極を製造する方法は、鉄の可溶性塩、コバルトの可溶性塩およびニッケルの可溶性塩に加えて、オキシカルボン酸またはアミノカルボン酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用して電解を行ない、適宜の陰極基材上に、Fe−Co−Ni−C合金を析出させることからなる。   One of the inventors, together with other co-inventors, invented a highly active and durable alloy electrode for hydrogen generation, and the electrodeposition is a simple and low cost electrode manufacturing technique. Invented a method that uses the law and disclosed it at an early stage (Patent Document 1). The alloy electrode for hydrogen generation contains iron: 2.9 to 45 atomic% and carbon: 0.6 to 10 atomic%, with the balance being 5 atomic% or more nickel and 0.1 atomic% or more cobalt. This is an electrode in which an alloy having an occupied composition is formed on the surface of an appropriate electrode base material as an electrode active material. In addition, the method for producing the alloy electrode for hydrogen generation includes an oxycarboxylic acid or an aminocarboxylic acid in addition to a soluble salt of iron, a soluble salt of cobalt and a soluble salt of nickel. Electrolysis is performed using a plating solution prepared as follows, and an Fe—Co—Ni—C alloy is deposited on an appropriate cathode base material.

発明者らのグループは、この水素発生用合金電極の合金組成について研究を進め、最近に至って、特許文献1に示す合金よりも鉄の濃度が高い領域の合金組成をもった電極が、より高い活性を示すことを見出して、別途開示した(特許文献2)。その水素発生用合金電極は、鉄:45原子%を超え65原子%以下および炭素:0.6〜10原子%を含有し、残部を5原子%以上のニッケルと0.1原子%以上のコバルトとが占める組成の合金を材料とする電極である。この電極の製造方法は、前記の合金電極の製造方法と同様に、鉄の可溶性塩、コバルトの可溶性塩およびニッケルの可溶性塩に加えて、アミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用して電解を行ない、適宜の陰極基材上にFe−Co−Ni−C合金を析出させることからなる。   The inventors' group has advanced research on the alloy composition of the hydrogen generating alloy electrode, and recently, the electrode having an alloy composition in a region where the concentration of iron is higher than that of the alloy shown in Patent Document 1 is higher. It discovered that it showed activity and it disclosed separately (patent document 2). The alloy electrode for hydrogen generation contains iron: more than 45 atomic% and 65 atomic% or less and carbon: 0.6-10 atomic%, with the balance being 5 atomic% or more nickel and 0.1 atomic% or more cobalt. This is an electrode made of an alloy having a composition occupied by. In the same manner as the above-described alloy electrode manufacturing method, this electrode manufacturing method contains aminocarboxylic acid and boric acid in addition to iron soluble salt, cobalt soluble salt and nickel soluble salt. Electrolysis is performed using a plating solution whose pH is adjusted to 2 or less, and an Fe—Co—Ni—C alloy is deposited on an appropriate cathode substrate.

特許文献1の合金電極における鉄の含有量は2.9〜45原子%であるが、この上限値は、Ni−Co合金に多量のFeが加わると、合金の結晶構造が面心立方晶から体心立方晶に変り、電解中断時に電極からFeが溶けやすくなって電極の耐久性が損なわれる、ということから定めたものである。しかし、この問題は、鉄の含有量が65原子%を超えるまでは致命的なものではなく、一方で45原子%を超える鉄の存在は、より高い水素発生に対する活性を示すことが確認されたわけである。   The iron content in the alloy electrode of Patent Document 1 is 2.9 to 45 atomic%, but this upper limit is that when a large amount of Fe is added to the Ni—Co alloy, the crystal structure of the alloy is changed from the face-centered cubic crystal. It is determined from the fact that it changes to a body-centered cubic crystal and Fe is easily dissolved from the electrode when electrolysis is interrupted, and the durability of the electrode is impaired. However, this problem was not fatal until the iron content exceeded 65 atomic%, while the presence of iron exceeding 45 atomic% was confirmed to exhibit higher activity against hydrogen generation. It is.

他方、電解には陰極とともに陽極も必要である。本発明者らは、水溶液の電解に使用したとき、高活性で耐久性にすぐれている陽極を発明するとともに、その有利な製造方法を確立して、さきに開示した(特許文献3)。この酸素発生用陽極は2種類あって、第一のものは、鉄を3〜45原子%、炭素を0.6〜10原子%含み、残部は実質的にニッケルからなる合金組成の電極活物質を、適宜の電極基材の表面に形成してなるものであり、第二のものは、この合金組成に、コバルト30原子%以下が加わったものである。その製造方法は、ニッケルの可溶性塩、鉄の可溶性塩に加えてアミノカルボン酸およびホウ酸を含有し、必要によりさらにコバルトの可溶性塩を含有し、酸を加えてpHを2以下としたメッキ液を使用して電解を行ない、電極基材上にNi−Fe−C合金を析出させることからなる。   On the other hand, electrolysis requires an anode as well as a cathode. The present inventors have invented an anode that is highly active and excellent in durability when used for electrolysis of an aqueous solution, and established an advantageous production method thereof and previously disclosed (Patent Document 3). There are two types of oxygen generating anodes. The first one is an electrode active material of an alloy composition containing iron in an amount of 3 to 45 atom%, carbon in an amount of 0.6 to 10 atom%, and the balance being substantially nickel. Is formed on the surface of an appropriate electrode base material, and the second one is obtained by adding 30 atomic% or less of cobalt to this alloy composition. The manufacturing method includes a plating solution containing an aminocarboxylic acid and boric acid in addition to a soluble salt of nickel and a soluble salt of iron, and further containing a soluble salt of cobalt if necessary, and adding an acid to adjust the pH to 2 or less. Electrolysis is performed to deposit a Ni—Fe—C alloy on the electrode substrate.

特許第4561149号Japanese Patent No. 4561149 特願2014−57227Japanese Patent Application No. 2014-57227 特願2013−135650Japanese Patent Application No. 2013-135650

特許文献1〜3に開示した水溶液電解用の電極は、陽極にせよ陰極にせよ、その製造に当たって、いずれも所定の金属塩、炭素源としてのアミノカルボン酸を含有し、添加剤と酸を加えてpHを2以下とした水溶液をメッキ液として使用し、Fe−Co−Ni−C合金またはNi−Fe−C合金からなる電極活物質を、適宜の電極基板上に電析により形成することが共通の操作である。   The electrodes for aqueous solution electrolysis disclosed in Patent Documents 1 to 3 contain either a predetermined metal salt or an aminocarboxylic acid as a carbon source, and add an additive and an acid. An electrode active material made of Fe—Co—Ni—C alloy or Ni—Fe—C alloy can be formed on a suitable electrode substrate by electrodeposition using an aqueous solution having a pH of 2 or less as a plating solution. This is a common operation.

このような電極は、耐久性の観点からはその電極活物質の層が厚いことが望ましいが、厚い層を形成することは製造コストに反映するから、適切な妥協点を求めることになる。製造コストに関係するいまひとつの要素は、電析作業の条件である。基材上にある厚さの電極活物質を形成するには、それに応じた電気量を通電する必要があることはいうまでもないが、一定量の電気を通電するときに、電流密度を高くすれば製造に要する時間が短くて済む。このような理由にかんがみて、発明者らは、電極製造のときの電析の適切な条件を探求した。   In such an electrode, it is desirable that the layer of the electrode active material is thick from the viewpoint of durability. However, since the formation of the thick layer reflects the manufacturing cost, an appropriate compromise is required. Another factor related to the manufacturing cost is the condition of the electrodeposition work. Needless to say, in order to form an electrode active material of a certain thickness on a substrate, it is necessary to energize a corresponding amount of electricity, but when energizing a certain amount of electricity, the current density is increased. If this is done, the time required for the production can be shortened. In view of these reasons, the inventors have sought appropriate conditions for electrodeposition during electrode production.

そうした電極製造のための適切な条件を決定する過程で発明者らは、電析を高い電流密度で行なうことを試みた。いうまでもないが、電流密度を高くすれば電析を短時間で終了できて電極の製造にとって有利だからである。その過程で、電流密度を過度に高くすると、電極の合金組成が電極上の位置によって異なる不均一性が生じることを経験した。軽度の不均一性は、水素の発生にも酸素の発生にも影響を与えないが、過度の不均一性は、電解電流に偏りを生じ、それが電極の耐久性に悪影響を与える。発明者らは、電流密度を変化させて電析を行ない、電極活物質の組成に与える電流密度の影響を調べた。その結果、電析電流密度がある限度までは不均一性が問題にならないが、その限度を超えると過度の不均一性が生じるという事実を知った。   In the process of determining appropriate conditions for manufacturing such an electrode, the inventors tried to perform electrodeposition at a high current density. Needless to say, if the current density is increased, electrodeposition can be completed in a short time, which is advantageous for the production of electrodes. In the process, we experienced that when the current density was excessively high, the alloy composition of the electrode varied depending on the position on the electrode. Mild non-uniformity does not affect the generation of hydrogen or oxygen, but excessive non-uniformity causes bias in the electrolysis current, which adversely affects electrode durability. The inventors conducted electrodeposition by changing the current density, and examined the influence of the current density on the composition of the electrode active material. As a result, we learned the fact that non-uniformity does not become a problem up to a certain limit, but excessive non-uniformity occurs when the limit is exceeded.

本発明の目的は、上記した発明者らが得た知見を活用し、水溶液を電解して酸素および水素を発生させるために使用する電極を電析により製造する方法において、電極の耐久性を確保できるような電極活物質の組成の均一性を実現した上で、電析の所要時間が長くならず、したがって製造コストを不利にしない、工業的に採用可能な製造方法を提供することにある。   The purpose of the present invention is to ensure the durability of the electrode in a method for producing an electrode used for electrolysis of an aqueous solution to generate oxygen and hydrogen by utilizing the knowledge obtained by the above-described inventors. An object of the present invention is to provide an industrially adoptable manufacturing method that realizes such a uniform composition of the electrode active material and does not lengthen the time required for electrodeposition, and therefore does not disadvantageize the manufacturing cost.

上記の目的を達成する本発明の電極の製造方法の第一は、アルカリ水溶液を電解して水素を発生させるための電極を製造する方法であって、鉄の可溶性塩、ニッケルの可溶性塩、コバルトの可溶性塩に加えてアミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用し、500A/m以下の電流密度で、かつ定電流を維持しながら電析を行なうことによって、鉄:2.9〜65原子%および炭素:0.6〜10原子%を含有し、残部ニッケルまたは5原子%以上のニッケルと0.1原子%以上のコバルトとが占める均一な組成の合金を、適宜の電極基材上に形成することからなる。 A first method for producing an electrode of the present invention that achieves the above object is a method for producing an electrode for generating hydrogen by electrolyzing an alkaline aqueous solution, which comprises a soluble salt of iron, a soluble salt of nickel, cobalt In addition to the soluble salt, a plating solution containing aminocarboxylic acid and boric acid, adjusted to pH 2 or less by adding acid, with a current density of 500 A / m 2 or less and maintaining a constant current By performing the electrodeposition, iron: 2.9 to 65 atomic% and carbon: 0.6 to 10 atomic%, with the balance being nickel or 5 atomic% or more nickel and 0.1 atomic% or more cobalt. An alloy having a uniform composition is formed on an appropriate electrode substrate.

本発明の電極の製造方法の第二は、アルカリ水溶液を電解して酸素を発生させるための電極を製造する方法であって、ニッケルの可溶性塩、鉄の可溶性塩に加えてアミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用し、500A/m以下の電流密度で、かつ定電流を維持しながら電析を行なうことによって、鉄:3〜45原子%、炭素:0.6〜10原子%、残部が実質的にニッケルからなる均一な組成の合金を、適宜の電極基材上に形成することからなる。 The second method for producing an electrode of the present invention is a method for producing an electrode for electrolyzing an alkaline aqueous solution to generate oxygen, and in addition to a soluble salt of nickel and a soluble salt of iron, an aminocarboxylic acid and boron. By using a plating solution containing an acid and adjusting the pH to 2 or less by adding an acid, by performing electrodeposition while maintaining a constant current at a current density of 500 A / m 2 or less, iron: 3 to 3 An alloy having a uniform composition consisting of 45 atomic%, carbon: 0.6 to 10 atomic%, and the balance substantially consisting of nickel is formed on an appropriate electrode substrate.

本発明の電極の製造方法の第三は、これもアルカリ水溶液を電解して酸素を発生させるための電極を製造する方法であって、ニッケルの可溶性塩、鉄の可溶性塩、コバルトの可溶性塩に加えてアミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用し、500A/m以下の電流密度で、かつ定電流を維持しながら電析を行なうことによって、鉄:3〜45原子%、炭素:0.6〜10原子%、コバルト:30原子%以下、残部が実質的にニッケルからなる均一な組成の合金を、適宜の電極基材上に形成することからなる。 The third method for producing an electrode according to the present invention is a method for producing an electrode for generating oxygen by electrolyzing an alkaline aqueous solution. The method comprises producing a soluble salt of nickel, a soluble salt of iron, and a soluble salt of cobalt. In addition, using a plating solution containing aminocarboxylic acid and boric acid and adjusting the pH to 2 or less by adding acid, electrodeposition is performed at a current density of 500 A / m 2 or less and while maintaining a constant current. Thus, an alloy having a uniform composition consisting of iron: 3 to 45 atomic%, carbon: 0.6 to 10 atomic%, cobalt: 30 atomic% or less, and the balance substantially consisting of nickel is formed on an appropriate electrode substrate. Consisting of forming.

実際の電極製造に当たっては、所望する電極合金の組成の均一性と電極製造の能率とのバランスを考慮して、上記の限度内の電流密度、たとえば350A/m以下、さらには300A/m以下の電流密度で電析を行なえばよいことはもちろんである。電流密度の下限を論じるとなれば、工業的な実施条件としては、50A/mを超える値、たとえば100A/m以上が実用的であり、200A/m以上が好ましい。 In actual electrode production, the current density within the above-mentioned limit, for example, 350 A / m 2 or less, further 300 A / m 2 is considered in consideration of the balance between the uniformity of the desired electrode alloy composition and the efficiency of electrode production. Of course, electrodeposition may be performed at the following current density. If the discussed lower limit of the current density, the industrial practice conditions, a value of greater than 50A / m 2, for example, a 100A / m 2 or more is practical, 200A / m 2 or more.

本発明に従う条件の電析を行なうことにより、電極基材上に合金電極を有する水溶液電解用の電極を、工業的に有利な短い電析時間で製造することができ、しかも、電極の表面に形成した電極活物質の組成が均一で位置による変動がなく、したがって耐久性がすぐれた電極を得ることができる。   By performing electrodeposition under the conditions according to the present invention, an electrode for aqueous solution electrolysis having an alloy electrode on the electrode substrate can be produced in a short industrially advantageous electrodeposition time, and on the surface of the electrode. It is possible to obtain an electrode having a uniform composition of the formed electrode active material and no variation depending on the position, and thus excellent durability.

面積1cmのニッケル基板上に、種々の電流密度で一定の電気量の電析を行なってFe−Co−Ni−C合金からなる電極活物質を形成したときの、電極表面の挿入図に示す番号1〜9の各位置において測定した、電極活物質内のFe濃度を示すグラフである。グラフの横軸は測定位置1〜9を、縦軸はFe濃度であり、グラフを横切る数値は電析時の電流密度である。Shown in the inset of the electrode surface when an electrode active material made of a Fe-Co-Ni-C alloy is formed on a nickel substrate having an area of 1 cm 2 by electrodeposition of a certain amount of electricity at various current densities. It is a graph which shows the Fe density | concentration in an electrode active material measured in each position of the numbers 1-9. The horizontal axis of the graph is the measurement positions 1 to 9, the vertical axis is the Fe concentration, and the numerical value across the graph is the current density during electrodeposition. 図1に示した電析において、電析物の質量と、電析物をすべてニッケルであると仮定して質量から算出した電析物の厚さを示したグラフである。横軸に電流密度をとり、縦軸に電析物の質量および算出した厚さをプロットした。グラフの上部には、電析に要した時間をあわせて示した。In the electrodeposition shown in FIG. 1, it is the graph which showed the thickness of the deposit which was computed from the mass of the deposit and the mass assuming that the deposit was all nickel. The current density is plotted on the horizontal axis, and the mass of the deposit and the calculated thickness are plotted on the vertical axis. The upper part of the graph shows the time required for electrodeposition.

図1および図2に結果を示した電析は、下記の組成の水溶液を基本浴とし、
NiSO・6HO 1.14モル
NiCl・6HO 0.19モル
BO 0.49モル
1225NaSO 0.104ミリモル
これに鉄源としてFeSOを、炭素源として長鎖アミノ酸であるリシン塩酸塩C14HClを加えて用意したメッキ浴を用いて行なった。
The electrodeposition shown in FIG. 1 and FIG. 2 uses an aqueous solution having the following composition as a basic bath,
NiSO 4 · 6H 2 O 1.14 mol NiCl 2 · 6H 2 O 0.19 mol H 3 BO 3 0.49 mol C 12 H 25 NaSO 4 0.104 mmol This also contains FeSO 4 as an iron source and carbon source This was carried out using a plating bath prepared by adding lysine hydrochloride C 6 H 14 N 2 O 2 HCl, which is a long chain amino acid.

電析基板として面積(片面)1cmのニッケル板を用意し、前処理として濃硫酸と濃塩酸の1:1混合液に30秒間浸漬するエッチングを行なった。この電析基板を、10cm間隔で設けた2枚の陽極の中間に陽極と対面するように配置し、電流密度を50,100,150,200,250,300,350または500A/mの定電流、通電時間を180,90,60,45,36,30,25.7,22.5,20または18分間とし、電析電気量を540kC/mのほぼ一定量になるように電析を実施した。電極表面に形成された金属成分の分析にはEPMAを用い、炭素量の分析は燃焼−赤外吸収法で行なった。 A nickel plate having an area (single side) of 1 cm 2 was prepared as an electrodeposition substrate, and etching was performed by immersing in a 1: 1 mixture of concentrated sulfuric acid and concentrated hydrochloric acid for 30 seconds as a pretreatment. This electrodeposition substrate is arranged between two anodes provided at an interval of 10 cm so as to face the anode, and the current density is set to 50, 100, 150, 200, 250, 300, 350 or 500 A / m 2 . The current and energization time are 180, 90, 60, 45, 36, 30, 25.7, 22.5, 20 or 18 minutes, and the amount of electrodeposition is 540 kC / m 2 so that the amount is almost constant. Carried out. EPMA was used to analyze the metal component formed on the electrode surface, and the carbon content was analyzed by the combustion-infrared absorption method.

図1にみるように、電極活物質中の鉄濃度は、電析時の電流密度の増大に伴って増大する。それゆえ、電極基材上に形成を望む合金組成に応じて、電流密度を選択すべきことになる。なお、同一電気量の電析を行なっても、電極活物質の組成は、鉄濃度だけでなく、ニッケル、コバルト,炭素の濃度も電流密度の大小で変化する。一方、鉄濃度を尺度として調べた電極活物質の組成の均一性は、電流密度を高めるに従って低下する傾向が見えたが、300A/mまではほぼ均一とみなすことができる。350A/mに至って、組成の変動が著しくなる傾向が見られ、500A/mの電流密度においては、電極合金中の鉄濃度の変動が±20%に達した。この程度の合金組成の不均一性があっても、電極の性能自体には問題がないが、耐久性の観点から、この電流密度を上限と判断した。高い均一性が得られる点で好ましいのは、上記のように300A/m2以下である。選択すべき電流密度の値は、電極基材上に形成することを望む合金組成をも考慮に入れて決定すべきことはもちろんである。 As shown in FIG. 1, the iron concentration in the electrode active material increases as the current density during electrodeposition increases. Therefore, the current density should be selected according to the alloy composition desired to be formed on the electrode substrate. Even when electrodeposition is performed with the same amount of electricity, the composition of the electrode active material varies not only with the iron concentration but also with the current density. On the other hand, the uniformity of the composition of the electrode active material examined using the iron concentration as a scale seemed to decrease as the current density was increased, but it can be regarded as almost uniform up to 300 A / m 2 . There was a tendency for the composition variation to become remarkable up to 350 A / m 2, and at a current density of 500 A / m 2 , the variation of the iron concentration in the electrode alloy reached ± 20%. Although there is no problem in the performance of the electrode itself even with this degree of non-uniformity in the alloy composition, this current density was determined to be the upper limit from the viewpoint of durability. In view of obtaining high uniformity, it is preferably 300 A / m 2 or less as described above. Of course, the value of the current density to be selected should be determined taking into account the alloy composition desired to be formed on the electrode substrate.

図2のデータが示すように、同一の電気量の電析を行なっても、電流密度が高ければ、それにつれて形成される電極活物質層の厚さは増大する。たとえば、組成の均一性が高い電流密度300A/mで30分間の電析を行なったとき、電析物の厚さは6μmを超えている。この厚さは、通常の電極に要求される耐久性の観点からは、十分すぎるといえる。電極活物質の厚さが1μmで足りるのであれば、上記した組成のメッキ浴を用いる場合には、300A/mの電流密度で10分間、電気量にして180kC/mの電析を行なえばよいことになる。 As shown in the data of FIG. 2, even when electrodeposition of the same amount of electricity is performed, if the current density is high, the thickness of the electrode active material layer formed increases accordingly. For example, when electrodeposition is performed for 30 minutes at a current density of 300 A / m 2 with high uniformity of composition, the thickness of the electrodeposit exceeds 6 μm. This thickness can be said to be sufficient from the viewpoint of durability required for a normal electrode. If the electrode active material has a thickness of 1 μm, when a plating bath having the above-described composition is used, electrodeposition can be performed at a current density of 300 A / m 2 for 10 minutes and 180 kC / m 2. It will be good.

つぎの組成の水溶液を用意し、
NiSO・6HO 1.14モル
NiCl・6HO 0.19モル
CoSO・7HO 0.01モル
FeSO・7HO 0.108モル
BO 0.49モル
1225NaSO 0.104ミリモル
14HCl 0.4モル
硫酸を加えてpHを1.5に調整してメッキ浴とした。これは、前掲の特許文献2の合金組成の、水素発生用電極を形成するためのものである。
Prepare an aqueous solution with the following composition:
NiSO 4 · 6H 2 O 1.14 mol NiCl 2 · 6H 2 O 0.19 mol CoSO 4 · 7H 2 O 0.01 mol FeSO 4 · 7H 2 O 0.108 mol H 3 BO 3 0.49 mol C 12 H 25 NaSO 4 0.104 mmol C 6 H 14 N 2 O 2 HCl 0.4 mol sulfuric acid was added to adjust the pH to 1.5 to obtain a plating bath. This is for forming an electrode for hydrogen generation having the alloy composition of Patent Document 2 described above.

ニッケル基材に、電流密度300A/mで10分間、電気量180kC/mのメッキを行なって、水素発生用電極を製造した。得られた電極の活物質は、厚さ1.8μmで、合金組成は、48.0原子%Fe−42.3原子%Ni−2.8原子%Co−6.9原子%Cであった。この電極を使用して、温度90℃の30重量%KOH水溶液の電解を行ない、水素発生性能を調べた。ターフェル勾配は約36mV/decadeと、反応機構上最高の活性が高電流密度まで維持され、電流密度1,250A/mにおける水素過電圧が0.104Vという高活性の電極であることが確認された。 A nickel substrate was plated with a current density of 300 A / m 2 for 10 minutes and an electric quantity of 180 kC / m 2 to produce an electrode for hydrogen generation. The obtained electrode active material had a thickness of 1.8 μm, and the alloy composition was 48.0 atomic% Fe-42.3 atomic% Ni-2.8 atomic% Co-6.9 atomic% C. . Using this electrode, 30% by weight KOH aqueous solution at a temperature of 90 ° C. was electrolyzed, and the hydrogen generation performance was examined. The Tafel gradient was about 36 mV / decade, and the highest activity in the reaction mechanism was maintained up to a high current density, and it was confirmed that the hydrogen overvoltage was 0.104 V at a current density of 1,250 A / m 2 . .

下記の組成の可溶性塩および有機物を含有する水溶液を用意し、硫酸を加えてpHを1.5に調整してメッキ浴とした。これは、前掲の特許文献3の合金組成の、酸素発生用電極を形成するためのものである。
NiSO・6HO 1.14モル
NiCl・6HO 0.19モル
FeSO・7HO 0.036モル
BO 0.49モル
1225NaSO 0.104ミリモル
14HCl 0.2モル
ニッケル基材に、電流密度500A/mで18分間、電気量540kC/mのメッキを行なって、酸素発生用電極を製造した。得られた電極の活物質は、厚さ8.2μmで、合金組成は、70.3原子%Ni−29.7原子%Fe−6.1原子%Cであった。
An aqueous solution containing a soluble salt and an organic substance having the following composition was prepared, and sulfuric acid was added to adjust the pH to 1.5 to obtain a plating bath. This is for forming an electrode for oxygen generation having the alloy composition of Patent Document 3 described above.
NiSO 4 · 6H 2 O 1.14 mol NiCl 2 · 6H 2 O 0.19 mol FeSO 4 · 7H 2 O 0.036 mol H 3 BO 3 0.49 mol C 12 H 25 NaSO 4 0.104 mmol C 6 H 14 N 2 O 2 HCl 0.2 mol A nickel base was plated at an electric density of 540 kC / m 2 for 18 minutes at a current density of 500 A / m 2 to produce an oxygen generating electrode. The obtained electrode active material had a thickness of 8.2 μm, and the alloy composition was 70.3 atomic% Ni-29.7 atomic% Fe-6.1 atomic% C.

この電極を使用して、温度90℃の30重量%KOH水溶液の電解を行ない、酸素発生性能を調べた。ターフェル勾配は約36mV/decadeと、反応機構上最高の活性が高電流密度まで維持され、電流密度1,250A/mにおける酸素過電圧が0.134Vという高活性の電極であることが明らかになった。 Using this electrode, electrolysis of a 30 wt% KOH aqueous solution at a temperature of 90 ° C. was performed, and the oxygen generation performance was examined. The Tafel gradient is about 36 mV / decade, and the highest activity in the reaction mechanism is maintained up to a high current density, and the oxygen overvoltage at a current density of 1,250 A / m 2 is a highly active electrode of 0.134 V. It was.

Claims (3)

アルカリ水溶液を電解して酸素を発生させるための電極を製造する方法であって、ニッケルの可溶性塩、鉄の可溶性塩、アミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用し、100〜300A/mの範囲の電流密度で、かつ定電流を維持しながら電析を行なうことによって、鉄:3〜45原子%、炭素:0.6〜10原子%、残部が実質的にニッケルからなる組成の合金を、適宜の電極基材上に形成することからなる電極の製造方法。 A method for producing an electrode for electrolyzing an alkaline aqueous solution to generate oxygen, comprising a soluble salt of nickel, a soluble salt of iron, an aminocarboxylic acid and boric acid, and adding an acid to a pH of 2 or less By using the prepared plating solution and carrying out electrodeposition while maintaining a constant current at a current density in the range of 100 to 300 A / m 2 , iron: 3 to 45 atomic%, carbon: 0.6 to 10 A method for producing an electrode comprising forming an alloy having a composition consisting of atomic% and the balance substantially consisting of nickel on an appropriate electrode substrate. アルカリ水溶液を電解して酸素を発生させるための電極を製造する方法であって、ニッケルの可溶性塩、鉄の可溶性塩、コバルトの可溶性塩、アミノカルボン酸およびホウ酸を含有し、酸を加えてpHを2以下に調整したメッキ液を使用し、100〜300A/mの範囲の電流密度で、かつ定電流を維持しながら電析を行なうことによって、鉄:3〜45原子%、炭素:0.6〜10原子%、コバルト:30原子%以下、残部が実質的にニッケルからなる組成の合金を、適宜の電極基材上に形成することからなる電極の製造方法。 A method for producing an electrode for electrolyzing an alkaline aqueous solution to generate oxygen, comprising a soluble salt of nickel, a soluble salt of iron, a soluble salt of cobalt, an aminocarboxylic acid and boric acid, and adding an acid By using a plating solution whose pH is adjusted to 2 or less and performing electrodeposition while maintaining a constant current at a current density in the range of 100 to 300 A / m 2 , iron: 3 to 45 atomic%, carbon: An electrode manufacturing method comprising forming an alloy having a composition of 0.6 to 10 atomic%, cobalt: 30 atomic% or less, and the balance being substantially nickel on an appropriate electrode substrate. 電流密度200〜300A/mの範囲で電析を行なって実施する請求項1または2の電極の製造方法。 The process according to claim 1 or 2 electrodes carried by performing range electrodeposition current density 200~300A / m 2.
JP2018178511A 2018-09-25 2018-09-25 Method for producing electrode for aqueous solution electrolysis Active JP6638044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018178511A JP6638044B2 (en) 2018-09-25 2018-09-25 Method for producing electrode for aqueous solution electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178511A JP6638044B2 (en) 2018-09-25 2018-09-25 Method for producing electrode for aqueous solution electrolysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014057267A Division JP6411042B2 (en) 2014-03-19 2014-03-19 Method for producing electrode for aqueous solution electrolysis

Publications (2)

Publication Number Publication Date
JP2019023349A true JP2019023349A (en) 2019-02-14
JP6638044B2 JP6638044B2 (en) 2020-01-29

Family

ID=65368454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178511A Active JP6638044B2 (en) 2018-09-25 2018-09-25 Method for producing electrode for aqueous solution electrolysis

Country Status (1)

Country Link
JP (1) JP6638044B2 (en)

Also Published As

Publication number Publication date
JP6638044B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
Dolati et al. The electrodeposition of quaternary Fe–Cr–Ni–Mo alloys from the chloride-complexing agents electrolyte. Part I. Processing
Ullal et al. Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy
Ibrahim Black nickel electrodeposition from a modified Watts bath
Pérez-Alonso et al. Ni–Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions
Mizushima et al. Residual stress in Ni–W electrodeposits
Elias et al. Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy
Ibrahim et al. Electrodeposition of noncrystalline cobalt–tungsten alloys from citrate electrolytes
Hu et al. Hydrogen evolving activity on nickel–molybdenum deposits using experimental strategies
CN103132114B (en) Wear-resistant workpiece and manufacturing method of wear-resistant coating thereof
Fashu et al. Recent work on electrochemical deposition of Zn-Ni (-X) alloys for corrosion protection of steel
Manazoğlu et al. Electrochemical deposition and characterization of Ni-Mo alloys as cathode for alkaline water electrolysis
JPS634920B2 (en)
Golodnitsky et al. Cathode process in nickel-cobalt alloy deposition from sulfamate electrolytes--application to electroforming
Cao et al. Electrodeposited Ni–S intermetallic compound film electrodes for hydrogen evolution reaction in alkaline solutions
JP6411042B2 (en) Method for producing electrode for aqueous solution electrolysis
JP6638044B2 (en) Method for producing electrode for aqueous solution electrolysis
Elias et al. Electrodeposition and electrocatalytic study of Ni-W alloy coating
Zabinski et al. Electrodeposition of functional Ni-Re alloys for hydrogen evolution
KR100546212B1 (en) Ni-P-B alloy electroplating method and its plating solution
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
Elias et al. A comparative study on the electrocatalytic activity of electrodeposited Ni-W and Ni-P alloy coatings
JP4561149B2 (en) Alloy electrode for hydrogen generation and method for producing the same
JP6348743B2 (en) Alloy electrode for hydrogen generation and method for producing the same
JP2006118023A (en) Method for manufacturing electrode for generating hydrogen
US20190169762A1 (en) Method for producing electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6638044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250