JP2019021697A - Component quality determination device and electronic component placement machine - Google Patents

Component quality determination device and electronic component placement machine Download PDF

Info

Publication number
JP2019021697A
JP2019021697A JP2017137080A JP2017137080A JP2019021697A JP 2019021697 A JP2019021697 A JP 2019021697A JP 2017137080 A JP2017137080 A JP 2017137080A JP 2017137080 A JP2017137080 A JP 2017137080A JP 2019021697 A JP2019021697 A JP 2019021697A
Authority
JP
Japan
Prior art keywords
electrode
heat radiation
component
unit
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017137080A
Other languages
Japanese (ja)
Other versions
JP6851118B2 (en
Inventor
貴紘 小林
Takahiro Kobayashi
貴紘 小林
博史 大池
Hiroshi Oike
博史 大池
勇太 横井
yuta Yokoi
勇太 横井
恵市 小野
Keiichi Ono
恵市 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Corp filed Critical Fuji Corp
Priority to JP2017137080A priority Critical patent/JP6851118B2/en
Publication of JP2019021697A publication Critical patent/JP2019021697A/en
Application granted granted Critical
Publication of JP6851118B2 publication Critical patent/JP6851118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

To provide a component quality determination device and an electronic component placement machine for determining whether soldering of a heat radiation portion to a substrate can be properly performed.SOLUTION: A component quality determination device includes a measurement unit for measuring a three dimensional position of a heat radiation portion measurement point provided in a heat radiation portion and a three dimensional position of an electrode portion measurement point provided in each of a plurality of electrode portions, a plane calculation portion for calculating a reference plane on the basis of the three dimensional position of the heat radiation portion measurement point or the three dimensional position of the electrode portion measurement point, a distance calculation portion for calculating a distance between the heat radiation portion reference and the electrode portion reference, and a quality determination portion for determining that an electronic component whose distance between the heat radiation portion reference and the electrode portion reference is within a predetermined range is a good product.SELECTED DRAWING: Figure 8

Description

本発明は、部品良否判定装置及び電子部品装着機に関する。   The present invention relates to a component quality determination device and an electronic component mounting machine.

特許文献1には、ICチップをプラスチック樹脂でモールドした部品本体と、部品本体の側面から引き出された複数の電極部とを備えた電子部品において、部品本体の底面の中央部に金属製の放熱部を設ける技術が開示されている。この電子部品は、放熱部を基板にはんだ付けすることにより、部品本体に発生した熱を基板に放熱する。   In Patent Document 1, in an electronic component including a component main body in which an IC chip is molded with plastic resin and a plurality of electrode portions drawn from the side surface of the component main body, a metal heat dissipation is provided at the center of the bottom surface of the component main body. A technique for providing a section is disclosed. This electronic component dissipates heat generated in the component main body to the substrate by soldering the heat dissipation portion to the substrate.

特開2016−103604号公報Japanese Patent Laid-Open No. 2006-103604

上記した電子部品を基板に装着するにあたり、放熱部と基板上面との間隔(スタンドオフ)が一定の範囲を超えると、基板に対する放熱部のはんだ付けが適正になされず、放熱部の熱を基板へ放熱することができない。従って、放熱部と基板上面との間隔が一定の範囲を超えた電子部品は、基板に対する装着を行う前に、不適な電子部品として除外することが望ましい。   When mounting the above electronic components on the board, if the distance between the heat sink and the top surface of the board (standoff) exceeds a certain range, soldering of the heat sink to the board is not performed properly, and the heat of the heat sink is transferred to the board. Can't dissipate heat. Therefore, it is desirable to exclude an electronic component whose distance between the heat radiation portion and the upper surface of the substrate exceeds a certain range as an inappropriate electronic component before mounting on the substrate.

本明細書は、基板に対する放熱部のはんだ付けを適正に行えるか否かを判定する部品良否判定装置及び電子部品装着機を提供することを目的とする。   This specification aims at providing the component quality determination apparatus and electronic component mounting machine which determine whether the soldering of the thermal radiation part with respect to a board | substrate can be performed appropriately.

本明細書は、部品本体及び複数の電極部を備えた電子部品の良否を、前記電子部品が保持装置に保持された状態で判定する部品良否判定装置を開示する。前記部品本体は、底面に設けられる金属製の部位であって、前記電子部品を装着する基板に対してはんだ付けされる放熱部を備え、前記部品良否判定装置は、前記放熱部に設けた放熱部測定点の三次元位置、及び、前記複数の電極部の各々に設けた電極部測定点の三次元位置を測定する測定ユニットと、前記保持装置に保持された状態での前記電子部品の姿勢を示す基準平面を、前記放熱部測定点の三次元位置又は前記電極部測定点の三次元位置に基づいて算出する平面算出部と、少なくとも1つの前記放熱部測定点から定められる放熱部基準と、最も下方に位置する前記電極部測定点を少なくとも含む1又は複数の前記電極部測定点から定められる電極部基準との距離を算出する距離算出部と、前記放熱部基準と前記電極部基準との距離が所定の範囲内である前記電子部品を良品と判定する良否判定部と、を備える。   The present specification discloses a component quality determination device that determines the quality of an electronic component including a component main body and a plurality of electrode portions in a state where the electronic component is held by a holding device. The component main body is a metal part provided on a bottom surface, and includes a heat radiating portion soldered to a substrate on which the electronic component is mounted, and the component pass / fail judgment device includes a heat radiating portion provided in the heat radiating portion. A measurement unit for measuring a three-dimensional position of a measurement point and a three-dimensional position of an electrode measurement point provided in each of the plurality of electrode units, and an attitude of the electronic component in a state of being held by the holding device A plane calculation unit that calculates a reference plane based on a three-dimensional position of the heat radiation unit measurement point or a three-dimensional position of the electrode unit measurement point, and a heat radiation unit reference determined from at least one of the heat radiation unit measurement points, A distance calculation unit that calculates a distance from an electrode unit reference determined from one or a plurality of electrode unit measurement points including at least the electrode unit measurement point located at the lowermost position; and the heat dissipation unit reference and the electrode unit reference The distance of It includes a non-defective quality deciding section that decides the electronic component is in the range of the constant, the.

また、本明細書は、上記した部品良否判定装置を備えた電子部品装着機を開示する。   Further, the present specification discloses an electronic component mounting machine including the above-described component quality determination device.

本開示の部品良否判定装置によれば、部品良否判定装置は、電子部品が保持装置に保持された状態で、電子部品の良否を判定する。そして、距離算出部は、放熱部基準と電極部基準との距離を算出し、その算出した距離が所定の範囲内である電子部品を良品と判定する。これにより、部品良否判定装置は、電子部品を基板に装着する前に、基板に対して放熱部を適正に接合できないような電子部品を不良品として判定することができる。   According to the component quality determination device of the present disclosure, the component quality determination device determines the quality of the electronic component while the electronic component is held by the holding device. The distance calculation unit calculates a distance between the heat radiation unit reference and the electrode unit reference, and determines that an electronic component having the calculated distance within a predetermined range is a non-defective product. Thereby, the component quality determination apparatus can determine an electronic component that cannot properly bond the heat radiating portion to the substrate as a defective product before mounting the electronic component on the substrate.

また、本開示の電子部品装着機によれば、部品良否判定装置は、不良品である電子部品が装着された基板及び基板に装着した他の部品が、不良品となり、廃棄されることを未然に防止できる。よって、電子部品装着機は、部品コストの低減を図ることができる。   In addition, according to the electronic component mounting machine of the present disclosure, the component pass / fail determination apparatus may prevent a substrate on which a defective electronic component is mounted and other components mounted on the substrate from becoming defective and being discarded. Can be prevented. Therefore, the electronic component mounting machine can reduce the component cost.

本明細書の一実施形態における部品良否判定装置を用いた部品装着機の平面図である。It is a top view of the component mounting machine using the component quality determination apparatus in one Embodiment of this specification. 制御装置のブロック図である。It is a block diagram of a control apparatus. 電子部品の底面図である。It is a bottom view of an electronic component. 図3のIV−IV線における電子部品の断面図である。It is sectional drawing of the electronic component in the IV-IV line | wire of FIG. 吸着ノズルと測定ユニットとの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of a suction nozzle and a measurement unit. 電子部品の部分拡大側面図である。It is a partial expanded side view of an electronic component. 制御装置により実行される電子部品装着処理を示すフローチャートである。It is a flowchart which shows the electronic component mounting process performed by a control apparatus. 制御装置により実行される良否判定処理を示すフローチャートである。It is a flowchart which shows the quality determination process performed by the control apparatus.

1.部品装着機1の構成
以下、本明細書に開示する部品良否判定装置及び電子部品装着機を適用した実施形態について、図面を参照しながら説明する。まず、図1を参照して、部品良否判定装置100を用いた電子部品装着機1(以下「部品装着機1」と称す)の構成について説明する。
1. Configuration of Component Mounting Machine 1 Hereinafter, an embodiment to which a component quality determination device and an electronic component mounting machine disclosed in the present specification are applied will be described with reference to the drawings. First, the configuration of an electronic component mounting machine 1 (hereinafter referred to as “component mounting machine 1”) using the component quality determination device 100 will be described with reference to FIG.

図1に示すように、部品装着機1は、基板搬送装置10と、部品供給装置20と、部品移載装置30と、部品カメラ41と、基板カメラ42と、制御装置50とを主に備える。なお、以下において、部品装着機1の水平幅方向(図1左右方向)をX軸方向、部品装着機1の水平長手方向(図1上下方向)をY軸方向、X軸方向及びY軸方向に垂直な鉛直方向(図1紙面垂直方向)をZ軸方向とする。   As shown in FIG. 1, the component mounting machine 1 mainly includes a substrate transfer device 10, a component supply device 20, a component transfer device 30, a component camera 41, a substrate camera 42, and a control device 50. . In the following, the horizontal width direction (left-right direction in FIG. 1) of the component mounting machine 1 is the X-axis direction, and the horizontal longitudinal direction (up-down direction in FIG. 1) of the component mounting machine 1 is the Y-axis direction, X-axis direction, and Y-axis direction. A vertical direction perpendicular to (the vertical direction in FIG. 1) is taken as the Z-axis direction.

基板搬送装置10は、ベルトコンベア等により構成され、基板KをX軸方向へ順次搬送する。基板搬送装置10は、部品装着機1の機内における所定位置に基板Kを位置決めする。そして、位置決めされた基板Kに対する部品の装着処理が終了すると、基板搬送装置10は、基板Kを部品装着機1の機外へ搬出する。   The substrate transfer device 10 is configured by a belt conveyor or the like, and sequentially transfers the substrates K in the X-axis direction. The substrate transfer device 10 positions the substrate K at a predetermined position in the component mounting machine 1. When the component mounting process on the positioned substrate K is completed, the substrate transport apparatus 10 carries the substrate K out of the component mounting machine 1.

部品供給装置20は、基板Kに装着する部品を供給する。部品供給装置20は、X軸方向に配列された複数のスロットを備え、それら複数のスロットの各々には、フィーダ21が着脱可能にセットされる。部品供給装置20は、フィーダ21によってキャリアテープを送り移動させ、フィーダ21の先端側(図1上側)に設けられた取出し部に部品を供給する。   The component supply device 20 supplies components to be mounted on the board K. The component supply device 20 includes a plurality of slots arranged in the X-axis direction, and a feeder 21 is detachably set in each of the plurality of slots. The component supply device 20 feeds and moves the carrier tape by the feeder 21, and supplies the component to the take-out portion provided on the tip end side (upper side in FIG. 1) of the feeder 21.

また、部品供給装置20は、リード部品等の比較的大型の部品を、トレイ22上に並べて状態で供給する。部品供給装置20は、上下方向に区画された収納棚23に複数のトレイ22を収納し、装着処理に応じて所定のトレイ22を引き出し、取出し部に部品を供給する。   Further, the component supply device 20 supplies relatively large components such as lead components in a state of being arranged on the tray 22. The component supply device 20 stores a plurality of trays 22 in a storage shelf 23 partitioned in the vertical direction, pulls out a predetermined tray 22 according to the mounting process, and supplies the components to the take-out unit.

部品移載装置30は、取出し部に供給された部品を保持し、保持した部品を位置決めされた基板Kに装着する。部品移載装置30は、ヘッド駆動装置31と、移動台32と、装着ヘッド33とを主に備える。ヘッド駆動装置31は、直動機構により移動台32をX軸方向及びY軸方向へ移動可能に構成される。装着ヘッド33は、部品を保持する保持装置であり、移動台32に対して着脱可能に構成される。そして装着ヘッド33に設けられたノズルホルダ34には、部品を保持可能な複数の吸着ノズル35(図5参照)が着脱可能に設けられる。   The component transfer device 30 holds the component supplied to the take-out unit, and mounts the held component on the positioned substrate K. The component transfer device 30 mainly includes a head driving device 31, a moving table 32, and a mounting head 33. The head drive device 31 is configured to be able to move the movable table 32 in the X-axis direction and the Y-axis direction by a linear motion mechanism. The mounting head 33 is a holding device that holds components, and is configured to be detachable from the movable table 32. A plurality of suction nozzles 35 (see FIG. 5) that can hold components are detachably provided on the nozzle holder 34 provided on the mounting head 33.

各々の吸着ノズル35は、装着ヘッド33に対し、Z軸方向に平行な軸まわりに回転可能に、且つ、昇降可能に支持する。吸着ノズル35は、取出し部に供給された部品を吸着により保持し、その保持した部品を位置決めされた基板Kに装着する。   Each suction nozzle 35 supports the mounting head 33 so as to be rotatable about an axis parallel to the Z-axis direction and to be movable up and down. The suction nozzle 35 holds the component supplied to the take-out unit by suction, and mounts the held component on the positioned substrate K.

部品カメラ41及び基板カメラ42は、CCDやCMOS等の撮像素子を有するデジタル式の撮像装置である。部品カメラ41は、光軸をZ軸方向へ向けた状態で部品装着機1の基台に固定され、保持装置である装着ヘッド33の吸着ノズル35に保持された部品を下方から撮像する。基板カメラ42は、光軸をZ軸方向へ向けた状態で移動台32に固定され、基板Kを上方から撮像する。   The component camera 41 and the substrate camera 42 are digital imaging devices having imaging elements such as CCDs and CMOSs. The component camera 41 is fixed to the base of the component mounting machine 1 with the optical axis directed in the Z-axis direction, and images the component held by the suction nozzle 35 of the mounting head 33 as a holding device from below. The substrate camera 42 is fixed to the moving table 32 with the optical axis directed in the Z-axis direction, and images the substrate K from above.

図2に示すように、制御装置50は、主として、CPUや各種メモリ、制御回路により構成される。制御装置50は、装着制御部51と、記憶装置52と、モータ制御回路53と、撮像制御回路54とを主に備え、装着制御部51及び記憶装置52は、入出力インターフェース55を介して、モータ制御回路53及び撮像制御回路54に接続される。   As shown in FIG. 2, the control device 50 is mainly composed of a CPU, various memories, and a control circuit. The control device 50 mainly includes a mounting control unit 51, a storage device 52, a motor control circuit 53, and an imaging control circuit 54. The mounting control unit 51 and the storage device 52 are connected via an input / output interface 55. The motor control circuit 53 and the imaging control circuit 54 are connected.

装着制御部51は、モータ制御回路53を介して装着ヘッド33の位置や吸着機構の動作を制御する。具体的に、装着制御部51は、部品装着機1に設けられた各種センサから得られる情報や、各種認識処理の結果を入力する。そして、装着制御部51は、記憶装置52に記憶された制御プログラム、各種センサによる情報、画像処理や認識処理の結果に基づき、モータ制御回路53に制御信号を送信する。これにより、装着ヘッド33に支持された吸着ノズル35の位置及び回転角度が制御される。   The mounting control unit 51 controls the position of the mounting head 33 and the operation of the suction mechanism via the motor control circuit 53. Specifically, the mounting control unit 51 inputs information obtained from various sensors provided in the component mounting machine 1 and results of various recognition processes. Then, the mounting control unit 51 transmits a control signal to the motor control circuit 53 based on the control program stored in the storage device 52, information from various sensors, and results of image processing and recognition processing. Thereby, the position and rotation angle of the suction nozzle 35 supported by the mounting head 33 are controlled.

モータ制御回路53は、装着制御部51から受信した制御信号に基づき、部品移載装置30に設けられた各種モータの制御に用いられる。これにより、装着ヘッド33の位置決めがなされると共に、吸着ノズル35のZ軸方向位置及び回転角度が割り出される。   The motor control circuit 53 is used to control various motors provided in the component transfer device 30 based on the control signal received from the mounting control unit 51. Thereby, the mounting head 33 is positioned, and the position and rotation angle of the suction nozzle 35 in the Z-axis direction are determined.

撮像制御回路54は、制御装置50から受信した制御信号に基づいて、部品カメラ41及び基板カメラ42による撮像を制御する。また、撮像制御回路54は、部品カメラ41及び基板カメラ42の撮像による画像データを取得し、入出力インターフェース55を介して記憶装置52に記憶する。   The imaging control circuit 54 controls imaging by the component camera 41 and the board camera 42 based on the control signal received from the control device 50. Further, the imaging control circuit 54 acquires image data obtained by imaging by the component camera 41 and the board camera 42 and stores them in the storage device 52 via the input / output interface 55.

制御装置50は、部品カメラ41の撮像により取得した画像データに基づき、吸着ノズル35に吸着された部品の吸着姿勢の誤差や回転角のずれ等を確認する。そして、制御装置50は、必要に応じて部品の吸着姿勢を調整する制御や、装着が困難な部品を廃棄する制御を行う。また、制御装置50は、基板カメラ42の撮像により取得した画像データに画像処理を行うことにより、基板Kに付された位置決めマークを認識し、基板Kの位置決め状態を認識する。そして、制御装置50は、基板Kの位置決め状態に応じて移動台32の位置を補正する。   Based on the image data acquired by the imaging of the component camera 41, the control device 50 confirms an error in the suction posture of the component sucked by the suction nozzle 35, a rotation angle shift, and the like. And the control apparatus 50 performs control which adjusts the adsorption | suction attitude | position of components as needed, and control which discards components with difficult mounting | wearing. Further, the control device 50 performs image processing on the image data acquired by the imaging of the substrate camera 42, thereby recognizing the positioning mark attached to the substrate K and recognizing the positioning state of the substrate K. Then, the control device 50 corrects the position of the movable table 32 according to the positioning state of the substrate K.

また、部品装着機1は、部品の良否を判定する部品良否判定装置100を更に備える。部品良否判定装置100は、部品装着機1の一部として組み込まれ、装着ヘッド33の吸着ノズル35に部品が保持された状態で、部品の良否判定を行う。   The component placement machine 1 further includes a component quality determination device 100 that determines the quality of a component. The component pass / fail determination apparatus 100 is incorporated as a part of the component mounting machine 1 and performs the pass / fail determination of the component while the component is held by the suction nozzle 35 of the mounting head 33.

ここで、図3及び図4に示すように、部品良否判定装置100が良否判定を行う対象は、ICチップ(図示せず)をプラスチック樹脂によりモールドした部品本体202と、部品本体202の側面から引き出された複数の電極部203とを備えた電子部品200である。電極部203は、電子部品200が基板Kの上面に載置された後、基板Kのランドにはんだ付けされる。なお、本実施形態では、電極部203がリードである場合を例に挙げて説明するが、電極部203は、チップ部品に設けられる突起状の端子等であってもよい。   Here, as shown in FIG. 3 and FIG. 4, the parts for which the part quality determination device 100 performs the quality determination are from a part main body 202 in which an IC chip (not shown) is molded with plastic resin, and a side surface of the part main body 202. This is an electronic component 200 including a plurality of drawn electrode portions 203. The electrode part 203 is soldered to the land of the substrate K after the electronic component 200 is placed on the upper surface of the substrate K. In the present embodiment, the case where the electrode portion 203 is a lead will be described as an example. However, the electrode portion 203 may be a protruding terminal or the like provided in a chip component.

そして、部品本体202の底面には、金属製の放熱部204が設けられる。放熱部204は、電子部品200が基板Kの上面に載置された後、基板Kのランドにはんだ付けされる。放熱部204は、部品本体202に発生した熱を基板Kに放熱するために設けられた部位である。従って、電子部品200は、基板Kに接合された状態において、放熱部204と基板Kとの双方にはんだが接触していることが不可欠である。   A metal heat radiating portion 204 is provided on the bottom surface of the component main body 202. The heat radiating portion 204 is soldered to the land of the substrate K after the electronic component 200 is placed on the upper surface of the substrate K. The heat dissipating part 204 is a part provided to dissipate heat generated in the component main body 202 to the substrate K. Accordingly, it is essential that the electronic component 200 is in contact with both the heat dissipating part 204 and the substrate K when the electronic component 200 is bonded to the substrate K.

そこで、部品良否判定装置100は、電子部品200を基板K上に載置した状態における基板Kの上面と放熱部204との距離であるスタンドオフSの理論値の算出を、電子部品200が部品移載装置30の吸着ノズル35に保持された状態で行う。そして、部品良否判定装置100は、スタンドオフSの理論値が予め定めた所定の範囲内である電子部品200を良品と判定する。   Therefore, the component pass / fail determination apparatus 100 calculates the theoretical value of the standoff S that is the distance between the upper surface of the substrate K and the heat radiating unit 204 in a state where the electronic component 200 is placed on the substrate K. This is performed while being held by the suction nozzle 35 of the transfer device 30. Then, the component pass / fail determination apparatus 100 determines that the electronic component 200 in which the theoretical value of the standoff S is within a predetermined range is determined as a non-defective product.

2.部品良否判定装置100の詳細
続いて、部品良否判定装置100について、具体的に説明する。図2に示すように、部品良否判定装置100は、測定ユニット110と、平面算出部120と、平坦度検査部130と、距離算出部150と、良否判定部160とを備える。なお、部品良否判定装置100のうち、測定ユニット110は、部品装着機1の機内に設定され、平坦度検査部130、距離算出部150及び良否判定部160は、制御装置50に組み込まれている。
2. Details of Component Pass / Fail Judgment Device 100 Subsequently, the component pass / fail judgment device 100 will be specifically described. As shown in FIG. 2, the component quality determination apparatus 100 includes a measurement unit 110, a plane calculation unit 120, a flatness inspection unit 130, a distance calculation unit 150, and a quality determination unit 160. In the component quality determination device 100, the measurement unit 110 is set in the component mounting machine 1, and the flatness inspection unit 130, the distance calculation unit 150, and the quality determination unit 160 are incorporated in the control device 50. .

図5に示すように、測定ユニット110は、2つのプロジェクタ111,112と、測定カメラ113と、形状測定部114とを備える。プロジェクタ111,112は、光源の光を利用してスリット又は透過型の液晶等により所定のパターン光を生成し、投影レンズを用いて当該パターン光を対象物に投影する。   As shown in FIG. 5, the measurement unit 110 includes two projectors 111 and 112, a measurement camera 113, and a shape measurement unit 114. The projectors 111 and 112 generate predetermined pattern light using slits or transmissive liquid crystal using light from a light source, and project the pattern light onto an object using a projection lens.

測定カメラ113は、撮像素子を有するデジタルカメラである。測定カメラ113は、2つのプロジェクタ111,112に対し、パターン光の配列方向へ離間した位置に設けられ、対象物に投影されたパターン光を撮像する。測定カメラ113は、制御装置50に対して通信可能に接続され、制御装置50から受信した制御信号に基づいて撮像を行い、当該撮像により取得した画像データを制御装置50に送信する。   The measurement camera 113 is a digital camera having an image sensor. The measurement camera 113 is provided at a position separated from the two projectors 111 and 112 in the pattern light arrangement direction, and images the pattern light projected on the object. The measurement camera 113 is communicably connected to the control device 50, performs imaging based on a control signal received from the control device 50, and transmits image data acquired by the imaging to the control device 50.

なお、測定カメラ113による撮像を行う際、電極部203及び放熱部204が金属で構成されているので、電極部203及び放熱部204を同じ条件で撮像することができる。この場合、測定ユニット110は、電極部203及び放熱部204を同時に撮像することができるので、測定カメラ113による撮像に要する時間の短縮を図ることができる。   In addition, when imaging with the measurement camera 113, since the electrode part 203 and the heat radiating part 204 are comprised with the metal, the electrode part 203 and the heat radiating part 204 can be imaged on the same conditions. In this case, since the measurement unit 110 can image the electrode unit 203 and the heat radiation unit 204 at the same time, it is possible to shorten the time required for imaging by the measurement camera 113.

ここで、記憶装置52には、電子部品200の形状データが予め記憶され、その形状データには、複数の電極部測定点115及び4つの放熱部測定点116が設定されている。複数の電極部測定点115は、各々の電極部203の下面であって電極部203の先端から間隔を空けた位置に1つずつ設定される。4つの放熱部測定点116は、放熱部204の底面であって放熱部204の各角部付近に1つずつ設定される。   Here, shape data of the electronic component 200 is stored in the storage device 52 in advance, and a plurality of electrode part measurement points 115 and four heat radiation part measurement points 116 are set in the shape data. The plurality of electrode unit measurement points 115 are set one by one at a position on the lower surface of each electrode unit 203 and spaced from the tip of the electrode unit 203. The four heat dissipating part measurement points 116 are set one by one near the corners of the heat dissipating part 204 on the bottom surface of the heat dissipating part 204.

形状測定部114は、複数の電極部測定点115及び4つの放熱部測定点116と、測定カメラ113の撮像により取得した複数の画像データとに基づき、対象物の立体形状を測定する。形状測定部114は、例えば、測定ユニット110の座標系を基準として、電極部測定点115及び放熱部測定点116のXY座標に対するZ座標を算出し、電極部測定点115及び放熱部測定点116の三次元位置を測定する。   The shape measuring unit 114 measures the three-dimensional shape of the object based on the plurality of electrode unit measurement points 115, the four heat radiation unit measurement points 116, and the plurality of image data acquired by the imaging of the measurement camera 113. The shape measurement unit 114 calculates, for example, the Z coordinate with respect to the XY coordinates of the electrode unit measurement point 115 and the heat radiation unit measurement point 116 with reference to the coordinate system of the measurement unit 110, and the electrode unit measurement point 115 and the heat radiation unit measurement point 116. Measure the three-dimensional position.

平面算出部120は、複数の電極部測定点115の三次元位置に基づいて基準平面121を算出する。図6に示すように、基準平面121とは、吸着ノズル35に保持された状態での電子部品200の姿勢を示す基準となる仮想平面であり、複数の電極部測定点115の三次元位置に基づく近似平面を、例えば、最小自乗法を用いて算出することにより決定される。なお、基準平面121は、全ての電極部測定点115の三次元位置に基づいて算出してもよく、全ての電極部測定点115のうち三次元位置が下方となる3つ以上の電極部測定点115の三次元位置に基づいて算出してもよい。   The plane calculation unit 120 calculates the reference plane 121 based on the three-dimensional positions of the plurality of electrode unit measurement points 115. As shown in FIG. 6, the reference plane 121 is a virtual plane that serves as a reference indicating the posture of the electronic component 200 while being held by the suction nozzle 35, and is at a three-dimensional position of the plurality of electrode unit measurement points 115. The approximate plane to be based on is determined, for example, by calculating using the least square method. Note that the reference plane 121 may be calculated based on the three-dimensional positions of all the electrode unit measurement points 115, and three or more electrode unit measurements having a three-dimensional position below all of the electrode unit measurement points 115. You may calculate based on the three-dimensional position of the point 115. FIG.

平坦度検査部130は、複数の電極部203の下端の平坦度を検査する。平坦度は、複数の電極部203の下端の均一性を示すものであり、電子部品200を基板Kに載置した際に、全ての電極部203を基板Kに対して適正に接合可能であるか否かの基準となる。具体的に、平坦度検査部130は、図6に示すように、基準平面121に許容値を加えた平坦度許容範囲Tcに、全ての電極部測定点115が含まれるか否かを判定する。そして、平坦度検査部130は、全ての電極部測定点115が平坦度許容範囲Tcに含まれる電子部品200を、平坦度を充足した良品であると判定する。   The flatness inspection unit 130 inspects the flatness of the lower ends of the plurality of electrode units 203. The flatness indicates the uniformity of the lower ends of the plurality of electrode portions 203, and all the electrode portions 203 can be appropriately bonded to the substrate K when the electronic component 200 is placed on the substrate K. It becomes the standard of whether or not. Specifically, as shown in FIG. 6, the flatness inspection unit 130 determines whether or not all electrode part measurement points 115 are included in the flatness tolerance range Tc obtained by adding a tolerance value to the reference plane 121. . And the flatness test | inspection part 130 determines with the electronic component 200 in which all the electrode part measurement points 115 are contained in flatness tolerance | permissible_range Tc being the quality goods which satisfied flatness.

距離算出部150は、スタンドオフSの理論値を算出する。図6に示すように、スタンドオフSとは、放熱部204と基板Kの上面との距離である。スタンドオフSは、電子部品200の良否を判定する指標の一つであり、電子部品200を基板Kに装着する際に、放熱部204がはんだにより基板Kの上面に適正に接合されるか否かの判断基準となる。本実施形態では、放熱部測定点116と基準平面121との距離が、スタンドオフSの理論値として算出される。   The distance calculation unit 150 calculates a theoretical value of the standoff S. As shown in FIG. 6, the standoff S is a distance between the heat radiation part 204 and the upper surface of the substrate K. The standoff S is one of the indicators for determining the quality of the electronic component 200. When the electronic component 200 is mounted on the substrate K, whether or not the heat radiating portion 204 is properly joined to the upper surface of the substrate K with solder. It becomes the judgment standard. In the present embodiment, the distance between the heat radiation unit measurement point 116 and the reference plane 121 is calculated as the theoretical value of the standoff S.

具体的に、距離算出部150は、最初に、全ての電極部測定点115のうち、最も下方に位置する電極部測定点115を含む3点以上の電極部測定点115により算出される第一仮想平面を電極部基準115Pと定義する。また、距離算出部150は、4つの放熱部測定点116のうち、最も上方に位置する放熱部測定点116を含む3点以上の放熱部測定点116により算出される第二仮想平面を放熱部基準116Pと定義する。そして、距離算出部150は、電極部基準115Pと放熱部基準116Pとの距離を測定することにより、スタンドオフSの理論値の算出を行う。これに加え、距離算出部150は、電極部基準115Pに対する放熱部基準116Pの傾斜角度Anを算出する。   Specifically, the distance calculation unit 150 first calculates the first of the electrode unit measurement points 115 including three or more electrode unit measurement points 115 including the electrode unit measurement point 115 positioned at the lowest position among all the electrode unit measurement points 115. A virtual plane is defined as an electrode part reference 115P. Further, the distance calculation unit 150 uses the second imaginary plane calculated by the three or more heat radiation unit measurement points 116 including the heat radiation unit measurement point 116 positioned at the uppermost position among the four heat radiation unit measurement points 116 as the heat radiation unit. It is defined as a reference 116P. And the distance calculation part 150 calculates the theoretical value of the standoff S by measuring the distance of the electrode part reference | standard 115P and the thermal radiation part reference | standard 116P. In addition to this, the distance calculation unit 150 calculates the inclination angle An of the heat radiation part reference 116P with respect to the electrode part reference 115P.

なお、本実施形態において、距離算出部150は、複数の電極部測定点115の三次元位置に基づいて算出した基準平面121を電極部基準115Pとして利用し、基準平面121から放熱部基準116Pまでの距離を測定する。これにより、部品良否判定装置100は、基準平面121とは別個に電極部基準115Pの算出を行う必要がなくなるので、距離算出部150による電子部品200の良否判定に要する時間の短縮を図ることができる。   In this embodiment, the distance calculation unit 150 uses the reference plane 121 calculated based on the three-dimensional positions of the plurality of electrode unit measurement points 115 as the electrode unit reference 115P, and from the reference plane 121 to the heat dissipation unit reference 116P. Measure the distance. As a result, the component quality determination device 100 does not need to calculate the electrode unit reference 115P separately from the reference plane 121, so that the time required for the quality calculation of the electronic component 200 by the distance calculation unit 150 can be shortened. it can.

良否判定部160は、算出されたスタンドオフSの理論値に基づき、電子部品200の良否を判定する。具体的に、良否判定部160は、スタンドオフSの理論値が予め定めた所定の範囲内である電子部品200を良品と判定する。ここで、良否判定部160による判定に用いる範囲は、例えば、基板Kと放熱部204とを接合するはんだの厚さ寸法に基づいて決定される。即ち、良否判定部160は、スタンドオフの理論値が範囲を超える電子部品200を、基板Kに対する放熱部204のはんだ付けを行うことが困難な不適な電子部品であると判定する。   The pass / fail determination unit 160 determines pass / fail of the electronic component 200 based on the calculated theoretical value of the standoff S. Specifically, the pass / fail determination unit 160 determines that the electronic component 200 in which the theoretical value of the standoff S is within a predetermined range set in advance is a non-defective product. Here, the range used for the determination by the pass / fail determination unit 160 is determined based on, for example, the thickness dimension of the solder joining the substrate K and the heat dissipation unit 204. That is, the pass / fail determination unit 160 determines that the electronic component 200 having a stand-off theoretical value exceeding the range is an inappropriate electronic component for which it is difficult to solder the heat radiating unit 204 to the board K.

本実施形態において、距離算出部150は、電極部基準115Pと放熱部基準116Pとの距離を測定するにあたり、第一仮想平面を電極部基準115Pとし、第二仮想平面を放熱部基準116Pとする。この場合、良否判定部160が良品と判定した電子部品200において、基板Kに対する放熱部204のはんだ付けを確実に行うことができるので、部品良否判定装置100は、電子部品200の良否判定を正確に行うことができる。   In the present embodiment, the distance calculation unit 150 uses the first virtual plane as the electrode unit reference 115P and the second virtual plane as the heat dissipation unit reference 116P when measuring the distance between the electrode unit reference 115P and the heat dissipation unit reference 116P. . In this case, in the electronic component 200 that is determined to be non-defective by the pass / fail determination unit 160, the heat radiation unit 204 can be reliably soldered to the board K. Therefore, the component pass / fail determination apparatus 100 accurately determines the pass / fail determination of the electronic component 200. Can be done.

また、良否判定部160は、電極部基準115Pに対する放熱部基準116Pの傾斜角度Anが所定角度以下であるか否かを判定する。そして、良否判定部160は、傾斜角度Anが所定角度を超える電子部品200を、基板Kに対する放熱部204のはんだ付けを適正に行うことが困難な不適な電子部品であると判定する。   In addition, the quality determination unit 160 determines whether or not the inclination angle An of the heat radiation unit reference 116P with respect to the electrode unit reference 115P is equal to or less than a predetermined angle. Then, the quality determination unit 160 determines that the electronic component 200 having the inclination angle An exceeding the predetermined angle is an inappropriate electronic component for which it is difficult to appropriately solder the heat dissipation unit 204 to the board K.

3.電子部品装着処理
次に、図7に示すフローチャートを参照しながら、制御装置50により実行される電子部品装着処理について説明する。この電子部品装着処理は、基板Kに装着する全ての電子部品200の装着処理が終了するまで、繰り返し実行される。
3. Electronic Component Mounting Process Next, the electronic component mounting process executed by the control device 50 will be described with reference to the flowchart shown in FIG. This electronic component mounting process is repeatedly executed until the mounting process of all the electronic components 200 mounted on the board K is completed.

図7に示すように、電子部品装着処理において、装着制御部51は、最初に、吸着ノズル35によって電子部品200を保持する吸着処理を実行する(S1)。続いて、装着制御部51は、装着ヘッド33を部品カメラ41の上方へ移動させた後、吸着ノズル35に保持された電子部品200を部品カメラ41により撮像する撮像処理を実行する(S2)。S2の処理において、装着制御部51は、部品カメラ41の撮像により取得した画像データに基づき、必要に応じて電子部品200の吸着姿勢の調整を行い、装着が困難であると判断した電子部品200については、廃棄処理を行う。   As shown in FIG. 7, in the electronic component mounting process, the mounting control unit 51 first executes a suction process for holding the electronic component 200 by the suction nozzle 35 (S1). Subsequently, the mounting control unit 51 moves the mounting head 33 above the component camera 41, and then executes an imaging process for imaging the electronic component 200 held by the suction nozzle 35 with the component camera 41 (S2). In the process of S <b> 2, the mounting control unit 51 adjusts the suction posture of the electronic component 200 as necessary based on the image data acquired by the imaging of the component camera 41, and determines that it is difficult to mount the electronic component 200. For the waste disposal.

S2の処理後、制御装置50は、装着制御部51が装着ヘッド33を測定ユニット110の上方へ移動させる制御を行った後に、部品良否判定装置100による電子部品200の良否判定処理を行う(S3)。S3の処理の結果、部品良否判定装置100による良否判定処理を行った電子部品200が不適な部品であると判定した場合(S4:Yes)、部品良否判定装置100は、装着制御部51に対し、回復処理の要請を行う(S5)。この回復処理には、不適な部品と判定された電子部品200の修正や廃棄や、S1からS3までの処理の再実行等が含まれる。   After the process of S2, the control device 50 performs a quality determination process of the electronic component 200 by the component quality determination device 100 after the mounting control unit 51 performs control to move the mounting head 33 above the measurement unit 110 (S3). ). As a result of the process of S3, when it is determined that the electronic component 200 that has been subjected to the pass / fail determination process by the component pass / fail determination apparatus 100 is an unsuitable part (S4: Yes), the component pass / fail determination apparatus 100 instructs the mounting control unit 51. Then, a request for recovery processing is made (S5). This recovery processing includes correction and disposal of the electronic component 200 determined as an inappropriate component, re-execution of the processing from S1 to S3, and the like.

S5の処理において、装着制御部51は、要請に応じた回復処理を行う。そして、回復処理の中で実行される部品良否判定装置100による良否判定処理において、電子部品200が良品であると判定された場合に、電子部品装着処理は、S5の処理へ移行する。   In the process of S5, the mounting control unit 51 performs a recovery process according to the request. Then, when the electronic component 200 is determined to be non-defective in the quality determination processing performed by the component quality determining device 100 executed in the recovery process, the electronic component mounting process proceeds to S5.

一方、S3の処理の結果、部品良否判定装置100から回復処理の要請がなければ(S4:No)、即ち、部品良否判定装置100による良否判定処理において、電子部品200が良品であると判定された場合、制御装置50は、S5の処理をスキップし、S6の処理へ移行する。S6の処理において、装着制御部51は、装着ヘッド33を位置決めされた基板Kの上方へ移動させた後、電子部品200を基板Kに装着する装着処理を実行し、電子部品装着処理は、本処理を終了する。   On the other hand, as a result of the process of S3, if there is no request for a recovery process from the component quality determination device 100 (S4: No), that is, in the quality determination processing by the component quality determination device 100, it is determined that the electronic component 200 is a non-defective product. In the case where it is detected, the control device 50 skips the process of S5 and proceeds to the process of S6. In the process of S6, the mounting control unit 51 moves the mounting head 33 above the positioned substrate K, and then executes a mounting process for mounting the electronic component 200 on the substrate K. The process ends.

続いて、図8に示すフローチャートを参照しながら、部品良否判定装置100により実行される良否判定処理(S3)について説明する。図8に示すように、良否判定処理(S3)において、制御装置50は、最初に、測定ユニット110の測定カメラ113の上方まで移動した装着ヘッド33の吸着ノズル35に保持された電子部品200を、測定カメラ113により撮像する(S31)。続いて、形状測定部114は、S31の処理により取得した電子部品200の画像データを用いて、三次元座標に示される電子部品200の立体的な形状の測定処理を実行し、電子部品200の電極部測定点115の三次元位置及び放熱部測定点116の三次元位置を取得する(S32)。   Next, the quality determination process (S3) executed by the component quality determination apparatus 100 will be described with reference to the flowchart shown in FIG. As shown in FIG. 8, in the quality determination process (S3), the control device 50 first moves the electronic component 200 held by the suction nozzle 35 of the mounting head 33 that has moved to above the measurement camera 113 of the measurement unit 110. Then, an image is taken by the measurement camera 113 (S31). Subsequently, the shape measuring unit 114 performs a measurement process of the three-dimensional shape of the electronic component 200 indicated by the three-dimensional coordinates using the image data of the electronic component 200 acquired by the processing of S31, and the electronic component 200 The three-dimensional position of the electrode part measurement point 115 and the three-dimensional position of the heat radiation part measurement point 116 are acquired (S32).

S32の処理後、平面算出部120は、複数の電極部測定点115の三次元位置に基づき、基準平面121を算出する(S33)。続いて、平坦度検査部130は、基準平面121と全ての電極部測定点115とを用いて、複数の電極部203の下端の平坦度を検査する(S34)。そして、S34の処理の結果、複数の電極部203の下端の平坦度が不足している場合(S35:No)、平坦度検査部130は、装着制御部51に対して回復処理の要請を行う(S36)。一方、S34の処理の結果、複数の電極部203の下端の平坦度を充足していれば(S35:Yes)、部品良否判定処理は、S37の処理へ移行する。   After the process of S32, the plane calculation unit 120 calculates the reference plane 121 based on the three-dimensional positions of the plurality of electrode unit measurement points 115 (S33). Subsequently, the flatness inspection unit 130 uses the reference plane 121 and all the electrode unit measurement points 115 to inspect the flatness of the lower ends of the plurality of electrode units 203 (S34). If the flatness of the lower ends of the plurality of electrode portions 203 is insufficient as a result of the processing of S34 (S35: No), the flatness inspection unit 130 requests the mounting control unit 51 for a recovery process. (S36). On the other hand, if the flatness of the lower ends of the plurality of electrode parts 203 is satisfied as a result of the process of S34 (S35: Yes), the component pass / fail determination process proceeds to the process of S37.

S37の処理において、距離算出部150は、スタンドオフSの理論値の算出、即ち、電極部基準115Pとしての基準平面121と放熱部基準116Pとの距離を算出する。続いて、距離算出部150は、電極部基準115P(基準平面121)に対する放熱部基準116Pの傾斜角度を算出する(S38)。   In the process of S37, the distance calculation unit 150 calculates the theoretical value of the standoff S, that is, calculates the distance between the reference plane 121 as the electrode unit reference 115P and the heat radiation unit reference 116P. Subsequently, the distance calculation unit 150 calculates an inclination angle of the heat radiation unit reference 116P with respect to the electrode unit reference 115P (reference plane 121) (S38).

そして、良否判定部160は、S37の処理で算出した電極部基準115P(基準平面121)と放熱部基準116Pとの距離が、所定の範囲内であるか否かの判定を行う(S39)。続いて、良否判定部160は、電極部基準115Pに対する放熱部基準116Pの傾斜角度が所定角度以下であるか否かの判定を行う(S40)。それらの結果、電極部基準115Pと放熱部基準116Pとの距離が範囲を超える場合(S39:No)、又は、電極部基準115Pに対する放熱部基準116Pの傾斜角度が所定角度を超える場合(S40:NO)、良否判定部160は、装着制御部51に対して回復処理の要請を行う(S36)。一方、電極部基準115Pと放熱部基準116Pとの距離が範囲内であって(S39:Yes)、電極部基準115Pに対する放熱部基準116Pの傾斜角度が所定角度以下であれば(S40:Yes)、良否判定部160は、電子部品200が良品であると判定する。この場合、部品良否判定装置100は、良否判定処理(S3)を終了し、装着処理(S4)へ移行する。   Then, the quality determination unit 160 determines whether or not the distance between the electrode unit reference 115P (reference plane 121) and the heat radiation unit reference 116P calculated in the process of S37 is within a predetermined range (S39). Subsequently, the quality determination unit 160 determines whether or not the inclination angle of the heat radiation unit reference 116P with respect to the electrode unit reference 115P is equal to or smaller than a predetermined angle (S40). As a result, when the distance between the electrode part reference 115P and the heat radiation part reference 116P exceeds the range (S39: No), or when the inclination angle of the heat radiation part reference 116P with respect to the electrode part reference 115P exceeds a predetermined angle (S40: NO), the pass / fail judgment unit 160 requests the mounting control unit 51 for a recovery process (S36). On the other hand, if the distance between the electrode part reference 115P and the heat radiation part reference 116P is within the range (S39: Yes), and the inclination angle of the heat radiation part reference 116P with respect to the electrode part reference 115P is equal to or less than a predetermined angle (S40: Yes). The quality determination unit 160 determines that the electronic component 200 is a non-defective product. In this case, the component pass / fail determination apparatus 100 ends the pass / fail determination process (S3) and proceeds to the mounting process (S4).

以上説明したように、部品良否判定装置100は、電子部品200が吸着ノズル35に吸着保持された状態で、電極部基準115Pと放熱部基準116Pとの距離を算出する。そして、電極部基準115Pと放熱部基準116Pとの距離が所定の範囲内であると判定された場合に、部品装着機1は、電子部品200を基板Kに装着する。   As described above, the component quality determination device 100 calculates the distance between the electrode part reference 115P and the heat radiation part reference 116P in a state where the electronic component 200 is sucked and held by the suction nozzle 35. When it is determined that the distance between the electrode part reference 115P and the heat radiation part reference 116P is within a predetermined range, the component mounting machine 1 mounts the electronic component 200 on the board K.

これにより、部品装着機1は、基板Kに電子部品200を装着するにあたり、放熱部204と基板Kとをはんだによって確実に接合することができる。つまり、部品良否判定装置100は、電子部品200を基板Kに装着する前に、基板Kに対して放熱部204を適切に接合できないような電子部品200を不良品として判定することができる。また、部品良否判定装置100は、電極部基準115Pに対する放熱部基準116Pの傾斜角度Anが所定角度を超える電子部品200を不良品として判定することができる。よって、部品良否判定装置100は、不良品である電子部品200が装着された基板K及び基板Kに装着した他の部品が、不良品となり、廃棄されることを未然に防止できるので、部品装着機1は、部品コストの低減を図ることができる。   Thereby, when mounting the electronic component 200 on the board | substrate K, the component mounting machine 1 can join the heat radiation part 204 and the board | substrate K reliably with solder. That is, the component pass / fail determination apparatus 100 can determine, as a defective product, an electronic component 200 that cannot properly bond the heat radiating unit 204 to the substrate K before mounting the electronic component 200 on the substrate K. In addition, the component quality determination device 100 can determine, as a defective product, the electronic component 200 in which the inclination angle An of the heat radiation unit reference 116P with respect to the electrode unit reference 115P exceeds a predetermined angle. Therefore, the component pass / fail judgment apparatus 100 can prevent the board K on which the defective electronic component 200 is mounted and other parts mounted on the board K from becoming defective products and being discarded. The machine 1 can reduce the cost of parts.

また、上記した良否判定処理(S3)において、部品良否判定装置100は、平坦度検査部130により複数の電極部203の平坦度が予め定めた基準を満たす(全ての電極部測定点115が平坦度許容範囲Tcに含まれる)と判定し、且つ、吸着ノズル35に吸着保持された電子部品200の姿勢が適正であると判定した電子部品200に対し、良否判定部160による良否判定を行う。   Further, in the quality determination process (S3) described above, the component quality determination apparatus 100 satisfies the standard in which the flatness of the plurality of electrode parts 203 satisfies a predetermined criterion by the flatness inspection unit 130 (all the electrode part measurement points 115 are flat). The electronic device 200 determined to be included in the degree allowable range Tc) and the posture of the electronic component 200 sucked and held by the suction nozzle 35 is determined to be appropriate is determined by the quality determining unit 160.

ここで、複数の電極部203が平坦度を充足しない場合や電子部品200の姿勢が適正でない状態で、電子部品200の良否判定を行った場合、部品良否判定装置100が、良品である電子部品200を不良品であるとの誤った判定を行うおそれがある。これに対し、良否判定処理(S3)において、部品良否判定装置100は、複数の電極部203が平坦度を充足し、且つ、姿勢が適正であると判定された電子部品200に対し、良否判定を行うので、正確な判定結果を得ることができる。さらに、良否判定部160は、傾斜角度Anが所定角度以下である電子部品200を良品と判定するので、電子部品200の良否判定を正確に行うことができる。   Here, when the quality of the electronic component 200 is determined when the plurality of electrode portions 203 do not satisfy the flatness or when the posture of the electronic component 200 is not appropriate, the component quality determination device 100 is an electronic component that is a non-defective product. There is a risk of erroneously determining that 200 is a defective product. On the other hand, in the pass / fail determination process (S3), the component pass / fail determination apparatus 100 determines pass / fail for the electronic component 200 in which the plurality of electrode portions 203 satisfy the flatness and the posture is determined to be appropriate. Thus, an accurate determination result can be obtained. Furthermore, since the pass / fail determination unit 160 determines that the electronic component 200 whose inclination angle An is equal to or less than the predetermined angle is a non-defective product, the pass / fail determination of the electronic component 200 can be accurately performed.

4.その他
以上、上記実施形態に基づいて本明細書に開示するテープ保持装置について説明したが、上記形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の変形改良が可能であることは容易に推察できるものである。
4). Others While the tape holding device disclosed in the present specification has been described based on the above embodiment, the present invention is not limited to the above embodiment, and various modifications and improvements can be made without departing from the gist of the present disclosure. It can be easily guessed.

例えば、上記実施形態では、平面算出部120が、複数の電極部測定点115の三次元位置に基づいて基準平面121を算出する場合について説明したが、これに限られるものではない。例えば、平面算出部120は、複数の電極部測定点115の三次元位置と複数の放熱部測定点116の三次元位置とに基づいて、基準平面121を算出してもよい。この場合、距離算出部150は、基準平面121とは別に電極部基準115Pを算出し、基準平面121と電極部基準115Pとの距離、及び、基準平面121と放熱部基準116Pとの距離に基づき、電極部基準115Pと放熱部基準116Pとの距離を算出する。   For example, in the above embodiment, the case where the plane calculation unit 120 calculates the reference plane 121 based on the three-dimensional positions of the plurality of electrode unit measurement points 115 has been described, but the present invention is not limited to this. For example, the plane calculation unit 120 may calculate the reference plane 121 based on the three-dimensional positions of the plurality of electrode unit measurement points 115 and the three-dimensional positions of the plurality of heat radiation unit measurement points 116. In this case, the distance calculation unit 150 calculates the electrode unit reference 115P separately from the reference plane 121, and based on the distance between the reference plane 121 and the electrode unit reference 115P and the distance between the reference plane 121 and the heat dissipation unit reference 116P. The distance between the electrode part reference 115P and the heat radiation part reference 116P is calculated.

また、上記実施形態では、電極部基準115Pが、最も下方に位置する電極部測定点115を含む3点以上の電極部測定点115により算出される第一仮想平面である場合について説明したが、これに限られるものではない。即ち、距離算出部150は、放熱部基準116Pから最も離れた位置にある電極部測定点115、つまり、最も下方に位置する電極部測定点115を電極部基準115Pとしてもよい。この場合、距離算出部150による電極部基準115Pの算出を簡素化できるので、部品良否判定装置100は、良否判定に要する時間の短縮を図ることができる。   In the above embodiment, the case has been described in which the electrode part reference 115P is the first virtual plane calculated by three or more electrode part measurement points 115 including the electrode part measurement point 115 located at the lowest position. It is not limited to this. In other words, the distance calculation unit 150 may set the electrode unit measurement point 115 that is farthest from the heat radiation unit reference 116P, that is, the electrode measurement point 115 that is positioned at the lowest position as the electrode unit reference 115P. In this case, since the calculation of the electrode part reference 115P by the distance calculation unit 150 can be simplified, the component quality determination device 100 can reduce the time required for the quality determination.

同様に、上記実施形態では、放熱部基準116Pが、最も上方に位置する放熱部測定点116を含む3点以上の放熱部測定点116により算出される第二仮想平面である場合について説明したが、これに限られるものではない。即ち、距離算出部150は、電極部基準115Pから最も離れた位置にある放熱部測定点116、つまり、最も上方に位置する放熱部測定点116を放熱部基準116Pとしてもよい。この場合、距離算出部150による放熱部基準116Pの算出を簡素化できるので、部品良否判定装置100は、良否判定に要する時間の短縮を図ることができる。   Similarly, in the above embodiment, the case where the heat radiation reference 116P is the second virtual plane calculated by three or more heat radiation measurement points 116 including the heat radiation measurement point 116 positioned at the uppermost position has been described. However, it is not limited to this. That is, the distance calculation unit 150 may use the heat radiation unit measurement point 116 located farthest from the electrode unit reference 115P, that is, the heat radiation measurement point 116 located at the uppermost position as the heat radiation unit reference 116P. In this case, since the calculation of the heat radiating part reference 116P by the distance calculation unit 150 can be simplified, the component quality determination device 100 can reduce the time required for the quality determination.

1:電子部品装着機(部品装着機)、 33:装着ヘッド(保持装置)、 100:部品良否判定装置、 110:測定ユニット、 115:電極部測定点、 115P:電極部基準、 116:放熱部測定点、 116P:放熱部基準、 120:平面算出部、 121:基準平面、 130:平坦度検査部、 150:距離算出部、 160:良否判定部、 200:電子部品、 202:部品本体、 203:電極部、 204:放熱部、 K:基板   DESCRIPTION OF SYMBOLS 1: Electronic component mounting machine (component mounting machine), 33: Mounting head (holding device), 100: Component quality determination apparatus, 110: Measurement unit, 115: Electrode part measurement point, 115P: Electrode part reference, 116: Heat radiation part Measurement point 116P: heat radiation part reference 120: plane calculation part 121: reference plane 130: flatness inspection part 150: distance calculation part 160: pass / fail judgment part 200: electronic component 202: part main body 203 : Electrode part, 204: heat radiation part, K: substrate

Claims (9)

部品本体及び複数の電極部を備えた電子部品の良否を、前記電子部品が保持装置に保持された状態で判定する部品良否判定装置であって、
前記部品本体は、底面に設けられる金属製の部位であって、前記電子部品を装着する基板に対してはんだ付けされる放熱部を備え、
前記部品良否判定装置は、
前記放熱部に設けた放熱部測定点の三次元位置、及び、前記複数の電極部の各々に設けた電極部測定点の三次元位置を測定する測定ユニットと、
前記保持装置に保持された状態での前記電子部品の姿勢を示す基準平面を、前記放熱部測定点の三次元位置又は前記電極部測定点の三次元位置に基づいて算出する平面算出部と、
少なくとも1つの前記放熱部測定点から定められる放熱部基準と、最も下方に位置する前記電極部測定点を少なくとも含む1又は複数の前記電極部測定点から定められる電極部基準との距離を算出する距離算出部と、
前記放熱部基準と前記電極部基準との距離が所定の範囲内である前記電子部品を良品と判定する良否判定部と、
を備える部品良否判定装置。
A component pass / fail determination device for determining pass / fail of an electronic component including a component main body and a plurality of electrode portions in a state where the electronic component is held by a holding device,
The component main body is a metal part provided on the bottom surface, and includes a heat dissipation portion soldered to a substrate on which the electronic component is mounted,
The component pass / fail judgment device is:
A measurement unit for measuring a three-dimensional position of a heat radiation part measurement point provided in the heat radiation part, and a three-dimensional position of an electrode part measurement point provided in each of the plurality of electrode parts;
A plane calculation unit that calculates a reference plane indicating the posture of the electronic component in a state of being held by the holding device based on a three-dimensional position of the heat radiation unit measurement point or a three-dimensional position of the electrode unit measurement point;
Calculate a distance between a heat radiation part reference determined from at least one heat radiation part measurement point and an electrode part reference determined from one or more electrode part measurement points including at least the electrode part measurement point located at the lowest position. A distance calculator;
A pass / fail judgment unit for judging that the electronic component having a distance between the heat radiation unit reference and the electrode unit reference within a predetermined range is a non-defective product;
A device for determining whether parts are acceptable.
前記電極部基準は、複数の前記電極部の各々に設けた複数の前記電極部測定点のうち、前記放熱部基準から最も離れた位置にある前記電極部測定点を含む3点以上の前記電極部測定点により算出される第一仮想平面である、請求項1に記載の部品良否判定装置。   The electrode part reference includes three or more electrodes including the electrode part measurement point located farthest from the heat radiation part reference among the plurality of electrode part measurement points provided in each of the plurality of electrode parts. The component quality determination device according to claim 1, wherein the component quality determination device is a first virtual plane calculated by a part measurement point. 前記電極部基準は、複数の前記電極部の各々に設けた複数の前記電極部測定点のうち、最も下方に位置する前記電極部測定点である、請求項1に記載の部品良否判定装置。   2. The component quality determination device according to claim 1, wherein the electrode unit reference is the electrode unit measurement point located at the lowest position among the plurality of electrode unit measurement points provided in each of the plurality of electrode units. 前記放熱部基準は、前記放熱部に設けた3点以上の前記放熱部測定点のうち、前記放熱部基準から最も離れた位置にある前記放熱部測定点を含む3点以上の前記放熱部測定点により算出される第二仮想平面である、請求項1−3の何れか一項に記載の部品良否判定装置。   The heat radiation part reference includes three or more heat radiation part measurements including the heat radiation part measurement point located farthest from the heat radiation part reference among the three or more heat radiation part measurement points provided in the heat radiation part. The component quality determination device according to any one of claims 1 to 3, which is a second virtual plane calculated by a point. 前記良否判定部は、前記基準平面に対する前記放熱部基準の傾斜角度が所定角度以下である前記電子部品を良品と判定する、請求項4に記載の部品良否判定装置。   The component quality determination device according to claim 4, wherein the quality determination unit determines that the electronic component having an inclination angle of the heat radiating unit reference with respect to the reference plane is equal to or less than a predetermined angle is a non-defective product. 前記放熱部基準は、前記放熱部に設けた複数の前記放熱部測定点のうち、前記電極部基準から最も離れた位置にある前記放熱部測定点である、請求項1−3の何れか一項に記載の部品良否判定装置。   The heat radiation part reference is the heat radiation part measurement point at a position farthest from the electrode part reference among the plurality of heat radiation part measurement points provided in the heat radiation part. The component quality determination device according to item. 前記平面算出部は、複数の前記放熱部測定点に基づいて前記基準平面を算出し、
前記距離算出部は、前記基準平面から前記放熱部基準までの距離を算出する、請求項1−6の何れか一項に記載の部品良否判定装置。
The plane calculation unit calculates the reference plane based on a plurality of the heat dissipation unit measurement points,
The component quality determination device according to any one of claims 1 to 6, wherein the distance calculation unit calculates a distance from the reference plane to the heat dissipation unit reference.
前記部品良否判定装置は、前記基準平面と複数の前記電極部測定点とに基づき、前記複数の電極部の平坦度を検査する平坦度検査部を備え、
前記良否判定部は、前記複数の電極部の平坦度が予め定めた基準を満たすと判定した前記電子部品に対し、前記放熱部基準と前記電極部基準との距離が前記範囲内であるか否かの判定を行う、請求項7に記載の部品良否判定装置。
The component quality determination device includes a flatness inspection unit that inspects flatness of the plurality of electrode units based on the reference plane and the plurality of electrode unit measurement points.
Whether the distance between the heat radiation reference and the electrode reference is within the range with respect to the electronic component determined that the flatness of the plurality of electrode parts satisfies a predetermined standard; The apparatus for determining whether or not a component is good according to claim 7.
請求項1−8の何れか一項に記載の部品良否判定装置を備えた電子部品装着機。   The electronic component mounting machine provided with the components quality determination apparatus as described in any one of Claims 1-8.
JP2017137080A 2017-07-13 2017-07-13 Parts quality judgment device and electronic component mounting machine Active JP6851118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017137080A JP6851118B2 (en) 2017-07-13 2017-07-13 Parts quality judgment device and electronic component mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137080A JP6851118B2 (en) 2017-07-13 2017-07-13 Parts quality judgment device and electronic component mounting machine

Publications (2)

Publication Number Publication Date
JP2019021697A true JP2019021697A (en) 2019-02-07
JP6851118B2 JP6851118B2 (en) 2021-03-31

Family

ID=65354999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137080A Active JP6851118B2 (en) 2017-07-13 2017-07-13 Parts quality judgment device and electronic component mounting machine

Country Status (1)

Country Link
JP (1) JP6851118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022091378A1 (en) * 2020-10-30 2022-05-05

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060800A (en) * 1999-08-24 2001-03-06 Juki Corp Electronic parts-mounting method and device
JP2001155160A (en) * 1999-11-30 2001-06-08 Komatsu Ltd Device for inspecting external appearance of electronic component
JP2004325363A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Inspection method already mounted printed circuit board, and printed circuit board
JP2006229103A (en) * 2005-02-21 2006-08-31 Matsushita Electric Ind Co Ltd Defective component detecting method and component mounting method
JP2016103604A (en) * 2014-11-28 2016-06-02 ファナック株式会社 Printed circuit board with thermal pad in notched shape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060800A (en) * 1999-08-24 2001-03-06 Juki Corp Electronic parts-mounting method and device
JP2001155160A (en) * 1999-11-30 2001-06-08 Komatsu Ltd Device for inspecting external appearance of electronic component
JP2004325363A (en) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd Inspection method already mounted printed circuit board, and printed circuit board
JP2006229103A (en) * 2005-02-21 2006-08-31 Matsushita Electric Ind Co Ltd Defective component detecting method and component mounting method
JP2016103604A (en) * 2014-11-28 2016-06-02 ファナック株式会社 Printed circuit board with thermal pad in notched shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022091378A1 (en) * 2020-10-30 2022-05-05
WO2022091378A1 (en) * 2020-10-30 2022-05-05 株式会社Fuji Component mounting machine and substrate production system
JP7389920B2 (en) 2020-10-30 2023-11-30 株式会社Fuji Component placement machine and board production system

Also Published As

Publication number Publication date
JP6851118B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP2019175888A (en) Die bonding apparatus and semiconductor device manufacturing method
JP2010050418A (en) Method of controlling electronic component mounting equipment
CN110214476B (en) Coordinate data generating device and coordinate data generating method
JP6442625B2 (en) Mounted work equipment
JPWO2019064428A1 (en) Component mounting device, shooting method, and mounting order determination method
JP6851118B2 (en) Parts quality judgment device and electronic component mounting machine
TWI700767B (en) Method for mounting semiconductors provided with bumps on substrate locations of a substrate
JPWO2017064777A1 (en) Component mounting equipment
JP6831478B2 (en) Work device to be mounted
EP3937598A1 (en) Correction amount calculating device and correction amount calculating method
JP6840230B2 (en) Information processing equipment, 3D mounting related equipment, mounting system and information processing method
CN108702866B (en) Component determination device and component determination method
JPWO2020105138A1 (en) Component mounting device
CN109691243B (en) Component mounting machine
JP6580419B2 (en) Measuring device and measuring method for camera
JP4562275B2 (en) Electrical component mounting system and accuracy inspection method thereof
JP2019144137A (en) Three-dimensional measuring device, electronic component equipment device, and method for three-dimensional measurement
JP6896859B2 (en) Imaging equipment, surface mounter and inspection equipment
JP2022170080A (en) Component mounter
JPWO2018163323A1 (en) 3D mounting related equipment
WO2019123517A1 (en) Work device and method for controlling same
JP6554800B2 (en) Electronic component mounting system and mounting method
JP6457295B2 (en) Parts judgment device
WO2024111022A1 (en) Component appearance inspection device and component appearance inspection method
KR101325634B1 (en) Method for inspecting pcb of semiconductor packages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6851118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250