JP2019021435A - All-solid secondary battery - Google Patents

All-solid secondary battery Download PDF

Info

Publication number
JP2019021435A
JP2019021435A JP2017136827A JP2017136827A JP2019021435A JP 2019021435 A JP2019021435 A JP 2019021435A JP 2017136827 A JP2017136827 A JP 2017136827A JP 2017136827 A JP2017136827 A JP 2017136827A JP 2019021435 A JP2019021435 A JP 2019021435A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
hydroxide ion
solid electrolyte
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017136827A
Other languages
Japanese (ja)
Other versions
JP6927774B2 (en
Inventor
直仁 山田
Naohito Yamada
直仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2017136827A priority Critical patent/JP6927774B2/en
Publication of JP2019021435A publication Critical patent/JP2019021435A/en
Application granted granted Critical
Publication of JP6927774B2 publication Critical patent/JP6927774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a safe and inexpensive all-solid secondary battery.SOLUTION: The all-solid secondary battery is provided that comprises: a positive electrode including a carbon material as a positive electrode active material; a negative electrode including a metal hydroxide as a negative electrode active material and further including a conduction aid and a hydroxide ion conductive solid electrolyte; and a separator provided between the positive electrode and the negative electrode and including a hydroxide ion conductive solid electrolyte.SELECTED DRAWING: Figure 1

Description

本発明は、全固体二次電池に関するものである。   The present invention relates to an all solid state secondary battery.

近年、モバイル機器、自動車、定置用蓄電池等の様々な用途において、リチウムイオン二次電池が広く使用されている。しかし、リチウムイオン二次電池は、可燃性の有機電解液を用いるため、製造上の欠陥や過充電によって発火する危険があり、現実に事故が発生している。その対策として、有機電解液を用いない水系の二次電池であるニッケル水素電池が一部で利用されているが、体積容量密度や重量容量密度が劣る上、材料コストが高く低コスト化には限界がある。そこで、より安価なニッケル亜鉛二次電池も開発されている。   In recent years, lithium ion secondary batteries have been widely used in various applications such as mobile devices, automobiles, and stationary storage batteries. However, since a lithium ion secondary battery uses a flammable organic electrolyte, there is a risk of ignition due to manufacturing defects or overcharge, and an accident has actually occurred. As countermeasures, nickel-hydrogen batteries, which are water-based secondary batteries that do not use organic electrolytes, are used in part, but the volume capacity density and weight capacity density are inferior, and the material cost is high and the cost is low. There is a limit. Therefore, a cheaper nickel zinc secondary battery has also been developed.

一方で、リチウムを用いながらも有機電解液を用いない二次電池の開発も種々行われている。例えば、全固体電池が注目されており、その中でも硫化物固体電解質を用いたリチウム全固体電池の性能が高まってきた。しかしながら、硫化物は大気に触れると水分と反応して硫化水素が発生したり、燃焼したりする危険性がある。酸化物固体電解質を用いた全固体電池も研究されているが、充分な性能を出せるに至っていない。   On the other hand, various secondary batteries that use lithium but do not use an organic electrolyte have been developed. For example, all-solid batteries have attracted attention, and among them, the performance of lithium all-solid batteries using sulfide solid electrolytes has increased. However, there is a risk that sulfides react with moisture to generate hydrogen sulfide or burn when exposed to the atmosphere. An all-solid battery using an oxide solid electrolyte has been studied, but has not yet achieved sufficient performance.

安全かつ安価な二次電池は未だに世の中に存在せず、様々な研究が行われているなかで、黒鉛が水酸化物イオン(OH)を層間にインターカレートすることが報告された(非特許文献1(飯塚明日香、宮崎晃平、福塚友和及び安部武志、「アルカリ混合水溶液中におけるアクセプター型黒鉛層間化合物の合成(2)」、電気化学会第83回大会講演要旨集、1P01、2016年3月23日)参照)。具体的には、Hg/HgOを参照極として、黒鉛シート(作用極)とカーボンペーパー(対極)の間に1.1Vの電圧を印加したところ、黒鉛の層間へのOHの挿入が確認され、黒鉛が水溶液系二次電池の正極として期待されることが報告されている。 A safe and inexpensive secondary battery does not yet exist in the world, and it has been reported that graphite intercalates hydroxide ions (OH ) between various layers as various studies are being carried out (non- Patent Document 1 (Asuka Iizuka, Junpei Miyazaki, Tomokazu Fukuzuka and Takeshi Abe, “Synthesis of Acceptor-Type Graphite Intercalation Compounds in Alkaline Mixed Aqueous Solution (2)”, Abstracts of the 83rd Annual Meeting of the Electrochemical Society, 1P01, 20163 (March 23)). Specifically, when a voltage of 1.1 V was applied between a graphite sheet (working electrode) and carbon paper (counter electrode) using Hg / HgO as a reference electrode, insertion of OH between the graphite layers was confirmed. It has been reported that graphite is expected as a positive electrode of an aqueous secondary battery.

ところで、近年、ニッケル亜鉛二次電池や空気亜鉛二次電池の分野において、水酸化物イオン伝導性無機固体電解質セパレータ、特に層状複水酸化物(LDH)セパレータの使用が提案されている。LDHセパレータのような水酸化物イオン伝導性無機固体電解質セパレータによれば、水酸化物イオンを選択的に透過させながら、アルカリ電解液中で負極から伸展する亜鉛デンドライトの貫通を阻止することができ、亜鉛デンドライトによる正負極間の短絡の問題を解消することができる。例えば、特許文献1(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータが多孔質基材と複合化された複合材料の形で提供されることも開示されている。さらに、特許文献2(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。   By the way, in recent years, the use of hydroxide ion conductive inorganic solid electrolyte separators, particularly layered double hydroxide (LDH) separators, has been proposed in the fields of nickel zinc secondary batteries and air zinc secondary batteries. According to the hydroxide ion conductive inorganic solid electrolyte separator such as the LDH separator, it is possible to prevent the penetration of zinc dendrite extending from the negative electrode in the alkaline electrolyte while selectively allowing the hydroxide ions to permeate. The problem of short circuit between positive and negative electrodes due to zinc dendrite can be solved. For example, Patent Document 1 (International Publication No. 2016/076047) discloses a separator structure including an LDH separator fitted or bonded to a resin outer frame, and the LDH separator is a porous substrate. It is also disclosed that it is provided in the form of a composite material. Furthermore, Patent Document 2 (International Publication No. 2016/067884) discloses various methods for obtaining a composite material by forming an LDH dense film on the surface of a porous substrate. In this method, a starting material capable of giving a starting point for crystal growth of LDH is uniformly attached to the porous substrate, and the porous substrate is hydrothermally treated in the raw material aqueous solution to form the LDH dense film on the surface of the porous substrate. The process of making it form is included.

国際公開第2016/076047号International Publication No. 2016/076047 国際公開第2016/067884号International Publication No. 2016/067884

飯塚明日香、宮崎晃平、福塚友和及び安部武志、「アルカリ混合水溶液中におけるアクセプター型黒鉛層間化合物の合成(2)」、電気化学会第83回大会講演要旨集、1P01、2016年3月23日Asuka Iizuka, Junpei Miyazaki, Tomokazu Fukutsuka and Takeshi Abe, “Synthesis of Acceptor-Type Graphite Intercalation Compounds in Alkali Mixed Aqueous Solution (2)”, Proceedings of the 83rd Annual Meeting of the Electrochemical Society, 1P01, March 23, 2016

前述したとおり、非特許文献1には黒鉛が水溶液系二次電池の正極として期待されることが報告されている。しかしながら、水溶液では、正極の過電圧により水が電気分解する可能性がある。水の電気分解は、密閉系の二次電池においては電池容器の膨張を引き起こす一方、開放系の二次電池においては電解液の減少を招く。このため、従前の他の水溶液系二次電池と同様、上記問題に対処するための工夫が必要となる。   As described above, Non-Patent Document 1 reports that graphite is expected as a positive electrode of an aqueous secondary battery. However, in an aqueous solution, water may be electrolyzed due to an overvoltage of the positive electrode. The electrolysis of water causes the battery container to expand in a sealed secondary battery, while the electrolyte solution decreases in an open secondary battery. For this reason, like other conventional aqueous secondary batteries, a device for dealing with the above problem is required.

本発明者らは、今般、水酸化物イオンの移動媒体として電解液ではなく水酸化物イオン伝導性固体電解質を用いることで、上述の水溶液系二次電池に伴う問題を解消可能な全固体二次電池を提供できるとの知見を得た。すなわち、正極活物質として黒鉛等の炭素材料を含む正極を、金属水酸化物、導電助剤及び水酸化物イオン伝導性固体電解質を含む負極、並びに水酸化物イオン伝導性固体電解質を含むセパレータと組み合わせることで、安全かつ安価な全固体二次電池を提供できるとの知見を得た。   The present inventors have recently used an all-solid-state secondary battery capable of solving the problems associated with the above-described aqueous solution-based secondary battery by using a hydroxide ion-conducting solid electrolyte instead of an electrolyte as a hydroxide ion transfer medium. We obtained knowledge that secondary batteries could be provided. That is, a positive electrode including a carbon material such as graphite as a positive electrode active material, a negative electrode including a metal hydroxide, a conductive additive and a hydroxide ion conductive solid electrolyte, and a separator including a hydroxide ion conductive solid electrolyte; The knowledge that it can provide a safe and inexpensive all-solid-state secondary battery by combining them was obtained.

したがって、本発明の目的は、安全かつ安価な全固体二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a safe and inexpensive all-solid secondary battery.

本発明の一態様によれば、正極活物質として炭素材料を含む正極と、
負極活物質として金属水酸化物を含み、導電助剤及び水酸化物イオン伝導性固体電解質をさらに含む負極と、
前記正極と前記負極の間に設けられ、水酸化物イオン伝導性固体電解質を含むセパレータと、
を備えた、全固体二次電池が提供される。
According to one embodiment of the present invention, a positive electrode including a carbon material as a positive electrode active material;
A negative electrode containing a metal hydroxide as a negative electrode active material, and further comprising a conductive additive and a hydroxide ion conductive solid electrolyte;
A separator provided between the positive electrode and the negative electrode and containing a hydroxide ion conductive solid electrolyte;
An all-solid secondary battery is provided.

本発明による全固体二次電池を概念的に示す図である。It is a figure which shows notionally the all-solid-state secondary battery by this invention.

図1に本発明による全固体二次電池10を概念的に示す。図1に示されるように、全固体二次電池10は、正極12と、負極14と、セパレータ16とを備える。正極12は、正極活物質として炭素材料を含む。負極14は、負極活物質として金属水酸化物を含み、導電助剤及び水酸化物イオン伝導性固体電解質をさらに含む。セパレータ16は、水酸化物イオン伝導性固体電解質を含み、正極12と負極14の間に設けられる。このように、水酸化物イオンの移動媒体として電解液ではなく水酸化物イオン伝導性固体電解質を用いることで、上述の水溶液系二次電池に伴う問題を解消可能な全固体二次電池10を提供することができる。すなわち、正極活物質として黒鉛等の炭素材料を含む正極12を、金属水酸化物、導電助剤及び水酸化物イオン伝導性固体電解質を含む負極14、並びに水酸化物イオン伝導性固体電解質を含むセパレータ16と組み合わせることで、安全かつ安価な全固体二次電池を提供することができる。   FIG. 1 conceptually shows an all-solid secondary battery 10 according to the present invention. As shown in FIG. 1, the all solid state secondary battery 10 includes a positive electrode 12, a negative electrode 14, and a separator 16. The positive electrode 12 includes a carbon material as a positive electrode active material. The negative electrode 14 includes a metal hydroxide as a negative electrode active material, and further includes a conductive additive and a hydroxide ion conductive solid electrolyte. The separator 16 includes a hydroxide ion conductive solid electrolyte and is provided between the positive electrode 12 and the negative electrode 14. As described above, by using a hydroxide ion conductive solid electrolyte instead of an electrolyte as a hydroxide ion transfer medium, the all-solid-state secondary battery 10 capable of solving the problems associated with the above-described aqueous secondary battery is obtained. Can be provided. That is, a positive electrode 12 containing a carbon material such as graphite as a positive electrode active material, a negative electrode 14 containing a metal hydroxide, a conductive additive and a hydroxide ion conductive solid electrolyte, and a hydroxide ion conductive solid electrolyte. By combining with the separator 16, a safe and inexpensive all-solid secondary battery can be provided.

正極12は、正極活物質として炭素材料を含む。すなわち、本発明の全固体二次電池10において、炭素材料は、導電助剤としてよりもむしろ、正極活物質として機能する。正極活物質としての炭素材料は、層間に水酸化物イオンを挿入及び脱離可能なものであれば特に限定されない。したがって、正極活物質としての炭素材料は層状構造を有する黒鉛が好ましく、層状であれば黒鉛及び無定形炭素のいずれであってもよい。また、ナノチューブ状の炭素、又はフラーレンであってもよい。すなわち、炭素材料の好ましい例としては、黒鉛、無定形炭素、カーボンナノチューブ類、フラーレン類、及びそれらの組合せが挙げられ、特に好ましくは黒鉛である。黒鉛は、天然黒鉛及び人造黒鉛のいずれであってもよく、例えば、グラフォイルという製品名で市販される柔軟性黒鉛シート(Graftech社製)等が好ましく利用可能である。正極活物質として炭素材料は粒子状であってもよいし、シート状であってもよく、その形態は特に限定されない。炭素材料が粒子状の場合、正極活物質粒子の好ましい平均粒径は0.1〜10μmであり、より好ましくは1〜5μmである。   The positive electrode 12 includes a carbon material as a positive electrode active material. That is, in the all solid state secondary battery 10 of the present invention, the carbon material functions as a positive electrode active material rather than as a conductive additive. The carbon material as the positive electrode active material is not particularly limited as long as it can insert and desorb hydroxide ions between layers. Therefore, the carbon material as the positive electrode active material is preferably graphite having a layered structure, and may be either graphite or amorphous carbon as long as it is layered. Further, it may be nanotube-like carbon or fullerene. That is, preferable examples of the carbon material include graphite, amorphous carbon, carbon nanotubes, fullerenes, and combinations thereof, and graphite is particularly preferable. The graphite may be either natural graphite or artificial graphite, and for example, a flexible graphite sheet (manufactured by Graftech) marketed under the product name of Graphofoil is preferably used. As the positive electrode active material, the carbon material may be in the form of particles or a sheet, and the form thereof is not particularly limited. When the carbon material is in a particulate form, a preferable average particle diameter of the positive electrode active material particles is 0.1 to 10 μm, and more preferably 1 to 5 μm.

上述したような炭素材料は電子伝導性を有し、かつ、水酸化物イオンをインターカレートする。このため、正極12は導電助剤及び水酸化物イオン伝導性固体電解質を必ずしも含む必要はない。もっとも、正極12は導電助剤及び/又は水酸化物イオン伝導性固体電解質を含んでいてもよい。この場合、正極12用の導電助剤及び/又は水酸化物イオン伝導性固体電解質としては、後述する負極14に含まれる導電助剤及び/又は水酸化物イオン伝導性固体電解質と同様のものを用いることができる。   The carbon material as described above has electronic conductivity and intercalates hydroxide ions. For this reason, the positive electrode 12 does not necessarily need to contain a conductive support agent and a hydroxide ion conductive solid electrolyte. But the positive electrode 12 may contain the conductive support agent and / or the hydroxide ion conductive solid electrolyte. In this case, the conductive assistant and / or hydroxide ion conductive solid electrolyte for the positive electrode 12 is the same as the conductive assistant and / or hydroxide ion conductive solid electrolyte contained in the negative electrode 14 described later. Can be used.

負極14は、負極活物質として金属水酸化物を含む。金属水酸化物は、水酸化物イオンの放出及び結合を可逆的に繰り返すことが可能なものであれば特に限定されず、様々な金属水酸化物が使用可能である。そのような金属水酸化物の好ましい例としては、Li、Na、K、Ca、Mg、Al、Zn、及びFeから選択される少なくとも1種の金属の水酸化物が挙げられる。これらの水酸化物の典型例としては、LiOH、KOH、Ca(OH)、Mg(OH)、Al(OH)、Zn(OH)、Fe(OH)、Fe(OH)、及びそれらの組合せが挙げられる。特に好ましい金属水酸化物はLiOHである。これらの金属水酸化物は安価に入手可能な元素であり、それ故安全かつ安価な二次電池の実現に特に適している。例えば、正極活物質としてLiOHを用いる場合の充電反応式は以下のとおりとなる。
・負極: LiOH + e → Li + OH
・正極: xC + OH → COH + e
(上記式中、xは正の実数、すなわちx>0である)
The negative electrode 14 includes a metal hydroxide as a negative electrode active material. The metal hydroxide is not particularly limited as long as it can reversibly release and bond hydroxide ions, and various metal hydroxides can be used. Preferable examples of such metal hydroxides include hydroxides of at least one metal selected from Li, Na, K, Ca, Mg, Al, Zn, and Fe. Typical examples of these hydroxides include LiOH, KOH, Ca (OH) 2 , Mg (OH) 2 , Al (OH) 3 , Zn (OH) 2 , Fe (OH) 3 , Fe (OH) 2. , And combinations thereof. A particularly preferred metal hydroxide is LiOH. These metal hydroxides are inexpensively available elements and are therefore particularly suitable for the realization of safe and inexpensive secondary batteries. For example, the charging reaction formula when LiOH is used as the positive electrode active material is as follows.
・ Negative electrode: LiOH + e → Li + OH
・ Positive electrode: xC + OH → C x OH + e
(Where x is a positive real number, ie x> 0)

あるいは、負極活物質としての金属水酸化物は、酸化水酸化物、又は層状複水酸化物(LDH)であってもよい。負極活物質としての酸化水酸化物の例としては、AlO(OH)、FeO(OH)、NiO(OH)等が挙げられる。負極活物質としてのLDHの例としては、Li−Al系LDH、Mg−Al系LDH、Mg−Fe系LDH、Ni−Ti系LDH等が挙げられる。LDHの場合、放電生成物であるLDHが水酸化物イオン伝導性を有するため、負極活物質粒子の内部まで反応が進行するとの利点がある。後述するように、負極14に含まれる水酸化物イオン伝導性固体電解質としてもLDHを使用可能であるが、この場合、負極活物質としてのLDHと水酸化物イオン伝導性固体電解質としてのLDHを互いに異なる種類のものとするのが好ましい。例えば、所定の過電圧で電気化学反応するLDHと、同じ過電圧で電気化学反応しないLDHという2種類のLDHを選択して、それぞれのLDHに役割分担させるのが好ましい。すなわち、所定の過電圧で電気化学反応するLDHを負極活物質として用い、同じ過電圧で電気化学反応しないLDHを水酸化物イオン伝導性固体電解質として用いるのが好ましい。   Alternatively, the metal hydroxide as the negative electrode active material may be an oxide hydroxide or a layered double hydroxide (LDH). Examples of the oxide hydroxide as the negative electrode active material include AlO (OH), FeO (OH), NiO (OH) and the like. Examples of LDH as the negative electrode active material include Li—Al based LDH, Mg—Al based LDH, Mg—Fe based LDH, Ni—Ti based LDH, and the like. In the case of LDH, since the discharge product LDH has hydroxide ion conductivity, there is an advantage that the reaction proceeds to the inside of the negative electrode active material particles. As will be described later, LDH can also be used as the hydroxide ion conductive solid electrolyte contained in the negative electrode 14, but in this case, LDH as the negative electrode active material and LDH as the hydroxide ion conductive solid electrolyte are used. It is preferable that they are of different types. For example, it is preferable to select two types of LDH, that is, LDH that electrochemically reacts at a predetermined overvoltage and LDH that does not electrochemically react at the same overvoltage, and assign the roles to each LDH. That is, it is preferable to use LDH that electrochemically reacts at a predetermined overvoltage as the negative electrode active material and LDH that does not electrochemically react at the same overvoltage as the hydroxide ion conductive solid electrolyte.

負極活物質である金属水酸化物は粒子状でありうる。この場合、放電反応は金属粒子が水酸化物に戻る反応であるため、金属表面に緻密な水酸化物が生成してしまうと金属粒子の内部まで水酸化物イオンが到達せず反応できなくなることがある。したがって、負極活物質の粒子が細かいことが望まれる。具体的には、負極活物質粒子の好ましい平均粒径は0.1〜5μmであり、より好ましくは0.1〜2μmである。   The metal hydroxide that is the negative electrode active material may be in the form of particles. In this case, since the discharge reaction is a reaction in which the metal particles return to the hydroxide, if a dense hydroxide is generated on the metal surface, the hydroxide ions do not reach the inside of the metal particles and the reaction cannot be performed. There is. Therefore, it is desired that the particles of the negative electrode active material are fine. Specifically, the preferable average particle diameter of the negative electrode active material particles is 0.1 to 5 μm, and more preferably 0.1 to 2 μm.

負極14は、導電助剤及び水酸化物イオン伝導性固体電解質をさらに含む。すなわち、 負極活物質である金属水酸化物は電子伝導性や水酸化物イオン伝導性に乏しいため、導電助剤及び水酸化物イオン伝導性固体電解質を含むことで、負極14に電子伝導性及び水酸化物イオン伝導性を付与する。負極14内における水酸化物イオン伝導性向上の観点から、負極14に含まれる水酸化物イオン伝導性固体電解質は、負極内においてネットワークを形成しているのが好ましい。典型的には、そのようなネットワークは水酸化物イオン伝導性固体電解質粒子が互いに連結することで形成される。また、負極14内における導電性向上の観点から、負極14に含まれる導電助剤が、負極内においてネットワークを形成しているのが好ましい。典型的には、そのようなネットワークは導電助剤粒子(例えば導電性カーボン粒子)が互いに連結することで形成される。特に好ましくは、水酸化物イオン伝導性固体電解質及び導電助剤の各々がネットワークを組みながら活物質と接触するような混合状態である。   The negative electrode 14 further includes a conductive additive and a hydroxide ion conductive solid electrolyte. That is, since the metal hydroxide that is the negative electrode active material is poor in electron conductivity and hydroxide ion conductivity, the negative electrode 14 includes the electron conductivity and the hydroxide ion conductive solid electrolyte. Gives hydroxide ion conductivity. From the viewpoint of improving hydroxide ion conductivity in the negative electrode 14, the hydroxide ion conductive solid electrolyte contained in the negative electrode 14 preferably forms a network in the negative electrode. Typically, such a network is formed by connecting hydroxide ion conductive solid electrolyte particles together. In addition, from the viewpoint of improving the conductivity in the negative electrode 14, it is preferable that the conductive additive contained in the negative electrode 14 forms a network in the negative electrode. Typically, such a network is formed by connecting conductive aid particles (eg, conductive carbon particles) to each other. Particularly preferred is a mixed state in which each of the hydroxide ion conductive solid electrolyte and the conductive auxiliary agent is in contact with the active material while forming a network.

負極14に含まれる導電助剤は、炭素材料、アルミニウム及び銅からなる群から選択される少なくとも1種であるのが好ましい。炭素材料の例としては、グラファイト、カーボンブラック、カーボンナノチューブ、グラフェン等の各種導電性カーボンが挙げられる。導電助剤は粒子状であるのが好ましい。負極活物質粒子と導電性カーボン粒子を混合するのが好ましい。導電助剤粒子の好ましい平均粒径は0.005〜1μmであり、より好ましくは0.005〜0.5μmである。   The conductive additive contained in the negative electrode 14 is preferably at least one selected from the group consisting of a carbon material, aluminum, and copper. Examples of the carbon material include various conductive carbons such as graphite, carbon black, carbon nanotube, and graphene. The conductive aid is preferably in the form of particles. It is preferable to mix negative electrode active material particles and conductive carbon particles. The average particle diameter of the conductive auxiliary agent particles is preferably 0.005 to 1 μm, more preferably 0.005 to 0.5 μm.

負極14に含まれる固体電解質は、水酸化物イオン伝導性を有するものであれば特に限定されず、無機固体電解質及び有機固体電解質のいずれであってもよい。水酸化物イオン伝導性無機固体電解質の例としては、層状複水酸化物(LDH)、層状ペロブスカイト型酸化物等が挙げられる。最も好ましくは安価で且つ高い水酸化物イオン伝導性を呈する点から、LDHである。一方、水酸化物イオン伝導性有機固体電解質の例としては、アニオン伝導性高分子が挙げられる。もっとも、アニオン伝導性高分子は、水酸化物イオンによって劣化する可能性があるため、LDH等の水酸化物イオン伝導性無機固体電解質の方が好ましいといえる。水酸化物イオン伝導性固体電解質ないしLDHは粒子状であるのが好ましい。水酸化物イオン伝導性固体電解質粒子ないしLDH粒子の好ましい平均粒径は0.1〜5μmであり、より好ましくは0.1〜2μmである。   The solid electrolyte contained in the negative electrode 14 is not particularly limited as long as it has hydroxide ion conductivity, and may be either an inorganic solid electrolyte or an organic solid electrolyte. Examples of hydroxide ion conductive inorganic solid electrolytes include layered double hydroxides (LDH) and layered perovskite oxides. LDH is most preferable because it is inexpensive and exhibits high hydroxide ion conductivity. On the other hand, examples of the hydroxide ion conductive organic solid electrolyte include anion conductive polymers. However, since anion conductive polymers may be deteriorated by hydroxide ions, it can be said that hydroxide ion conductive inorganic solid electrolytes such as LDH are preferable. The hydroxide ion conductive solid electrolyte or LDH is preferably in the form of particles. The preferable average particle diameter of the hydroxide ion conductive solid electrolyte particles or LDH particles is 0.1 to 5 μm, more preferably 0.1 to 2 μm.

セパレータ16は、水酸化物イオン伝導性固体電解質を含み、正極12と負極14の間に設けられる。セパレータ16は正極12と負極14の短絡を防ぐために必要な部材である。すなわち、セパレータ16は、正極12と負極14を水酸化物イオン伝導可能に、かつ、電子伝導を許容しないように隔離する、膜状、層状又は板状の部材である。この部材は緻密なものであってもよいし、多孔質であってもよく、電子伝導性物質を含まないかぎり構造は限定されない。例えば、セパレータ16は、水酸化物イオン伝導性固体電解質粒子を薄層状に堆積させて加圧した程度の圧粉体層であってもよいし、加熱や水熱処理等の手法で一体化させたものであってもよい。特に、本発明の二次電池10は電解液を用いなくて済むため、圧粉体層を用いても特段の不具合(例えば電解液浸透による劣化や崩れ等)は生じない。また、膜状に成形した水酸化物イオン伝導性固体電解質をセパレータ16として配置してもよい。水酸化物イオン伝導性固体電解質は、水酸化物イオン伝導性を有する固体電解質であれば特に限定されないが、無機固体電解質が好ましい。水酸化物イオン伝導性無機固体電解質の例としては、層状複水酸化物(LDH)、層状ペロブスカイト酸化物等が挙げられる。最も好ましくは安価で且つ高い水酸化物イオン伝導性を呈する点から、LDHである。特に、前述したように、ニッケル亜鉛二次電池や空気亜鉛二次電池の分野において、LDHセパレータが知られており(特許文献1及び2を参照)、このLDHセパレータを本発明の二次電池10にも好ましく使用することができる。このLDHセパレータは、特許文献1及び2に開示されるように多孔質基材と複合化されたものであってもよいが、その場合には多孔質基材中の厚さ方向の全域にわたって孔内にLDHが充填されていることが望まれる。こうすることでセパレータ16と接する正極12及び負極14と水酸化物イオンのスムーズな授受が可能となる。したがって、多孔質基材中にLDHで孔が充填されない部分が存在している場合には、そのような部分を切削、研磨等により除去してセパレータ16として用いることが望まれる。   The separator 16 includes a hydroxide ion conductive solid electrolyte and is provided between the positive electrode 12 and the negative electrode 14. The separator 16 is a member necessary for preventing a short circuit between the positive electrode 12 and the negative electrode 14. That is, the separator 16 is a film-like, layer-like, or plate-like member that separates the positive electrode 12 and the negative electrode 14 so as to allow hydroxide ion conduction and not allow electronic conduction. This member may be dense or porous, and the structure is not limited as long as it does not contain an electron conductive substance. For example, the separator 16 may be a green compact layer in which hydroxide ion conductive solid electrolyte particles are deposited in a thin layer and pressed, or integrated by a technique such as heating or hydrothermal treatment. It may be a thing. In particular, since the secondary battery 10 of the present invention does not require the use of an electrolytic solution, no particular problem (for example, deterioration or collapse due to electrolyte penetration) occurs even when a green compact layer is used. Alternatively, a hydroxide ion conductive solid electrolyte formed into a film may be disposed as the separator 16. The hydroxide ion conductive solid electrolyte is not particularly limited as long as it is a solid electrolyte having hydroxide ion conductivity, but an inorganic solid electrolyte is preferable. Examples of the hydroxide ion conductive inorganic solid electrolyte include layered double hydroxide (LDH), layered perovskite oxide, and the like. LDH is most preferable because it is inexpensive and exhibits high hydroxide ion conductivity. In particular, as described above, LDH separators are known in the fields of nickel zinc secondary batteries and air zinc secondary batteries (see Patent Documents 1 and 2), and this LDH separator is used as the secondary battery 10 of the present invention. Also preferably used. This LDH separator may be a composite with a porous substrate as disclosed in Patent Documents 1 and 2, but in that case, pores are formed over the entire region in the thickness direction of the porous substrate. It is desirable that the inside be filled with LDH. By doing so, it is possible to smoothly exchange hydroxide ions with the positive electrode 12 and the negative electrode 14 in contact with the separator 16. Therefore, when there is a portion in the porous base material that is not filled with LDH, it is desirable to remove such a portion by cutting, polishing, or the like and use it as the separator 16.

上記のとおり、負極14及びセパレータ16に含まれる水酸化物イオン伝導性固体電解質は層状複水酸化物(LDH)であるのが好ましい。この場合、水酸化物イオン伝導性向上による電池特性向上の観点から、負極14及びセパレータ16に含まれる水酸化物イオン伝導性固体電解質が、互いに連結された複数のLDH粒子で構成されるのが好ましい。   As described above, the hydroxide ion conductive solid electrolyte contained in the negative electrode 14 and the separator 16 is preferably a layered double hydroxide (LDH). In this case, from the viewpoint of improving battery characteristics by improving hydroxide ion conductivity, the hydroxide ion conductive solid electrolyte contained in the negative electrode 14 and the separator 16 is composed of a plurality of LDH particles connected to each other. preferable.

LDHは、以下の一般式:
2+ 1−x3+ (OH)n− x/n・mH
(式中、M2+は2価のカチオン、M3+は3価のカチオン、An−はn価のアニオン、xは0.1〜0.4、nは1以上の整数、mは0以上である)
で表されることが多いが、これに限らず、少なくとも2種類の価数のカチオンを含む水酸化物であってよい。したがって、カチオンの種類が3種類以上の組成でも構わない。例えば、LDHは2価のMg(すなわちMg2+)と3価のAl(すなわちAl3+)とアニオンがCO 2−からなる一般的にハイドロタルサイトと称される組成であってもよい。あるいは、LDHは、2価のNi(すなわちNi2+)と4価又は3価のTi(すなわちTi4+又はTi3+)と3価のAl(すなわちAl3+)からなる組成でもよい。これらに限らず、LDHは水酸化物イオン伝導性が許容可能に高ければ、いかなる組成であってもよい。
LDH has the following general formula:
M 2+ 1-x M 3+ x (OH) 2 A n- x / n · mH 2 O
(Wherein, M 2+ is a divalent cation, M 3+ is a trivalent cation, A n-n-valent anion, x is 0.1 to 0.4, n is an integer of 1 or more, m is 0 or more Is)
However, the present invention is not limited to this and may be a hydroxide containing at least two types of valence cations. Therefore, a composition having three or more kinds of cations may be used. For example, LDH may have a composition generally called hydrotalcite composed of divalent Mg (ie, Mg 2+ ), trivalent Al (ie, Al 3+ ), and an anion of CO 3 2− . Alternatively, the LDH may have a composition composed of divalent Ni (ie, Ni 2+ ), tetravalent or trivalent Ti (ie, Ti 4+ or Ti 3+ ), and trivalent Al (ie, Al 3+ ). Not limited to these, LDH may have any composition as long as hydroxide ion conductivity is acceptable.

負極14に含まれる水酸化物イオン伝導性固体電解質と、セパレータ16に含まれる水酸化物イオン伝導性固体電解質は、同じ材料であってもよいし、異なる材料であってもよい。もっとも、負極14内の電子伝導性向上及びセパレータ16の絶縁性向上の観点から、負極14に含まれる水酸化物イオン伝導性固体電解質の電子伝導性が、セパレータ16に含まれる水酸化物イオン伝導性固体電解質の電子伝導性よりも高いのが好ましい。特に、負極14に含まれる水酸化物イオン伝導性固体電解質の電子伝導性が高く、かつ、セパレータ16に含まれる水酸化物イオン伝導性固体電解質の電子伝導性が極力低いのがより好ましい。   The hydroxide ion conductive solid electrolyte contained in the negative electrode 14 and the hydroxide ion conductive solid electrolyte contained in the separator 16 may be the same material or different materials. However, from the viewpoint of improving the electronic conductivity in the negative electrode 14 and improving the insulating property of the separator 16, the electronic conductivity of the hydroxide ion conductive solid electrolyte contained in the negative electrode 14 is the same as the hydroxide ion conductivity contained in the separator 16. It is preferably higher than the electronic conductivity of the conductive solid electrolyte. In particular, it is more preferable that the hydroxide ion conductive solid electrolyte contained in the negative electrode 14 has high electron conductivity, and the hydroxide ion conductive solid electrolyte contained in the separator 16 has as low electronic conductivity as possible.

本発明の全固体二次電池10は放電末状態で製造されるのが好ましい。すなわち、正極12に黒鉛等の炭素材料を用い、負極14に金属水酸化物を用い、正極12と負極14の間にセパレータ16を介在させることで、全固体二次電池10は放電末状態で製造することができる。   The all-solid-state secondary battery 10 of the present invention is preferably manufactured in a discharged state. That is, by using a carbon material such as graphite for the positive electrode 12, using a metal hydroxide for the negative electrode 14, and interposing the separator 16 between the positive electrode 12 and the negative electrode 14, the all-solid-state secondary battery 10 is in a discharged state. Can be manufactured.

負極14及び/又はセパレータ16がLDH粉末を含む場合、電池構成体に水蒸気処理を施してもよい。これは、LDH粉末は圧粉状態での水蒸気処理により粉末同士が連結する性質があるため、水蒸気処理を施すことで水酸化物イオン伝導性を高めることができるからである。水蒸気処理は、非処理物に高温の水蒸気を接触させるいかなる方法も採用可能である。例えば、オートクレーブの底に水を入れて、その上に、非処理物が水に浸漬されない状態で配置して密閉し、100℃以上に加熱することにより水蒸気処理を好ましく行うことができる。


When the negative electrode 14 and / or the separator 16 includes LDH powder, the battery constituent may be subjected to water vapor treatment. This is because the LDH powder has a property that the powders are connected to each other by the steam treatment in the compacted state, and thus the hydroxide ion conductivity can be increased by performing the steam treatment. As the steam treatment, any method in which high-temperature steam is brought into contact with an untreated material can be adopted. For example, the steam treatment can be preferably performed by placing water in the bottom of the autoclave, placing the non-treated product in a state where it is not immersed in water, sealing it, and heating it to 100 ° C. or higher.


Claims (7)

正極活物質として炭素材料を含む正極と、
負極活物質として金属水酸化物を含み、導電助剤及び水酸化物イオン伝導性固体電解質をさらに含む負極と、
前記正極と前記負極の間に設けられ、水酸化物イオン伝導性固体電解質を含むセパレータと、
を備えた、全固体二次電池。
A positive electrode containing a carbon material as a positive electrode active material;
A negative electrode containing a metal hydroxide as a negative electrode active material, and further comprising a conductive additive and a hydroxide ion conductive solid electrolyte;
A separator provided between the positive electrode and the negative electrode and containing a hydroxide ion conductive solid electrolyte;
An all-solid-state secondary battery.
前記正極活物質としての前記炭素材料が、黒鉛、無定形炭素、カーボンナノチューブ類、及びフラーレン類からなる群から選択される少なくとも1種である、請求項1に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein the carbon material as the positive electrode active material is at least one selected from the group consisting of graphite, amorphous carbon, carbon nanotubes, and fullerenes. 前記負極及び前記セパレータに含まれる前記水酸化物イオン伝導性固体電解質が、層状複水酸化物(LDH)である、請求項1又は2に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1 or 2, wherein the hydroxide ion conductive solid electrolyte contained in the negative electrode and the separator is a layered double hydroxide (LDH). 前記負極に含まれる前記導電助剤が、炭素材料、アルミニウム及び銅からなる群から選択される少なくとも1種である、請求項1〜3のいずれか一項に記載の全固体二次電池。   The all-solid-state secondary battery as described in any one of Claims 1-3 whose said conductive support agent contained in the said negative electrode is at least 1 sort (s) selected from the group which consists of a carbon material, aluminum, and copper. 前記負極に含まれる前記水酸化物イオン伝導性固体電解質が、前記負極内においてネットワークを形成している、請求項1〜4のいずれか一項に記載の全固体二次電池。   The all-solid-state secondary battery as described in any one of Claims 1-4 in which the said hydroxide ion conductive solid electrolyte contained in the said negative electrode forms the network in the said negative electrode. 前記負極に含まれる前記導電助剤が、前記負極内においてネットワークを形成している、請求項1〜5のいずれか一項に記載の全固体二次電池。   The all-solid-state secondary battery as described in any one of Claims 1-5 in which the said conductive support agent contained in the said negative electrode forms the network in the said negative electrode. 前記負極及び前記セパレータに含まれる前記水酸化物イオン伝導性固体電解質が、互いに連結された複数のLDH粒子で構成される、請求項1〜6のいずれか一項に記載の全固体二次電池。

The all-solid-state secondary battery according to any one of claims 1 to 6, wherein the hydroxide ion conductive solid electrolyte contained in the negative electrode and the separator is composed of a plurality of LDH particles connected to each other. .

JP2017136827A 2017-07-13 2017-07-13 All-solid-state secondary battery Active JP6927774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017136827A JP6927774B2 (en) 2017-07-13 2017-07-13 All-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017136827A JP6927774B2 (en) 2017-07-13 2017-07-13 All-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2019021435A true JP2019021435A (en) 2019-02-07
JP6927774B2 JP6927774B2 (en) 2021-09-01

Family

ID=65353130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136827A Active JP6927774B2 (en) 2017-07-13 2017-07-13 All-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP6927774B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086656A (en) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 Aqueous battery
JP2021150071A (en) * 2020-03-17 2021-09-27 日本碍子株式会社 Electrolytic material and electrochemical cell
JP2021150072A (en) * 2020-03-17 2021-09-27 日本碍子株式会社 Electrolytic material and electrochemical cell
CN114041233A (en) * 2019-06-19 2022-02-11 日本碍子株式会社 Hydroxide ion-conducting separator and zinc secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074371A (en) * 2010-09-02 2012-04-12 Kobe Steel Ltd Solid electrolyte material, and metal-air all-solid secondary battery manufactured using the same
JP2013165051A (en) * 2012-02-11 2013-08-22 Tottori Univ Battery cathode material and air secondary battery using the same
JP2013251249A (en) * 2012-06-01 2013-12-12 Masaaki Yamada Carbonized graphene positive electrode-negative electrode material for battery, and secondary battery including the same
JP2015005493A (en) * 2013-05-23 2015-01-08 株式会社日本触媒 Electrode precursor, electrode, and battery
WO2016076047A1 (en) * 2014-11-13 2016-05-19 日本碍子株式会社 Separator structure body for use in zinc secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074371A (en) * 2010-09-02 2012-04-12 Kobe Steel Ltd Solid electrolyte material, and metal-air all-solid secondary battery manufactured using the same
JP2013165051A (en) * 2012-02-11 2013-08-22 Tottori Univ Battery cathode material and air secondary battery using the same
JP2013251249A (en) * 2012-06-01 2013-12-12 Masaaki Yamada Carbonized graphene positive electrode-negative electrode material for battery, and secondary battery including the same
JP2015005493A (en) * 2013-05-23 2015-01-08 株式会社日本触媒 Electrode precursor, electrode, and battery
WO2016076047A1 (en) * 2014-11-13 2016-05-19 日本碍子株式会社 Separator structure body for use in zinc secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
飯塚明日香 他: "アルカリ混合水溶液中におけるアクセプター型黒鉛層間化合物の合成(2)", 電気化学会第83回大会 講演要旨集, JPN6021004318, 2016, JP, pages 1 - 01, ISSN: 0004442886 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114041233A (en) * 2019-06-19 2022-02-11 日本碍子株式会社 Hydroxide ion-conducting separator and zinc secondary battery
CN114041233B (en) * 2019-06-19 2024-03-29 日本碍子株式会社 Hydroxide ion-conducting separator and zinc secondary battery
JP2021086656A (en) * 2019-11-25 2021-06-03 トヨタ自動車株式会社 Aqueous battery
JP7156258B2 (en) 2019-11-25 2022-10-19 トヨタ自動車株式会社 Aqueous battery
JP2021150071A (en) * 2020-03-17 2021-09-27 日本碍子株式会社 Electrolytic material and electrochemical cell
JP2021150072A (en) * 2020-03-17 2021-09-27 日本碍子株式会社 Electrolytic material and electrochemical cell

Also Published As

Publication number Publication date
JP6927774B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US11075381B2 (en) Boron-doped graphene sheet as sodium-ion battery anode
JP6532186B2 (en) Electrode precursor, electrode, and secondary battery
JP6256855B2 (en) Negative electrode material for secondary battery, electrode structure, secondary battery, and production method thereof
JP6246999B2 (en) Zinc negative electrode mixture and battery using the zinc negative electrode mixture
Ming et al. The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance
WO2013027767A1 (en) Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte
CN106133993B (en) Alkaline secondary battery
US10601094B2 (en) Separator-equipped air electrode for air-metal battery
Cai et al. Rational synthesis of ZnMn 2 O 4 porous spheres and graphene nanocomposite with enhanced performance for lithium-ion batteries
JP6517606B2 (en) Air electrode, metal-air battery, air electrode material, and method of manufacturing air electrode material
JP6927774B2 (en) All-solid-state secondary battery
Wu et al. MnO nanorods on graphene as an anode material for high capacity lithium ion batteries
CN109103427B (en) Composite material for lithium-sulfur battery positive electrode, preparation method and application thereof
JP2018116784A (en) Positive electrode material for solid-state battery, solid-state battery, and method of manufacturing the solid-state battery
JP2020047572A (en) Zinc secondary battery electrode active material and secondary battery including the same
KR101583140B1 (en) Electrode structure body, method of manufacturing the same and battery having the same
JP2016186895A (en) Anion conductive membrane, electrode and battery
JP6528972B2 (en) Nickel-based secondary battery
JP6616565B2 (en) Anion conductive material
JP2018046012A (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte power storage device
CN113195415B (en) Method for producing lithium-containing composite oxide
US20200028167A1 (en) Secondary battery
JPWO2021044883A1 (en) Negative electrode for all-solid-state battery and all-solid-state battery
CN111108643B (en) Low polarization lithium-oxygen battery
JP2021144906A (en) Positive electrode for all-solid battery, and all-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210805

R150 Certificate of patent or registration of utility model

Ref document number: 6927774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150