JP2013165051A - Battery cathode material and air secondary battery using the same - Google Patents
Battery cathode material and air secondary battery using the same Download PDFInfo
- Publication number
- JP2013165051A JP2013165051A JP2012042416A JP2012042416A JP2013165051A JP 2013165051 A JP2013165051 A JP 2013165051A JP 2012042416 A JP2012042416 A JP 2012042416A JP 2012042416 A JP2012042416 A JP 2012042416A JP 2013165051 A JP2013165051 A JP 2013165051A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- battery
- positive electrode
- air secondary
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Hybrid Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、電池の正極材料と空気二次電池に関するものである。 The present invention relates to a positive electrode material for a battery and an air secondary battery.
現在、空気電池一次電池は小領域であるが実用電池として開発され、商業ベースで販売されているが、空気二次電池は実用開発に至っていない。空気一次電池の正極として主に用いられている炭素材料は、多孔質かつ電気伝導性を有する活性炭などへPt(白金)等の貴金属触媒を添加した炭化材料が使用されている。 Currently, air battery primary batteries are a small area, but have been developed as practical batteries and sold on a commercial basis, but air secondary batteries have not yet been put into practical development. A carbon material mainly used as a positive electrode of an air primary battery is a carbonized material obtained by adding a precious metal catalyst such as Pt (platinum) to porous activated carbon having electrical conductivity.
空気電池の正極として実用あるいは教材などで使用されている炭化材料には、前述の活性炭系と高温で炭化焼成した備長炭(電気伝導性)などがあるが、それらの共通した特徴は、極めて大きい内部細孔面積(500−2000m2/g)を持つことと、電池正極として電気伝導率を有することである。しかし、活性炭をベースとした炭化材料は、酸素気体などの吸着能は優れているが、それ自身では酸素気体(O2)の電解液へのOH−イオン解離能が少なく、高い触媒能力が要求される場合にはPt等の貴金属触媒を添加することが行われる。Carbonized materials used in practical applications or teaching materials as positive electrodes for air batteries include the above-mentioned activated carbon and Bincho charcoal (electrically conductive) that has been carbonized and fired at high temperatures, but their common features are extremely large. It has internal pore area (500-2000 m 2 / g) and has electric conductivity as a battery positive electrode. However, carbonized material based on activated carbon, although the adsorption capacity, such as oxygen gas is excellent, OH to the electrolyte of the oxygen gas (O 2) on its own - ion dissociation ability is small, high catalyst capability request In such a case, a noble metal catalyst such as Pt is added.
一方、高温で炭化した高い硬度をもつ備長炭などの炭化材料は、電池正極としての酸素気体からのOH−イオンへの分解能力が小さく、実用的な電池としては正極機能が不足しており、空気電池などの理科教材などに用いられている。On the other hand, carbonized materials such as Bincho charcoal with high hardness carbonized at high temperature have a low ability to decompose OH - ion from oxygen gas as a battery positive electrode, and lack a positive electrode function as a practical battery, Used for science teaching materials such as air batteries.
上記の2種類の電気伝導性炭化材料は、大なり小なりの空気電池としての、つまり、正極機能を持つが、全て放電だけの一次電池としての正極であり、実用的な繰り返し性の充電・放電機能をもつ空気二次電池の開発には至っていない。 The above-mentioned two types of electrically conductive carbonized materials have a positive and negative function as an air battery, that is, a positive electrode as a primary battery only for discharge. An air secondary battery with a discharge function has not been developed yet.
空気電池の二次電池化を阻害する要因の一つは、充電過程での大電流による炭素正極材料の機能劣化や、充電電流による電解液からのガス発生の問題が知られており、これらを解決する必要がある。さらに、負極金属(亜鉛金属など)の充電による重量回復が優れていることも必要である。 One of the factors hindering the use of air batteries as secondary batteries is known to be the functional deterioration of the carbon cathode material due to the large current during the charging process and the problem of gas generation from the electrolyte due to the charging current. It needs to be solved. Furthermore, it is also necessary that the weight recovery by charging the negative electrode metal (such as zinc metal) is excellent.
これらの課題の解決に向けて、正極材料の改良・改質、添加する触媒金属の最適化、電解液の最適化などが進められているが、高コスト化の問題も生じ、実用領域の空気二次電池の開発を拒んでいる。また、空気二次電池の不在は、エネルギー密度が高く、環境適合性も優れている空気電池の産業応用を極めて狭い範囲に限定にしている。 To solve these problems, improvements and reforming of the cathode material, optimization of the catalyst metal to be added, optimization of the electrolyte, etc. are being promoted. They refuse to develop secondary batteries. Moreover, the absence of the air secondary battery limits the industrial application of the air battery having high energy density and excellent environmental compatibility to a very narrow range.
発明の課題は、空気電池において繰り返しの充電−放電で生じる正極の機能劣化を克服する新しい炭素正極材料を開発し、それによる安定な空気二次電池を提供することにある。 An object of the present invention is to develop a new carbon positive electrode material that overcomes the functional deterioration of the positive electrode that occurs due to repeated charge-discharge in an air battery, and to provide a stable air secondary battery thereby.
本発明の電池正極は、前に定義したところの、種々の木材、ヤシガラなどの“おがくず”や小片などを原料とし、それらを固形に加工し、高温で炭化した“おが白炭”を使用して構成する。この炭化材料は、室温近傍において、電気伝導率σが「正の温度係数」を発現する、希少な炭化材料でもある。ほとんどの炭化材料が金属電気伝導性(負の温度係数)である中で、“おが白炭”の正の温度係数は、極めて希少な特性であり、半導体の電気伝導率σの温度係数(正の温度係数)と類似している。この特異な電気伝導性の起源は、“おが白炭”が超微粒の炭化組織(グラフェン)から構成されていることと関係しており、現在も、詳細な電気伝導機構の研究が進められている。 The battery positive electrode of the present invention uses “oga white charcoal”, which has been previously defined, and is made from various kinds of wood, coconut shells, etc. “sawdust” and small pieces, which are processed into solids and carbonized at high temperatures. Configure. This carbonized material is also a rare carbonized material whose electric conductivity σ exhibits a “positive temperature coefficient” near room temperature. While most carbonized materials have metal electrical conductivity (negative temperature coefficient), the positive temperature coefficient of “oga shirako” is a very rare characteristic, and the temperature coefficient of semiconductor electrical conductivity σ (positive) Temperature coefficient). The origin of this unique electrical conductivity is related to the fact that “Oga Shira coal” is composed of ultrafine carbonized structure (graphene), and research on detailed electrical conduction mechanisms is still underway. Yes.
“おが白炭”の特徴は、バルク形状、粉末形状、あるいは粉末からのセラミック加工した板状などにおいて、白金(Pt)などの触媒貴金属を添加しないで、空気電池正極(酸素極)の機能を有することである。このことは、公開特許公報2005−85719に記載。 The characteristic of “Oga-Shira coal” is that the function of the air battery positive electrode (oxygen electrode) can be achieved without adding a precious metal such as platinum (Pt) in bulk shape, powder shape, or ceramic processed plate shape from powder. Is to have. This is described in published patent publication 2005-85719.
本発明の炭化材料の第2の特質は、電池の放電過程だけでなく、充電過程においても、正極の炭素組織は安定であり、繰り返しの充電−放電後も、正極としての機能劣化をほとんど生じない。二次電池の正極としての安定性と強靭さは、 本、炭化材料の特徴である超微細なグラフェン粒による炭化材料であること、且つ、活性炭などに匹敵する広い内部細孔面積(600m2−1000m2/g)を内包していることに関係している。さらに、白金(Pt)などの触媒を炭素組織に付加していないことも安定性の理由の一つと考えられる。The second characteristic of the carbonized material of the present invention is that the carbon structure of the positive electrode is stable not only in the discharging process of the battery but also in the charging process, and almost deteriorates the function as the positive electrode even after repeated charging and discharging. Absent. The stability and toughness of the secondary battery as a positive electrode are as follows. This is a carbonized material with ultrafine graphene grains, which is a feature of the carbonized material, and has a wide internal pore area (600 m 2 − 1000 m 2 / g). Furthermore, it is considered that one of the reasons for stability is that a catalyst such as platinum (Pt) is not added to the carbon structure.
“おが白炭”正極の他の重要な性質は、充電過程で大量に生成されるOH−イオンを効率よく再吸収(あるいは吸着)させる能力が高く、充電過程で生じる酸素気体の発生を抑制することである。この機能は、電池出力を高めるとともに、安定な充電−放電を行う二次電池正極としての有用な性質である。Another important property of the “oga white coal” positive electrode is that it has a high ability to efficiently reabsorb (or adsorb) a large amount of OH − ions generated during the charging process, and suppresses the generation of oxygen gas generated during the charging process. That is. This function is a useful property as a secondary battery positive electrode that enhances battery output and performs stable charge-discharge.
本発明は、上記した、繰り返しの充電−放電にたいして安定な炭素正極材料(おが白炭)を使用した空気二次電池の正極材料の製造技術、とそれによる空気二次電池の開発が可能となる。 INDUSTRIAL APPLICABILITY The present invention makes it possible to develop a positive electrode material manufacturing technology for an air secondary battery that uses a carbon positive electrode material (oga white coal) that is stable against repeated charging and discharging, and the development of an air secondary battery thereby. .
本発明により、未だ実用開発がされていない空気二次電池を製造することを可能とするもので、環境性、資源性に優れた大容量の空気二次電池の産業応用が可能となる。さらに、太陽電池などと連結した充電−放電型の複合電池システムの開拓が可能となる。 The present invention makes it possible to produce an air secondary battery that has not yet been practically developed, and enables industrial application of a large-capacity air secondary battery excellent in environmental performance and resource. Further, it becomes possible to develop a charge-discharge type composite battery system connected to a solar battery or the like.
本発明のベースとなる空気二次電池の正極材料である“おが白炭”を以下に定義し、説明において呼称する。
“おが白炭”とは木材、ヤシがら、などのおがくず、破片、などを固形圧縮し、さらに、700℃から1350℃の高温条件で炭化した、空気電池正極としての十分な電気伝導性と酸素気体(O2)の吸着能と電解液へのOH−イオンへの解離能(還元能)を発現する炭素素材。“Oga white coal” which is a positive electrode material of the air secondary battery which is the base of the present invention is defined below and referred to in the description.
“Oga white charcoal” is a solid compression of sawdust and debris such as wood, palm, etc., and carbonized under high temperature conditions from 700 ° C to 1350 ° C. A carbon material that exhibits gas (O 2 ) adsorption ability and dissociation ability (reduction ability) into OH − ions in the electrolyte.
本発明を実証していく種々の実験的な手法において、2段階のプロセスをとっている。一つは、二次電池の正極としての十分な機能と充電−放電の繰り返しでの正極の耐久性を得るために、第一ステップとして正極材料であるおが白炭の炭化条件の確立である。ここでは、種々のおが屑から出発し、それらの固形加工、および必要な炭化温度の範囲の決定である。 In various experimental approaches that demonstrate the present invention, a two-step process is taken. One is establishment of carbonization conditions for sawdust, which is a positive electrode material, as a first step in order to obtain a sufficient function as a positive electrode of a secondary battery and durability of the positive electrode by repeated charge-discharge. Here, starting from various sawdust, their solid processing and determination of the range of required carbonization temperatures.
種々の原料、炭化条件で製造した正極の能力は、それを正極として構成した空気二次電池の充電−放電特性から判断した。この試験では、繰り返しの充電−放電における、負荷への定電流放電での電池出力の回復率と、負極金属(亜鉛)の重量回復率を重点的に調べた。また、正極の重要な課題である充電−放電による炭素組織の亀裂や機能劣化も注視した。 The ability of the positive electrode manufactured with various raw materials and carbonization conditions was judged from the charge-discharge characteristics of an air secondary battery that was configured as a positive electrode. In this test, the recovery rate of the battery output in the constant current discharge to the load and the weight recovery rate of the negative electrode metal (zinc) were intensively investigated in repeated charging and discharging. We also focused on carbon structure cracks and functional deterioration due to charge-discharge, which are important issues for the positive electrode.
<おが白炭の炭化条件>
本発明の基盤となる“おが白炭”の炭化条件で重要な点は、おが屑の固形加工と、それの炭化温度の決定である。固形への圧縮強度は、おが屑の原料による異なり、本実験では5気圧から120気圧の範囲で固形加工を行った。おが屑の種類により、固形加工時の圧力は変化するが、上記の圧力において、高温炭化に必要な硬度が得られることが判った。<Carbonizing conditions for ogashira coal>
The important point in the carbonization conditions of “oga white coal” that forms the basis of the present invention is the solid processing of sawdust and the determination of the carbonization temperature thereof. The compressive strength to solid differs depending on the raw material of sawdust, and in this experiment, solid processing was performed in the range of 5 to 120 atmospheres. Although the pressure during solid processing varies depending on the type of sawdust, it has been found that the hardness required for high-temperature carbonization can be obtained at the above pressure.
白炭正極材料の製造での重要なポイントは、固形加工したおが屑の、炭化温度である。二次電池の能力を発現する条件は本実験から、700℃−1350℃の高温領域でのみ、優れた二次電池正極特性を示す、おが白炭が製造できた。 An important point in the production of white charcoal cathode material is the carbonization temperature of the solid processed sawdust. As a condition for developing the capacity of the secondary battery, from this experiment, it was possible to produce sawdust with excellent secondary battery positive electrode characteristics only in a high temperature range of 700 ° C to 1350 ° C.
おが白炭の炭化条件を確立した後、さらなる正極能力の向上のための、おが白炭への窒素(N)原子、あるいは分子の添加効果を詳細に調べ、顕著な能力向上のための、添加条件を決定した。白炭の炭素壁へのN原子の吸着割合は、XPS法によるC原子のスペクトル強度と、炭素と結合しているN原子からのスペクトル強度の比較から、N原子の添加率(%)を評価した。 After establishing the carbonization conditions for sawdust, further investigate the effect of adding nitrogen (N) atoms or molecules to sawdust for further improvement of the positive electrode capacity, and add for significant improvement in capacity. The conditions were determined. The adsorption rate of N atoms on the carbon wall of white coal was evaluated by comparing the spectrum intensity of C atoms by XPS method and the spectrum intensity from N atoms bonded to carbon, and the addition rate (%) of N atoms. .
第二ステップは、空気二次電池としての正極の機能、耐久性のデ−タを得るための二次電池の構成と充電−放電特性の実験である。ここでは、種々の負極金属を調査したが、電池の負極として実績のある亜鉛による二次電池の実験を主に行った。
亜鉛を主に使用した他の理由は、充電による亜鉛の重量の回復率が99%以上と優れた特性を示したからである。勿論、負極金属は亜鉛に限定されることはなく、二次電池の負極として安定且つ、良い重量回復率を示す金属であれば本発明の電池に適応可能である。The second step is an experiment of the configuration and charge-discharge characteristics of the secondary battery for obtaining data on the function and durability of the positive electrode as the air secondary battery. Here, various types of negative electrode metals were investigated, but secondary battery experiments using zinc, which has a proven track record as negative electrodes for batteries, were mainly performed.
The other reason for mainly using zinc is that the recovery rate of the weight of zinc by charging showed an excellent characteristic of 99% or more. Of course, the negative electrode metal is not limited to zinc, and any metal that is stable and has a good weight recovery rate as a negative electrode of a secondary battery can be applied to the battery of the present invention.
<二次電池の基本構成>
正極として充填した“おが白炭”は、一次電池および二次電池において全て50gを使用した。電池の充電−放電試験は室温で行っている。電池の一次・二次電池構成での放電能力を向上させるために、“おが白炭”粉末と市販の電気伝導性の活性炭粉末を混錬したものや、それらにN処理を施した正極においても、正極の炭化材料の重量は、全て50gに統一している。<Basic configuration of secondary battery>
50 g of “oga white coal” filled as the positive electrode was used in the primary battery and the secondary battery. The battery charge-discharge test is performed at room temperature. In order to improve the discharge capacity in the primary / secondary battery configuration of the battery, the “Oga white coal” powder and the commercially available electrically conductive activated carbon powder are kneaded, and also in the positive electrode subjected to N treatment. The weight of the carbonized material for the positive electrode is all 50 g.
<電解液>
電解液は、多くの電池で使用されている、KOH、NH4Cl、NaOH,ZnCl2などの水溶液、あるいはそれらの混合溶液で構成した。ここでは、安価、かつ取扱が容易なNH4Cl−水溶液(20%)をベースとした電解液での結果を使って説明する。<Electrolyte>
The electrolyte was composed of an aqueous solution such as KOH, NH 4 Cl, NaOH, ZnCl 2 or a mixed solution thereof used in many batteries. Here, a description will be given using results of an electrolytic solution based on an NH 4 Cl-aqueous solution (20%) that is inexpensive and easy to handle.
以下に、本発明の内容を実施例をもとに説明していく。二次電池実験の前に、基礎となる空気一次電池の放電特性から説明する。図1は、バルク形状の“おが白炭”を正極とした空気電池の放電特性を示す。正極の“おが白炭”は、正方形の板状形状に加工し、それに、電流を取り出すための炭素電極を付けた。炭素電極を除く正極重量は50gとした。電解液は20%のNH4Cl水溶液を使用した。The contents of the present invention will be described below based on examples. Before the secondary battery experiment, the discharge characteristics of the basic air primary battery will be described. FIG. 1 shows the discharge characteristics of an air battery having bulk-shaped “oga white coal” as a positive electrode. The positive “oga white charcoal” was processed into a square plate shape, and a carbon electrode was attached to extract current. The positive electrode weight excluding the carbon electrode was 50 g. As the electrolytic solution, a 20% NH 4 Cl aqueous solution was used.
負極の亜鉛(Zn)重量を15gとした電池#A,および6gとした電池#Bの2種類で空気一次電池を構成し、放電特性を比較した。負極金属(亜鉛)を15g充填した電池(#A)は、50mAの定電流放電で、起電力0.8V程度で定常出力に達し、その後、150時間放電後も安定な電池動作を維持した。この放電量は、7500mAhで、負極の亜鉛重量は約9gが減少しており、まだ6g程度、亜鉛は残存している。 An air primary battery was composed of two types of battery, battery #A having a negative zinc (Zn) weight of 15 g and battery #B having 6 g, and the discharge characteristics were compared. The battery (#A) filled with 15 g of the negative electrode metal (zinc) reached a steady output at an electromotive force of about 0.8 V with a constant current discharge of 50 mA, and thereafter maintained a stable battery operation even after 150 hours of discharge. This discharge amount is 7500 mAh, and the zinc weight of the negative electrode is reduced by about 9 g, and zinc is still about 6 g.
一方、6gの亜鉛を充填した空気電池#Bは同様の放電において、90時間程度の放電時間で、電池出力電圧が急激に低下してくる。この出力低下は、充填した亜鉛の枯渇が始まっていることを示す。負極金属の枯渇が始まると、空気一次電池の出力は急速に減少し、電池能力を失い一次電池としての寿命を終えることになる。図1は、一次電池の放電容量の限界、を理解するための基礎データであり、以下の二次電池の放電特性と対比すべきデータとなる。 On the other hand, in the case of air battery #B filled with 6 g of zinc, the battery output voltage rapidly decreases in the same discharge in about 90 hours of discharge time. This decrease in power indicates that the charged zinc has begun to be depleted. When the depletion of the negative electrode metal begins, the output of the air primary battery decreases rapidly, losing battery capacity and ending the life of the primary battery. FIG. 1 is basic data for understanding the limit of the discharge capacity of the primary battery, and is data to be compared with the following discharge characteristics of the secondary battery.
<請求項1−4の説明>
亜鉛を負極金属とする空気二次電池は、以下の放電−充電過程の基本的な化学反応式をベースに議論する。ここではより詳細な反応過程には立ち入らない。
(放電):Zn2++2OH−
→ Zn(OH)2(中間生成物)→ ZnO(固体)+H2O
(充電):Zn(OH)2(中間生成物) → Zn2+ + 2OH− <Explanation of Claims 1-4>
The air secondary battery using zinc as a negative electrode metal will be discussed based on the basic chemical reaction formula of the following discharge-charge process. We will not go into more detailed reaction processes here.
(Discharge): Zn 2+ + 2OH −
→ Zn (OH) 2 (intermediate product) → ZnO (solid) + H 2 O
(Charge): Zn (OH) 2 (intermediate product) → Zn 2+ + 2OH −
放電過程で生成される中間生成物であるZn(OH)2は、最終的には、安定なZnO(固体)へ変化するが、ZnOからの充電は困難であり、中間生成物であるZn(OH)2からのZn2+と2OH−への逆の反応を利用する。ZN2+は負極であるZn(金属固体)に還元され、OH−は、正極に吸収されるか、あるいは酸素気体として放出される。 正極に再吸収されるOH−イオンは、外部から補給される酸素気体から生成されるOH−イオンと共に放電電流に寄与することができる。Zn (OH) 2 which is an intermediate product generated in the discharge process eventually changes to stable ZnO (solid), but charging from ZnO is difficult, and Zn (OH) which is an intermediate product The reverse reaction from OH) 2 to Zn 2+ and 2OH − is utilized. ZN 2+ is reduced to Zn (metal solid) as the negative electrode, and OH − is absorbed by the positive electrode or released as oxygen gas. The OH − ions reabsorbed by the positive electrode can contribute to the discharge current together with the OH − ions generated from oxygen gas replenished from the outside.
空気二次電池の電極構成は、一次電池の2電極構成、および、もう一つ炭素棒からなる第二の正極での3電極構成で行った。3電極構成の理由は、おが白炭正極と炭素棒正極での充電−放電特性の顕著な差異を確認するためである。 The electrode configuration of the air secondary battery was the two-electrode configuration of the primary battery and the three-electrode configuration with the second positive electrode made of another carbon rod. The reason for the three-electrode configuration is to confirm a remarkable difference in charge-discharge characteristics between the positive white carbon positive electrode and the carbon rod positive electrode.
実験では炭素棒を正極とする、充電特性に比較して、亜鉛負極−おが白炭・正極の2電極構成での充電−放電特性が顕著に優れている結果を得た。この結果は、“おが白炭”正極が、放電過程でも充電過程でも機能劣化の少ない安定した正極であることを示している。 また、充電後の電池出力は大きく向上していた。これは、充電過程で発生した、高濃度OH−イオンをおが白炭正極が効率的に再吸収、あるいはOH−の白炭へのインターカレーションが生じ、充電後の空気電池の出力を向上させていることが判った。In the experiment, as compared with the charging characteristics using a carbon rod as a positive electrode, the charging-discharging characteristics in a two-electrode configuration of zinc negative electrode-ogo charcoal / positive electrode were significantly improved. This result indicates that the “oga white charcoal” positive electrode is a stable positive electrode with little functional deterioration in both the discharging process and the charging process. Moreover, the battery output after charge was greatly improved. This is because high-concentration OH − ions generated during the charging process are efficiently absorbed by the positive electrode of the white coal, or the intercalation of OH − into the white coal occurs, improving the output of the air battery after charging. I found out.
一方、追加した炭素正極による充電実験では、充電時のガス発生が顕著であり、充電後の電池出力の向上はみられなかった。以下では、安定な充電−放電機能を示した白炭正極−亜鉛負極の2電極電池の結果を使用して説明していく。 On the other hand, in the charging experiment using the added carbon positive electrode, gas generation during charging was significant, and the battery output after charging was not improved. Below, it demonstrates using the result of the two-electrode battery of the charcoal positive electrode-zinc negative electrode which showed the stable charge-discharge function.
二次電池としての充電−放電特性に関する3回までの基礎実験をおこなった この充電実験で使用した空気電池は、亜鉛充填が10gの空気電池であり、50mA,90時間の放電後に3回の充電−放電特性を調べたものである。 Up to 3 basic experiments were conducted on the charge-discharge characteristics as a secondary battery. The air battery used in this charge experiment was an air battery with a zinc filling of 10 g, and was charged 3 times after discharging at 50 mA for 90 hours. -The discharge characteristics were examined.
図2は電池への充電を300mAの定電流条件で10時間、その後、90時間放電を、3周期行った結果である。充電電圧(300mA)は初期の1.3Vから最終での2.0程度まで変化した。放電実験は全て50mA(定電流放電)で行った。 FIG. 2 shows the result of charging the battery for 10 hours under a constant current condition of 300 mA and then discharging for 90 hours for 3 cycles. The charging voltage (300 mA) varied from the initial 1.3 V to the final value of about 2.0. All discharge experiments were performed at 50 mA (constant current discharge).
1回目の充電後の電池の電圧は充電前のそれより顕著に増加している。20時間程度の放電では、1.0V−1.5Vの高い出力電圧が発生する。さらに長期放電では、の1V程度に安定する。3回の充電−放電実験では、全て、初回の充電前の電池出力を上回る放電特性が観測されている。 The voltage of the battery after the first charge is remarkably increased from that before the charge. In the discharge for about 20 hours, a high output voltage of 1.0V-1.5V is generated. Furthermore, in long-term discharge, it stabilizes to about 1V. In all three charge-discharge experiments, discharge characteristics exceeding the battery output before the first charge are observed.
この3回の充電での電池出力の回復率は充電前のそれと比較して、全て120%以上であり、負極の亜鉛の重量回復率は3回とも、99%以上の高い回復率を示した。充電前の電池出力(50mA,0.8V)より、充電後の20時間以上の長期で、高い電池出力が発生することは望外の効果であり、この原因は、充電による亜鉛金属の活性化、および充電で発生する高濃度のOH−イオンの正極による吸収効果が働いている。The recovery rate of the battery output after the three times of charging was 120% or more in comparison with that before the charging, and the weight recovery rate of zinc of the negative electrode showed a high recovery rate of 99% or more in all three times. . It is an unexpected effect that a high battery output is generated in a long period of 20 hours or more after charging from the battery output (50 mA, 0.8 V) before charging, and this is caused by activation of zinc metal by charging, and a high concentration of OH generated in charge - is working absorption effect due to the positive pole of the ions.
図3は木材のおが屑からの白炭で正極を構成した空気二次電池の20回の充電−放電試験の結果である。放電は全て50mA定電流放電での電池の出力電圧と負極亜鉛の重量の回復率(%)を調査した。20回の充電は全て400mA,10時間とした。電池の出力電圧の回復率は初回の充電で出力が130%以上に向上するので、1回の充電後の放電出力を基準にして評価した。 FIG. 3 shows the results of 20 charge-discharge tests of an air secondary battery having a positive electrode made of white coal from wood sawdust. All the discharges were investigated for the output voltage of the battery and the recovery rate (%) of the weight of the negative electrode zinc at 50 mA constant current discharge. The 20 chargings were all 400 mA for 10 hours. The recovery rate of the output voltage of the battery was evaluated based on the discharge output after one charge because the output was improved to 130% or more after the first charge.
50mA放電での電池電圧は20回のサイクル試験において、99%以上の優れた回復特性を示していることが判る。また、負極亜鉛の重量回復率も、全て99%以上の回復率を得た。 It can be seen that the battery voltage at 50 mA discharge shows excellent recovery characteristics of 99% or more in 20 cycle tests. In addition, the weight recovery rate of the negative electrode zinc was 99% or more.
<おが白炭正極の種類と炭化条件>
おが白炭正極の機能をさらに向上させる適切な炭化温度を調査するために、木材のおが屑とヤシガラのおが屑を原料として、種々の炭化温度で正極を作製した。種々の温度で炭化したおが白炭を正極とした空気二次電池の電池出力、亜鉛負極の重量回復率を20回の充電−放電サイクル試験で評価した結果を図4に示す。図4は20回の充電−放電試験での平均の出力電圧の回復率を炭化温度に対してプロットしている。<Types and carbonization conditions of positive white carbon coal>
In order to investigate an appropriate carbonization temperature for further improving the function of the positive white charcoal cathode, positive electrodes were produced at various carbonization temperatures using wood sawdust and palm sawdust as raw materials. FIG. 4 shows the results of evaluating the battery output of an air secondary battery using sawdust charcoal carbonized at various temperatures as the positive electrode and the weight recovery rate of the zinc negative electrode by 20 charge-discharge cycle tests. FIG. 4 plots the average output voltage recovery in 20 charge-discharge tests against the carbonization temperature.
図4から、空気二次電池の良好な正極を製造する条件に、炭化温度が重要な条件となっているころが判る。本実験では、木材のおが屑、およびヤシガラのおが屑、から炭化した正極は、700℃−1350℃の温度領域で炭化を行う必要がある。これらの高温炭化を可能にするには、木材・粉末の圧縮による固形化がひつようであるが、本実験では1軸性圧力、およびせん断圧力を4気圧から250気圧の範囲で固形整形した。圧力の最適値は原料が木材やヤシガラなどのおが屑により異なり、上記の圧力の範囲内で適正な固形化が必要である。固形プロセスを大規模に行うには回転・押し出し装置などの利用が実用てきであろう。 It can be seen from FIG. 4 that the carbonization temperature is an important condition for producing a good positive electrode for an air secondary battery. In this experiment, the positive electrode carbonized from wood sawdust and palm sawdust needs to be carbonized in a temperature range of 700 ° C to 1350 ° C. In order to enable high-temperature carbonization, solidification by compression of wood / powder is likely. In this experiment, uniaxial pressure and shear pressure were solidified in the range of 4 to 250 atm. The optimum pressure value varies depending on the sawdust such as wood and coconut shells, and appropriate solidification is required within the above pressure range. In order to carry out a solid process on a large scale, the use of a rotation / extrusion apparatus will be practical.
二次電池の出力回復率が95%以上を確保できる炭化温度の上限は1350℃で、低限温度は700℃であることが判った。おが屑の原料の種類で炭化温度特性が多少異なるのは、材料の粉末の粒径や固形加工した時の硬度の違いが原因と思われる。 It was found that the upper limit of the carbonization temperature at which the output recovery rate of the secondary battery can ensure 95% or more is 1350 ° C., and the lower limit temperature is 700 ° C. The reason why the carbonization temperature characteristics are slightly different depending on the type of raw material of sawdust is considered to be due to the difference in the particle size of the material powder and the hardness when solid processed.
炭化時間は原料のおが屑の量と炭化温度により異なり、原料に適合した適切な炭化時間を選ぶ必要がある。 The carbonization time varies depending on the amount of raw material sawdust and the carbonization temperature, and it is necessary to select an appropriate carbonization time suitable for the raw material.
要するに、空気二次電池の正極として重要なポイントは、炭化温度の条件を700℃から1350℃の範囲で行うことが条件であることが判る。 In short, it can be seen that an important point as the positive electrode of the air secondary battery is that the carbonization temperature is in the range of 700 ° C. to 1350 ° C.
<白炭正極の加工形状>
おが白炭の製造条件が把握できたので、白炭の正極としての形状に関して実験を進めた。バルク型から、白炭粉末形状と粉末をバインダーに溶解させて、高温でセラミック加工した板状の正極を作製し、二次電池の正極としての特性を調査した。種々の白炭の形状(粉末、セラミック板状など)、および白炭粉末と活性炭粉末を混錬させた正極での二次電池特性の結果を表1にまとめた。評価した特性は充電容量と放電容量の比と、負極亜鉛の重量の回復率である。試験は20回充電−放電サイクル試験での平均値を評価している。<Processing shape of white charcoal cathode>
Since the production conditions of white coal were understood, experiments were conducted on the shape of white coal as a positive electrode. From the bulk type, white charcoal powder shape and powder were dissolved in a binder to produce a plate-like positive electrode that was ceramic processed at high temperature, and the characteristics of the secondary battery as a positive electrode were investigated. Table 1 summarizes the results of secondary battery characteristics of various types of white coal (powder, ceramic plate, etc.) and positive electrodes obtained by kneading white coal powder and activated carbon powder. The evaluated characteristics are the ratio between the charge capacity and the discharge capacity and the recovery rate of the weight of the negative electrode zinc. The test evaluated the average value in a 20 times charge-discharge cycle test.
表1から、おが白炭はバルク型の正極のみでなく、白炭粉末、白炭−活性炭粉末の混合、あるいはセラミック板状加工した形状でも優れた二次電池正極として機能することが判る。この実験はおが白炭による実用的な空気二次電池の製造において有用な知見となる。From Table 1, it can be seen that ogashira coal functions as an excellent secondary battery positive electrode not only in the bulk type positive electrode but also in the shape of white charcoal powder, white charcoal-activated carbon powder mixture, or ceramic plate processing. This experiment is a useful finding in the production of a practical air secondary battery using white coal.
<N分子添加効果>
以下に950℃で、木材のおが屑から炭化した空気二次電池正極への、窒素原子の添加による正極機能の顕著な向上効果について、実験結果に基づいて説明する。
おが白炭の正極能力は、通常の水蒸気やCO2ガスによる 賦活においても2−3割の機能向上は確認されたが、窒素(N)分子(あるいは窒素原子)、あるいは BNなどのようなN化合物の白炭の炭素組織への添加により、正極機能の向上が確認できた。<N-molecule addition effect>
Below, the remarkable improvement effect of the positive electrode function by the addition of the nitrogen atom to the air secondary battery positive electrode carbonized from wood sawdust at 950 ° C. will be described based on the experimental results.
The positive electrode capacity of sawdust has been confirmed to be improved by 2-3% in the activation with normal steam and CO 2 gas, but N (such as nitrogen (N) molecules (or nitrogen atoms) or BN The positive electrode function was confirmed to be improved by adding the compound to the carbon structure of white coal.
N分子(N原子)の白炭への添加は、窒素雰囲気での放電や、直流スパッタリング装置において行った。添加は全て室温で、5分から60分程度の時間で室温にて行っている。N原子の添加は、N化合物、ボロンナイトライド(BN)、でも行った。BN添加では、真空中での電子ガン蒸着の方法で添加した。 The addition of N molecules (N atoms) to the white coal was performed in a discharge in a nitrogen atmosphere or in a direct current sputtering apparatus. All the additions are performed at room temperature for about 5 to 60 minutes at room temperature. The addition of N atoms was also performed with N compound and boron nitride (BN). In BN addition, it added by the method of the electron gun vapor deposition in a vacuum.
白炭の炭素組織へのN原子の添加量はXPS分析により評価した。 スパッタ法では5分程度のN添加では、白炭の表面炭素(C)原子数にたいして数%の割でN原子が結合しており、60分のN添加では、30%程度までN添加が進んでいた。BN蒸着は、5分から45分間で行った。 これらのBNの白炭への蒸着は、二次電池の正極能力、特に、放電時の出力電圧(50mA放電)を40%以上に向上させる働きが検証できた。 The amount of N atom added to the carbon structure of white coal was evaluated by XPS analysis. In the sputtering method, when N is added for about 5 minutes, N atoms are bonded at a rate of several percent with respect to the number of surface carbon (C) atoms of the white coal, and when N is added for 60 minutes, N addition proceeds to about 30%. It was. BN deposition was performed in 5 minutes to 45 minutes. It has been verified that the deposition of BN on white coal improves the positive electrode capacity of the secondary battery, in particular, the function of improving the output voltage (50 mA discharge) during discharge to 40% or more.
炭素組織に添加したN原子(分子)効果を図4に示す。図4の横軸は、N添加後に数分のアニ−ルをしてからXPSにより決定したC原子に対するN原子の付着割合(%)である。縦軸は二次電池の放電出力電圧(50mA)をN添加なしのケ−スで規格化した比率(%)を表している。N添加効果は、N単体でも、BNなどの化合物でも、空気二次電池の出力向上に顕著な寄与をすることが判明した。 The N atom (molecule) effect added to the carbon structure is shown in FIG. The horizontal axis in FIG. 4 represents the adhesion ratio (%) of N atoms to C atoms determined by XPS after annealing for several minutes after N addition. The vertical axis represents the ratio (%) obtained by standardizing the discharge output voltage (50 mA) of the secondary battery in the case without N addition. It has been found that the N addition effect contributes significantly to the output improvement of the air secondary battery, whether it is N alone or a compound such as BN.
炭素数へのN分子、あるいはN原子添加割合が数%の領域でも明確な正極能力の向上が認められる。N添加率がさらに増加すると、正極能力は最大で140%程度まで向上する。このN添加の条件(温度、N添加プロセスなど)は最適化できていはいないが、さらに条件を選定することで150%程度まで機能の向上が期待できる。 A clear improvement in positive electrode capability is observed even in the region where the number of N molecules or the number of N atoms added to the carbon number is several percent. When the N addition rate is further increased, the positive electrode capacity is improved to about 140% at the maximum. Although the conditions for N addition (temperature, N addition process, etc.) have not been optimized, further improvement of the function can be expected up to about 150% by further selecting the conditions.
白炭へのN添加処理は、大電流動作を要求される空気二次電池などで威力を発揮する重要な白炭正極の性質と言える。 また、添加するN分子などはPtなどの高価な触媒と異なり、本空気二次電池の特徴である、低コスト生産を阻害することはない。 The N addition treatment to the white coal can be said to be an important property of the white coal positive electrode that exerts its power in an air secondary battery or the like that requires a large current operation. In addition, unlike the expensive catalyst such as Pt, the N molecule to be added does not hinder low-cost production, which is a feature of the present air secondary battery.
本おが白炭正極の能力をさらに向上するためのPtなどの添加は、もちろん可能であるが、本白炭正極はそのままの状態でも実用水準の電池正極の能力を有しているが、少量のPt触媒の添加で、顕著な正極機能向上が実現されうることを付記しておく。 It is of course possible to add Pt or the like to further improve the capacity of the present white coal positive electrode, but the present white coal positive electrode has a practical level of battery positive electrode capacity as it is, but a small amount of Pt. It should be noted that a significant positive electrode function improvement can be realized by the addition of a catalyst.
以下に、負極に水素吸蔵合金を用い、正極に本発明のおが白炭とNiOOH等を混合した酸素極による空気二次電池に関しする説明を行う。
本電池の基本構成は図6に示している。この電池では、H+イオンは負極の水素吸蔵合金(実験ではPdを使用)から放出され、OH−イオンは外部の酸素気体、および白炭内部に蓄積されているOH−イオンを利用する。Hereinafter, an explanation will be given regarding an air secondary battery using an oxygen electrode in which a hydrogen storage alloy is used for the negative electrode and the present invention is mixed with sawdust and NiOOH.
The basic structure of this battery is shown in FIG. In this battery, H + ions are released from the hydrogen storage alloy of the negative electrode (Pd is used in the experiment), and OH − ions use external oxygen gas and OH − ions accumulated in the white coal.
ここで水の電気分解を効率よく行う必要があり、その機能は白炭に混錬したNiOOHが担うことになる。正極(白炭とNiOOH)に外部から空気中の酸素が供給されることにより新たなOHイオンが生成され、それにより充放電のサイクル性に優れる空気二次電池が可能となる。 Here, it is necessary to efficiently perform electrolysis of water, and the function is assumed to be NiOOH kneaded into white coal. By supplying oxygen in the air to the positive electrode (white coal and NiOOH) from the outside, new OH ions are generated, thereby enabling an air secondary battery having excellent charge / discharge cycleability.
図7は4回までのサイクル試験の結果であり、電池の出力の回復率は99%を得ている。このサイクル試験においては、H+イオンの回収率が重要となるが、20回のサイクル試験では98%以上の回復率が検証できた。FIG. 7 shows the results of up to four cycle tests, and the battery output recovery rate is 99%. In this cycle test, the recovery rate of H + ions is important, but a recovery rate of 98% or more was verified in 20 cycle tests.
この空気二次電池は負極が水素極となり、かつ、大容量電池も可能であることから実用的な二次電池として優れている。2種類の空気二次電池の(亜鉛負極、水素負極)特性を説明してきたが、以下にはそれらの電池モジュ−ルと、他の太陽電池などの電源と連結させた複合電池システムと、それらの産業応用について説明する。 This air secondary battery is excellent as a practical secondary battery because the negative electrode is a hydrogen electrode and a large capacity battery is also possible. The characteristics of the two types of air secondary batteries (zinc negative electrode, hydrogen negative electrode) have been described. In the following, these battery modules, combined battery systems connected to other power sources such as solar cells, and the like The industrial application of will be described.
<空気二次電池−太陽電池の連結による複合型電池システム>
本発明の空気二次電池は低コスト且つ大量生産が可能であり、大容量の空気二次電池を製造できる特徴を有している。この充電−放電可能な空気電池は、単独の電池としても有用な電池であるが、太陽電池などと連結させることで環境に優れた再生可能な電池システムを構築することが可能となる。<Composite battery system by connecting air secondary battery and solar battery>
The air secondary battery of the present invention is low-cost and mass-produced, and has a feature that a large-capacity air secondary battery can be manufactured. This rechargeable / dischargeable air battery is a useful battery as a single battery, but it is possible to construct a reproducible battery system excellent in the environment by being connected to a solar battery or the like.
図8は本空気二次電池モジュールへの充電装置として太陽電池モジュールを連結させた複合電池システムの一例を示す。この複合電池システムでは太陽電池からの時間変動する電流出力は、空気電池への充電過程を経ることで安定化した電流出力を負荷に提供できる。また、太陽光の少ない時間や夜間でも、充電された空気二次電池かから安定な電流を負荷に供給することも可能となる。図8の電子制御スイッチ部は、光強度センサーなどを内蔵し、太陽電池からの充電のタイミグ、および空気電池からの負荷への出力のタイミングを適切に制御する機能を有している。 FIG. 8 shows an example of a composite battery system in which solar battery modules are connected as a charging device for the air secondary battery module. In this composite battery system, the time-varying current output from the solar battery can provide a stabilized current output to the load through a process of charging the air battery. In addition, it is possible to supply a stable current to the load from the charged air secondary battery even when the sunlight is low or at night. The electronic control switch unit shown in FIG. 8 has a function of appropriately controlling the timing of charging from the solar battery and the output from the air battery to the load.
ここでは複合電池システムの基本構成の一例を示しているが、負荷の種類により、空気電池の下段に、Ni−H、Liイオン電池などの簡易な二次電池モジュールを付加することで、さらに応用性の高い複合電池システムが可能となる。 Here, an example of the basic configuration of the composite battery system is shown. Depending on the type of load, a simple secondary battery module such as a Ni-H or Li-ion battery is added to the lower stage of the air battery, so that it can be further applied. A highly efficient composite battery system becomes possible.
空気二次電池の優れた充電−放電特性と低コストでの大容量化の利点を利用すると、現在、世界的な規模で開発が進んでいる、各種電力源の供給−蓄積−分配をネットワ−クで制御する、電力のスマートグリッドの電源おおよび大容量充電装置として応用することが可能である。 Taking advantage of the excellent charge-discharge characteristics of air rechargeable batteries and high capacity at low cost, the supply-storage-distribution of various power sources that are currently under development on a global scale It can be applied as a smart grid power source and a large-capacity charging device that are controlled by a power source.
このネットワークの電力源は、商用電力以外に、規模の異なる大小の電源、例えば、太陽発電、風力発電などがあるが、本空気二次電池の特徴を利用すれば、種々の電源に適合した、大・中・小規模の容量を持つ空気二次電池モジュールが可能である。 In addition to commercial power, the power sources of this network include large and small power sources with different scales, such as solar power generation and wind power generation, etc., but using the features of this air secondary battery, it is suitable for various power sources. Air secondary battery modules with large, medium and small capacities are possible.
種々の電源の充電−放電装置として、Pb蓄電池などの他の優れたバッテリーなどと併用することにより、効率的、且つ安定な電力供給を可能とするスマートグリッドが実現しうる。 As a charging / discharging device of various power sources, a smart grid that enables efficient and stable power supply can be realized by using together with other excellent batteries such as a Pb storage battery.
以上、本発明に関する実験の詳細、優れた充電−放電特性を、負極金属が亜鉛、電解液がNH4Cl系で説明してきたが、おが白炭正極による空気二次電池は、負極金属や電解液を限定しないことはいうまででもない。As described above, the details of the experiment relating to the present invention and the excellent charge-discharge characteristics have been described in which the negative electrode metal is zinc and the electrolytic solution is NH 4 Cl system. It goes without saying that the liquid is not limited.
また、太陽電池を充電ソースとして連結させた複合電池システムの構成を示したが、太陽電池以外の種々の電源との連携が可能であること、またその複合電池システムが、LED照明装置・イルミネーション装置、各種の防災用照明電源など、極めて多種の応用範囲を有していることも付記しておく。 Moreover, although the structure of the composite battery system which connected the solar cell as a charging source was shown, cooperation with various power supplies other than a solar battery is possible, and the composite battery system is an LED lighting device and an illumination device. It should also be noted that it has a very wide range of applications, such as various types of lighting power supplies for disaster prevention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012042416A JP2013165051A (en) | 2012-02-11 | 2012-02-11 | Battery cathode material and air secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012042416A JP2013165051A (en) | 2012-02-11 | 2012-02-11 | Battery cathode material and air secondary battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013165051A true JP2013165051A (en) | 2013-08-22 |
Family
ID=49176273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012042416A Pending JP2013165051A (en) | 2012-02-11 | 2012-02-11 | Battery cathode material and air secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013165051A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065082A1 (en) * | 2012-10-23 | 2014-05-01 | トヨタ自動車株式会社 | Carbon material for positive electrode of lithium air battery and lithium air battery |
WO2015072578A1 (en) * | 2013-11-18 | 2015-05-21 | 住友化学株式会社 | Positive electrode catalyst for air secondary battery, positive electrode catalyst layer for air secondary battery, and air secondary battery |
JP2018532224A (en) * | 2015-07-31 | 2018-11-01 | アルマ マター ストゥディオラム−ウニベルシタ ディ ボローニャ | Semi-solid flow Li / O2 battery |
WO2019012922A1 (en) * | 2017-07-13 | 2019-01-17 | ソフトバンク株式会社 | Battery system and moving body |
JP2019021435A (en) * | 2017-07-13 | 2019-02-07 | 日本碍子株式会社 | All-solid secondary battery |
-
2012
- 2012-02-11 JP JP2012042416A patent/JP2013165051A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014065082A1 (en) * | 2012-10-23 | 2014-05-01 | トヨタ自動車株式会社 | Carbon material for positive electrode of lithium air battery and lithium air battery |
US9368849B2 (en) | 2012-10-23 | 2016-06-14 | Nisshinbo Holdings Inc. | Carbonaceous material for lithium-air battery cathodes and lithium battery |
WO2015072578A1 (en) * | 2013-11-18 | 2015-05-21 | 住友化学株式会社 | Positive electrode catalyst for air secondary battery, positive electrode catalyst layer for air secondary battery, and air secondary battery |
JPWO2015072578A1 (en) * | 2013-11-18 | 2017-03-16 | 住友化学株式会社 | Positive electrode catalyst for air secondary battery, positive electrode catalyst layer for air secondary battery, and air secondary battery |
JP2018532224A (en) * | 2015-07-31 | 2018-11-01 | アルマ マター ストゥディオラム−ウニベルシタ ディ ボローニャ | Semi-solid flow Li / O2 battery |
WO2019012922A1 (en) * | 2017-07-13 | 2019-01-17 | ソフトバンク株式会社 | Battery system and moving body |
JP2019021444A (en) * | 2017-07-13 | 2019-02-07 | ソフトバンク株式会社 | Cell system and mobile object |
JP2019021435A (en) * | 2017-07-13 | 2019-02-07 | 日本碍子株式会社 | All-solid secondary battery |
US11411270B2 (en) | 2017-07-13 | 2022-08-09 | Softbank Corp. | Battery system and moving body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Hierarchical NiCo2S4@ NiO core–shell heterostructures as catalytic cathode for long‐life Li‐O2 batteries | |
CN106133993B (en) | Alkaline secondary battery | |
Uesato et al. | Hybrid nickel-metal hydride/hydrogen battery | |
Yang et al. | A start of the renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an ultra-long cycle life | |
CN104393290B (en) | A kind of employing MoS2aluminium ion battery for positive electrode and preparation method thereof | |
CN104201397B (en) | The preparation method of a kind of lithium-air battery electrode | |
CN105247713B (en) | Sodium ion secondary battery negative electrode active material, its manufacture method and sodium ion secondary battery | |
CN106115654A (en) | The three-dimensional porous material with carbon element of a kind of Heteroatom doping, preparation method and applications | |
JP2013165051A (en) | Battery cathode material and air secondary battery using the same | |
CN105428627B (en) | The preparation method and applications of hydrogen bearing alloy and graphene composite material (HSAs@RGO) | |
AU2015400449A1 (en) | Doped conductive oxide and improved electrochemical energy storage device polar plate based on same | |
CN104659346A (en) | Germanium/carbon composite negative electrode material and preparation method thereof | |
CN106532010B (en) | Silicon-silicon nitride-carbon composite material and preparation method and application method thereof | |
Lin et al. | Molten‐NaNH2 densified graphene with in‐plane nanopores and n‐doping for compact capacitive energy storage | |
CN102671686A (en) | Preparation of nitrogen-doping graphene and oxygen reduction performance thereof | |
JP2006512729A (en) | Active electrode composition using conductive polymer binder | |
Trocino et al. | Iron–air battery operating at high temperature | |
Zhipeng et al. | Hierarchical porous carbon toward effective cathode in advanced zinc-cerium redox flow battery | |
JP2013251249A (en) | Carbonized graphene positive electrode-negative electrode material for battery, and secondary battery including the same | |
CN102227022A (en) | Li2FeSiO4 anode material for lithium ion battery and preparation method thereof | |
CN107316974B (en) | Preparation method of nano-silver composite lithium iron phosphate cathode material | |
JP2015023019A (en) | Carbon electrode storage battery including hydrogen and halogen element ion as active material | |
Xu et al. | Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for long-term zinc–air fuel cells and rechargeable batteries | |
CN108598367B (en) | High-voltage negative plate, preparation method thereof and high-voltage lithium battery | |
US10784505B2 (en) | Air stable lithium sulfide cathode compositions, methods for producing them, and solid-state lithium batteries incorporating the same |