JP2019021305A - 監視システム - Google Patents

監視システム Download PDF

Info

Publication number
JP2019021305A
JP2019021305A JP2018118677A JP2018118677A JP2019021305A JP 2019021305 A JP2019021305 A JP 2019021305A JP 2018118677 A JP2018118677 A JP 2018118677A JP 2018118677 A JP2018118677 A JP 2018118677A JP 2019021305 A JP2019021305 A JP 2019021305A
Authority
JP
Japan
Prior art keywords
data
equipment
generator
facility
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018118677A
Other languages
English (en)
Other versions
JP7035842B2 (ja
Inventor
脩 外田
Osamu Toda
脩 外田
中尾 浩二
Koji Nakao
浩二 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Publication of JP2019021305A publication Critical patent/JP2019021305A/ja
Application granted granted Critical
Publication of JP7035842B2 publication Critical patent/JP7035842B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】設備故障の予兆を捉えて故障を予測し、かつ既存設備に容易に適用な監視システムを提供する。【解決手段】監視システム12の計測部13は、監視対象設備11に対して与えた入力と、入力を与えたときの設備状態とをセンサS1〜S4に計測させる。データ記録部14は、計測部13の計測データを一定周期で記録し、該周期分の計測データを時系列データとして蓄積する。解析処理部15は、記録部14の時系列データに基づき入力に対する設備状態の時間的変化の傾向を算出する。状態評価部16は、監視対象設備11の正常運転時の時間的変化の傾向を記憶し、記憶された時間的変化の傾向に基づき正常範囲の閾値を定める。ここで定められた正常範囲を前記解析処理部15で算出された時間的変化の傾向が逸脱していれば、監視対象設備11に故障予兆発生と判定する。【選択図】図2

Description

本発明は、プラントなどで稼働する設備を監視するシステムに関する。
特許文献1に記載された蒸気使用設備の監視システムの概略を説明する。この監視システムは、蒸気使用設備の故障(異常)を早期発見するため、蒸気使用機器に付随する設備、即ち蒸気制御器(蒸気トラップ)の状態を監視する。
この蒸気制御器に取り付けられたセンサによって温度・圧力・流量などの情報を取得し、取得された情報に基づき蒸気制御器の状態を検出する。このとき蒸気使用設備の故障が発生する前に蒸気制御器の故障などによりセンサが異常値を示す場合がある。このセンサの異常値を捉えることで蒸気使用設備の故障の未然防止を図っている。
特許第5818337号公報
前述のように特許文献1の発明は、先に発生する蒸気制御器の故障を検出することで蒸気使用機器の故障を推定しているものの、次のような問題があった。
すなわち、特許文献1の発明は、蒸気制御器が故障しなければ蒸気使用設備の故障を検出することができず、蒸気使用設備の故障発生を予測するシステムとして効果的ではない。
また、蒸気制御器に対して温度センサ,振動センサ,圧力計,流量計などの様々な計器をセンサとして取り付けて状態監視する必要があるため、既存設備への適用が難しく、コスト高となるおそれがある。
本発明は、このような従来の問題を解決するためになされ、設備故障の予兆を捉えて故障を予測し、かつ既存設備に容易に適用な監視システムの提供を解決課題としている。
(1)本発明は、監視対象の設備を監視するシステムであって、
前記設備に対して与えた入力と、該入力を与えたときの前記設備の設備状態とを計測する計測部と、
前記計測部の計測データを一定周期で記録し、該周期分の計測データを時系列データとして蓄積する記録部と、
前記記録部の時系列データに基づき入力に対する前記設備状態の時間的変化の傾向を算出する解析処理部と、
前記解析処理部で算出される前記時間的変化の傾向が、あらかじめ正常運転時の時間的変化の傾向に基づき定められた正常範囲を逸脱していれば、前記設備について故障予兆発生と判定する状態評価部と、を備える。
(2)本発明の一態様は、前記設備が発動機の排ガスの熱を冷却する熱交換装置であって、
前記計測部は、前記熱交換装置に入力される熱量と、前記熱交換装置の冷却水の発熱量とを計測し、
前記解析処理部は、前記発動機の停止から所定期間の前記熱量と前記発熱量との時間的変化の傾向に近似した1次関数を算出し、
前記状態評価部は、前記1次関数の傾向が前記正常範囲を逸脱していれば、前記熱交換装置について故障予兆発生と判定する。
(3)本発明の他の態様は、前記設備が駆動原に駆動される発電機であって、
前記計測部は、前記発電機に与えられる駆動力に相関して変動する温度と、前記発電機の駆動力によって引き起こされる潤滑油の発熱量とを計測し、
前記解析処理部は、前記発電機の運転開始から所定時間における前記温度と前記発熱量との時間的変化の傾向に近似した3次関数を算出し、
前記状態評価部は、前記3次の係数が前記正常範囲を逸脱していれば、前記状態評価部は前記発電機について故障予兆発生と判定する。
(4)本発明のさらに他の態様は、前記設備が流量に応じて駆動力を生成する回転機と、該回転機の駆動力を発電電力に変換する発電機と、を備えた発電設備であって、
前記計測部は前記回転機に与えられる累積流量と、前記発電機の累積発電電力量とを計測し、
前記解析処理部は、前記発電設備の運転開始から運転停止までの前記累積流量と前記累積発電電力量との時間的変化の傾向に近似した1次関数を算出し、
前記状態評価部は、前記1次関数の傾向が前記正常範囲を逸脱していれば、前記状態評価部は前記発電設備について故障予兆発生と判定する。
(5)前記回転機の一態様は、前記回転機として燃料を消費して駆動力を生成する内燃機関を備え、前記累積流量は、前記内燃機関に流入した累積燃料流量とする。
(6)なお、前記解析処理部で算出される時間的変化の傾向が、あらかじめ定められた故障範囲に属すれば前記設備について故障警報を発することができる。また、前記計測部は、前記入力と前記設備状態とをセンサを用いて計測することができる。
本発明によれば、設備故障の予兆を捉えて故障を予測し、かつ既存設備に容易に適用な監視システムを提供することができる。
本発明の実施形態に係る監視システムの概略図。 同 監視システムの構成図。 同 データ記録部の記録データ構成図。 同 解析処理部の前処理を示す説明図。 同 解析処理部の解析処理を示す説明図。 同 状態評価部の処理過程を示す説明図。 実施例1に係る排ガスボイラの構成および計測項目を示す説明図。 同 排ガスボイラの時間的状態変化の傾向のグラフを示し、(a)は正常運転時のグラフ、(b)は故障予兆時のグラフ、(c)は故障直前時のグラフ。 同 係数値の変化を示すグラフ 実施例2に係る発電機の構成および計測項目を示す説明図。 同 発電機の時間的状態変化の傾向を示すグラフを示し、(a)は正常時のグラフ、(b)は異常検出時のグラフ。 同 3次の係数の変化を示すグラフ。 実施例3の発電設備の装置構成図。 同 発電設備の時間的状態変化の傾向のグラフを示し、(a)は正常時のグラフ、(b)は異常時(保守推奨)のグラフ 同 棒グラフ。
以下、本発明の実施形態に係る監視システムを説明する。この監視システムは、主にプラントで稼働する設備の監視に用いられ、図1に示すように、監視対象設備11に対して与えた入力Xと、該入力Xを与えたときの監視対象設備11の設備状態Yの変化とを計測・記録し、設備状態の時間的変化の傾向を監視する。
ここで監視された時間的変化の傾向を正常時の傾向と比較し、その傾向が大きく相違する場合は監視対象設備11に故障の予兆が発生していると判定する。すなわち、監視対象設備11は入力Xを与えると、その状態Yが変化するため、両者X,Yをセンサにより計測する。
この計測データの時間的変化に着目すれば、監視対象設備11が正常に稼働している状態と不調な状態(故障の予兆が現れている状態)とで差異が現れ易い。この差異を捉えて前記監視システムは監視対象設備11の故障予兆を検知している。
≪システムの全体構成例≫
図2に基づき前記監視システムの構成例を説明する。この監視システム12は、監視対象設備(系)11の入力側に取り付けられたセンサS1,S2の計測情報を入力Xの情報として用いる一方、監視対象設備11の出力側に取り付けられたセンサS3,S4の計測情報を設備状態Yの情報として用いている。
この入力Xおよび設備状態Yの情報は、温度・圧力・流量・電流・電圧などから監視対象設備11に応じて選択される。この選択によりセンサS1〜S4の種類(温度計,圧力計,流量計,電流計,電圧計など)が定まる。
具体的には前記監視システム12は、コンピュータにより構成され、ハードウェア資源(CPU,RAM.ROM,SSD,HDDなど)とソフトウェア資源(OS,アプリケーションなど)の協働の結果、計測部13,データ記録部14,解析処理部15,状態評価部16を実装する。
この計測部13は、入力Xの情報と設備状態Yの情報とをセンサS1〜S4により計測させ、センサS1〜S4の計測した値をA/D変換してデジタルデータ化する。また、データ記録部14は、コンピュータの記憶装置(RAM,ROMなどの主記憶装置やHDD,SSDなどの補助記憶装置など)に構築され、計測部13の計測データを一定周期で記録して時系列データとして蓄積する。
解析処理部15は、データ記録部14に蓄積された時系列データを参照して設備状態の時間的変化の傾向を算出する。ここでは入力をX軸・設備状態をY軸として入力に対する設備状態の時間的変化の近似関数を算出する。
状態評価部16は、あらかじめ監視対象設備11の正常稼働時に算出された近似関数を前記記憶装置に記憶させる。ここで記憶された近似関数の特徴(傾きなど)と、設備稼働時に解析処理部15にて算出される近似関数の特徴とを比較し、閾値以上に差異があれば監視対象設備11に故障予兆が発生したと判定する。
したがって、前記監視システム12によれば、状態評価部16の判定結果を故障の予測と用いることにより、監視対象設備11の故障前にその予兆を捉えて早期に警告することが可能となる。このとき前記監視システム12は、既設の設備にも容易に適用できるように、センサS1〜S4は既存センサや後付けが容易な種類のセンサで実施可能である。以下、各部14〜16の詳細を説明する。
≪データ記録部14≫
図3に基づきデータ記録部14の記録データの詳細を説明する。ここではデータ記録部14は、センサS1〜S4毎に計測値を収集してベクトルとして記録する。以下、具体的な記録データについて説明する。
ここでは実数を式(1),正の整数を式(2)とする。このとき式(3)をセンサ番号とし、j番目のセンサを“Sj”として識別する。また、計測時刻「k≧1」におけるセンサ“Sj”の計測値を式(4)とし、各センサS1〜S4で得られた計測値に対して以下の処理(STEP01〜STEP03)が施される。
Figure 2019021305
Figure 2019021305
Figure 2019021305
Figure 2019021305
STEP01:計測開始時刻「k」におけるセンサS1〜S4の計測値、即ち式(4)の計測値が、計測部13を経由してデータ記録部14に送られる。
ここでkは正の整数である。
STEP02:データ記録部14は、図3に示すように、式(4)の計測値を受け取って式(5)の時系列データとして整理して保存する。ここで「(・)T」はベクトルの転置を意味する。また、ベクトル形式で計測値が示されているが、センサS1〜S4が複数の数値を持つ場合は行列形式とするなど他の形式を用いてもよいものとする。
Figure 2019021305
このとき計測時間「k」の経過に応じて新たな計測値が追加されれば、式(5)の時系列データは逐次更新される。また、式(5)の時系列データについては、計測期間が長期化するなど過去の計測値が不要となった場合には、データ容量の抑制および外れ値の除外の観点からデータを選別して廃棄する。
なお、STEP02の処理は、センサS1〜S4毎に実行されるため、図3に示すように、時系列データ「Vk (S1)」〜「Vk (S4)」が生成される。
STEP03:STEP03では、式(5)の時系列データから解析に用いる式(7)のデータセットに変換する。詳細を説明すれば、式(5)の時系列データに対して抽出時刻「t」を基準とし、tから過去N個の計測値を抽出し、式(6)の抽出データを生成する。抽出時刻「t」は、計測時刻「k」とは別に解析に用いる信号の観測時刻である。ここで抽出時刻「t」は正の整数である。サンプル長「N」は、監視対象設備11の時間変化の変移速度や精度に応じて変更することができるものとする。
Figure 2019021305
Figure 2019021305
式(6)の抽出データは、データセット(N行×t列の行列)の列として追加する。すなわち、式(5)の時系列データに対して、抽出時刻「t」を1つずつ減らしながら抽出データを生成し、行列の列に追加する。このようにして解析に用いるためのデータセット式(7)を得る。
なお、STEP03の処理は、センサS1〜S4毎に実行されるため、図3に示すように、データセット「d(S1)〜(S4)」が生成されてデータ記録部14に保存される。ここで生成・保存されたデータセットは統合されて解析処理部15に送られる。
≪解析処理部15≫
解析処理部15は、データ記録部14から複数のデータセット「d(S1)〜(S4)」を受け取った後、図4の前処理(STEP04〜STEP07)と図5の解析処理(STEP08,09)を実行する。
(1)前処理
STEP04:解析処理部15は、受け取ったデータセット群中からデータセットのペアを選択する。ここでは一例としてセンサ番号「i,j」のデータセット、即ち式(8)のデータセットのペアを選択した事例に基づき説明する。
Figure 2019021305
STEP05:STEP04で選択されたデータセットのペアに対して、同一抽出時刻の抽出データで組を作る。ここでは式(9)に示すデータ群を作成する。
Figure 2019021305
STEP06:STEP05で作成されたデータ群の各組に対して特徴値を算出する。このとき組となる抽出データから1変数を返す式(10)の関数によって特徴空間へ写像する。ここでは特徴値を式(11)とする。
Figure 2019021305
Figure 2019021305
ただし、組となる抽出データは2変数に限定する必要は無く、複数の抽出データを変数とする組を作ることも可能である。この場合には変数の個数に応じて関数を設計する。
STEP07:STEP06で算出された特徴値は、式(12)の特徴データとしてまとめられる。
Figure 2019021305
このようなSTEP05〜S07の処理を、STEP04においてデータ記録部14から受け取ったデータセット「式(7)」に基づき選択されるすべてのペアについて実行し、特徴データを算出する。
図4に基づき説明すれば、まずSTEP04においてセンサ番号「i=1,j=2」のデータセット「d(S1),d(S2)」が選択され、STEP05,06の処理を経て特徴データ「rt (1,2)」が算出される。この算出結果を特徴データ1と呼ぶものとする。
つぎにSTEP04に戻ってセンサ番号「i=3,j=4」のデータセット「d(S3),d(S4)」が選択され、同様にSTEP05,06の処理を経て特徴データ「rt (3,4)」が算出される。この算出結果を特徴データ2と呼ぶものとする。
(2)解析処理
解析処理には、前処理で算出された一対の特徴データを活用する。ここでは図5に示すように、特徴データ1「rt (1,2)」と特徴データ2「rt (3,4)」とを用いるものとする。
この解析処理においては、監視対象設備11の入出力を「rt (1,2),rt (3,4)」と定義し、入出力関係を表す系を関数として算出する。ここでは特徴データ1を入力Xとする一方、特徴データ2を出力(設備状態)Yとする。
ただし、本解析処理はデータ間の関係性を入出力系のモデルに当てはめることで設備状態を理解することを目的とするため、実際の設備構成で入力側となるデータと出力側となるデータという物理的な関係性を考慮する必要はない。以下、具体的な処理内容(STEP08,STEP09)を説明する。
STEP08:まず、入出力「rt (1,2),rt (3,4)」について、抽出時刻tが共通となる要素同士の組(ペア)を作成する。ここでは式(13)の組を準備するものとする。
Figure 2019021305
STEP09:つぎにSTEP08で準備された式(13)の入出力データに基づき入出力系(関数)「gt(・)」を推定する。すなわち、任意の抽出時刻tにおいて式(14)のノイズが存在する中、式(15)の関係式を十分に精度よく表現する式(16)の関数を、式(13)の入出力データより推定アルゴリズムを用いて算出する。
Figure 2019021305
Figure 2019021305
Figure 2019021305
この推定アルゴリズムには、回帰分析・適応フィルタ・パラメータ推定法などが用いられ、要求される処理速度や推定精度により任意に選択するものとする。この推定対象、即ち監視対象設備11の入出力の関係性は、計測時間kの経過に応じて変化する。
そのため、それをモデル化した入出力系「gt(・)」も同様に抽出時刻tの増加に伴い変化する。すなわち、入出力系「gt(・)」の推定関数「式(16)」は、抽出時刻tの増加と共に更新され、リアルタイムもしくは一定時間経過後に状態評価部16に送られる。
≪状態評価部16≫
図6に基づき状態評価部16の動作処理を説明する。この状態評価部16は、解析処理部15で得られた推定関数「式(16)」を評価し、時間的変化を捉える。ここでは推定関数「式(16)」の評価値(係数など)に着目する。この評価値は図5および図6中、「αt」と示されている。
すなわち、センサS1〜S4によって計測された変動情報は特徴データ1,2に含まれるため、該特徴データ1,2の入出力関係に変化をもたらし、推定関数「式(16)」に変化を与える。この推定関数「式(16)」の変化を数値化することで監視対象設備11の故障や異常を検知することができる。
ここで状態評価部16の動作処理としては、推定関数「式(16)」の時間的推移を監視する。このとき事前学習した設備異常データと計測データとを比較するという監視動作は実行されない。そのため、故障状態が未知の状態であっても評価値(αt)の変化を捉えることで異常や故障を検知することができる。また、周辺設備が異常をきたす前兆を評価値(αt)の変動から捉えることから、故障の予兆を検知でき、異常発生前の予知が可能となる。以下、実施例1,2に基づき詳細を説明する。
≪実施例1≫
図7〜図9に基づき前記監視システム12の実施例1を説明する。ここでは排ガスボイラ21の故障予兆の監視に前記監視システム12が適用されている。
(1)全体構成
監視対象設備11の排ガスボイラ21は、ディーゼル発電所のボイラ設備22においてエンジン23の排ガスの熱を水タンク24の冷却水により水冷する熱交換装置に関し、冷却済みの排ガスと蒸気とが排出される。この実施例1では、排ガスボイラ21の熱交換状態を監視して故障を早期に検出する。
ここでは設備状態の解析は、エンジン23の運転停止後に現れる温度変化の推移を監視するものとする。したがって、センサS1はボイラ入口温度を計測し、センサS2はボイラ出口温度を計測し、センサS3は冷却水給水温度を計測し、センサS4は外気温度を計測する。
具体的にはセンサS1のボイラ入口温度は、エンジン23の燃焼によって生じた排ガスの排ガスボイラ21に流入する前の温度を示している。また、センサS2のボイラ出口温度は、排ガスボイラ21を通過して排出された冷却済みの排ガス温度を示している。
センサS3の冷却水給水温度は、排ガスボイラ21の入口側で計測される冷却水の温度を示している。また、S4の外気温度は、排ガスボイラ21の外部で計測される。
ここでは入力Xのセンサデータに排ガスボイラ21への入力熱量を用いる一方、設備状態(系の状態)Yのセンサデータに冷却水発熱量を用いる。この入力Xの入力熱量は“S1−S2”で算出でき、設備状態Yの冷却水発熱量は“S3−S4”で算出できる(ただし、入力Xについては絶対値を用いるものとする。)。
このとき実施例1の前記監視システム12では、排ガスボイラ21の運転中の計測データをデータ記録部14に記録し、運転停止後にバッチ処理することで定期的に監視する動作を採用しているが、前述のようなリアルタイム処理でもよいものとする。
そして、エンジン23の運転開始・運転停止は、エンジン23に取り付けられた図示省略の回転センサによって計測部13が得る計測値によって判別する。また、データ記録部14は、計測部13の計測データを参照し、前記回転センサの計測値(回転数)から「運転中(回転数>0)」と「運転停止中(回転数=0)」とを判別する。
ここでは「運転停止中」から「運転中」に状態変化したときを「運転開始」と判別する一方、「運転中」から「運転停止中」に状態変化したときを「運転停止」と判別し、運転開始・運転停止の発生履歴を時刻と併せて記録する。
(2)処理内容
データ記録部14は、センサS1〜S4を通じて計測部13の計測した計測データを1分毎にベクトル形式で蓄積し、センサS1〜S4毎に1日以上の計測データを蓄積可能な容量とする。
このセンサS1〜S4は毎分データであるため、1日に1440サンプルを取得する。このときデータ記録部14は、センサS1〜S4の計測データを1分毎に記録し、式(17)の時系列データ「V(S1)」〜「V(S4)」となるようにセンサS1〜S4毎に4つのベクトルを用意する。
Figure 2019021305
ここでは計測データを1分間隔で記録しているため、式(18)のデータセットを生成するにあたって抽出データのサンプル長を「N=8」とする。これは計測データのノイズの影響を低減させるためであり、解析処理部15の前処理段階で取り扱うため、式(18)のように変換する。
Figure 2019021305
ここでセンサS1のデータセットd(S1)を例示したが、センサS2〜S4も同様の形式でデータセット「d(S2)〜d(S4)」を生成するものとし、生成された4つのデータセットは解析処理部15に送られる。
解析処理部15は、まず前処理において4つのデータセットを2つのペアに分けたうえでそれぞれの特徴データを生成する。すなわち、データセット「d(S1),d(S2)」のペアとデータセット「d(S3),d(S4)」のペアを選択する。
ここでは「d(S1),d(S2)」の組から特徴データ1を生成する例を説明するが、「d(S3),d(S4)」の組からも同様に特徴データ2を生成するものとする。
データセット「d(S1),d(S2)」のペアについて、同一抽出時刻の抽出データで組を作り、式(9)のデータ群を作成する。作成したデータ群の各抽出時刻の組に対して式(19)を用いて式(11)の特徴値を算出する。
Figure 2019021305
これにより、式(12)の特徴データを得る。
データセット「d(S1),d(S2)」のペアで算出した特徴データ1を「P」とする。同様に、「d(S3),d(S4)」のペアで算出した特徴データ2を「Q」として、式(20)とする。
Figure 2019021305
このベクトル「P」は入力Xの変動値を示し、ベクトルQは設備状態Yの変動値を示している。
つぎに生成した特徴データ1,2に基づく解析処理を説明する。ここではベクトル「P」,「Q」について、式(21)に示す同時刻サンプル毎のサンプルペアを生成する。
Figure 2019021305
その後に入出力システムの算出、即ち入力を「P」・出力を「Q」として線形回帰を実行し、推定関数を算出する。このときX軸を「P」・Y軸を「Q」として各サンプルペアを点にした2次元グラフを描くものとする。
(3)2次元グラフの説明
図8(a)〜(c)は前記2次元グラフを示し、各図中の点列は1日分の計測データ(1440サンプル)により描画された変動推移(時間的変化)を示し、エンジン23の停止時刻から60分間の60サンプルについて回帰分析によって1次関数で近似する。したがって、エンジン23を停止するつど、その後60分間のデータから近似関数の係数値(傾き)を特徴として求める。
まず、図8(a)について説明する。図8(a)は正常運転時の排ガスボイラ21の状態を示し、X軸およびY軸のいずれも大きな変動を示している。すなわち、X軸の入力熱量「P」の増加に応じてY軸の冷却水発熱量「Q」が増加し、排ガスボイラ21の冷却機能が正常に動作していることが示されている。この図8(a)の温度変化、即ち「前記係数値(傾き)=0.30」を状態評価部16に記憶させる。
つぎに図8(b)について説明する。図8(b)は排ガスボイラ21の故障予兆時の状態を示している。ここではX軸およびY軸の変動量が図8(a)に比べて減衰し、「前記係数値(傾き)=0.005」に減少している。したがって、排ガスボイラ21の設備状態に冷却機能が低下する変化が生じているものと推定される。
最後に図8(c)について説明する。図8(c)は故障日における故障直前の排ガスボイラ21の状態を示している。ここではX軸およびY軸に殆ど変動量がなく、「前記係数値(傾き)=−0.002」を示し、冷却機能が機能していないことが示されている。
(4)状態評価部16
状態評価部16は、解析処理部15の算出した前記係数値(傾き)を1日毎に記録し、その推移を監視する。このとき状態評価部16は、記憶済みの正常時の前記係数値(傾き)との比較により排ガスボイラ21の状態を識別する。
すなわち、解析処理部15にてエンジン23の停止後の60分間のデータについて前記係数値(傾き)を算出し、算出された値を評価値「αt」として正常時の前記係数値(傾き)と比較する。このとき前記正常時の係数値は「約0.1〜約0.5」の範囲に属する一方、排ガスボイラ21が不調になれば故障発生が近づくにしたがって「0」に近づく。
そこで、記憶済みの正常時の前記係数値(傾き)に基づき正常範囲の閾値(例えば「0.5>傾き≧0.1」)を定める。このとき1日毎に記録される前記係数値(傾き)が該閾値を越えていれば、排ガスボイラ21に故障予兆発生と判定し、警告を行う。これにより排ガスボイラ21の故障や異常を早期に検知することができる。
また、前記係数値(傾き)に故障範囲(例えば0.0未満)を設ければ、排ガスボイラ21について故障の直前を捉えて故障警報を発し、保守メンテナンス作業の実施を促すことができる。
Figure 2019021305
表1は「11月23日〜12月7日」の排ガスボイラ21の状態推移を示し、該排ガスボイラ21の状態推移は図9においてグラフ化されている。ここで「11月23日〜11月28日」は「前記係数値(傾き)=0.213〜0.315」の範囲で変動している。したがって、前記係数値(傾き)が前記閾値内に属し、排ガスボイラ21は正常と判定された。
一方、「11月30日〜12月4日」は、「前記係数値(傾き)=0.058〜0.089」の範囲で変動している。したがって、前記係数値(傾き)が閾値を越え、排ガスボイラ21は故障予兆と判定されている。また、「12月5日〜12月7日」は、前記係数値(傾き)が「0.0」未満なため、故障警報が発せられている。
このように記監視システム12によれば、センサS1〜S4の数値変動を捉えることで排ガスボイラ21の故障予兆や故障を検知することができる。したがって、周辺設備の故障を検出することなく、排ガスボイラ21の異常(故障予兆・故障)を判定することができる。この点で特許文献1よりも早期かつ確実に異常を捉えることができ、効果的に故障発生を予測できる。
また、センサS1〜S4には温度センサを用いればよいので、振動センサ,圧力計,流量計などの様々な計器を用いる必要がなく、この点で既存設備への適用が容易で、かつコストの抑制にも貢献できる。
≪実施例2≫
図10〜図12に基づき前記監視システム12の実施例2を説明する。ここでは発電機31の故障予兆の監視に前記監視システム12が適用されている。
(1)全体構成
監視対象設備11の発電機31は、エンジンなどの駆動力により回転子32を回転させて励磁により電力を発生させる。すなわち、前記駆動力により回転子32を回転させると固定子33に励磁電流が発生する。この固定子33は、鉄心と巻線などで構成され、発電機31のフレーム内に設置されている。
回転子32は、主軸と鉄心と巻線などで構成され、固定子33の内側において軸受34に回転自在に軸支されている。この回転子32を支えるため、軸受34には圧力や摩擦が加わる。この圧力の不均衡や摩擦を抑制して回転子32を滑らかに回転させるために軸受34に潤滑油を循環させている。
このような発電機31が運転を開始すれば、固定子33および回転子32には電流が流れ、抵抗成分による損失で発熱する。このとき軸受34の摩耗や傷、あるいは潤滑油の循環不良などで故障が発生する場合がある。そこで、実施例2では前記監視システム12により固定子33と軸受34と潤滑油の温度変化を監視し、発電機31の故障予兆を早期に検出させている。
そして、センサS1は、発電機31の固定子33の温度を計測するため、固定子33に設置されている。また、センサS2は、発電機31の軸受温度を計測するため、軸受34に設置されている。さらにセンサS3は、潤滑油温度を計測するため、軸受34を通過した潤滑油の温度を計測する。なお、センサS4は、外気温度を発電機31の外部で計測する。
ここでは入力Xのセンサデータには、回転子32に与えられる発電機駆動力を用いる。すなわち、固定子33に発生する熱量は発電機駆動力に相関すると考えられるため、軸受34に生じる損失熱量を除いた“S1−S2”を入力Xの発電機駆動力として計測する。
一方、設備状態Yのセンサデータには潤滑油発熱量を用いる。この潤滑油発熱量は、発電機31の駆動力によって引き起こされる潤滑油の温度変化であり、“S3−S4”により計測される。ここでは実施例1と同様に発電機31の運転中の計測データをデータ記録部14に記録し、運転停止後にバッチ処理することで定期的に監視する動作を採用しているが、リアルタイム処理でもよいものとする。
そして、発電機31の運転開始・運転停止は、発電機31に取り付けた図示省略の回転センサによって計測部13が得る計測値によって判別する。また、データ記録部14は計測部13の計測データを参照し、前記回転センサの計測値(回転数)から「運転中(回転数>0)」と「運転停止中(回転数=0)」とを判別する。
ここでは「運転停止中」から「運転中」に状態変化したときを「運転開始」と判別する一方、「運転中」から「運転停止中」に状態変化したときを「運転停止」と判別し、運転開始・運転停止の発生履歴を時刻と併せて記録する。
(2)処理内容
データ記録部14は、実施例1と同様にセンサS1〜S4を通じて計測部13の計測した計測データを1分毎に記録してベクトル形式の時系列データとして蓄積し、センサS1〜S4毎に1日以上のデータを蓄積可能な容量とする。
実施例1と同様に、式(18)のデータセット「d(S1)〜(S4)」を生成する。
生成された4つのデータセットは解析処理部15に送られる。
解析処理部15は、まずデータセット「d(S1),d(S2)」のペアとデータセット「d(S3),d(S4)」のペアを選択する。
各ペアについて特徴データを生成するが、実施例2では特徴値への変換は、式(22)を用いる。
Figure 2019021305
ここで符号関数「sign(・)」は、式(23)で与えられる。
Figure 2019021305
このようにして、「d(S1),d(S2)」のペアから特徴データ1が算出される。同様に、「d(S3),d(S4)」のペアから特徴データ2が算出される。
算出した特徴データ1,2に基づき解析処理部15は、図11(a)(b)に示すように、X軸を発電機駆動力(P)・Y軸を潤滑油発熱量(Q)とした2次元グラフを描く。このグラフ中の点列は、1日分の計測データにより描写された変動推移(時間的変化)を示している。ここでは前記2次元グラフのうち発電機31の運転開始時刻から30分間のデータ(30サンプルのデータ)について3次関数で近似する。そこで、予め正常運転時の3次関数を算出し、該3次の係数を状態評価部16に記憶させておくものとする。
同様に発電機31の運転開始のつど、その後30分間の計測データから3次関数を算出し、算出された3次の係数を評価値「αt」として記録する。ここで記録された前記3次の係数と正常運転時の前記3次の係数とを比較する。
このとき運転開始時に温度関係の変化は2次関数に近くなるため、前記3次の係数の重みが小さくなり、正常運転における前記3次の係数の値は「±0.01以下」と算出される。例えば図11(a)の正常運転時では「前記3次の係数=−0.0023」と示されている。
一方、潤滑油循環不良や軸受の摩耗・傷などが発生すると発電機31の駆動力に対する潤滑油発熱量の変化は複雑な傾向を示し、前記3次の係数の重みが増加する。例えば図11(b)の異常検知では「前記3次の係数=−5.991」と示されている。
そこで、記憶済みの正常運転時の前記3次の係数に基づき正常範囲の閾値(例えば−0.05<前記3次の係数<0.05)を定め、1日毎に記録される前記3次の係数が該閾値から逸脱した場合には、発電機31の故障予兆発生と捉えて警告を行うものとする。
Figure 2019021305
表2は「11月23日〜12月7日」の発電機31の状態推移を示し、該発電機31の状態推移は図12においてグラフ化されている。ここで「11月23日〜12月3日」は、「前記3次の係数=−0.00727〜0.007818」の範囲で変動している。したがって、前記3次の係数が前記閾値内に属し、発電機31は正常と判定されている。一方、「12月4日〜12月7日」は、前記3次の係数が前記閾値を逸脱しているため、発電機31に故障予兆発生と判定されている。
このようにセンサS1〜S4の数値変動を捉えることで発電機31の故障予兆発生を判定するため、実施例1と同様に周辺設備の故障を検出することなく、発電機31の異常を検知することができる。この点で実施例1と同じく、特許文献1よりも早期かつ確実に異常を捉えることができ、故障の発生を効果的に予測できる。
また、センサS1〜S4には温度センサを用いればよいので、振動センサ,圧力計,流量計などの様々な計器を用いる必要がなく、この点で既存設備への適用が容易で、かつコストの抑制にも貢献できる。
≪実施例3≫
図13〜図15に基づき前記監視システム12の実施例3を説明する。この実施例では、火力発電所の発電施設の故障予兆の監視に前記監視システム12が適用されている。ここでは実施例2のように潤滑油の温度変化の監視ではなく、発電施設を発電効率の観点から評価し、その保守時期を提案する。
(1)全体構成
図13に基づき監視対象の発電設備を説明する。ここでは内燃機関を用いた発電設備41を監視対象とする。この発電設備41は、駆動側の回転機40,発電側の発電機44,図示省略の冷却装置および受変動設備などの多数の装置で構成され、回転機40と発電機44とを中心とする。
この回転機40は、エンジン43を主体に構成され、燃料槽42から供給された流体燃料を消費して駆動力を生成することで主軸49を回転させる。この主軸49の回転は、発電機44の回転子46を回転させて固定子47に励磁電流を発生させ、発電電力に変換される。ここで変換された発電電力は、需要側の構内48に出力される。
この発電設備41では燃料を電力に効率よく変換することが求められる。もし発電設備41を構成する装置(機器)類に劣化や不調(例えば冷却装置の故障や主軸49の軸受の摩耗など)が続くと、発電動作が阻害され、燃料から発電電力量への変換の効率(発電効率)は落ち込む。
そこで、前記監視システム12にて発電効率の低下を検知することで発電設備41のメンテナンス時期を検出する。ここでは実施例1,2のように入力Xと設備状態Yとを2センサ間の差分で算出するのではなく、それぞれ1センサの情報(センサデータ)のみで構築している。これは実施例1,2の補正用の時系列データ「V(S2)」,「V(S4)」の要素が零値をとった時とみなすことができる。
具体的には入力Xには累積燃料流量」を用いる一方、設備状態Yには「累積発電電力量」を用いる。この「累積燃料流量」は、燃料槽42からエンジン43に流入する油量を流量計などのセンサS1にて計測(カウント)した累積値を示している。
また、「累積発電電力量」は、発電機44の発電した電力量を電力計などのセンサS2にて計測(カウント)した累積値を示している。ここでは実施例1,2と同様に発電機44の運転中におけるセンサS1,S2のセンサデータに基づき運転停止後の定期的なバッチ処理またはリアルタイム処理を行う。この発電機44の運転開始・運転停止は、実施例2と同様とする。以下、処理内容の詳細を説明する。
≪処理内容≫
データ記録部14は、センサS1,S2を通じて計測部13の計測した計測データを1分毎に記録して時系列データとして記録し、センサS1,S2毎に1日分以上のデータを蓄積可能な容量とする。ここではセンサS2の時系列データV(S2)を実施例1,2の時系列データV(S3)と読み替え、かつ実施例1,2の時系列データ「V(S2)」,「V(S4)」の要素を零値としてデータセット「d(S1)〜d(S4)」を作成する。
解析処理部15は、データ記録部14の記録データに基づき実施例1,2と同様に解析処理を行う。この解析処理の結果、X軸を「累積燃料流量」・Y軸を「累積発電電力量」とした2次元グラフを描く。ここでは発電機44の運転開始から停止までの稼働期間中のデータについて1次関数により近似する。この近似関数の1次の係数は発電効率(単位燃料に対する発電電力)を示し、その係数値(傾き)を状態評価部16に記憶させておくものとする。
そして、発電設備41の任意の部位が劣化や不調をきたすと、施設全体としての発電効率が低下する。例えば発電設備41の熱交換器・冷却装置などに劣化・不調が生じている場合には設備全体の可動負荷を下げる必要がある。
そこで、解析処理部15は発電機44の運転のつど前記1次関数を算出し、さらに状態評価部16は算出された1次の係数の値(係数値)を事前に状態評価部16に記憶された正常時の係数値と比較し、故障予兆の発生を判定する。このとき状態評価部16に記憶された正常時の前記係数値に基づき閾値としての正常範囲が定められている。また、前記比較の結果、1運転毎に記憶される前記係数値が正常範囲を逸脱した場合には、発電設備41の保守メンテナンス時期と捉えて警告が発生られる。
図14(a)(b)に基づき一例を説明する。図14(a)は、正常運転日の発電設備41の状態を示す2次元グラフである。この2次元グラフによれば、X軸の累積燃料流量に比例してY軸の累積発電電力が増加し、発電設備41が正常に動作していることが示されている。
この図14(a)の発電効率の変化、即ち「前記係数値(傾き)=4.00」が状態評価部16に正常時の前記係数値として記憶されている。ここでは一例として正常範囲の閾値「前記係数値>3.9」が設定されているものとする。
一方、図14(b)は、故障前日の発電設備41の状態を示す2次元グラフである。ここではX軸およびY軸の変動量が減衰し、「前記係数値(傾き)=3.83」に減少し、発電設備41の設備状況に発電効率が低下する変化が生じているものと推定される。
この場合に状態評価部16は、図14(b)の前記係数値「3.83」と正常時の前記係数値「4.00」とを比較する。その結果、図14(b)の前記係数値「3.83」は、正常範囲「前記係数値>3.9」を逸脱しているため、故障予兆が発生しているものと判定され、警告が行われる。これにより発電設備41の故障や異常を早期に検知することができる。
Figure 2019021305
表3は、「2013年2月〜5月」までの発電設備41の状態推移を示している。この状態推移は図15にてグラフ化されている。
ここで「2月2日〜3月15日」は、「前記係数値=3.9〜4.10」の範囲内で変動している。これは正常範囲「前記係数値>3.9」内での変動なため、状態評価部16は故障予兆の発生とは判定せず、健全な発電効率とみなされる。
一方、「3月19日〜3月29日」は、正常範囲「前記係数値>3.9」を逸脱するため、故障予兆が発生しているものと判定され、警告が行われる。また、「4月1日〜4月8日」に発電効率が持ち直し正常範囲に戻ったものの、「4月11日」には再び正常範囲を逸脱したため、再警告が行われた。
ここでは故障範囲「前記係数値<3.8」が設定されていたため、「4月16日」に「前記係数値=3.48」を記録したため、故障警報が発せられ、緊急メンテナンスが促された。
このように実施例3は、センサS1,S2の累積値データを組み合わせて増加傾向(2次元グラフの傾き)を捉えることで発電設備41の故障を予測する。したがって、実施例1,2と同様に周辺設備の故障を検出することなく、発電設備41の異常を検知することができる。
また、故障予兆のためのセンサS1,S2は流量計や電力計でよいので、機器・装置毎にセンサの取付調査をすることなく、発電設備41の設備全体の不調を検出することができる。この点で既存設備への適用が容易で、コストの抑制にも貢献できる。
なお、本発明は、上記実施形態に限定されるものではなく、各請求項に記載された範囲内で変形して実施することができる。例えば前記監視システム12の監視対象設備11は、排ガスボイラ21・発電機31・発電設備41には限定されるものではなく、他の設備(例えば水力発電所の発電設備など)の故障予兆発生の監視にも使用することができる。この水力発電所の発電設備への応用は、実施例3の入力Xを「累積水流量」に置き換えればよい。
また、本発明は、前記監視システム12としてコンピュータを機能させるプログラムとして構成することもできる。このプログラムによれば、コンピュータが前記各部12〜16として機能し、監視対象設備11の故障予兆の発生を監視することが可能となる。
11…監視対象設備(監視対象の設備)
12…監視システム
13…計測部
14…データ記録部
15…解析処理部
16…状態評価部
21…排ガスボイラ(熱交換装置)
31,44…発電機
40…回転機
S1〜S4…センサ

Claims (5)

  1. 監視対象の設備を監視するシステムであって、
    前記設備に対して与えた入力と、該入力を与えたときの前記設備の設備状態とを計測する計測部と、
    前記計測部の計測データを一定周期で記録し、該周期分の計測データを時系列データとして蓄積する記録部と、
    前記記録部の時系列データに基づき入力に対する前記設備状態の時間的変化の傾向を算出する解析処理部と、
    前記解析処理部で算出される前記時間的変化の傾向が、あらかじめ正常運転時の時間的変化の傾向に基づき定められた正常範囲を逸脱していれば、前記設備について故障予兆発生と判定する状態評価部と、
    を備えることを特徴とする監視システム。
  2. 前記設備は、発動機の排ガスの熱を冷却する熱交換装置であって、
    前記計測部は、前記熱交換装置に入力される熱量と、前記熱交換装置の冷却水の発熱量とを計測し、
    前記解析処理部は、前記発動機の停止から所定期間の前記熱量と前記発熱量との時間的変化の傾向に近似した1次関数を算出し、
    前記状態評価部は、前記1次関数の傾向が前記正常範囲を逸脱していれば、前記熱交換装置について故障予兆発生と判定する
    ことを特徴とする請求項1記載の監視システム。
  3. 前記設備は、駆動原に駆動される発電機であって、
    前記計測部は、前記発電機に与えられる駆動力に相関して変動する温度と、前記発電機の駆動力によって引き起こされる潤滑油の発熱量とを計測し、
    前記解析処理部は、前記発電機の運転開始から所定時間における前記温度と前記発熱量との時間的変化の傾向に近似した3次関数を算出し、
    前記状態評価部は、前記3次の係数が前記正常範囲を逸脱していれば、前記状態評価部は前記発電機について故障予兆発生と判定する
    ことを特徴とする請求項1記載の監視システム。
  4. 前記設備は、流量に応じて駆動力を生成する回転機と、該回転機の駆動力を発電電力に変換する発電機と、を備えた発電設備であって、
    前記計測部は前記回転機に与えられる累積流量と、前記発電機の累積発電電力量とを計測し、
    前記解析処理部は、前記発電設備の運転開始から運転停止までの前記累積流量と前記累積発電電力量との時間的変化の傾向に近似した1次関数を算出し、
    前記状態評価部は、前記1次関数の傾向が前記正常範囲を逸脱していれば、前記状態評価部は前記発電設備について故障予兆発生と判定する
    ことを特徴とする請求項1記載の監視システム。
  5. 前記回転機は、燃料を消費して駆動力を生成する内燃機関を備え、
    前記累積流量は、前記内燃機関に流入した累積燃料流量であることを特徴とする請求項4記載の監視システム。
JP2018118677A 2017-07-14 2018-06-22 監視システム Active JP7035842B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017137887 2017-07-14
JP2017137887 2017-07-14

Publications (2)

Publication Number Publication Date
JP2019021305A true JP2019021305A (ja) 2019-02-07
JP7035842B2 JP7035842B2 (ja) 2022-03-15

Family

ID=65354774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118677A Active JP7035842B2 (ja) 2017-07-14 2018-06-22 監視システム

Country Status (1)

Country Link
JP (1) JP7035842B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139442A (ja) * 2018-02-08 2019-08-22 株式会社神戸製鋼所 プラント状態評価システム、プラント状態評価方法、及びプログラム
WO2022180992A1 (ja) * 2021-02-26 2022-09-01 三菱重工業株式会社 ボイラ損傷度推定システム及びボイラ損傷度推定装置
CN115712268A (zh) * 2022-12-23 2023-02-24 深圳市创立宏科技有限公司 一种电子产品辅料自动贴合装置用故障预警系统
US11782430B2 (en) 2020-04-27 2023-10-10 Mitsubishi Electric Corporation Abnormality diagnosis method, abnormality diagnosis device and non-transitory computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041448A (ja) * 2011-08-17 2013-02-28 Hitachi Ltd 異常検知・診断方法、および異常検知・診断システム
JP2013175108A (ja) * 2012-02-27 2013-09-05 Mitsubishi Electric Corp クラスタリング装置及びクラスタリングプログラム
JP2014098363A (ja) * 2012-11-15 2014-05-29 Toyota Motor Corp フィルタの異常判定装置
JP2015132439A (ja) * 2014-01-15 2015-07-23 株式会社日立ビルシステム 機器診断装置、機器診断方法及び機器診断プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041448A (ja) * 2011-08-17 2013-02-28 Hitachi Ltd 異常検知・診断方法、および異常検知・診断システム
JP2013175108A (ja) * 2012-02-27 2013-09-05 Mitsubishi Electric Corp クラスタリング装置及びクラスタリングプログラム
JP2014098363A (ja) * 2012-11-15 2014-05-29 Toyota Motor Corp フィルタの異常判定装置
JP2015132439A (ja) * 2014-01-15 2015-07-23 株式会社日立ビルシステム 機器診断装置、機器診断方法及び機器診断プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139442A (ja) * 2018-02-08 2019-08-22 株式会社神戸製鋼所 プラント状態評価システム、プラント状態評価方法、及びプログラム
US11782430B2 (en) 2020-04-27 2023-10-10 Mitsubishi Electric Corporation Abnormality diagnosis method, abnormality diagnosis device and non-transitory computer readable storage medium
WO2022180992A1 (ja) * 2021-02-26 2022-09-01 三菱重工業株式会社 ボイラ損傷度推定システム及びボイラ損傷度推定装置
JP2022130987A (ja) * 2021-02-26 2022-09-07 三菱重工業株式会社 ボイラ損傷度推定システム及びボイラ損傷度推定装置
CN115712268A (zh) * 2022-12-23 2023-02-24 深圳市创立宏科技有限公司 一种电子产品辅料自动贴合装置用故障预警系统

Also Published As

Publication number Publication date
JP7035842B2 (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
JP7035842B2 (ja) 監視システム
TWI302178B (en) Operation support system for power plant
CN106404403B (zh) 用于涡轮机的分析的方法和系统
JP5143251B2 (ja) 固定子コイルの冷媒流量減少監視
US20100169030A1 (en) Machine condition assessment through power distribution networks
JP6856443B2 (ja) 設備機器の異常診断システム
JP2005135422A (ja) 事象評価及び事象軽減計画決定プロセスを自動化した分散発電プラント
JP4767148B2 (ja) 正常データベースを用いた転がり軸受の余寿命診断方法、余寿命診断システム及び余寿命診断に用いるコンピュータプログラム
US10626749B2 (en) Spindle vibration evaluation module for a valve and actuator monitoring system
CN109643112A (zh) 用于阀和致动器监测系统的高级启动计数器模块
US20180283221A1 (en) Actuator spring lifetime supervision module for a valve and actuator monitoring system
JP2012137386A (ja) 電動機の予防保全装置
CN109642469A (zh) 用于阀和致动器监测系统的导引状况评定模块
US20180196894A1 (en) System and method for monitoring a steam turbine and producing adapted inspection intervals
CN109661628A (zh) 用于阀和致动器监测系统的固体颗粒侵蚀指示器模块
Lu et al. Physics-based intelligent prognosis for rolling bearing with fault feature extraction
US20180058249A1 (en) Valve Stroke And Spindle Way Counter Module For A Valve And Actuator Monitoring System
CN107710089A (zh) 工厂设备诊断装置以及工厂设备诊断方法
KR101332113B1 (ko) 전동기의 예방 보전 장치
JP2010243092A (ja) 冷凍機の劣化検出方法およびシステム
JP6369895B2 (ja) モータ異常検知システム、モータ異常検知方法、及びモータ異常検知プログラム
Rodríguez-López et al. Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA
JP2011065506A (ja) 電動機予防保全装置および電動機予防保全方法
JP6980034B2 (ja) 装置寿命評価方法
JP2005284982A (ja) 異常診断装置、異常診断方法、発電装置監視システム、及び燃料切れ報知装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150