JP2019020433A - Dimming film - Google Patents

Dimming film Download PDF

Info

Publication number
JP2019020433A
JP2019020433A JP2017135432A JP2017135432A JP2019020433A JP 2019020433 A JP2019020433 A JP 2019020433A JP 2017135432 A JP2017135432 A JP 2017135432A JP 2017135432 A JP2017135432 A JP 2017135432A JP 2019020433 A JP2019020433 A JP 2019020433A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
light control
alignment
control film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017135432A
Other languages
Japanese (ja)
Other versions
JP6965605B2 (en
Inventor
青木 健二
Kenji Aoki
健二 青木
潤一 馬場
Junichi Baba
潤一 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2017135432A priority Critical patent/JP6965605B2/en
Publication of JP2019020433A publication Critical patent/JP2019020433A/en
Application granted granted Critical
Publication of JP6965605B2 publication Critical patent/JP6965605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

To provide a dimming film using a reverse type liquid crystal element, in which practically enough adhesive strength is ensured from the viewpoint of handling stability during manufacturing or during use of a product.SOLUTION: A dimming film has a dimming layer (liquid crystal layer) capable of switching among two or more levels of haze depending on an applied voltage, held between two transparent substrates having a transparent conductive layer and an alignment layer formed thereon. The alignment layer facing the dimming layer is divided into regions to form a pattern, and the dimming layer (liquid crystal layer) is adhered to the transparent conductive layer that is partially exposed.SELECTED DRAWING: Figure 5

Description

本発明は、印加電圧に応じてヘイズを2段階以上に切替え可能な液晶素子を調光層として用いる調光フィルムに関し、特に電圧非印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶素子を調光層として用いる調光フィルムに関する。   The present invention relates to a light control film using as a light control layer a liquid crystal element capable of switching the haze to two or more steps according to an applied voltage, and in particular, a transmission scattering type that becomes transparent when no voltage is applied and becomes scattered when voltage is applied. The present invention relates to a light control film using the liquid crystal element as a light control layer.

液晶材料を用いた液晶素子としては、TN(Twisted Nematic)モードが実用化されている。このモードでは、液晶の旋光特性を利用して、光のスイッチングを行うものであり、液晶素子として用いる際には、偏光板を用いる必要がある。しかし、偏光板を用いることで光の利用効率が低くなる。偏光板を用いずに光の利用効率の高い液晶素子として、液晶の透過状態(透明状態ともいう)と散乱状態との間でスイッチングを行う液晶素子がある。液晶素子としては、一般的に、液晶分子がポリマー中に分散配置された高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)や、三次元の網目状に形成された樹脂からなるポリマーネットワークの内部に形成された空隙内に配置された液晶分子を有するポリマーネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)を用いたものが知られている。PDLC,PNLCはいずれも、紫外線により重合する重合性化合物を含む液晶組成物の一部又は全体が液晶性を示している。そして、PDLC,PNLCのいずれも、紫外線照射により上記液晶組成物の硬化が行われ、液晶と重合性化合物との硬化物複合体を形成する工程を経て製造される。   As a liquid crystal element using a liquid crystal material, a TN (Twisted Nematic) mode has been put into practical use. In this mode, light is switched by utilizing the optical rotation characteristics of the liquid crystal, and when used as a liquid crystal element, it is necessary to use a polarizing plate. However, the use efficiency of light becomes low by using a polarizing plate. As a liquid crystal element with high light utilization efficiency without using a polarizing plate, there is a liquid crystal element that performs switching between a liquid crystal transmission state (also referred to as a transparent state) and a scattering state. As the liquid crystal element, generally, a polymer dispersed liquid crystal (PDLC) in which liquid crystal molecules are dispersed in a polymer, or a polymer network made of a resin formed in a three-dimensional network. There is known one using a polymer network type liquid crystal (PNLC) having liquid crystal molecules arranged in voids formed in the substrate. In both PDLC and PNLC, part or all of the liquid crystal composition containing a polymerizable compound that is polymerized by ultraviolet rays exhibits liquid crystallinity. And both PDLC and PNLC are manufactured through the process of hardening the said liquid-crystal composition by ultraviolet irradiation, and forming the hardened | cured material composite body of a liquid crystal and a polymeric compound.

液晶層により透過状態や散乱状態を切り替える技術として、高分子中に液晶を分散させた高分子分散型液晶表示装置が知られている(例えば、特許文献1,2)。このような高分子分散型液晶表示装置では、液晶と高分子との屈折率の差を利用することにより、液晶が電界方向に配列する状態(透過状態)と液晶分子がランダムな方向を向く状態(散乱状態)の切り替えが行なわれる。   As a technique for switching between a transmission state and a scattering state by a liquid crystal layer, a polymer dispersion type liquid crystal display device in which liquid crystal is dispersed in a polymer is known (for example, Patent Documents 1 and 2). In such a polymer dispersion type liquid crystal display device, by utilizing the difference in refractive index between the liquid crystal and the polymer, the liquid crystal is aligned in the electric field direction (transmission state) and the liquid crystal molecules are in a random direction. (Scattering state) is switched.

上記液晶素子を調光層として用いる調光フィルムには、その使用態様により、ノーマルモードとリバースモードの二種が知られている。ノーマルモードとは、電圧印加により透過状態となり、電界除去により散乱状態となるモードを言う。また、リバースモードとは、電圧非印加により透過状態となり、電圧印加により散乱状態となるモードを言う。リバース型液晶素子としては例えば、特許文献3〜5に記載の構成が知られている。   Two types of normal mode and reverse mode are known for the light control film using the liquid crystal element as a light control layer, depending on its usage. The normal mode is a mode in which a transmission state is obtained by applying a voltage and a scattering state is obtained by removing an electric field. The reverse mode is a mode in which a transmission state is obtained when no voltage is applied and a scattering state is obtained when a voltage is applied. As reverse type liquid crystal elements, for example, configurations described in Patent Documents 3 to 5 are known.

リバース型の液晶素子で、紫外線照射装置により紫外線を照射して硬化させた液晶層を有し、かつ基板の少なくとも一方が液晶を垂直に配向させるような液晶配向層を備える液晶素子は、例えば、特許文献6に開示されている。   A liquid crystal element having a liquid crystal layer which is a reverse type liquid crystal element and has a liquid crystal layer cured by irradiating ultraviolet rays with an ultraviolet irradiation device, and at least one of the substrates aligns the liquid crystal vertically, for example, It is disclosed in Patent Document 6.

特開平10−36317号公報Japanese Patent Laid-Open No. 10-36317 特開2013−76956号公報JP 2013-76956 A 特許第2885116号公報Japanese Patent No. 2885116 特許第4132424号公報Japanese Patent No. 4132424 特許第6103108号公報Japanese Patent No. 6103108 国際公開第2015/022980号International Publication No. 2015/022980

PNLCまたはPDLCを用いたリバース型素子では、液晶を垂直に配向させなければならないため、液晶を垂直に配向させる液晶配向層(垂直液晶配向層)が用いられる。垂直液晶配向層は疎水性が高い膜であるため、液晶層と液晶配向層との密着性が低くなってしまう。そのため、リバース型素子に用いる液晶組成物には、液晶層と液晶配向層との密着性を高めるための硬化剤を多く導入する対策が講じられている。しかし、硬化剤を多く導入すると、液晶の垂直配向性が阻害され、電圧無印加時の透明性と電圧印加時の散乱特性が大きく低下する。そのため、硬化剤を多く導入した場合、液晶配向層は、液晶の垂直配向性が高いものが必要となる。   In a reverse type device using PNLC or PDLC, since the liquid crystal must be vertically aligned, a liquid crystal alignment layer (vertical liquid crystal alignment layer) that aligns the liquid crystal vertically is used. Since the vertical liquid crystal alignment layer is a highly hydrophobic film, the adhesion between the liquid crystal layer and the liquid crystal alignment layer is lowered. For this reason, countermeasures have been taken to introduce a large amount of a curing agent for enhancing the adhesion between the liquid crystal layer and the liquid crystal alignment layer in the liquid crystal composition used in the reverse type element. However, when a large amount of curing agent is introduced, the vertical alignment of the liquid crystal is hindered, and the transparency when no voltage is applied and the scattering characteristics when a voltage is applied are greatly reduced. Therefore, when a large amount of the curing agent is introduced, the liquid crystal alignment layer needs to have a high liquid crystal vertical alignment property.

現在、主に工業的に利用されている液晶配向層は、耐久性に優れ、液晶のプレチルト角の制御に好適なポリイミド系重合体から成る有機膜が用いられている。ポリイミド系重合体は、ポリイミド前駆体であるポリアミド酸やポリアミド酸をイミド化したポリイミド等を用いている。液晶配向層は、これらの重合体を用いた液晶配向処理剤から作製されている。   At present, a liquid crystal alignment layer mainly used industrially uses an organic film made of a polyimide polymer that is excellent in durability and suitable for controlling the pretilt angle of liquid crystal. As the polyimide polymer, polyamic acid which is a polyimide precursor, polyimide obtained by imidizing polyamic acid, or the like is used. The liquid crystal alignment layer is produced from a liquid crystal alignment treatment agent using these polymers.

ここで、液晶組成物、特に液晶組成物中の重合性化合物は、ポリマーネットワークを形成させ、目的とする光学特性を得る役割がある。しかし、この重合性化合物は、上記硬化剤としての役割もあり、少ない導入量でも、より効率的に垂直液晶配向層との密着性を高めるための改良が必要とされている。   Here, the liquid crystal composition, particularly the polymerizable compound in the liquid crystal composition, has a role of forming a polymer network and obtaining desired optical characteristics. However, this polymerizable compound also has a role as the curing agent, and there is a need for improvement in order to increase the adhesion with the vertical liquid crystal alignment layer more efficiently even with a small introduction amount.

本発明は、リバース型の液晶素子を使用する調光フィルムであって、製造時や製品使用時の取扱い安定性の点で実用上の問題ない密着強度が確保された調光フィルムを提供することを目的とする。   The present invention provides a light control film using a reverse type liquid crystal element, which has a practically satisfactory adhesion strength in terms of handling stability at the time of manufacture and use of the product. With the goal.

上記の課題を解決するため、本発明による調光フィルムは、
透明導電層,配向層が形成されてなる2枚の透明基板の間に、印加電圧に応じてヘイズを2段階以上に切替え可能な調光層を挟持してなる調光フィルムにおいて、
前記配向層は配向領域と非配向領域とが形成されるように領域分割され、前記調光層は前記非配向領域を介して部分的に露出した前記透明導電層と重合接着されることを特徴とする。
In order to solve the above problems, the light control film according to the present invention is:
In the light control film formed by sandwiching a light control layer capable of switching the haze in two or more stages according to the applied voltage between the two transparent substrates formed with the transparent conductive layer and the alignment layer,
The alignment layer is divided so that an alignment region and a non-alignment region are formed, and the light control layer is polymerized and bonded to the transparent conductive layer partially exposed through the non-alignment region. And

本発明に係るリバース型の液晶素子を使用する調光フィルムにより、製造時や製品使用時の取扱い安定性の点で実用上の問題ない密着強度が確保された調光フィルムを提供することが実現される。
すなわち、電圧無印加時の透明性と電圧印加時の散乱特性の低下を招くことなく、調光層(PNLCまたはPDLC)と透明導電層,配向層付き透明フィルム基材との密着強度が十分に確保され、製造時・製品使用時の取扱い安定性の点で実用上の問題ない密着性が付与された調光フィルムが提供される。
With the light control film using the reverse type liquid crystal element according to the present invention, it is possible to provide a light control film that has a practically satisfactory adhesion strength in terms of handling stability during manufacturing and product use Is done.
That is, the adhesion strength between the light control layer (PNLC or PDLC), the transparent conductive layer, and the transparent film substrate with the alignment layer is sufficiently high without causing deterioration of the transparency when no voltage is applied and the scattering characteristics when the voltage is applied. Provided is a light-controlling film which is secured and has an adhesion which is practically satisfactory in terms of handling stability during production and use of the product.

本発明の実施形態の調光フィルムの要部を示す断面図である。It is sectional drawing which shows the principal part of the light control film of embodiment of this invention. 本発明の実施形態の調光フィルムの配向層のパターニング例を示す概念図である。It is a conceptual diagram which shows the example of patterning of the orientation layer of the light control film of embodiment of this invention. 本発明の実施形態の調光フィルムの配向層のパターニング例を示す概念図である。It is a conceptual diagram which shows the example of patterning of the orientation layer of the light control film of embodiment of this invention. 本発明の実施形態の調光フィルムの配向層のパターニングの変形例を示す概念図である。It is a conceptual diagram which shows the modification of the patterning of the orientation layer of the light control film of embodiment of this invention. 本発明の実施形態の調光フィルムの配向層のパターニングの変形例を示す概念図である。It is a conceptual diagram which shows the modification of the patterning of the orientation layer of the light control film of embodiment of this invention.

以下、本発明の実施形態の調光フィルムについて、PNLCの場合を例にとり説明する。但し、本発明に係る調光フィルムは、以下の説明によって限定されるものではない。例えば、本発明は、PDLCであっても同様に適用可能である。なお、説明の便宜上、実際の縮尺とは異なるサイズで誇張して図示する場合もある。
PNLCは、液晶層内部の網目状の高分子繊維に沿って液晶分子が不規則に並んだ状態では、表示が不透明(散乱状態)となり、液晶分子が表示面に対して垂直に整列した状態では、表示が透明(透過状態)になる。
PDLCでは、高分子マトリックス内で、樹脂材料の硬化物から形成されている各高分子の内部に、液晶分子を含んだ(液状,カプセル状の)液晶材料が設けられて構成され、液晶分子の配向状態に応じて、高分子マトリックスとの屈折率差が変化するに伴い、散乱状態/透過状態が変調される。
Hereinafter, the light control film of the embodiment of the present invention will be described taking the case of PNLC as an example. However, the light control film which concerns on this invention is not limited by the following description. For example, the present invention can be similarly applied to PDLC. For convenience of explanation, there is a case where it is exaggerated and illustrated in a size different from the actual scale.
In the PNLC, when the liquid crystal molecules are irregularly arranged along the network polymer fibers inside the liquid crystal layer, the display becomes opaque (scattering state), and when the liquid crystal molecules are aligned perpendicular to the display surface, The display becomes transparent (transparent state).
In PDLC, a liquid crystal material containing liquid crystal molecules (liquid or capsule-like) is provided in each polymer formed from a cured resin material in a polymer matrix. As the refractive index difference from the polymer matrix changes according to the orientation state, the scattering state / transmission state is modulated.

リバース型のPNLCによる調光層を具備する調光フィルムの製造は、一般的に以下のようにしてなされる。すなわち、まず液晶と光重合性化合物(モノマー)との混合物を一対の透明基板(透明電極,配向層が積層されてなる)の間に挟む。次いで、一定の条件下で紫外線を照射することにより、光重合によって液晶中の光重合性化合物を高分子に変化させる。光重合および架橋結合により、微細なドメイン(高分子の空隙)を無数に有するポリマーネットワークが液晶中に形成される。   The production of a light control film comprising a light control layer by reverse PNLC is generally performed as follows. That is, first, a mixture of a liquid crystal and a photopolymerizable compound (monomer) is sandwiched between a pair of transparent substrates (laminated with a transparent electrode and an alignment layer). Next, the photopolymerizable compound in the liquid crystal is changed into a polymer by photopolymerization by irradiating ultraviolet rays under a certain condition. By photopolymerization and cross-linking, a polymer network having innumerable fine domains (polymer voids) is formed in the liquid crystal.

図1は本発明の実施形態の調光フィルム1の要部を示す断面図である。調光フィルム1は、調光層2を有する。調光層2は、ポリマーネットワークと液晶分子を有するPNLCタイプである。調光層2の各面には一対の配向層7a,7bが積層されている。各配向層7a,7bにおける調光層側と反対に位置する面には透明導電フィルム3a、3bが積層されている。   FIG. 1 is a cross-sectional view showing a main part of a light control film 1 according to an embodiment of the present invention. The light control film 1 has a light control layer 2. The light control layer 2 is a PNLC type having a polymer network and liquid crystal molecules. A pair of alignment layers 7 a and 7 b are laminated on each surface of the light control layer 2. Transparent conductive films 3a and 3b are laminated on the surface of each alignment layer 7a and 7b located opposite to the light control layer side.

調光層2は、相分離において未反応成分が殆どなく、ポリマーネットワークと液晶領域が高い純度で明確に分かれる挙動を示す。また、基板(導電膜)のラビングによるプレチルト配向処理を行なうことなく、理想的な配向状態を実現することが可能であり、液晶分子はポリマーネットワークによって分割されたドメインごとにほぼ一様に配向することになる。   The light control layer 2 has a behavior in which there is almost no unreacted component in the phase separation, and the polymer network and the liquid crystal region are clearly separated with high purity. In addition, an ideal alignment state can be realized without performing a pretilt alignment process by rubbing the substrate (conductive film), and the liquid crystal molecules are aligned almost uniformly in each domain divided by the polymer network. It will be.

PNLCのドメインのサイズは、光拡散シート内の微粒子(概ね2〜10μm径)やPDLCにおける分散させたネマティック液晶ドロップレット(一般に、数μm径)に対して、約1μmと微細であり、レイリー散乱(波長選択的な散乱)は招かず、少なくとも可視光領域波長(400〜780nm)を含む広い波長域の散乱が効率的に発生する。 The size of the PNLC domain is as fine as about 1 μm for fine particles (approximately 2 to 10 μm in diameter) in the light diffusion sheet and nematic liquid crystal droplets (generally several μm in diameter) dispersed in PDLC, and Rayleigh scattering. (Wavelength selective scattering) is not incurred, and scattering in a wide wavelength region including at least a visible light region wavelength (400 to 780 nm) is efficiently generated.

PNLCの駆動電圧は、一般にポリマーネットワークの構造上の特性(ドメインの大きさや形状,ポリマーネットワークの膜厚など)に依存しており、ポリマーネットワークの構造と、得られる光透過と散乱の度合いとの関係において、駆動電圧が決定されている。100V以下の電圧領域において、十分な光透過と散乱の度合いが得られるようなPNLCを構成するには、各ドメインがいずれも適正な大きさで均一となるように、かつ、形状も均一となるようにポリマーネットワークを形成する必要がある。本発明では、ポリマーネットワーク構造に依存するドメインサイズを3μm以下、好ましくは2μm以下、一層好ましくは約1μmとなる様に制御する。   The driving voltage of PNLC generally depends on the structural characteristics of the polymer network (domain size and shape, film thickness of the polymer network, etc.). The structure of the polymer network and the degree of light transmission and scattering obtained In relation, the drive voltage is determined. In order to construct a PNLC in which a sufficient degree of light transmission and scattering can be obtained in a voltage region of 100 V or less, each domain is uniform in size and uniform in size. Thus, it is necessary to form a polymer network. In the present invention, the domain size depending on the polymer network structure is controlled to be 3 μm or less, preferably 2 μm or less, and more preferably about 1 μm.

製造方法の詳細については、九州ナノテック光学株式会社による特許第4387931号に説明されており、本発明の実施形態においても、調光層となる液晶素子(PNLC)の製造は前記特許に準拠したプロセスを採用する。本プロセスは、上述した「サイズ等が制御されたネットワーク構造」の設計〜製造の上で非常に有効である。   The details of the manufacturing method are described in Japanese Patent No. 4387931 by Kyushu Nanotech Optical Co., Ltd. In the embodiment of the present invention, the liquid crystal element (PNLC) to be the light control layer is manufactured in accordance with the process according to the above patent. Is adopted. This process is very effective in designing and manufacturing the above-described “network structure in which the size and the like are controlled”.

透明導電フィルム3a,3bを構成する透明基材5には、ポリエチレンテレフタレート(PET)フィルム,ポリエチレン(PE)フィルム,ポリカーボネート(PC)フィルムなどを用いることができる。このような樹脂フィルムを透明基材5として使用することにより、可撓性や柔軟性に富む。そのため、平坦なガラスに積層して使用する以外にも、曲面形状への適用や巻き取り収納など、取扱い上の自由度が高いという利点がある。本実施形態では、透明基材5の厚みは、約50〜200μm程度に設定される。透明導電層6には、一般的にITOなどの金属酸化物が用いられる。但し、ITOに替えて低抵抗の導電性ポリマーを採用することも可能である。導電性ポリマーとしては、PEDOTやPSSに例示されるπ共役系導電性高分子にドープされたポリアニオンを含む材料の採用が好適である。   For the transparent substrate 5 constituting the transparent conductive films 3a and 3b, a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polycarbonate (PC) film, or the like can be used. By using such a resin film as the transparent base material 5, it is rich in flexibility and flexibility. Therefore, there is an advantage that the degree of freedom in handling is high, such as application to a curved surface shape and winding and storing, in addition to use by laminating on flat glass. In the present embodiment, the thickness of the transparent substrate 5 is set to about 50 to 200 μm. Generally, a metal oxide such as ITO is used for the transparent conductive layer 6. However, it is also possible to adopt a low resistance conductive polymer instead of ITO. As the conductive polymer, it is preferable to use a material containing a polyanion doped in a π-conjugated conductive polymer exemplified by PEDOT and PSS.

配向層7a,7bは垂直配向層であり、調光層2に電圧を印加していないときに、液晶分子の長手方向が配向層7a,7bの法線方向に沿うように、当該液晶分子を配向する。このため、リバースタイプの調光層2は、電圧を印加していないときに低ヘイズ状態となり、透過性が高くなる。   The alignment layers 7a and 7b are vertical alignment layers. When no voltage is applied to the light control layer 2, the liquid crystal molecules are aligned so that the longitudinal direction of the liquid crystal molecules is along the normal direction of the alignment layers 7a and 7b. Orient. For this reason, the reverse type light control layer 2 is in a low haze state when no voltage is applied, and the transparency is increased.

本発明の主要な特徴の一つである配向層7a、7bについて説明する。本実施形態の配向層はポリイミド系重合体から成る有機膜を想定する。そのため、既述の通り、リバース型の調光フィルムは配向層と調光層の密着性の低さに起因する信頼性の低下が発生するおそれがある。そこで本実施形態の調光フィルム1では、以下のように配向層7a、7bをパターニング、換言すれば一部領域を選択的に除去することで密着性の向上さらには信頼性の向上を図っている。   The alignment layers 7a and 7b, which are one of the main features of the present invention, will be described. The alignment layer of the present embodiment is assumed to be an organic film made of a polyimide polymer. Therefore, as described above, the reverse type light control film may cause a decrease in reliability due to low adhesion between the alignment layer and the light control layer. Therefore, in the light control film 1 of the present embodiment, the orientation layers 7a and 7b are patterned as described below, in other words, by selectively removing a part of the region, the adhesion is improved and the reliability is improved. Yes.

図2、図3は、本実施形態の配向層7a、7bのパターニングの一例について示した図である。各図(a)は配向層7aを、(b)は配向層7bを示す。なお、図4、図5においても同様とする。各図において、塗りつぶした領域が配向領域71、空白領域が非配向領域72を示す。ここで、配向領域71とは、配向層のうち、調光層に対して積極的に配向効果を付与する機能を持つ領域をいう。つまり、従来の配向層は全域にわたって配向領域71によって占められていたといえる。また、非配向領域72とは、配向層において、透明電極が露出している領域をいう。つまり、非配向領域72は配向領域71と比較して調光層に対する配向効果が少ない領域といえる。一例では非配向領域72は、配向効果が全くない構成であっても良い。各図に示すように、配向層において、配向領域71と非配向領域72とは、一定の規則性をもって連続的に交互に配置されている。   2 and 3 are diagrams showing an example of patterning of the alignment layers 7a and 7b of the present embodiment. Each figure (a) shows alignment layer 7a, and (b) shows alignment layer 7b. The same applies to FIGS. 4 and 5. In each figure, the filled area indicates the oriented area 71 and the blank area indicates the non-oriented area 72. Here, the alignment region 71 refers to a region having a function of positively imparting an alignment effect to the light control layer in the alignment layer. In other words, it can be said that the conventional alignment layer is occupied by the alignment region 71 over the entire area. The non-oriented region 72 is a region where the transparent electrode is exposed in the oriented layer. That is, it can be said that the non-alignment region 72 is a region having less alignment effect on the light control layer than the alignment region 71. For example, the non-orientation region 72 may have a configuration without any orientation effect. As shown in each drawing, in the alignment layer, the alignment regions 71 and the non-alignment regions 72 are alternately arranged continuously with a certain regularity.

上記構成において、非配向領域72では調光層2は直接透明電極6に当接する。一般に調光層2は配向層7a、7bとの関係よりも透明電極6との関係の方が密着強度は高い。そのため、非配向領域72を設けることにより、調光層2は配向層7a、7bを介して透明電極6に堅固に接着される。加えて配向領域71によって適正な配向制御がなされ、液晶の正常な動作も保証される。ここで、上記密着強度と配向規制力とはトレードオフの関係にある。本実施形態では、密着強度と配向規制力とのバランスを意識している。そのため、図2や図3に示すように配向領域71と非配向領域72の面積比率が略50:50、換言すると配向層における単位面積当たりの非配向領域72の割合が50%となるように配向層7a、7bを設計している。   In the above configuration, the light control layer 2 directly contacts the transparent electrode 6 in the non-oriented region 72. In general, the dimming layer 2 has a higher adhesion strength in the relationship with the transparent electrode 6 than in the relationship with the alignment layers 7a and 7b. Therefore, by providing the non-orientation region 72, the light control layer 2 is firmly bonded to the transparent electrode 6 through the orientation layers 7a and 7b. In addition, proper alignment control is performed by the alignment region 71, and normal operation of the liquid crystal is also guaranteed. Here, the adhesion strength and the orientation regulating force are in a trade-off relationship. In the present embodiment, attention is paid to the balance between the adhesion strength and the orientation regulating force. Therefore, as shown in FIGS. 2 and 3, the area ratio of the alignment region 71 and the non-alignment region 72 is approximately 50:50, in other words, the ratio of the non-alignment region 72 per unit area in the alignment layer is 50%. The alignment layers 7a and 7b are designed.

図2は、ストライプ状にパターニングされた配向層7a、7bを示す。図3は、市松状にパターニングされた配向層7a、7bを示す。図2(a)、(b)及び図3(a)、(b)に示すように、各配向層は、一方の配向領域71に対応する位置に他方の非配向領域72が形成されている。このように配置することにより、各層間の確実な接着を実現しつつも液晶の配向制御を適切に担保している。ここで配向層のパターニング(選択的除去)により、トレードオフの関係を有する液晶分子の配向規制力と調光フィルムの密着強度とのバランスを適切に設計する必要がある。この設計は、例えば製造時や施工時、さらには製品使用時における取扱いの安定性、安心性という観点から行うことが好ましい。   FIG. 2 shows alignment layers 7a and 7b patterned in a stripe shape. FIG. 3 shows alignment layers 7a and 7b patterned in a checkered pattern. As shown in FIGS. 2A and 2B and FIGS. 3A and 3B, in each alignment layer, the other non-alignment region 72 is formed at a position corresponding to one alignment region 71. . By arranging in this way, the alignment control of the liquid crystal is appropriately secured while achieving reliable adhesion between the respective layers. Here, it is necessary to appropriately design the balance between the alignment regulating force of the liquid crystal molecules having a trade-off relationship and the adhesion strength of the light control film by patterning (selective removal) of the alignment layer. This design is preferably performed from the viewpoints of handling stability and safety at the time of manufacture, construction, and further use of the product.

配向層のパターニング手法としては、特開2000−47219号公報に例示される手法が採用しうる。具体的には、所定の配向層パターン形状にレジストを形成し、基板全面に紫外線を照射してアッシングを行なう。その後、アルカリ性のレジスト剥離液等で基板を洗浄することにより、アッシングされた配向層とレジストを除去し、配向層のパターニングを行なう。なお、上記手法はあくまでも一例である。例えば、パターニング手法として、印刷版を用いた転写印刷方式を採用することも可能である。   As a patterning technique for the alignment layer, a technique exemplified in JP-A-2000-47219 can be employed. Specifically, a resist is formed in a predetermined alignment layer pattern shape, and ashing is performed by irradiating the entire surface of the substrate with ultraviolet rays. Thereafter, by washing the substrate with an alkaline resist stripping solution or the like, the ashed alignment layer and the resist are removed, and the alignment layer is patterned. The above method is merely an example. For example, as a patterning method, a transfer printing method using a printing plate can be employed.

以上が本発明の実施形態である。実施形態の調光フィルムによれば、調光層に硬化剤等を注入し液晶組成物の構成を変更することなく調光層の密着強度を高めることを可能としている。なお、本発明は上記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で変形が可能である。   The above is the embodiment of the present invention. According to the light control film of the embodiment, it is possible to increase the adhesion strength of the light control layer without changing the configuration of the liquid crystal composition by injecting a curing agent or the like into the light control layer. In addition, this invention is not limited to the said embodiment, A deformation | transformation is possible in the range which does not deviate from the main point of this invention.

例えば、上記実施形態では、配向層における単位面積当たりの非配向領域72の割合が50%となるように配向層7a,7bを設計していると説明した。本発明はこれに限定されるものではない。本発明に係る調光フィルムの使用用途、採用される製品に求められる仕様に応じて上記面積比率を自在に変更することが可能である。例えば、リバース型の液晶素子では、OFF(電界非印加)時の透明性が重要とされることが多い。そのため、配向層による配向規制力(液晶分子の垂直配向性)の確保が優先される場合も想定される。その場合には、各配向層における配向領域71と非配向領域72の面積比率が後者より前者のほうが高くなるよう設定することが可能である。図4は、配向領域に対する非配向領域の面積比率を小さく設定した変形例に係る各配向層を示す概念図である。図4に示す変形例に係る各配向層は、他の例と比べ、非配向領域72が極めて狭小かつ間欠的に設けられている。本変形例においては、単位面積あたりに非配向領域が占める割合は略5%に設定されている。   For example, in the above-described embodiment, it has been described that the alignment layers 7a and 7b are designed so that the ratio of the non-alignment region 72 per unit area in the alignment layer is 50%. The present invention is not limited to this. The area ratio can be freely changed according to the intended use of the light control film according to the present invention and the specifications required for the adopted product. For example, in a reverse type liquid crystal element, transparency at OFF (no electric field application) is often important. Therefore, the case where priority is given to securing the alignment regulating force (vertical alignment of liquid crystal molecules) by the alignment layer is also assumed. In that case, the area ratio of the alignment region 71 and the non-alignment region 72 in each alignment layer can be set so that the former is higher than the latter. FIG. 4 is a conceptual diagram showing each alignment layer according to a modification in which the area ratio of the non-alignment region to the alignment region is set to be small. Each alignment layer according to the modification shown in FIG. 4 is provided with non-alignment regions 72 that are extremely narrow and intermittent compared to the other examples. In this modification, the ratio of the non-oriented region per unit area is set to about 5%.

発明者は、垂直液晶配向層を有さず透明電極に液晶が当接するタイプの調光フィルム(ノーマル型)と、垂直液晶配向層を全面に具備するタイプの調光フィルム(従来のリバース型)とを試験(剥離試験)、評価してみた。その結果、調光フィルム製造後の密着強度(単位:N/25mm)に関し、前者を基準とすると後者は約50倍の強度を有するという測定データが得られている。   The inventor has a light control film (normal type) that does not have a vertical liquid crystal alignment layer and the liquid crystal is in contact with a transparent electrode, and a light control film that has a vertical liquid crystal alignment layer on the entire surface (conventional reverse type). And tested (peeling test) and evaluated. As a result, with respect to the adhesion strength (unit: N / 25 mm) after the production of the light control film, measurement data is obtained that the latter has about 50 times the strength with respect to the former.

図4に示す変形例の調光フィルム1の密着強度を測定したところ、従来のリバース型の密着強度を基準とすると、約20倍の強度を有するという測定データが得られた。つまり、図4に示す変形例であっても、従来のリバース型調光フィルムよりも確実に密着強度の向上が確認できた。但し、単位面積あたりに非配向領域が占める割合が1%を下回ると従来のリバース型の密着強度と比して有効な数値を得にくいことから、1%以上に設定することが推奨される。   When the adhesion strength of the light control film 1 of the modification shown in FIG. 4 was measured, measurement data indicating that the strength was about 20 times that of the conventional reverse type adhesion strength was obtained. That is, even in the modification shown in FIG. 4, it was confirmed that the adhesion strength was improved more reliably than the conventional reverse type light control film. However, if the ratio of the non-oriented region per unit area is less than 1%, it is difficult to obtain an effective numerical value as compared with the conventional reverse-type adhesion strength.

よって、上記の通り、密着強度と配向規制力とのバランスを意識するとともに、配向膜の作製負担の軽減という観点を重視するのであれば、上記実施形態の構成に基づき設計することが好ましい。一方で、より配向規制力を重視するのであれば図4に示すような変形例に基づく設計が好ましい。   Therefore, as described above, it is preferable to design based on the configuration of the above-described embodiment if the balance between the adhesion strength and the alignment regulating force is conscious and the viewpoint of reducing the burden of manufacturing the alignment film is emphasized. On the other hand, a design based on a modification as shown in FIG.

また、上記実施形態では、規則性があるパターニングを施された配向層を説明した。本発明に係る調光フィルムは必ずしも規則性ある配向層でなくてもよい。例えば図5に示すように少なくとも配向領域と非配向領域が交互に形成されていればよい。さらに、本発明に係る調光フィルムでは、必ずしも各配向層は、一方の配向領域71に対応する位置に他方の非配向領域72が形成されている必要は無い。例えば図5に示すように、一方の配向領域71に対応する位置に他方の配向領域71が形成されていてもよい。   Further, in the above-described embodiment, the alignment layer subjected to regular patterning has been described. The light control film according to the present invention is not necessarily a regular alignment layer. For example, as shown in FIG. 5, it is sufficient that at least oriented regions and non-oriented regions are formed alternately. Further, in the light control film according to the present invention, each alignment layer is not necessarily required to have the other non-alignment region 72 formed at a position corresponding to one alignment region 71. For example, as shown in FIG. 5, the other alignment region 71 may be formed at a position corresponding to one alignment region 71.

また、上記実施形態で説明したパターニングはあくまで一例であり配向領域と非配向領域との連続パターンはこれらに限定されるものではない。各領域の境界線も直線状である必要は無い。なお、配向層の配向領域に配向機能を付与する手法としてはラビングや光配向のほか種々の周知の技術が採用可能である。   The patterning described in the above embodiment is merely an example, and the continuous pattern of the alignment region and the non-alignment region is not limited to these. The boundary line of each region does not need to be linear. As a method for imparting an alignment function to the alignment region of the alignment layer, various well-known techniques can be employed in addition to rubbing and photo-alignment.

1 調光フィルム
2 調光層
3a、3b 透明導電フィルム
5 透明基材
6 透明電極
7 配向層
DESCRIPTION OF SYMBOLS 1 Light control film 2 Light control layer 3a, 3b Transparent conductive film 5 Transparent base material 6 Transparent electrode 7 Orientation layer

Claims (5)

透明導電層,配向層が形成されてなる2枚の透明基板の間に、印加電圧に応じてヘイズを2段階以上に切替え可能な調光層を挟持してなる調光フィルムにおいて、
前記配向層は配向領域と非配向領域とが形成されるように領域分割され、前記調光層は前記非配向領域を介して部分的に露出した前記透明導電層と重合接着されることを特徴とする調光フィルム。
In the light control film formed by sandwiching a light control layer capable of switching the haze in two or more stages according to the applied voltage between the two transparent substrates formed with the transparent conductive layer and the alignment layer,
The alignment layer is divided so that an alignment region and a non-alignment region are formed, and the light control layer is polymerized and bonded to the transparent conductive layer partially exposed through the non-alignment region. A light control film.
前記配向層は、前記配向領域と前記非配向領域とが連続的かつ交互にパターニングされていることを特徴とする請求項1に記載の調光フィルム。   The light control film according to claim 1, wherein the alignment layer has the alignment region and the non-alignment region patterned continuously and alternately. 前記配向層は、ストライプ状,市松状の何れかのパターンで形成されることを特徴とする請求項1又は請求項2に記載の調光フィルム。   The light control film according to claim 1, wherein the alignment layer is formed in a striped pattern or a checkered pattern. 前記配向層において単位面積当たりに前記非配向領域が占める割合が、1%以上50%以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の調光フィルム。   The light control film according to any one of claims 1 to 3, wherein a ratio of the non-oriented region per unit area in the oriented layer is 1% or more and 50% or less. 前記調光層は、液晶とモノマーの混合液に対して紫外光が照射されることで前記モノマーが光重合化して三次元の網目状に形成されたポリマーネットワークの空隙内に液晶分子が配置された構成、又は液晶分子が高分子マトリックス中に分散配置された構成であることを特徴とする請求項1から請求項4のいずれか1項に記載の調光フィルム。   In the light control layer, liquid crystal molecules are arranged in voids of a polymer network formed in a three-dimensional network by photopolymerizing the monomer by irradiating ultraviolet light to a liquid crystal and monomer mixture. The light control film according to any one of claims 1 to 4, wherein the light control film has a structure in which liquid crystal molecules are dispersedly disposed in a polymer matrix.
JP2017135432A 2017-07-11 2017-07-11 Dimming film Active JP6965605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135432A JP6965605B2 (en) 2017-07-11 2017-07-11 Dimming film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135432A JP6965605B2 (en) 2017-07-11 2017-07-11 Dimming film

Publications (2)

Publication Number Publication Date
JP2019020433A true JP2019020433A (en) 2019-02-07
JP6965605B2 JP6965605B2 (en) 2021-11-10

Family

ID=65354226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135432A Active JP6965605B2 (en) 2017-07-11 2017-07-11 Dimming film

Country Status (1)

Country Link
JP (1) JP6965605B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987378A (en) * 2021-03-26 2021-06-18 国信宝威(北京)科技有限公司 Reverse light modulation film and preparation method thereof
CN113568212A (en) * 2021-07-26 2021-10-29 国信宝威(北京)科技有限公司 Low-haze high-bonding-force light modulation film and preparation method thereof
CN113835257A (en) * 2021-10-21 2021-12-24 南京邮电大学 Intelligent light adjusting film based on liquid crystal/polymer
CN114245648A (en) * 2021-12-29 2022-03-25 Oppo广东移动通信有限公司 Decorative film, shell and electronic equipment
JP2022072805A (en) * 2020-10-30 2022-05-17 凸版印刷株式会社 Lighting control sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094801A (en) * 2013-11-11 2015-05-18 林テレンプ株式会社 Optically anisotropic element and manufacturing method of the same
JP2015215417A (en) * 2014-05-08 2015-12-03 大日本印刷株式会社 Light control film and light control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094801A (en) * 2013-11-11 2015-05-18 林テレンプ株式会社 Optically anisotropic element and manufacturing method of the same
JP2015215417A (en) * 2014-05-08 2015-12-03 大日本印刷株式会社 Light control film and light control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022072805A (en) * 2020-10-30 2022-05-17 凸版印刷株式会社 Lighting control sheet
JP7210520B2 (en) 2020-10-30 2023-01-23 凸版印刷株式会社 light control sheet
EP4239398A4 (en) * 2020-10-30 2024-04-17 Toppan Inc. Dimming sheet
CN112987378A (en) * 2021-03-26 2021-06-18 国信宝威(北京)科技有限公司 Reverse light modulation film and preparation method thereof
CN113568212A (en) * 2021-07-26 2021-10-29 国信宝威(北京)科技有限公司 Low-haze high-bonding-force light modulation film and preparation method thereof
CN113835257A (en) * 2021-10-21 2021-12-24 南京邮电大学 Intelligent light adjusting film based on liquid crystal/polymer
CN113835257B (en) * 2021-10-21 2024-05-31 南京邮电大学 Intelligent dimming film based on liquid crystal/polymer
CN114245648A (en) * 2021-12-29 2022-03-25 Oppo广东移动通信有限公司 Decorative film, shell and electronic equipment
CN114245648B (en) * 2021-12-29 2023-08-11 Oppo广东移动通信有限公司 Decorative film, shell and electronic equipment

Also Published As

Publication number Publication date
JP6965605B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6965605B2 (en) Dimming film
JP6317582B2 (en) Liquid crystal display and manufacturing method thereof
TWI545377B (en) Lighting device and display device
WO2012053479A1 (en) Display panel, and display device
JPH0580302A (en) Liquid crystal electrooptical device
KR960032054A (en) Liquid crystal display device and manufacturing method thereof
WO2016074351A1 (en) Manufacturing method of flexible liquid crystal panel and flexible liquid crystal panel
JP6035866B2 (en) Illumination device and display device
KR101538776B1 (en) Smart window film having enhanced adhesion reliability and uniform transmittance and fabrication method thereof
TWI716766B (en) Flexible, adjustable lens power liquid crystal cells and lenses
TW201224594A (en) Liquid crystal element
US20110304799A1 (en) Polymer-dispersed liquid crystal display device and method of manufacturing the same
JP2017003668A (en) Liquid crystal optical element
JP2016126289A (en) Liquid crystal cell, light control material, and laminated glass
US5474629A (en) Method for manufacturing a liquid crystal device
JP2004109171A (en) Optical film, its manufacturing method and liquid crystal display device
KR102176231B1 (en) Transmittance variable film and method for manufacturing transmittance variable film
KR20070035296A (en) Method and apparatus of fabricating liquid crystal display device
KR101993342B1 (en) Liquid Crystal Display Device and Method Of Fabricating The Same
JP2016126290A (en) Liquid crystal cell, light control material, laminated glass, manufacturing method for liquid crystal cell, manufacturing method for light control material, and manufacturing method for laminated glass
JP2010079120A (en) Liquid crystal display, and manufacturing method of the same
JP2008046396A (en) Display panel and display device
JP5983852B1 (en) Light control film and method of manufacturing light control film
JP3559197B2 (en) Method for manufacturing liquid crystal electro-optical device
CN113376891B (en) Manufacturing method of flexible PDLC device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6965605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250