JP2019020304A - Method for specifying position of penetration part - Google Patents

Method for specifying position of penetration part Download PDF

Info

Publication number
JP2019020304A
JP2019020304A JP2017140243A JP2017140243A JP2019020304A JP 2019020304 A JP2019020304 A JP 2019020304A JP 2017140243 A JP2017140243 A JP 2017140243A JP 2017140243 A JP2017140243 A JP 2017140243A JP 2019020304 A JP2019020304 A JP 2019020304A
Authority
JP
Japan
Prior art keywords
permeable layer
water
groundwater
infiltration
specifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140243A
Other languages
Japanese (ja)
Other versions
JP6886881B2 (en
Inventor
朋宏 中島
Tomohiro Nakajima
朋宏 中島
孝昭 清水
Takaaki Shimizu
孝昭 清水
悠 清塘
Haruka Kiyotomo
悠 清塘
陽平 櫻井
Yohei Sakurai
陽平 櫻井
康大 前
Yasuhiro Mae
康大 前
信康 奥田
Nobuyasu Okuda
信康 奥田
靖英 古川
Yasuhide Furukawa
靖英 古川
薫 稲葉
Kaoru Inaba
薫 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2017140243A priority Critical patent/JP6886881B2/en
Publication of JP2019020304A publication Critical patent/JP2019020304A/en
Application granted granted Critical
Publication of JP6886881B2 publication Critical patent/JP6886881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

To specify the position of a penetration unit where a contaminated substance is to diffuse.SOLUTION: The method for specifying the position of a penetration part is applied to a ground G where there is a low permeable layer G2 including a vertically extending penetration part 20, an upper permeable layer G1 is on the upper surface of the lower permeable layer, and a lower permeable layer G3 is on the lower surface of the low permeable layer G2. The method specifies the position of the penetration part 20 by injecting water into the upper permeable layer G1 or the lower permeable layer G3 and detecting the position of warm water in the lower permeable layer G3 or in the upper permeable layer G1.SELECTED DRAWING: Figure 4

Description

本発明は、浸透部の位置特定方法に関する。   The present invention relates to a method for specifying a position of an infiltration portion.

下記特許文献1には、難透水層と、難透水層の上下に配置された第1透水層及び第2透水層とに亘って形成された汚染部を浄化する浄化方法が示されている。この浄化方法では、汚染部の位置を掘削等により特定した後、汚染部を3方から取り囲む地下遮断壁を構築し、地下遮断壁で囲まれた部分に、栄養塩供給井戸、揚水井戸を構築している。   Patent Document 1 listed below discloses a purification method for purifying a hardly permeable layer and a contaminated part formed across the first permeable layer and the second permeable layer disposed above and below the hardly permeable layer. In this purification method, after identifying the location of the contaminated part by excavation, etc., an underground barrier wall that surrounds the contaminated part from three sides is constructed, and a nutrient supply well and a pumping well are constructed in the part surrounded by the underground barrier wall. doing.

特開2005−177658号公報JP 2005-177658 A

上記特許文献1の浄化方法では、第1透水層、第2透水層及び難透水層に亘って形成された汚染部の位置を掘削により特定しているが、難透水層に形成された汚染部、すなわち第1透水層から第2透水層へ汚染物質が浸透する浸透部が細い場合、掘削によってこの水路の位置を特定することは難しい。   In the purification method of Patent Document 1, the position of the contaminated portion formed over the first permeable layer, the second permeable layer, and the hardly permeable layer is specified by excavation, but the contaminated portion formed in the hardly permeable layer. That is, when the infiltrating portion where the contaminant penetrates from the first permeable layer to the second permeable layer is thin, it is difficult to specify the position of the water channel by excavation.

本発明は上記事実を考慮して、汚染物質の拡散経路となる浸透部の位置を特定することを目的とする。   In view of the above facts, the present invention has an object to identify the position of a permeation portion that becomes a diffusion path of a contaminant.

請求項1の浸透部の位置特定方法は、上下方向へ延びる浸透部が存在する低透水層の上面に上部透水層があり、前記低透水層の下面に下部透水層がある地盤に用いられ、前記上部透水層又は前記下部透水層へトレーサーを注入し、前記下部透水層又は前記上部透水層で検出した前記トレーサーの位置から前記浸透部の位置を特定する。   The method for specifying the position of the infiltration part according to claim 1 is used for a ground having an upper permeable layer on an upper surface of a low permeable layer in which an osmotic part extending in the vertical direction exists, and having a lower permeable layer on a lower surface of the low permeable layer, A tracer is injected into the upper water permeable layer or the lower water permeable layer, and the position of the infiltration portion is specified from the position of the tracer detected by the lower water permeable layer or the upper water permeable layer.

上部透水層又は下部透水層に汚染物質があると、この汚染物質は、上部透水層及び下部透水層に挟まれた低透水層の浸透部を通って下部透水層又は上部透水層に到達する。このため、浸透部の位置を特定して封止したり浄化する等の処理をする必要があるが、低透水層の上面には上部透水層があるため、浸透部の位置の特定は容易ではない。   If there is a contaminant in the upper permeable layer or the lower permeable layer, the contaminant reaches the lower permeable layer or the upper permeable layer through the permeation portion of the low permeable layer sandwiched between the upper permeable layer and the lower permeable layer. For this reason, it is necessary to specify the position of the permeation part and perform processing such as sealing or purifying, but since the upper water-permeable layer is on the upper surface of the low water-permeable layer, the position of the permeation part is not easy to identify. Absent.

そこで、請求項1の浸透部の位置特定方法では、上部透水層又は下部透水層へトレーサーを注入し、下部透水層又は上部透水層で検出したトレーサーの位置から、浸透部の位置を特定する。これにより浸透部の位置特定作業が簡易となる。   Therefore, in the method for specifying the position of the permeation portion according to claim 1, the tracer is injected into the upper permeable layer or the lower permeable layer, and the position of the osmosis portion is specified from the position of the tracer detected by the lower permeable layer or the upper permeable layer. Thereby, the position specifying operation of the permeation portion is simplified.

請求項2の浸透部の位置特定方法は、前記下部透水層へ、前記トレーサーとして地下水より高温の温水を注入し、前記上部透水層へ間隔をおいて配置した複数の温度センサで前記地下水の温度を検出する。   The method for specifying the position of the infiltration part according to claim 2 is characterized in that hot water having a temperature higher than groundwater is injected as the tracer into the lower permeable layer, and the temperature of the groundwater is measured by a plurality of temperature sensors arranged at intervals in the upper permeable layer. Is detected.

請求項2の浸透部の位置特定方法では、比較的高い地下水の温度を検出した温度センサの配置位置の下方に、浸透部が存在することが特定できる。   In the method for specifying the position of the infiltration part according to claim 2, it can be specified that the infiltration part exists below the arrangement position of the temperature sensor that detects the temperature of the relatively high groundwater.

請求項3の浸透部の位置特定方法は、前記上部透水層から揚水する。   According to a third aspect of the present invention, there is provided a method for specifying the position of the infiltration portion, wherein water is pumped from the upper water permeable layer.

請求項3の浸透部の位置特定方法では、上部透水層から揚水するため、温水が浸透部を通って上部透水層へ浸透しやすい。このため透水層から揚水しない場合と比較して速やかに浸透部の位置を特定できる。   In the method for specifying the position of the infiltration portion according to claim 3, since the water is pumped from the upper permeable layer, the warm water easily penetrates into the upper permeable layer through the osmosis portion. For this reason, compared with the case where water is not pumped from the water permeable layer, the position of the permeation portion can be quickly identified.

本発明によると、汚染物質の拡散経路となる浸透部の位置を特定することができる。   According to the present invention, it is possible to specify the position of a permeation portion that becomes a diffusion path of a contaminant.

(A)は本発明の実施形態に係る浸透部の位置特定方法が適用される地盤において、汚染物質が上部透水層へ拡散した状態を示す立断面図であり、(B)は汚染物質が低透水層の浸透部へ浸透した状態を示す立断面図である。(A) is an elevational sectional view showing a state in which pollutants are diffused into the upper water permeable layer in the ground to which the method for specifying the infiltration portion according to the embodiment of the present invention is applied. It is an elevation sectional view showing the state where it penetrated into the penetration part of a permeable layer. 本発明の実施形態に係る浸透部の位置特定方法が適用される地盤において、汚染物質が下部透水層へ拡散した状態を示す立断面図である。It is an elevation sectional view showing the state where the pollutant has diffused into the lower permeable layer in the ground to which the method for specifying the infiltration portion according to the embodiment of the present invention is applied. (A)は本発明の実施形態に係る浸透部の位置特定方法において、下部透水層に注入井戸を構築し、上部透水層に熱電対を埋設した状態を示す立断面図であり、(B)は注入井戸から下部透水層へ温水を注入した状態を示す立断面図である。(A) is an elevational sectional view showing a state where an injection well is constructed in the lower permeable layer and a thermocouple is embedded in the upper permeable layer, in the method for specifying the infiltration portion according to the embodiment of the present invention, (B) FIG. 3 is an elevational sectional view showing a state where hot water is injected from an injection well into a lower permeable layer. (A)は本発明の実施形態に係る浸透部の位置特定方法において、下部透水層へ注入した温水によって暖められた地下水が低透水層の浸透部に浸透した状態を示す立断面図であり、(B)は下部透水層へ注入した温水によって暖められた地下水が上部透水層に到達した状態を示す立断面図である。(A) is an elevational sectional view showing a state in which groundwater warmed by warm water injected into the lower permeable layer has penetrated into the permeable portion of the low permeable layer, in the method for specifying the osmotic portion according to the embodiment of the present invention, (B) is an elevational sectional view showing a state in which the groundwater heated by the hot water injected into the lower permeable layer has reached the upper permeable layer. 本発明の実施形態に係る浸透部の位置特定方法において、上部透水層に揚水井戸を構築した変形例を示す立断面図である。It is an elevation sectional view showing the modification which built the pumping well in the upper permeable layer in the infiltration part position specifying method concerning the embodiment of the present invention. 本発明の実施形態に係る浸透部の位置特定方法において、上部透水層に水平調査孔を構築した変形例を示す立断面図である。It is an elevation sectional view showing the modification which built the horizontal investigation hole in the upper permeable layer in the infiltration part position specifying method concerning the embodiment of the present invention.

(地盤)
本発明の実施形態に係る浸透部の位置特定方法が適用される地盤Gは、図1(A)に示すように、表層地盤である上部透水層G1と、上部透水層G1の下面に接する低透水層G2と、低透水層G2の下面に接する下部透水層G3と、を備えている。
(ground)
As shown in FIG. 1 (A), the ground G to which the infiltration portion position specifying method according to the embodiment of the present invention is applied is a low tangent surface that is in contact with the upper permeable layer G1 that is the surface layer ground and the lower surface of the upper permeable layer G1. A water permeable layer G2 and a lower water permeable layer G3 in contact with the lower surface of the low water permeable layer G2 are provided.

上部透水層G1及び下部透水層G3は砂質土で形成され、地下水が流動可能な帯水層であり、低透水層G2は粘性土で形成され、地下水が流動し難い遮水層である。なお、低透水層G2は、上部透水層G1及び下部透水層G3より透水性が低い層であればよい。   The upper permeable layer G1 and the lower permeable layer G3 are formed from sandy soil and are aquifers through which groundwater can flow, and the low permeable layer G2 is formed from viscous soil and is a water-impervious layer from which groundwater does not flow easily. In addition, the low water-permeable layer G2 should just be a layer whose water permeability is lower than the upper water-permeable layer G1 and the lower water-permeable layer G3.

低透水層G2には、上下方向へ延びて低透水層G2の上面から下面まで貫通する浸透部20が形成されている。浸透部20は、低透水層G2に形成された粘性土の亀裂や隙間であり、空洞(土砂が存在しない状態)又は周囲の粘性土より透水性が高い砂質土で形成されており、周囲の粘性土と比較して透水性が高く地下水が流動可能な水路となっている。   The low water permeable layer G2 is formed with a permeation portion 20 extending in the vertical direction and penetrating from the upper surface to the lower surface of the low water permeable layer G2. The infiltration portion 20 is a crack or gap in the viscous soil formed in the low water permeable layer G2, and is formed of sandy soil having a higher permeability than the cavity (in the absence of earth and sand) or surrounding viscous soil. Compared to other clay soils, it has a high water permeability and allows water to flow through.

浸透部20は、地下水やガスの噴出孔等自然に形成された物の他、例えば地盤Gに建物を建設した際の杭、井戸、地盤調査時のボーリング孔等の跡が残ったものである。なお、図1(A)において符合GLで表される位置は地表面を表しており、符合WLで表される位置は地下水位を表している。   The infiltration part 20 is a thing in which traces such as piles, wells, and boreholes at the time of ground investigation remain when building a building on the ground G, in addition to naturally formed objects such as groundwater and gas ejection holes. . In FIG. 1A, the position represented by reference numeral GL represents the ground surface, and the position represented by reference numeral WL represents the groundwater level.

(汚染物質)
このような地盤Gにおいて汚染源10から発生した汚染物質Eは、地下水によって流されて上部透水層G1へ拡散する。また、図1(B)に示すように低透水層G2における浸透部20へ浸透する。さらに、図2に示すように下部透水層G3へ拡散する。また、低透水層G2における浸透部20の周囲の粘性土にも徐々に浸透する。
(Pollutant)
In such ground G, the pollutant E generated from the pollution source 10 is flowed by the groundwater and diffuses into the upper permeable layer G1. Moreover, as shown in FIG. 1 (B), it penetrates into the permeation part 20 in the low water permeability layer G2. Furthermore, it diffuses into the lower water permeable layer G3 as shown in FIG. Moreover, it gradually permeates the viscous soil around the permeation portion 20 in the low water permeability layer G2.

このようにして、上部透水層G1、低透水層G2における浸透部20及び下部透水層G3に亘って汚染物質Eが拡散した汚染地盤GEが形成される。   In this way, the contaminated ground GE in which the pollutant E diffuses is formed across the permeation portion 20 and the lower permeable layer G3 in the upper permeable layer G1, the low permeable layer G2.

(浸透部の位置特定方法)
本発明の実施形態に係る浸透部の位置特定方法は、汚染地盤GEにおいて上部透水層G1から下部透水層G3へ汚染物質Eが拡散する経路である浸透部20の位置を特定する方法である。
(Positioning method of penetrating part)
The infiltration portion position specifying method according to the embodiment of the present invention is a method for specifying the position of the infiltration portion 20 that is a path through which the contaminant E diffuses from the upper permeable layer G1 to the lower permeable layer G3 in the contaminated ground GE.

浸透部20の位置を特定するには、まず図3(A)に示すように、土壌汚染調査等により汚染物質Eが検出された部分又はその周囲の部分の任意の場所に、注入井戸30を構築する。注入井戸30は、先端部が下部透水層G3に到達するように構築する。   In order to specify the position of the infiltration portion 20, first, as shown in FIG. 3A, an injection well 30 is provided at an arbitrary location in a portion where the pollutant E is detected by a soil contamination investigation or the like or a portion around it. To construct. The injection well 30 is constructed such that the tip reaches the lower water permeable layer G3.

そして、上部透水層G1に複数の熱電対32を埋設する。熱電対32は上部透水層G1における地下水の温度を検知できる温度センサであり、図3(A)における紙面左右方向の他、紙面前後方向にも複数配置される。それぞれの熱電対32はリード線32Aによって図示しない測定装置へ繋がれており、上部透水層G1の各地点における温度を測定できる。   Then, a plurality of thermocouples 32 are embedded in the upper water permeable layer G1. The thermocouple 32 is a temperature sensor that can detect the temperature of groundwater in the upper water permeable layer G1, and a plurality of thermocouples 32 are arranged in the front-rear direction of the paper in addition to the left-right direction of the paper in FIG. Each thermocouple 32 is connected to a measuring device (not shown) by a lead wire 32A, and the temperature at each point of the upper water permeable layer G1 can be measured.

次に図3(B)に示すように、注入井戸30から下部透水層G3へ温水を注入する。温水は、下部透水層G3及び上部透水層G1の地下水より高温のものを用いる。これにより下部透水層G3において、注入井戸30の周囲の地下水が温水と混ざり合い暖められる。一方で、下部透水層G3の上にある低透水層G2は下部透水層G3より透水性が低いため、温水が拡散し難く温められ難い。   Next, as shown in FIG. 3B, hot water is injected from the injection well 30 into the lower permeable layer G3. Hot water having a temperature higher than that of the groundwater in the lower permeable layer G3 and the upper permeable layer G1 is used. Thereby, in the lower water permeable layer G3, the groundwater around the injection well 30 is mixed with warm water and warmed. On the other hand, the low water permeable layer G2 above the lower water permeable layer G3 has lower water permeability than the lower water permeable layer G3, and therefore, it is difficult for warm water to diffuse and to be heated.

なお、図3(B)において符合Hで示した領域は、注入井戸30から注入された温水と地下水とが混ざり合って暖められた地下水(以下、地下水Hと称する。)を示している。また、注入井戸30から注入された温水は、本発明におけるトレーサーの一例である。   In addition, the area | region shown with the code | symbol H in FIG.3 (B) has shown the groundwater (henceforth the groundwater H) warmed by mixing the warm water and the groundwater which were inject | poured from the injection well 30. FIG. The warm water injected from the injection well 30 is an example of a tracer in the present invention.

注入井戸30から下部透水層G3へ温水の注入を続けると、図4(A)に示すように暖められた地下水Hが、浸透部20の内部へ浸透し、図4(B)に示すように上部透水層G1へ拡散する。   If injection of warm water from the injection well 30 to the lower permeable layer G3 is continued, the groundwater H heated as shown in FIG. 4 (A) permeates into the inside of the infiltration portion 20, and as shown in FIG. 4 (B). It diffuses into the upper water permeable layer G1.

このとき上部透水層G1においては、浸透部20から温められた地下水Hが拡散するため、熱電対32が検出する温度は、浸透部20に近い部分のほうが遠い部分より高い。すなわち、図4(B)における熱電対32B、32C、32Dは、浸透部20までの距離が熱電対32B<32C<32Dであるため、検出される地下水Hの温度は熱電対32B>32C>32Dである。   At this time, in the upper water permeable layer G1, since the groundwater H warmed from the permeation part 20 is diffused, the temperature detected by the thermocouple 32 is higher in the part near the permeation part 20 than in the far part. That is, since the thermocouples 32B, 32C, and 32D in FIG. 4B have a thermocouple 32B <32C <32D, the detected temperature of the groundwater H is the thermocouple 32B> 32C> 32D. It is.

浸透部20の位置は地上から確認できないが、各熱電対32で検出される温度はリード線32Aでつながれた測定装置で測定できる。このため、最も高い温度を検出した熱電対32を特定することで、浸透部20に最も近い熱電対32を特定することができる。これにより、浸透部20の位置を特定できる。   Although the position of the infiltration portion 20 cannot be confirmed from the ground, the temperature detected by each thermocouple 32 can be measured by a measuring device connected by a lead wire 32A. For this reason, by specifying the thermocouple 32 that has detected the highest temperature, it is possible to specify the thermocouple 32 that is closest to the infiltration portion 20. Thereby, the position of the penetration part 20 can be specified.

なお、浸透部20の位置をより正確に測定するためには、最も高い温度を検出した熱電対32Bの近くに、熱電対32を追加する。この追加した熱電対32が指し示す温度によって、より正確な位置を知ることができる。   In addition, in order to measure the position of the infiltration portion 20 more accurately, a thermocouple 32 is added near the thermocouple 32B that has detected the highest temperature. A more accurate position can be known from the temperature indicated by the added thermocouple 32.

(作用・効果)
本実施形態の浸透部の位置特定方法によれば、地上から視認できない低透水層G2に形成された浸透部20の位置を特定できる。これにより、例えば浸透部20をセメントや流動化コンクリートなどの地盤改良材などで封止することで、浸透部20に汚染物質Eが浸透することを抑制できる。浸透部20に汚染物質Eが浸透しなければ、下部透水層G3へ汚染物質Eが拡散することを抑制できる。
(Action / Effect)
According to the method for specifying the position of the infiltration portion of the present embodiment, the position of the infiltration portion 20 formed in the low water permeability layer G2 that cannot be visually recognized from the ground can be specified. Thereby, for example, the permeation part 20 can be prevented from penetrating into the permeation part 20 by sealing the permeation part 20 with a ground improvement material such as cement or fluidized concrete. If the pollutant E does not permeate the permeation portion 20, it is possible to prevent the pollutant E from diffusing into the lower water permeable layer G3.

また、浸透部20に浄化剤を注入すれば、浸透部20、上部透水層G1及び下部透水層G3の汚染物質Eを浄化できる。あるいは、上部透水層G1又は下部透水層G3へ浄化剤を注入すれば、浄化剤は浸透部20を通って下部透水層G3又は上部透水層G1へ浸透するため、浸透部20、上部透水層G1及び下部透水層G3の汚染物質Eを浄化できる。   Further, if a purifying agent is injected into the infiltration portion 20, the contaminant E in the infiltration portion 20, the upper water permeable layer G1, and the lower water permeable layer G3 can be purified. Alternatively, if the purifying agent is injected into the upper water permeable layer G1 or the lower water permeable layer G3, the purifier penetrates the lower water permeable layer G3 or the upper water permeable layer G1 through the osmotic portion 20, so that the osmotic portion 20, the upper water permeable layer G1. And the contaminant E of the lower water permeable layer G3 can be purified.

また、例えば透水性の高い地盤Gにおいて汚染物質Eが発生している状況下において、この汚染物質Eの拡散を抑制するために地盤G中に人工的に低透水層G2を構築する場合がある。このとき、所定の範囲に亘って低透水層G2を切れ目なく構築する必要がある。すなわち、浸透部20を形成しないように低透水層G2を構築する必要がある。   Further, for example, in a situation where the pollutant E is generated in the ground G having high water permeability, there is a case where the low water permeability layer G2 is artificially constructed in the ground G in order to suppress the diffusion of the pollutant E. . At this time, it is necessary to construct the low water permeability layer G2 seamlessly over a predetermined range. That is, it is necessary to construct the low water permeability layer G2 so as not to form the permeation part 20.

しかし、低透水層G2は地上から視認できないため、浸透部20が形成されていても認識することが難しい。そこで本実施形態の浸透部の位置特定方法によれば、構築した低透水層G2又は構築途中の低透水層G2において、浸透部20の有無を特定できる。そして、浸透部20が形成されている場合はその場所を特定できるため、改良材等を用いて適切に処理できる。   However, since the low water-permeable layer G2 cannot be visually recognized from the ground, it is difficult to recognize even if the permeation part 20 is formed. Therefore, according to the position specifying method of the infiltration portion of the present embodiment, the presence or absence of the infiltration portion 20 can be specified in the constructed low water permeability layer G2 or the low water permeability layer G2 in the middle of construction. And when the penetration part 20 is formed, since the place can be specified, it can process appropriately using an improvement material etc.

なお、本実施形態においては上部透水層G1に揚水設備は設けられていないが、本発明の実施形態はこれに限らない。例えば図5に示すように、上部透水層G1に揚水井戸34を設けてもよい。上部透水層G1に揚水井戸34を設ければ、注入井戸30から注入された温水で温められた地下水Hが、揚水井戸34によって引き揚げられて、浸透部20に浸透しやすくなる。このため揚水井戸34を設けない場合と比較して速やかに浸透部20の位置を特定できる。   In addition, in this embodiment, although the pumping equipment is not provided in the upper water permeable layer G1, embodiment of this invention is not restricted to this. For example, as shown in FIG. 5, a pumping well 34 may be provided in the upper permeable layer G1. If the pumping well 34 is provided in the upper permeable layer G1, the groundwater H warmed by the hot water injected from the injection well 30 is drawn up by the pumping well 34 and easily penetrates into the infiltration portion 20. For this reason, compared with the case where the pumping well 34 is not provided, the position of the osmosis | permeation part 20 can be pinpointed rapidly.

また、本実施形態においては、上部透水層G1に直接熱電対32を埋設しているが、本発明の実施形態はこれに限らない。例えば図6に示すような水平調査孔36を複数(図6における紙面前後方向に複数)設け、この内部に熱電対32を設置してもよい。   Moreover, in this embodiment, although the thermocouple 32 is embed | buried directly in the upper water permeable layer G1, embodiment of this invention is not restricted to this. For example, a plurality of horizontal survey holes 36 as shown in FIG. 6 (a plurality in the front-rear direction in FIG. 6) may be provided, and the thermocouple 32 may be installed therein.

水平調査孔36は、例えば直線及び曲線に沿って地盤Gを掘削できる自在ボーリングによって上部透水層G1に形成する。熱電対32は、この水平調査孔36の内部に所定の間隔で挿入し、必要に応じて土砂で埋め戻す。なお、水平調査孔36には、ポリエチレン管等を引き込んでもよい。このポリエチレン管の内側に所定の間隔で熱電対32を配置し水を充填しておけば、地下水Hによって暖められた水の温度変化を測定することにより、地下水Hの温度が高い場所を特定できる。または、ポリエチレン管の外側に熱電対を固定しておくことによっても、地下水Hの温度を測定できる。   The horizontal survey hole 36 is formed in the upper permeable layer G1 by, for example, free boring capable of excavating the ground G along a straight line and a curved line. The thermocouple 32 is inserted into the horizontal inspection hole 36 at a predetermined interval and backfilled with earth and sand as necessary. A polyethylene pipe or the like may be drawn into the horizontal survey hole 36. If the thermocouple 32 is arranged inside the polyethylene pipe at a predetermined interval and is filled with water, a place where the temperature of the groundwater H is high can be specified by measuring the temperature change of the water heated by the groundwater H. . Alternatively, the temperature of the groundwater H can be measured by fixing a thermocouple outside the polyethylene pipe.

なお、本実施形態においては、注入井戸30から下部透水層G3へ、トレーサーとして地下水より温度が高い温水を注入したが、本発明の実施形態はこれに限らない。例えば地下水より温度が低い冷水を注入してもよい。この場合、上部透水層G1においては、浸透部20に近い位置に埋設された熱電対32が、遠い位置に埋設された熱電対32より低い温度を検出する。このため、最も低い温度を検出した熱電対32を特定することで、浸透部20に最も近い熱電対32を特定することができる。これにより、浸透部20の位置を特定できる。   In the present embodiment, hot water having a temperature higher than that of groundwater is injected as a tracer from the injection well 30 to the lower permeable layer G3. However, the embodiment of the present invention is not limited thereto. For example, cold water having a temperature lower than that of ground water may be injected. In this case, in the upper water permeable layer G1, the thermocouple 32 embedded near the infiltration portion 20 detects a lower temperature than the thermocouple 32 embedded far away. For this reason, by specifying the thermocouple 32 that has detected the lowest temperature, it is possible to specify the thermocouple 32 that is closest to the infiltration portion 20. Thereby, the position of the penetration part 20 can be specified.

また、温水や冷水に代えて、注入井戸30から下部透水層G3へ、蛍光染料(エオシン、ウラニン、ローダミンなど)を注入してもよい。この場合、上部透水層G1には熱電対に代えて地下水の採取管を埋設し、採取管で採集された地下水の蛍光強度を蛍光測定器で測定する。   Further, instead of hot water or cold water, a fluorescent dye (eosin, uranin, rhodamine, etc.) may be injected from the injection well 30 into the lower water permeable layer G3. In this case, a groundwater sampling tube is buried in the upper permeable layer G1 instead of the thermocouple, and the fluorescence intensity of the groundwater collected by the sampling tube is measured with a fluorescence measuring instrument.

この時、浸透部20に近い位置から採取した地下水の蛍光強度が、遠い位置から採取した地下水の蛍光強度より大きい。このため、最も大きい蛍光強度が検出された地下水を採取した採取管を特定することで、浸透部20に最も近い採取管を特定することができる。これにより、浸透部20の位置を特定できる。   At this time, the fluorescence intensity of groundwater collected from a position close to the infiltration portion 20 is greater than the fluorescence intensity of groundwater collected from a position far away. For this reason, it is possible to specify the sampling tube closest to the infiltration portion 20 by specifying the sampling tube from which the groundwater from which the highest fluorescence intensity has been detected is specified. Thereby, the position of the penetration part 20 can be specified.

あるいは、このような蛍光染料ではなく、非蛍光の染料や顔料などを用いてもよい。この場合、蛍光強度ではなく、これらの染料や顔料の濃度を測定すればよい。   Alternatively, a non-fluorescent dye or pigment may be used instead of such a fluorescent dye. In this case, the concentration of these dyes and pigments may be measured instead of the fluorescence intensity.

また、注入井戸30から下部透水層G3へ、トレーサーとして酸素、二酸化炭素などの気体を注入してもよい。この場合、これらの気体を検知する気体検知器を上部透水層G1に埋設したり地表面に設置することで、気体の濃度が高い場所を特定できる。これにより浸透部20の位置を特定できる。   Further, a gas such as oxygen or carbon dioxide may be injected from the injection well 30 to the lower water permeable layer G3 as a tracer. In this case, a place where the gas concentration is high can be specified by burying a gas detector for detecting these gases in the upper water permeable layer G1 or installing it on the ground surface. Thereby, the position of the penetration part 20 can be specified.

また、注入井戸30から下部透水層G3へトレーサーとして空気を注入してもよい。この場合、上部透水層G1を地下水位まで掘削して水面を露出させれば、この水面に気泡が多く出る場所から、浸透部20の位置を特定できる。又は、上部透水層G1を掘削しなくても、地表面を非通気性のカバーで被覆し、このカバーの下部に空気溜まりが発生する場所から、浸透部20の位置を特定できる。   Moreover, you may inject | pour air as a tracer from the injection well 30 to the lower water permeable layer G3. In this case, if the upper permeable layer G1 is excavated to the groundwater level to expose the water surface, the position of the infiltration portion 20 can be identified from the location where many bubbles appear on the water surface. Or even if it does not excavate the upper water permeable layer G1, the ground surface is covered with a non-breathable cover, and the position of the infiltration part 20 can be specified from the place where an air pocket is generated in the lower part of the cover.

また、下部透水層G3へトレーサーを注入する手段としては、必ずしも注入井戸30を用いる必要はない。例えば温水や水蒸気が循環している管体を下部透水層G3へ埋設することで、地下水を暖めてもよい。この場合のトレーサーは、管体から発生する「熱」である。   Further, the injection well 30 is not necessarily used as a means for injecting the tracer into the lower water permeable layer G3. For example, the underground water may be warmed by burying a tubular body in which warm water or water vapor circulates in the lower permeable layer G3. The tracer in this case is “heat” generated from the tube.

また、本実施形態においては、注入井戸30から下部透水層G3へトレーサーとしての温水を注入しているが、この温水に汚染物質Eの浄化剤を添加してもよい。温水に浄化剤を添加することで、浸透部20の位置を特定する作業と並行して、下部透水層G3、上部透水層G1及び浸透部20を浄化することができる。   In this embodiment, hot water as a tracer is injected from the injection well 30 to the lower water permeable layer G3. However, a purifier for the pollutant E may be added to this hot water. By adding the purifying agent to the warm water, the lower permeable layer G3, the upper permeable layer G1, and the osmotic portion 20 can be purified in parallel with the operation of specifying the position of the osmotic portion 20.

さらに、本実施形態において、温水すなわちトレーサーを下部透水層G3へ注入し、上部透水層G1で検出するものとしたが、本発明の実施形態はこれに限らない。例えばトレーサーを上部透水層G1へ注入し、下部透水層G3で検出するものとしてもよい。この場合、例えば水圧破砕法等により下部透水層G3に亀裂を形成し、この亀裂の内部へ、熱電対など各トレーサーに適合する検出器を埋設する。このように、本発明の実施形態は様々な態様で実施できる。   Furthermore, in this embodiment, warm water, that is, a tracer is injected into the lower water permeable layer G3 and detected by the upper water permeable layer G1, but the embodiment of the present invention is not limited thereto. For example, a tracer may be injected into the upper permeable layer G1 and detected by the lower permeable layer G3. In this case, for example, a crack is formed in the lower water permeable layer G3 by a hydraulic crushing method or the like, and a detector suitable for each tracer such as a thermocouple is embedded in the crack. Thus, embodiments of the present invention can be implemented in various ways.

20 浸透部
32 熱電対(温度センサ)
G 地盤
G1 上部透水層
G2 低透水層
G3 下部透水層
20 Infiltration part 32 Thermocouple (temperature sensor)
G Ground G1 Upper permeable layer G2 Low permeable layer G3 Lower permeable layer

Claims (3)

上下方向へ延びる浸透部が存在する低透水層の上面に上部透水層があり、前記低透水層の下面に下部透水層がある地盤に用いられ、
前記上部透水層又は前記下部透水層へトレーサーを注入し、前記下部透水層又は前記上部透水層で検出した前記トレーサーの位置から前記浸透部の位置を特定する浸透部の位置特定方法。
There is an upper permeable layer on the upper surface of the low permeable layer in which there is an infiltration portion extending in the vertical direction, and it is used for the ground having the lower permeable layer on the lower surface of the low permeable layer,
A penetrating part position specifying method for injecting a tracer into the upper water permeable layer or the lower water permeable layer and specifying the position of the penetrating part from the position of the tracer detected by the lower water permeable layer or the upper water permeable layer.
前記下部透水層へ、前記トレーサーとして地下水より高温の温水を注入し、前記上部透水層へ間隔をおいて配置した複数の温度センサで前記地下水の温度を検出する、請求項1に記載の浸透部の位置特定方法。   2. The infiltration part according to claim 1, wherein hot water having a temperature higher than groundwater is injected as the tracer into the lower permeable layer, and the temperature of the groundwater is detected by a plurality of temperature sensors arranged at intervals to the upper permeable layer. Location method. 前記上部透水層から揚水する、請求項2に記載の浸透部の位置特定方法。   The infiltration portion position specifying method according to claim 2, wherein water is pumped from the upper permeable layer.
JP2017140243A 2017-07-19 2017-07-19 How to locate the penetrating part Active JP6886881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140243A JP6886881B2 (en) 2017-07-19 2017-07-19 How to locate the penetrating part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140243A JP6886881B2 (en) 2017-07-19 2017-07-19 How to locate the penetrating part

Publications (2)

Publication Number Publication Date
JP2019020304A true JP2019020304A (en) 2019-02-07
JP6886881B2 JP6886881B2 (en) 2021-06-16

Family

ID=65354784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140243A Active JP6886881B2 (en) 2017-07-19 2017-07-19 How to locate the penetrating part

Country Status (1)

Country Link
JP (1) JP6886881B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659135A (en) * 1995-04-12 1997-08-19 Institut Francais Du Petrole Method for modeling a stratified and fractured geologic environment
JPH1019715A (en) * 1996-06-27 1998-01-23 Kyodo Sanso Kk Method for detecting water leakage, gas leakage of shielding structure
JP2000121657A (en) * 1998-10-15 2000-04-28 Ohbayashi Corp Visualizing method for ground
JP2001152778A (en) * 1999-09-16 2001-06-05 Pub Works Res Inst Ministry Of Constr Method for probing crack in rock-bed
JP2002250026A (en) * 2001-02-26 2002-09-06 Kajima Corp Tracer testing device and single-hole tracer testing method
JP2002285535A (en) * 2001-03-27 2002-10-03 Kansai Electric Power Co Inc:The Vertical profile measuring method of coefficient of horizontal permeability
JP2003516516A (en) * 1998-10-16 2003-05-13 エスティアールエム、エル・エル・シー Method for 4D permeability analysis of geological fluid storage
JP2005177658A (en) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd Equipment and method for decontaminating contamination of soil and ground water
JP2009058302A (en) * 2007-08-30 2009-03-19 Central Res Inst Of Electric Power Ind Device for testing fluid in cracks
US20090230295A1 (en) * 2006-03-29 2009-09-17 Australian Nuclear Science & Technology Organisation Measurement of hydraulic conductivity using a radioactive or activatable tracer
US20140041862A1 (en) * 2012-08-07 2014-02-13 Halliburton Energy Services, Inc. Use of Magnetic Liquids for Imaging and Mapping Porous Subterranean Formations
KR101729900B1 (en) * 2016-12-28 2017-04-25 포항공과대학교 산학협력단 System and method for tracing groundwater
JP2019018168A (en) * 2017-07-19 2019-02-07 株式会社竹中工務店 Method for purifying ground

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659135A (en) * 1995-04-12 1997-08-19 Institut Francais Du Petrole Method for modeling a stratified and fractured geologic environment
JPH1019715A (en) * 1996-06-27 1998-01-23 Kyodo Sanso Kk Method for detecting water leakage, gas leakage of shielding structure
JP2000121657A (en) * 1998-10-15 2000-04-28 Ohbayashi Corp Visualizing method for ground
JP2003516516A (en) * 1998-10-16 2003-05-13 エスティアールエム、エル・エル・シー Method for 4D permeability analysis of geological fluid storage
JP2001152778A (en) * 1999-09-16 2001-06-05 Pub Works Res Inst Ministry Of Constr Method for probing crack in rock-bed
JP2002250026A (en) * 2001-02-26 2002-09-06 Kajima Corp Tracer testing device and single-hole tracer testing method
JP2002285535A (en) * 2001-03-27 2002-10-03 Kansai Electric Power Co Inc:The Vertical profile measuring method of coefficient of horizontal permeability
JP2005177658A (en) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd Equipment and method for decontaminating contamination of soil and ground water
US20090230295A1 (en) * 2006-03-29 2009-09-17 Australian Nuclear Science & Technology Organisation Measurement of hydraulic conductivity using a radioactive or activatable tracer
JP2009058302A (en) * 2007-08-30 2009-03-19 Central Res Inst Of Electric Power Ind Device for testing fluid in cracks
US20140041862A1 (en) * 2012-08-07 2014-02-13 Halliburton Energy Services, Inc. Use of Magnetic Liquids for Imaging and Mapping Porous Subterranean Formations
KR101729900B1 (en) * 2016-12-28 2017-04-25 포항공과대학교 산학협력단 System and method for tracing groundwater
JP2019018168A (en) * 2017-07-19 2019-02-07 株式会社竹中工務店 Method for purifying ground

Also Published As

Publication number Publication date
JP6886881B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
Zimmer et al. The gas membrane sensor (GMS): A new method for gas measurements in deep boreholes applied at the CO2SINK site
US6910829B2 (en) In situ retreival of contaminants or other substances using a barrier system and leaching solutions and components, processes and methods relating thereto
Battaglia et al. Fluorescent tracer tests for detection of dam leakages: The case of the Bumbuna dam-Sierra Leone
JP2007198027A (en) In-situ permeability testing method and device
US10060252B1 (en) Method for mapping of flow arrivals and other conditions at sealed boreholes
JP2006226061A (en) Underground drainage construction method
Haberer et al. Impact of heterogeneity on oxygen transfer in a fluctuating capillary fringe
US5481927A (en) Vapor port and groundwater sampling well
Lerner et al. Recommendations for level-determined sampling in wells
JP2007092353A (en) Permeability evaluation method and device of base rock
US7153061B2 (en) Method of in situ retrieval of contaminants or other substances using a barrier system and leaching solutions
Luo et al. A permanent multilevel monitoring and sampling system in the coastal groundwater mixing zones
JP2009121062A (en) Well, method for preventing oxidization of groundwater in well, construction method for emergency well, and emergency well constructed by the construction method
JP2015057267A (en) Method of purifying contaminated ground
Händel et al. Experimental recharge by small-diameter wells: the Pirna, Saxony, case study
KR102338915B1 (en) System for detecting soil/underground water pollution
JP6857566B2 (en) Ground purification method
JP6886881B2 (en) How to locate the penetrating part
JP2007130602A (en) Construction method for enclosing contaminated soil and groundwater
Furukawa et al. Improved slant drilling well for in situ remediation of groundwater and soil at contaminated sites
JP3268159B2 (en) Saline recharge wells, drilling methods, and deep seawater intake methods
Mendonça et al. Integrated earth resistivity tomography (ERT) and multilevel sampling gas: a tool to map geogenic and anthropogenic methane accumulation on brownfield sites
Klotz et al. Single-borehole techniques. Present status and examples of recent applications
JP2007211564A (en) Pneumatic caisson construction method
KR101994335B1 (en) Inclined pipe and install method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6886881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150