JP2019019866A - Coated vacuum heat insulation material - Google Patents
Coated vacuum heat insulation material Download PDFInfo
- Publication number
- JP2019019866A JP2019019866A JP2017137882A JP2017137882A JP2019019866A JP 2019019866 A JP2019019866 A JP 2019019866A JP 2017137882 A JP2017137882 A JP 2017137882A JP 2017137882 A JP2017137882 A JP 2017137882A JP 2019019866 A JP2019019866 A JP 2019019866A
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- heat insulating
- vacuum heat
- film
- bag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
本発明は、真空断熱材を熱収縮フィルムで被覆した被覆真空断熱材に関する。 The present invention relates to a coated vacuum heat insulating material obtained by coating a vacuum heat insulating material with a heat shrink film.
近年、地球温暖化防止等の観点から省エネルギー化、省資源化が強く望まれている。特に、冷蔵庫、冷凍庫、断熱ボックス、ジャー炊飯器、給湯器、自動販売機等の家庭用、業務用電化製品、自動車、複写機、床暖房、住宅等の分野では、熱エネルギーを効率的に利用するという観点から、真空断熱材が用いられるようになっている。 In recent years, energy saving and resource saving are strongly desired from the viewpoint of global warming prevention and the like. In particular, efficient use of thermal energy in the fields of household, commercial appliances such as refrigerators, freezers, heat insulation boxes, jar rice cookers, water heaters, vending machines, automobiles, photocopiers, floor heating, and houses. From the viewpoint of doing, a vacuum heat insulating material is used.
冷蔵庫等は、主に真空断熱材とウレタン発泡材で断熱をしている。冷蔵庫内部には樹脂の筐体があり、真空断熱材は筐体に貼り付けられ、その周りの空間をウレタン発泡材で充填している。真空断熱材を冷蔵庫内部の筐体に貼り付けた後、ウレタン発泡剤を注入する際に、真空断熱材の耳折り部の隙間にウレタン発泡材が入り込む場合がある。真空断熱材の耳折り部の隙間にウレタン発泡材が入ると、ウレタン発泡材の流動性及び充填性が悪くなる。 Refrigerators and the like are mainly insulated with a vacuum heat insulating material and a urethane foam material. There is a resin casing inside the refrigerator, and the vacuum heat insulating material is attached to the casing, and the space around it is filled with urethane foam. After affixing the vacuum heat insulating material to the housing inside the refrigerator, when the urethane foaming agent is injected, the urethane foam material may enter the gap between the ear folds of the vacuum heat insulating material. When the urethane foam material enters the gap between the ear folds of the vacuum heat insulating material, the fluidity and filling properties of the urethane foam material are deteriorated.
特許文献1は、外部衝撃からの保護や耳折り部のはがれ防止のために、熱収縮させた熱収縮性材料で外周縁表面と耳折り部を被覆した真空断熱材を開示している。特許文献1では、熱収縮性材料で真空断熱材を外包することで、耳折り部の隙間にウレタンが入り込むことを防ぎ、冷蔵庫内のウレタン発泡材の流動性及び充填性を向上させている。 Patent Document 1 discloses a vacuum heat insulating material in which the outer peripheral edge surface and the ear fold are covered with a heat-shrinkable heat-shrinkable material for protection from external impacts and prevention of peeling of the ear fold. In Patent Document 1, by enclosing a vacuum heat insulating material with a heat-shrinkable material, urethane is prevented from entering the gaps between the ear folds, and the fluidity and filling properties of the urethane foam in the refrigerator are improved.
しかしながら、単に熱収縮性フィルムを熱収縮させて真空断熱材を外包すると、熱収縮フィルムと真空断熱材との間に空気が残る。空気の熱伝導率は真空断熱材の熱伝導率よりも高いため、熱収縮フィルムと真空断熱材との間に空気が残ると、熱収縮フィルムで被覆した真空断熱材全体の断熱性能は、真空断熱材自体よりも低下してしまうという問題が生じる。一般的には、熱収縮中にフィルムと真空断熱材との間の空気が抜けるように小さな通気孔が多数設けられた熱収縮性フィルムが知られているが、従来の通気孔を有する熱収縮性フィルムを用いた場合にも、熱収縮フィルムと真空断熱材との間には一定量の空気が残るため、得られる被覆真空断熱材の断熱性能は十分ではない。 However, if the heat-shrinkable film is simply heat-shrinked to enclose the vacuum heat insulating material, air remains between the heat-shrinkable film and the vacuum heat insulating material. Since the thermal conductivity of air is higher than the thermal conductivity of vacuum insulation, if air remains between the heat shrink film and the vacuum insulation, the insulation performance of the entire vacuum insulation covered with the heat shrink film is The problem that it will fall rather than the heat insulating material itself arises. In general, heat-shrinkable films with many small vents are known so that air between the film and the vacuum insulation can escape during heat-shrinking. Even when a heat-resistant film is used, a certain amount of air remains between the heat-shrinkable film and the vacuum heat insulating material, so that the heat insulating performance of the obtained coated vacuum heat insulating material is not sufficient.
本発明の課題は、優れた断熱性能を有する、真空断熱材を熱収縮フィルムで被覆した被覆真空断熱材を提供することである。 The subject of this invention is providing the coating | cover vacuum insulation material which coat | covered the vacuum insulation material with the heat-shrink film which has the outstanding heat insulation performance.
上記課題は、被覆真空断熱材の角部に0.1〜5cm2の面積を有する少なくとも1つの空気解放用の脱気穴を設けることにより解決できることが見出された。すなわち、本発明は下記〔1〕〜〔11〕に関するものである。 It has been found that the above problem can be solved by providing at least one air releasing deaeration hole having an area of 0.1 to 5 cm 2 at the corner of the coated vacuum heat insulating material. That is, the present invention relates to the following [1] to [11].
〔1〕真空断熱材と、前記真空断熱材を被覆する熱収縮フィルムとを含む被覆真空断熱材であって、
前記真空断熱材が、多角形の板状であり、
前記熱収縮フィルムが、前記真空断熱材の少なくとも外周面に密着しており、
前記被覆真空断熱材が、外周面において、前記被覆真空断熱材の少なくとも1つの角部から70mm以内の領域に少なくとも1つの脱気穴を有し、
前記脱気穴が、0.1〜5cm2の面積を有する、
被覆真空断熱材。
[1] A coated vacuum heat insulating material comprising a vacuum heat insulating material and a heat shrink film covering the vacuum heat insulating material,
The vacuum heat insulating material is a polygonal plate,
The heat shrink film is in close contact with at least the outer peripheral surface of the vacuum heat insulating material;
The covering vacuum heat insulating material has at least one deaeration hole in a region within 70 mm from at least one corner of the covering vacuum heat insulating material on the outer peripheral surface;
The deaeration holes have an area of 0.1 to 5 cm 2 ;
Covered vacuum insulation.
〔2〕前記真空断熱材の上面及び下面と前記熱収縮フィルムとの間の空気量が、0〜10cm3/m2である、前記〔1〕に記載の被覆真空断熱材。 [2] The coated vacuum heat insulating material according to [1], wherein an air amount between an upper surface and a lower surface of the vacuum heat insulating material and the heat shrinkable film is 0 to 10 cm 3 / m 2 .
〔3〕前記被覆真空断熱材が、外周面において、前記被覆真空断熱材の少なくとも3つの角部から70mm以内の領域に少なくとも1つの脱気穴を有する、前記〔1〕又は〔2〕に記載の被覆真空断熱材。 [3] The above-mentioned [1] or [2], wherein the covering vacuum heat insulating material has at least one deaeration hole in a region within 70 mm from at least three corners of the covering vacuum heat insulating material on the outer peripheral surface. Coating vacuum insulation.
〔4〕前記被覆真空断熱材の上面及び下面において、前記熱収縮フィルムが通気孔を有していない、前記〔1〕〜〔3〕のいずれか1項に記載の被覆真空断熱材。 [4] The coated vacuum heat insulating material according to any one of [1] to [3], wherein the heat shrinkable film does not have a vent hole on the upper surface and the lower surface of the coated vacuum heat insulating material.
〔5〕前記真空断熱材が、四角い板状である、前記〔1〕〜〔4〕のいずれか1項に記載の被覆真空断熱材。 [5] The coated vacuum heat insulating material according to any one of [1] to [4], wherein the vacuum heat insulating material has a square plate shape.
〔6〕以下の工程、
1.未熱収縮フィルムからなる多角形の袋に、多角形の板状の真空断熱材を入れる工程であって、前記袋が開口部を有し、前記未熱収縮フィルムが20〜200μmの厚さを有する、工程、
2.前記開口部をシールする工程、
3.前記シールした袋の少なくとも一部を切断する工程であって、前記少なくとも一部が袋の頂点を含む、工程、
4.前記切断した袋を80℃〜200℃で加熱して熱収縮させる工程、及び
5.前記熱収縮させた袋を50℃以下に冷却する工程、
を含む、前記〔1〕に記載の被覆真空断熱材の製造方法。
[6] The following steps:
1. A step of putting a polygonal plate-like vacuum heat insulating material into a polygonal bag made of non-heat-shrinkable film, wherein the bag has an opening, and the non-heat-shrinkable film has a thickness of 20 to 200 μm. Having a process,
2. Sealing the opening;
3. Cutting at least a portion of the sealed bag, the at least a portion including the apex of the bag;
4). 4. Heat-shrink the cut bag at 80 ° C. to 200 ° C., and Cooling the heat-shrinked bag to 50 ° C. or lower,
The manufacturing method of the covering vacuum heat insulating material as described in said [1] containing.
〔7〕以下の工程、
1.未熱収縮フィルムからなる多角形の袋の少なくとも一部を切断する工程であって、前記袋が開口部を有し、前記未熱収縮フィルムが20〜200μmの厚さを有し、前記少なくとも一部が袋の頂点を含む、工程、
2.前記切断した袋に多角形の板状の真空断熱材を入れる工程、
3.前記開口部をシールする工程、
4.前記シールした袋を80℃〜200℃で加熱して熱収縮させる工程、及び
5.前記熱収縮させた袋を50℃以下に冷却する工程、
を含む、前記〔1〕に記載の被覆真空断熱材の製造方法。
[7] The following steps:
1. A step of cutting at least a part of a polygonal bag made of an unheat-shrinkable film, wherein the bag has an opening, the unheat-shrink film has a thickness of 20 to 200 μm, and the at least one A process wherein the part includes the apex of the bag;
2. A step of placing a polygonal plate-like vacuum heat insulating material into the cut bag;
3. Sealing the opening;
4). 4. Heat-shrink the sealed bag at 80 ° C. to 200 ° C., and Cooling the heat-shrinked bag to 50 ° C. or lower,
The manufacturing method of the covering vacuum heat insulating material as described in said [1] containing.
〔8〕前記袋の前記切断される少なくとも一部における前記頂点を構成する2辺の長さが、70mm以下である、前記〔6〕又は〔7〕に記載の方法。 [8] The method according to [6] or [7], wherein a length of two sides constituting the apex in at least a part of the bag to be cut is 70 mm or less.
〔9〕前記未熱収縮フィルムが、ポリ塩化ビニルフィルム、ポリスチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、エチレンビニルアルコール樹脂フィルム、及びポリオレフィンフィルムからなる群から選択される単層又は多層のフィルムである、前記〔6〕〜〔8〕のいずれか1項に記載の方法。 [9] The non-heat-shrinkable film is a monolayer or multilayer film selected from the group consisting of a polyvinyl chloride film, a polystyrene film, a polyethylene film, a polypropylene film, an ethylene vinyl alcohol resin film, and a polyolefin film, [6] The method according to any one of [8].
〔10〕前記未熱収縮フィルムの収縮率が、10〜80%である、前記〔6〕〜〔9〕のいずれか1項に記載の方法。 [10] The method according to any one of [6] to [9], wherein the shrinkage ratio of the unheat-shrinkable film is 10 to 80%.
〔11〕前記未熱収縮フィルムの引張強さが、70〜1800kg/cm2である、前記〔6〕〜〔10〕のいずれか1項に記載の方法。 [11] The method according to any one of [6] to [10], wherein the unheat-shrinkable film has a tensile strength of 70 to 1800 kg / cm 2 .
本発明により、優れた断熱性能を有する、真空断熱材を熱収縮フィルムで被覆した被覆真空断熱材が提供される。 According to the present invention, there is provided a coated vacuum heat insulating material having an excellent heat insulating performance, in which a vacuum heat insulating material is coated with a heat shrink film.
本発明は、真空断熱材と、前記真空断熱材を被覆する熱収縮フィルムとを含む被覆真空断熱材であって、前記真空断熱材が、多角形の板状であり、前記熱収縮フィルムが、前記真空断熱材の少なくとも外周面に密着しており、前記被覆真空断熱材が、外周面において、前記被覆真空断熱材の少なくとも1つの角部から70mm以下の領域に少なくとも1つの脱気穴を有し、前記脱気穴が、0.1〜5cm2の面積を有する、被覆真空断熱材である。 The present invention is a coated vacuum heat insulating material comprising a vacuum heat insulating material and a heat shrinkable film covering the vacuum heat insulating material, wherein the vacuum heat insulating material is a polygonal plate, and the heat shrinkable film is It is in close contact with at least the outer peripheral surface of the vacuum heat insulating material, and the coated vacuum heat insulating material has at least one deaeration hole in an area of 70 mm or less from at least one corner of the coated vacuum heat insulating material on the outer peripheral surface. And the said deaeration hole is a covering vacuum heat insulating material which has an area of 0.1-5 cm < 2 >.
本発明の被覆真空断熱材は、真空断熱材を含む。真空断熱材は、芯材及びガスバリア性フィルムを含み、吸着剤を含んでいてもよい。芯材は、ガスバリア性フィルム内に減圧密封されている。真空断熱材としては、従来技術のものを特に制限なく使用できる。 The coated vacuum heat insulating material of the present invention includes a vacuum heat insulating material. The vacuum heat insulating material includes a core material and a gas barrier film, and may include an adsorbent. The core material is sealed under reduced pressure in the gas barrier film. As a vacuum heat insulating material, the thing of a prior art can be especially used without a restriction | limiting.
本発明に用いられる芯材としては、真空断熱材分野で用いられているものを特に制限なく用いることができる。例えば、無機繊維、無機繊維と有機繊維が混合された繊維、シリカ粒子を主成分とする粉末芯材、発泡断熱材等を芯材として使用することができる。芯材の主成分は、SiO2を含むガラス繊維若しくはシリカ粒子であることが好ましい。
芯材は公知であり、市場において容易に入手できるか、又は調製可能である。
As a core material used for this invention, what is used in the vacuum heat insulating material field | area can be especially used without a restriction | limiting. For example, inorganic fibers, fibers in which inorganic fibers and organic fibers are mixed, powder core materials mainly composed of silica particles, foam heat insulating materials, and the like can be used as the core materials. The main component of the core material is preferably glass fibers or silica particles containing SiO 2 .
Core materials are known and are readily available in the market or can be prepared.
本発明に用いられるガスバリア性フィルムは、ガスバリア性を有するフィルムであれば特に制限はないが、シール層及びガスバリア層を積層したものが好ましく、芯材に接する側から順にシール層、ガスバリア層及び樹脂フィルム層を積層したものがより好ましい。ガスバリア性フィルムの厚さは、特に制限はないが、通常5〜60μmであり、好ましくは6〜30μmである。ガスバリア層は、ガスを透過しない層であり、真空断熱材の真空度の低下を防ぐ観点から用いられる。 The gas barrier film used in the present invention is not particularly limited as long as it is a film having a gas barrier property, but is preferably a laminate of a seal layer and a gas barrier layer. The seal layer, the gas barrier layer, and the resin are sequentially formed from the side in contact with the core material. What laminated | stacked the film layer is more preferable. The thickness of the gas barrier film is not particularly limited, but is usually 5 to 60 μm, and preferably 6 to 30 μm. A gas barrier layer is a layer which does not permeate | transmit gas, and is used from a viewpoint which prevents the fall of the vacuum degree of a vacuum heat insulating material.
ガスバリア層としては、金属箔や、樹脂フィルム上に蒸着を行った積層フィルム(蒸着膜フィルム)等が挙げられる。金属箔の金属としては、アルミニウム、銅、ステンレス、鉄等が挙げられる。好ましくは、アルミニウムが用いられる。蒸着膜は、蒸着法、スパッタ法等により、アルミニウム、ステンレス、コバルト、ニッケル等の金属等又はシリカ、アルミナ、若しくはこれらの組み合わせを蒸着させて形成する。蒸着膜フィルムの基材となる樹脂フィルムとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の芳香族ポリエステル系樹脂;ポリエチレン、ポリプロピレン、オレフィン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66、メタキシリレンジアミン・アジピン酸縮合体等のポリアミド樹脂;ポリビニルアルコール、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のスチレン系樹脂;ポリメチルメタクリレート、アクリル酸エステルとメチルメタクリル酸エステル共重合体等のアクリル系樹脂、エチレン-ビニルアルコール共重合体、ポリビニルアルコール及びこれを部分ケン化した物等の熱可塑性樹脂、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂から製造されるフィルムが用いられる。ガスバリア層は、好ましくはアルミ箔である。ガスバリア層の厚さは特に制限はないが、通常5〜60μmであり、好ましくは6〜30μmである。ガスバリア層に用いられる金属箔や蒸着膜フィルムは公知であり、市場において容易に入手することができるか、又は調製可能である。 Examples of the gas barrier layer include metal foil and a laminated film (deposited film) obtained by vapor deposition on a resin film. Examples of the metal of the metal foil include aluminum, copper, stainless steel, and iron. Preferably, aluminum is used. The vapor deposition film is formed by vapor deposition of a metal such as aluminum, stainless steel, cobalt, nickel, or the like, silica, alumina, or a combination thereof by a vapor deposition method, a sputtering method, or the like. Examples of the resin film used as the base material for the deposited film include aromatic polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyolefin resins such as polyethylene, polypropylene and olefin copolymers; polyvinyl chloride , Vinyl chloride resins such as vinyl chloride copolymer; polyamide resins such as nylon 6, nylon 66, metaxylylenediamine / adipic acid condensate; polyvinyl alcohol, acrylonitrile / butadiene / styrene copolymer, acrylonitrile / styrene copolymer Styrenic resin such as coalesc; acrylic resin such as polymethyl methacrylate, acrylic acid ester and methyl methacrylate copolymer, ethylene-vinyl alcohol copolymer, polyvinyl alcohol and partially saponified A film produced from a thermosetting resin such as a thermoplastic resin such as a cured resin, a phenol resin, or a urea resin is used. The gas barrier layer is preferably an aluminum foil. Although the thickness of a gas barrier layer does not have a restriction | limiting in particular, Usually, it is 5-60 micrometers, Preferably it is 6-30 micrometers. The metal foil and vapor deposition film used for the gas barrier layer are known and can be easily obtained or prepared in the market.
シール層は、加熱により融着可能な樹脂である。熱融着可能な樹脂であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリアクリロニトリル、PET、エチレン-ビニルアルコール共重合体、又はそれらの混合体からなるフィルム等を用いることができる。好ましくはポリエチレン、ポリプロピレン、エチレン-ビニルアルコール共重合体が用いられる。ポリエチレンは、0.90〜0.98g/cm3の密度のものが好ましい。ポリプロピレンは、0.85〜0.95g/cm3の密度のものが好ましい。シール層の厚さは特に制限はないが、通常10〜100μmであり、好ましくは25〜60μmである。シール層に用いられる樹脂は公知であり、市場において容易に入手することができるか、又は調製可能である。 The seal layer is a resin that can be fused by heating. There is no particular limitation as long as the resin can be heat-sealed. Specifically, a film made of a polyolefin resin such as polyethylene or polypropylene, polyacrylonitrile, PET, an ethylene-vinyl alcohol copolymer, or a mixture thereof can be used. Preferably, polyethylene, polypropylene, and ethylene-vinyl alcohol copolymer are used. The polyethylene preferably has a density of 0.90 to 0.98 g / cm 3 . The polypropylene preferably has a density of 0.85 to 0.95 g / cm 3 . Although there is no restriction | limiting in particular in the thickness of a sealing layer, Usually, it is 10-100 micrometers, Preferably it is 25-60 micrometers. Resins used for the sealing layer are known and can be easily obtained in the market or can be prepared.
樹脂フィルム層は、ガスバリア層を保護する目的で、ガスバリア層上に任意に設けられる層である。樹脂フィルム層としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の芳香族ポリエステル系樹脂;ポリエチレン、ポリプロピレン、オレフィン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66、メタキシリレンジアミン・アジピン酸縮合体等のポリアミド樹脂;ポリビニルアルコール、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体等のスチレン系樹脂;ポリメチルメタクリレート、アクリル酸エステルとメチルメタクリル酸エステル共重合体等のアクリル系樹脂等の熱可塑性樹脂、フェノール樹脂、ユリア樹脂等の熱硬化性樹脂から製造されるフィルムが用いられる。好ましくは、PET、ナイロン6又はナイロン66である。これらの樹脂フィルムには、有機質、無機質のフィラーを添加することもできる。これらの樹脂は単独で又は2種以上を混合して用いることができる。樹脂フィルム層には、ガスバリア性フィルムのガスバリア性能を更に向上させるために、塩化ビニリデン、アクリロニトリル、ビニルアルコール等のビニルモノマーを重合、共重合させて得られるガスバリア性樹脂を塗布したり、積層したり、それらの粒子を樹脂フィルム層中に混合分散させることもできる。樹脂フィルム層の厚さは特に制限はないが、通常5〜40μmであり、好ましくは10〜30μmである。樹脂フィルム層に用いられる樹脂は公知であり、市場において容易に入手することができるか、又は調製可能である。 The resin film layer is a layer arbitrarily provided on the gas barrier layer for the purpose of protecting the gas barrier layer. As the resin film layer, aromatic polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); polyolefin resins such as polyethylene, polypropylene and olefin copolymers; polyvinyl chloride, vinyl chloride copolymers and the like Polyvinyl resins such as nylon 6, nylon 66, metaxylylenediamine / adipic acid condensates, etc .; styrene resins such as polyvinyl alcohol, acrylonitrile / butadiene / styrene copolymers, acrylonitrile / styrene copolymers; Films made from thermoplastic resins such as acrylic resins such as polymethyl methacrylate, acrylic acid ester and methyl methacrylate copolymer, and thermosetting resins such as phenol resin and urea resin are used. Preferably, PET, nylon 6 or nylon 66 is used. Organic and inorganic fillers can also be added to these resin films. These resins can be used alone or in admixture of two or more. In order to further improve the gas barrier performance of the gas barrier film, a gas barrier resin obtained by polymerizing and copolymerizing vinyl monomers such as vinylidene chloride, acrylonitrile, and vinyl alcohol is applied to the resin film layer or laminated. These particles can be mixed and dispersed in the resin film layer. Although there is no restriction | limiting in particular in the thickness of a resin film layer, Usually, it is 5-40 micrometers, Preferably it is 10-30 micrometers. Resins used for the resin film layer are known and can be easily obtained in the market or can be prepared.
本発明に用いられる吸着剤は、ガスを吸着する物質であれば特に制限はないが、例えば、窒素、酸素、二酸化炭素等のガス、及び/又は水分を吸着する物質である。吸着剤としては、酸化カルシウム、酸化マグネシウム、シリカゲル、ゼオライト、活性炭、酸化バリウム、バリウム−リチウム合金、多孔性配位高分子、金属有機構造体又はこれらの混合物等が挙げられる。ガス吸着性能及び生産性の観点から、酸化カルシウムが好ましい。吸着剤は公知であり、市場において容易に入手することができるか、又は調製可能である。 The adsorbent used in the present invention is not particularly limited as long as it is a substance that adsorbs gas. For example, it is a substance that adsorbs gas such as nitrogen, oxygen, carbon dioxide, and / or moisture. Examples of the adsorbent include calcium oxide, magnesium oxide, silica gel, zeolite, activated carbon, barium oxide, barium-lithium alloy, porous coordination polymer, metal organic structure, or a mixture thereof. From the viewpoint of gas adsorption performance and productivity, calcium oxide is preferable. Adsorbents are known and can be readily obtained in the market or can be prepared.
真空断熱材の内部圧力は、例えば、0.5〜20Pa、好ましくは0.5〜10Paである。内部圧力が上記範囲内であれば、真空断熱材内部のガスを介する熱伝導を抑制できるため、真空断熱材の断熱性を高めることができる。 The internal pressure of a vacuum heat insulating material is 0.5-20 Pa, for example, Preferably it is 0.5-10 Pa. If the internal pressure is within the above range, heat conduction through the gas inside the vacuum heat insulating material can be suppressed, so that the heat insulating property of the vacuum heat insulating material can be improved.
本発明において、真空断熱材は、一般的には四角形の板状であり、用途によって他の多角形の形状、例えば五角形以上であってもよい。四角形の板状の真空断熱材形状を、図1に示す。板状とは、薄く平たい形状を言い、対向する2つの面(図1の上面1及び下面2)並びにこれら2つの面を接続する外周面(図1の4つの側面3)を有する。本明細書において「角部」とは、外周面の短辺(厚み方向の辺)(図1の辺4)を指す。真空断熱材の大きさは、用途により適宜設定できるが、小さいものは200mm角程度からあり、大きいものは1000mm×2000mm程度のものもある。 In the present invention, the vacuum heat insulating material is generally a quadrangular plate, and may have another polygonal shape, for example, a pentagon or more, depending on the application. A rectangular plate-like vacuum heat insulating material shape is shown in FIG. The plate shape means a thin and flat shape, and has two opposing surfaces (upper surface 1 and lower surface 2 in FIG. 1) and an outer peripheral surface (four side surfaces 3 in FIG. 1) connecting these two surfaces. In this specification, the “corner portion” refers to the short side (side in the thickness direction) of the outer peripheral surface (side 4 in FIG. 1). The size of the vacuum heat insulating material can be appropriately set depending on the application, but a small one is about 200 mm square, and a large one is about 1000 mm × 2000 mm.
本発明の被覆真空断熱材は、真空断熱材を被覆する熱収縮フィルムを含む。本明細書において、「熱収縮フィルム」は、熱収縮した後のフィルムを指す。また、「未熱収縮フィルム」又は「熱収縮性フィルム」は、熱収縮する前のフィルムを指す。 The coated vacuum heat insulating material of the present invention includes a heat shrink film that covers the vacuum heat insulating material. In the present specification, the “heat-shrinkable film” refers to a film after heat-shrinking. The “non-heat-shrinkable film” or “heat-shrinkable film” refers to a film before being heat-shrinked.
熱収縮フィルムは、真空断熱材の少なくとも外周面に密着している。熱収縮フィルムが少なくとも外周面に密着することにより、熱収縮フィルムからの熱損失を抑制でき、被覆真空断熱材は十分な断熱性能を発揮することが出来る。 The heat shrink film is in close contact with at least the outer peripheral surface of the vacuum heat insulating material. When the heat-shrinkable film is in close contact with at least the outer peripheral surface, heat loss from the heat-shrinkable film can be suppressed, and the coated vacuum heat insulating material can exhibit sufficient heat insulating performance.
従来の被覆真空断熱材においては、真空断熱材の上面及び下面と熱収縮フィルムとの間には、多くの場合、100〜250cm3/m2程度の空気が残存している。一方、本発明において、真空断熱材の上面及び下面と熱収縮フィルムとの間の空気量は、例えば、0〜10cm3/m2である。空気量は、例えば、被覆真空断熱材の体積から真空断熱材の体積と熱収縮フィルムの体積を差し引いた値に基づいて測定することができる。真空断熱材の上面及び下面と熱収縮フィルムとの間の空気量が上記範囲内であれば、被覆真空断熱材の断熱性能の低下を抑えることができる。 In the conventional coated vacuum heat insulating material, air of about 100 to 250 cm 3 / m 2 is often left between the upper and lower surfaces of the vacuum heat insulating material and the heat shrink film. On the other hand, in the present invention, the amount of air between the upper and lower surfaces of the vacuum heat insulating material and the heat shrinkable film is, for example, 0 to 10 cm 3 / m 2 . The amount of air can be measured, for example, based on a value obtained by subtracting the volume of the vacuum heat insulating material and the volume of the heat shrinkable film from the volume of the coated vacuum heat insulating material. If the amount of air between the upper and lower surfaces of the vacuum heat insulating material and the heat-shrinkable film is within the above range, it is possible to suppress a decrease in the heat insulating performance of the coated vacuum heat insulating material.
本発明の被覆真空断熱材は、外周面において、前記被覆真空断熱材の少なくとも1つの角部、例えば少なくとも2つの角部、好ましくは少なくとも3つの角部、より好ましくは全ての角部から70mm以内、好ましくは50mm以内、より好ましくは30mm以内の領域に少なくとも1つの脱気穴を有する。本発明において、脱気穴とは、後述の面積を有する、被覆真空断熱材表面の熱収縮フィルムで被覆されていない部分を指す。例えば、脱気穴は、熱収縮フィルムに設けられた穴であってもよく、あるいは、真空断熱材の縦方向及び横方向に帯状のフィルムを巻いた場合の、フィルムの隙間部分であってもよい。上記領域の例を図1に領域5として示す。脱気穴の位置は、角部から遠い方の脱気穴端部の位置に基づいて特定される。脱気穴は、被覆真空断熱材の複数の面にまたがっていてもよい。脱気穴の位置が上記範囲内であることにより、熱収縮フィルムと真空断熱材の密着性を保つことが出来る。また、被覆真空断熱材の製造時に熱収縮によるフィルムの破損を防止することが出来る。 In the outer peripheral surface, the coated vacuum heat insulating material of the present invention has at least one corner of the coated vacuum heat insulating material, for example, at least two corners, preferably at least three corners, more preferably within 70 mm from all the corners. , Preferably at least one deaeration hole in an area within 50 mm, more preferably within 30 mm. In this invention, a deaeration hole points out the part which is not coat | covered with the heat-shrink film of the surface of a covering vacuum heat insulating material which has an area mentioned later. For example, the deaeration hole may be a hole provided in the heat-shrinkable film, or may be a gap portion of the film when a belt-like film is wound in the vertical direction and the horizontal direction of the vacuum heat insulating material. Good. An example of the above region is shown as region 5 in FIG. The position of the deaeration hole is specified based on the position of the end of the deaeration hole farther from the corner. The deaeration holes may extend over a plurality of surfaces of the coated vacuum heat insulating material. When the position of the deaeration hole is within the above range, the adhesion between the heat shrink film and the vacuum heat insulating material can be maintained. Further, it is possible to prevent the film from being damaged due to heat shrinkage during the production of the coated vacuum heat insulating material.
本発明において、脱気穴は、0.1〜5cm2、好ましくは0.2〜4cm2、より好ましくは0.3〜3cm2の面積を有する。脱気穴が被覆真空断熱材の複数の面にまたがる場合には、穴の面積は、真空断熱材の、脱気穴から露出している部分の面積に基づいて特定する。脱気穴の面積が上記範囲内であれば、未熱収縮フィルムの熱収縮時にフィルムと真空断熱材との間の空気が抜け易くなり、熱収縮フィルムと真空断熱材との間の空気残存量を十分に少なくすることができる。また、被覆真空断熱材の製造時に熱収縮によるフィルムの破損を防止することが出来る。更に、冷蔵庫の製造時にウレタン発泡材を注入する際、角部の脱気穴からウレタン発泡材が真空断熱材と熱収縮フィルムの間に流入することを防止でき、ウレタン発泡材の流動性及び充填性の低下を防ぐことができる。 In the present invention, the deaeration holes have an area of 0.1 to 5 cm 2 , preferably 0.2 to 4 cm 2 , more preferably 0.3 to 3 cm 2 . When the deaeration hole extends over a plurality of surfaces of the coated vacuum heat insulating material, the area of the hole is specified based on the area of the portion of the vacuum heat insulating material exposed from the deaeration hole. If the area of the deaeration hole is within the above range, the air between the film and the vacuum heat insulating material is easily released during the heat shrinkage of the non-heat shrinkable film, and the remaining air amount between the heat shrinkable film and the vacuum heat insulating material. Can be reduced sufficiently. Further, it is possible to prevent the film from being damaged due to heat shrinkage during the production of the coated vacuum heat insulating material. Furthermore, when injecting urethane foam during the manufacture of refrigerators, urethane foam can be prevented from flowing between the vacuum heat insulating material and the heat-shrinkable film through the deaeration holes at the corners, and the fluidity and filling of the urethane foam. It can prevent a decline in sex.
本発明において、熱収縮フィルムは、従来の熱収縮フィルムと同様の通気孔を、例えば被覆真空断熱材の上面及び/又は下面に有していてもよい。 In the present invention, the heat-shrinkable film may have the same air holes as those of the conventional heat-shrinkable film, for example, on the upper surface and / or the lower surface of the coated vacuum heat insulating material.
本発明の被覆真空断熱材は、(1)未熱収縮フィルムからなる多角形の袋に、多角形の板状の真空断熱材を入れる工程であって、前記袋が開口部を有し、前記未熱収縮フィルムが20〜200μmの厚さを有する、工程、(2)前記開口部をシールする工程、(3)前記シールした袋の少なくとも一部を切断する工程であって、前記少なくとも一部が袋の頂点を含む、工程、(4)前記切断した袋を80℃〜200℃で加熱して熱収縮させる工程、及び(5)前記熱収縮させた袋を50℃以下に冷却する工程、を含む方法により製造することができる。 The coated vacuum heat insulating material of the present invention is (1) a step of putting a polygonal plate-shaped vacuum heat insulating material into a polygonal bag made of an unheat-shrinkable film, wherein the bag has an opening, The non-heat-shrinkable film has a thickness of 20 to 200 μm, (2) the step of sealing the opening, and (3) the step of cutting at least a part of the sealed bag, the at least part of Including the apex of the bag, (4) a step of heating the cut bag at 80 ° C. to 200 ° C. and thermally shrinking, and (5) a step of cooling the heat-shrinked bag to 50 ° C. or less, It can manufacture by the method containing.
未熱収縮フィルムは、20〜200μm、好ましくは40〜160μm、より好ましくは60〜120μmの厚さを有する。厚さが上記範囲内であることにより、熱収縮フィルムの保護性が増し、被覆真空断熱材の破損を防止することができる。 The unheat-shrinkable film has a thickness of 20 to 200 μm, preferably 40 to 160 μm, more preferably 60 to 120 μm. When the thickness is within the above range, the protection property of the heat-shrinkable film is increased, and damage to the coated vacuum heat insulating material can be prevented.
未熱収縮フィルムの収縮率に関しては、未熱収縮フィルムの樹脂材質により異なるが、例えば10%〜80%、好ましくは10%〜50%で調節する。収縮率は、未熱収縮フィルムの収縮温度より高く溶融温度より低い温度で1分以上未熱収縮フィルムを加熱して熱収縮させきった場合の、未熱収縮フィルムと熱収縮後のフィルムの辺の長さの比により測定することができる。収縮率が上記範囲内であれば、未熱収縮フィルムの収縮により、真空断熱材の形状を変えることなくフィルムと真空断熱材の間の空気を脱気穴から十分に抜くことができる。また、未熱収縮フィルムは、好ましくは70〜1800kg/cm2、より好ましくは300〜1000kg/cm2、更に好ましくは500〜800kg/cm2の引張強さを有する。引張強さは、公知の方法により、例えばJIS K 7127に準じて測定することができる。引張強さが上記範囲内であれば、熱収縮フィルムに保護性があり、被覆真空断熱材の取扱いも容易である。未熱収縮フィルムは、従来の熱収縮性フィルムと同様の通気孔を有していてもよい。 The shrinkage ratio of the non-heat-shrinkable film varies depending on the resin material of the non-heat-shrinkable film, but is adjusted to, for example, 10% to 80%, preferably 10% to 50%. The shrinkage rate is the length of the non-heat-shrinkable film and the film after heat-shrink when the non-heat-shrinkable film is heated and shrunk for 1 minute or more at a temperature higher than the shrinkage temperature of the non-heat-shrinkable film and lower than the melting temperature. The length ratio can be measured. If the shrinkage rate is within the above range, the air between the film and the vacuum heat insulating material can be sufficiently extracted from the deaeration hole without changing the shape of the vacuum heat insulating material due to the shrinkage of the unheat-shrinkable film. Furthermore, non-heat-shrinkable film preferably 70~1800kg / cm 2, more preferably 300~1000kg / cm 2, more preferably has a tensile strength of 500~800kg / cm 2. The tensile strength can be measured by a known method, for example, according to JIS K 7127. If the tensile strength is within the above range, the heat-shrinkable film is protective and the coated vacuum heat insulating material is easy to handle. The non-heat-shrinkable film may have the same air holes as those of the conventional heat-shrinkable film.
未熱収縮フィルムは、単層又は多層のフィルムであってよく、上記の熱収縮率を有していれば材質に特に制限はない。好ましいフィルムとしては、例えば、ポリ塩化ビニルフィルム、ポリスチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリオレフィンフィルム、ポリエチレンテレフテレートフィルム、テフロンフィルム、ポリアミドフィルム、ポリエーテルエーテルケトンフィルム、フッ素樹脂フィルム、ポリエチレンビニルアルコール樹脂フィルム、又はこれらを含む多層熱収縮フィルム等が挙げられる。 The non-heat-shrinkable film may be a single layer or a multilayer film, and the material is not particularly limited as long as it has the above-described heat shrinkage rate. Preferred films include, for example, polyvinyl chloride film, polystyrene film, polyethylene film, polypropylene film, polyolefin film, polyethylene terephthalate film, Teflon film, polyamide film, polyetheretherketone film, fluororesin film, and polyethylene vinyl alcohol resin. Examples thereof include a film or a multilayer heat-shrink film containing these.
工程(1)において、未熱収縮フィルムからなる袋は開口部を有し、そこから真空断熱材を入れることができる。袋に真空断熱材を入れる手段には、特に制限は無い。袋は、好ましくは真空断熱材の面と同様の形状を有する。 In the step (1), the bag made of the non-heat-shrinkable film has an opening from which a vacuum heat insulating material can be put. There is no restriction | limiting in particular in the means of putting a vacuum heat insulating material in a bag. The bag preferably has the same shape as the surface of the vacuum insulation.
工程(2)において、真空断熱材を入れた袋の開口部をシールする手段には特に制限は無く、例えば、ヒートシール方式、熱板方式、インパルスシール方式、レーザー溶接によりシールすることができる。開口部をシールすることにより、真空断熱材を未熱収縮フィルム内部に保持できる。 In the step (2), the means for sealing the opening of the bag containing the vacuum heat insulating material is not particularly limited, and for example, it can be sealed by a heat seal method, a hot plate method, an impulse seal method, or laser welding. By sealing the opening, the vacuum heat insulating material can be held inside the non-heat-shrinkable film.
工程(3)は、袋の少なくとも一部を切断する工程である。切断部分は、シールした開口部の一部を含んでいてもよい。袋が四角形である場合の袋及びその切断部分を図2に、拡大した切断部分を図3に示す。図2に示すように、切断部分6は、袋の頂点7を含む。また、図3に示す通り、袋の切断される少なくとも一部における頂点7を構成する2辺8の長さは、例えば70mm以下であり、好ましくは50mm以下、より好ましくは30mm以下である。長さが上記範囲内であれば、切断面は、最終製品の被覆真空断熱材において、外周面の角部から70mm以下の領域における0.1〜5cm2の面積を有する脱気穴を構成することができる。また、頂点を含む少なくとも一部を切断部とすることにより、未熱収縮フィルムの熱収縮時にフィルムの破損を防ぐことができる。袋が四角形以外の多角形である場合も同様である。切断は、例えば、ハサミ、カッターなどにより行うことができる。 Step (3) is a step of cutting at least a part of the bag. The cut portion may include a portion of the sealed opening. FIG. 2 shows the bag and its cut portion when the bag is square, and FIG. 3 shows the enlarged cut portion. As shown in FIG. 2, the cutting portion 6 includes the apex 7 of the bag. Further, as shown in FIG. 3, the length of the two sides 8 constituting the apex 7 in at least a part of the bag to be cut is, for example, 70 mm or less, preferably 50 mm or less, more preferably 30 mm or less. If the length is within the above range, the cut surface constitutes a deaeration hole having an area of 0.1 to 5 cm 2 in an area of 70 mm or less from the corner of the outer peripheral surface in the coated vacuum heat insulating material of the final product. be able to. In addition, by using at least a part including the apex as a cutting portion, it is possible to prevent the film from being damaged during the heat shrinkage of the non-heat shrinkable film. The same applies when the bag is a polygon other than a square. The cutting can be performed, for example, with scissors, a cutter, or the like.
工程(4)は、切断した袋を加熱して熱収縮する工程であり、加熱温度は、未熱収縮フィルムの収縮温度に基づいて適宜設定できるが、例えば80℃〜200℃であり、未熱収縮フィルムの樹脂材質等に合わせて調節できる。加熱温度が上記範囲内であれば、未熱収縮フィルムを熱収縮することができる。未熱収縮フィルムの加熱は、例えば、熱風循環オーブン、乾燥機、ヒーターなどにより行うことができる。 Step (4) is a step in which the cut bag is heated and thermally contracted, and the heating temperature can be appropriately set based on the shrinkage temperature of the unheat-shrinkable film. It can be adjusted according to the resin material of the shrink film. If the heating temperature is within the above range, the unheat-shrinkable film can be heat-shrinked. The non-heat-shrinkable film can be heated by, for example, a hot air circulation oven, a dryer, or a heater.
工程(5)は、熱収縮させた袋を冷却する工程であり、冷却温度は、50℃以下、好ましくは40℃以下である。冷却温度が上記範囲内であれば、熱収縮フィルムの熱収縮や変形を止めることが出来る。熱収縮フィルムの冷却は、例えば、クーラー、扇風機、自然冷却により行うことができる。 Step (5) is a step of cooling the heat-shrinked bag, and the cooling temperature is 50 ° C. or lower, preferably 40 ° C. or lower. If the cooling temperature is within the above range, the heat shrinkage and deformation of the heat shrinkable film can be stopped. The heat-shrinkable film can be cooled by, for example, a cooler, a fan, or natural cooling.
本発明の被覆真空断熱材の製造において、未熱収縮フィルムの袋を、真空断熱材を入れる前にあらかじめ切断しておいてもよい。すなわち、本発明の被覆真空断熱材は、(a)未熱収縮フィルムからなる多角形の袋の少なくとも一部を切断する工程であって、前記袋が開口部を有し、前記未熱収縮フィルムが20〜200μmの厚さを有し、前記少なくとも一部が袋の頂点を含む、工程、(b)前記切断した袋に多角形の板状の真空断熱材を入れる工程、(c)前記開口部をシールする工程、(d)前記シールした袋を80℃〜200℃で加熱して熱収縮させる工程、及び(e)前記熱収縮させた袋を50℃以下に冷却する工程、を含む方法により製造することもできる。(a)〜(e)工程は、それぞれ、上記(3)、(1)、(2)、(4)及び(5)工程と同様に実施することができる。 In the production of the coated vacuum heat insulating material of the present invention, the bag of unheat-shrinkable film may be cut in advance before putting the vacuum heat insulating material. That is, the coated vacuum heat insulating material of the present invention is a process of (a) cutting at least a part of a polygonal bag made of a non-heat-shrinkable film, wherein the bag has an opening, and the non-heat-shrinkable film (B) a step of putting a polygonal plate-like vacuum heat insulating material into the cut bag, and (c) the opening. A step of sealing the part, (d) a step of heating the sealed bag at 80 ° C. to 200 ° C. to heat shrink, and (e) a step of cooling the heat-shrinked bag to 50 ° C. or less. Can also be manufactured. Steps (a) to (e) can be carried out in the same manner as steps (3), (1), (2), (4) and (5), respectively.
別の態様では、帯状の未熱収縮フィルムを真空断熱材に縦方向及び横方向に巻いて、未熱収縮フィルムを熱収縮させることにより、角部に脱気穴を有する本発明の被覆真空断熱材を製造することができる。 In another aspect, the coated vacuum insulation of the present invention having deaeration holes at the corners by winding a strip-shaped unheat-shrink film around the vacuum heat insulating material in the longitudinal direction and the transverse direction and thermally shrinking the unheat-shrink film. The material can be manufactured.
本発明の真空断熱材は、従来の真空断熱材と同様の用途、例えば、冷蔵庫、自動販売機、断熱ボックス等に用いることができる。 The vacuum heat insulating material of this invention can be used for the same use as the conventional vacuum heat insulating material, for example, a refrigerator, a vending machine, a heat insulation box, etc.
本発明の被覆真空断熱材は、例えば、冷蔵庫用の断熱材として使用することができる。冷蔵庫内部では、筐体に真空断熱材が貼り付けられ、その周りの隙間をウレタン発泡材等で充填している。従来の被覆真空断熱材には、角部に熱収縮フィルムの収縮しわが残っているため、従来の被覆真空断熱材を用いる場合には、ウレタン発泡材を隙間に注入する際に、ウレタン発泡材の流動性や充填性が悪くなるという問題があった。また、熱収縮フィルム表面に小さな通気孔を有する従来の被覆真空断熱材を用いると、通気孔がウレタン発泡材で塞がれてしまうため、熱収縮フィルムと真空断熱材の間の空気が抜け切らずに残り、冷蔵庫の断熱性能に悪影響を及ぼすという問題もあった。本発明の被覆真空断熱材では、角部に脱気穴を設けることで、収縮しわを減らすことができるため、ウレタンの流動性及び充填性を改善することができる。また、本発明の被覆真空断熱材は、従来の通気孔よりも大きい脱気穴を角部の領域に有するため、仮に被覆真空断熱材の熱収縮フィルムと真空断熱材の間に空気が存在したとしても、ウレタン注入時に空気が脱気穴から押し出され、冷蔵庫の断熱性の低下を防ぐことができる。更に、本発明の被覆真空断熱材において、熱収縮フィルムが真空断熱材の外周面に密着しているため、ウレタン発泡材の流動性や充填性が改善される。 The coated vacuum heat insulating material of the present invention can be used as a heat insulating material for a refrigerator, for example. Inside the refrigerator, a vacuum heat insulating material is affixed to the housing, and a gap around the case is filled with a urethane foam material or the like. Since the shrinkage wrinkles of the heat-shrinkable film remain at the corners of the conventional coated vacuum heat insulating material, when using the conventional coated vacuum heat insulating material, when injecting the urethane foam into the gap, the urethane foam material There was a problem that the fluidity and filling property of the resin deteriorated. In addition, when a conventional coated vacuum heat insulating material having small air holes on the surface of the heat shrink film is used, the air holes are blocked by urethane foam, so that the air between the heat shrink film and the vacuum heat insulating material is not completely removed. There is also a problem that the heat insulation performance of the refrigerator is adversely affected. In the coated vacuum heat insulating material of the present invention, by providing deaeration holes at the corners, shrinkage wrinkles can be reduced, so that the fluidity and filling properties of urethane can be improved. In addition, since the coated vacuum heat insulating material of the present invention has deaeration holes larger than the conventional vent holes in the corner region, air exists between the heat shrink film of the coated vacuum heat insulating material and the vacuum heat insulating material. Even when urethane is injected, air is pushed out from the deaeration hole, and the heat insulation of the refrigerator can be prevented from being lowered. Furthermore, in the coated vacuum heat insulating material of the present invention, since the heat shrink film is in close contact with the outer peripheral surface of the vacuum heat insulating material, the fluidity and filling properties of the urethane foam are improved.
実施例1
通気孔を有さないポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2(JIS K 7127に準じて測定))の四角形の袋の開口部から、四角形の板状の真空断熱材(300mm×300mm×20mm)を入れ、インパルスシール機により開口部をシールした。シールした袋の頂点を含む4箇所を切断した。各切断部分において、前記頂点を構成する2辺は10mm及び30mmであった。熱風循環オーブンにより、袋を100℃で15秒加熱し、フィルムを熱収縮させた。次に、自然冷却により、袋を環境温度25℃下で冷却し、被覆真空断熱材を得た。熱収縮フィルムは、外周面において真空断熱材と密着していた。被覆真空断熱材は、外周面において、角部から20mm(角部から脱気穴遠位端までの距離)の位置に、約0.3cm2の面積の脱気穴(短径2mm及び長径20mmの楕円形)を有した。
Example 1
From the opening of a rectangular bag of a polyvinyl chloride film (thickness 75 μm, shrinkage ratio 20% / length 20%, tensile strength 630 kg / cm 2 (measured according to JIS K 7127)) without vents A rectangular plate-shaped vacuum heat insulating material (300 mm × 300 mm × 20 mm) was put, and the opening was sealed with an impulse sealer. Four locations including the top of the sealed bag were cut. In each cut portion, the two sides constituting the vertex were 10 mm and 30 mm. The bag was heated at 100 ° C. for 15 seconds in a hot air circulating oven to heat shrink the film. Next, the bag was cooled at an environmental temperature of 25 ° C. by natural cooling to obtain a coated vacuum heat insulating material. The heat shrink film was in close contact with the vacuum heat insulating material on the outer peripheral surface. The coating vacuum heat insulating material has a deaeration hole (minor axis 2 mm and major axis 20 mm) having an area of about 0.3 cm 2 at a position 20 mm from the corner (distance from the corner to the distal end of the deaeration hole) on the outer peripheral surface. Oval).
実施例2
縦及び横に60mm間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の頂点を含む4箇所を切断した。各切断部分において、前記頂点を構成する2辺は10mm及び30mmであった。袋の開口部から四角形の板状の真空断熱材(300mm×300mm×20mm)を入れ、インパルスシール機により開口部をシールした。熱風循環オーブンにより、袋を100℃で15秒加熱し、フィルムを熱収縮させた。次に、自然冷却により、袋を環境温度25℃下で冷却し、被覆真空断熱材を得た。熱収縮フィルムは、上面及び下面に、約0.008cm2の面積の通気孔(直径1mmの円形)を、縦及び横に平均48mmの間隔で有し、外周面において、真空断熱材と密着していた。被覆真空断熱材は、外周面において、角部から20mmの位置に、約0.3cm2の面積の脱気穴(短径2mm及び長径20mmの楕円形)を有した。
Example 2
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage width 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 mm vertically and horizontally. Four points including the vertex were cut. In each cut portion, the two sides constituting the vertex were 10 mm and 30 mm. A square plate-shaped vacuum heat insulating material (300 mm × 300 mm × 20 mm) was introduced from the opening of the bag, and the opening was sealed with an impulse sealer. The bag was heated at 100 ° C. for 15 seconds in a hot air circulating oven to heat shrink the film. Next, the bag was cooled at an environmental temperature of 25 ° C. by natural cooling to obtain a coated vacuum heat insulating material. The heat-shrinkable film has vent holes (circularity of 1 mm in diameter) having an area of about 0.008 cm 2 on the upper and lower surfaces, with an average interval of 48 mm vertically and horizontally, and is in close contact with the vacuum heat insulating material on the outer peripheral surface. It was. The coated vacuum heat insulating material had a deaeration hole (an ellipse with a minor axis of 2 mm and a major axis of 20 mm) having an area of about 0.3 cm 2 at a position 20 mm from the corner on the outer peripheral surface.
実施例3
縦及び横に60m間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の頂点を含む4箇所を切断した。各切断部分において、前記頂点を構成する2辺は10mm及び20mmであった。以降の手順は、実施例2と同様にして、被覆真空断熱材を得た。熱収縮フィルムは、上面及び下面に、約0.008cm2の面積の通気孔(直径1mmの円形)を、縦及び横に平均48mmの間隔で有し、外周面において、真空断熱材と密着していた。被覆真空断熱材は、外周面において、角部から15mmの位置に、約0.1cm2の面積の脱気穴(短径1mm及び長径15mmの楕円形)を有した。
Example 3
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage ratio 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 m vertically and horizontally. Four points including the vertex were cut. In each cut portion, the two sides constituting the vertex were 10 mm and 20 mm. Subsequent procedures were performed in the same manner as in Example 2 to obtain a coated vacuum heat insulating material. The heat-shrinkable film has vent holes (circularity of 1 mm in diameter) having an area of about 0.008 cm 2 on the upper and lower surfaces, with an average interval of 48 mm vertically and horizontally, and is in close contact with the vacuum heat insulating material on the outer peripheral surface. It was. The coated vacuum heat insulating material had a deaeration hole (an ellipse with a minor axis of 1 mm and a major axis of 15 mm) having an area of about 0.1 cm 2 at a position 15 mm from the corner on the outer peripheral surface.
実施例4
縦及び横に60m間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の頂点を含む4箇所を切断した。各切断部分において、前記頂点を構成する2辺は10mm及び60mmであった。以降の手順は、実施例2と同様にして、被覆真空断熱材を得た。熱収縮フィルムは、上面及び下面に、約0.008cm2の面積の通気孔(直径1mmの円形)を、縦及び横に平均48mmの間隔で有し、外周面において、真空断熱材と密着していた。被覆真空断熱材は、外周面において、角部から60mmの位置に、約2.8cm2の面積の脱気穴(短径6mm及び長径60mmの楕円形)を有した。
Example 4
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage ratio 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 m vertically and horizontally. Four points including the vertex were cut. In each cut portion, the two sides constituting the vertex were 10 mm and 60 mm. Subsequent procedures were performed in the same manner as in Example 2 to obtain a coated vacuum heat insulating material. The heat-shrinkable film has vent holes (circularity of 1 mm in diameter) having an area of about 0.008 cm 2 on the upper and lower surfaces, with an average interval of 48 mm vertically and horizontally, and is in close contact with the vacuum heat insulating material on the outer peripheral surface. It was. The coated vacuum heat insulating material had a deaeration hole (an ellipse with a minor axis of 6 mm and a major axis of 60 mm) having an area of about 2.8 cm 2 at a position 60 mm from the corner on the outer peripheral surface.
比較例1
縦及び横に60mm間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋を切断せずに用いた以外は、実施例2と同様にして、被覆真空断熱材を得た。熱収縮フィルムは、上面及び下面に、約0.008cm2の面積の通気孔(直径1mmの円形)を、縦及び横に平均48mmの間隔で有した。
Comparative Example 1
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage ratio 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 mm vertically and horizontally. A coated vacuum heat insulating material was obtained in the same manner as in Example 2 except that it was used without being cut. The heat-shrinkable film had air holes (circularity of 1 mm in diameter) having an area of about 0.008 cm 2 on the upper and lower surfaces, with an average interval of 48 mm in the vertical and horizontal directions.
比較例2
縦及び横に50mm間隔で直径1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋を切断せずに用いた以外は、実施例2と同様にして、被覆真空断熱材を得た。熱収縮フィルムは、上面及び下面に、約0.3cm2の面積の通気孔(短径2mm及び長径20mmの楕円形)を、縦及び横に平均40mmの間隔で有した。
Comparative Example 2
Cut a rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage width 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 1 mm at 50 mm intervals in the vertical and horizontal directions. A coated vacuum heat insulating material was obtained in the same manner as in Example 2 except that the coated vacuum heat insulating material was used. The heat-shrinkable film had vent holes (an ellipse with a minor axis of 2 mm and a major axis of 20 mm) having an area of about 0.3 cm 2 on the upper and lower surfaces at an average interval of 40 mm in the vertical and horizontal directions.
比較例3
縦及び横に60mm間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の頂点を含む4箇所を切断した。各切断部分において、前記頂点を構成する2辺は20mm及び90mmであった。以降の手順は、実施例2と同様にして、被覆真空断熱材を得た。熱収縮フィルムは角部の切断部分から破損した。
Comparative Example 3
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage width 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 mm vertically and horizontally. Four points including the vertex were cut. In each cut portion, the two sides constituting the vertex were 20 mm and 90 mm. Subsequent procedures were performed in the same manner as in Example 2 to obtain a coated vacuum heat insulating material. The heat shrink film was broken from the cut part of the corner.
比較例4
縦及び横に60mm間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の頂点を含む4箇所を切断した。各切断部分において、前記頂点を構成する2辺は1mm及び5mmであった。以降の手順は、実施例2と同様にして、被覆真空断熱材を得た。熱収縮フィルムは、上面及び下面に、約0.008cm2の面積の通気孔(直径1mmの円形)を、縦及び横に平均48mmの間隔で有した。被覆真空断熱材は、外周面において、角部から4mmの位置に、約0.02cm2の面積の穴(短径0.5mm及び長径4mmの楕円形)を有した。
Comparative Example 4
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage width 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 mm vertically and horizontally. Four points including the vertex were cut. In each cut portion, the two sides constituting the vertex were 1 mm and 5 mm. Subsequent procedures were performed in the same manner as in Example 2 to obtain a coated vacuum heat insulating material. The heat-shrinkable film had air holes (circularity of 1 mm in diameter) having an area of about 0.008 cm 2 on the upper and lower surfaces, with an average interval of 48 mm in the vertical and horizontal directions. The coated vacuum heat insulating material had a hole (an ellipse having a minor axis of 0.5 mm and a major axis of 4 mm) having an area of about 0.02 cm 2 at a position 4 mm from the corner on the outer peripheral surface.
比較例5
縦及び横に60mm間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の一辺において、頂点から135mm〜165mmに亘る10mm×30mmの領域を切断した。以降の手順は、実施例2と同様にして、被覆真空断熱材を作製した。熱収縮フィルムは外周面の切断部分から破損した。
Comparative Example 5
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage width 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 mm vertically and horizontally. On one side, an area of 10 mm × 30 mm extending from the top to 135 mm to 165 mm was cut. Subsequent procedures were performed in the same manner as in Example 2 to produce a coated vacuum heat insulating material. The heat shrink film was damaged from the cut portion of the outer peripheral surface.
比較例6
縦及び横に60mm間隔で直径0.1mmの円形の通気孔を有するポリ塩化ビニルフィルム(厚さ75μm、収縮率横20%/縦20%、引張強さ630kg/cm2)の四角形の袋の一方の面において、中心部の10mm×30mmの領域を切断した。以降の手順は、実施例2と同様にして、被覆真空断熱材を作製した。熱収縮フィルムは切断部分から破損した。
Comparative Example 6
A rectangular bag of polyvinyl chloride film (thickness 75 μm, shrinkage width 20% / length 20%, tensile strength 630 kg / cm 2 ) having circular ventilation holes with a diameter of 0.1 mm at intervals of 60 mm vertically and horizontally. On one side, a 10 mm × 30 mm region at the center was cut. Subsequent procedures were performed in the same manner as in Example 2 to produce a coated vacuum heat insulating material. The heat shrink film was broken from the cut part.
真空断熱材の上面及び下面と熱収縮フィルムとの間の空気量の測定
実施例1〜4並び比較例1〜6の被覆真空断熱材のそれぞれについて、真空断熱材の上面及び下面と熱収縮フィルムとの間の空気量を、被覆真空断熱材の体積から真空断熱材の体積と熱収縮フィルムの体積を差し引くことで測定した。測定した空気量から、上面及び下面の単位面積当たりの空気量(内部空気量)を算出した。実施例1〜4の被覆真空断熱材の結果を表1に、比較例1〜6の被覆真空断熱材の結果を表2に示す。
Measurement of the amount of air between the upper and lower surfaces of the vacuum heat insulating material and the heat shrinkable film For each of the coated vacuum heat insulating materials of Examples 1 to 4 and Comparative Examples 1 to 6, the upper and lower surfaces of the vacuum heat insulating material and the heat shrinkable film The amount of air was measured by subtracting the volume of the vacuum heat insulating material and the volume of the heat shrinkable film from the volume of the coated vacuum heat insulating material. From the measured air volume, the air volume (internal air volume) per unit area of the upper and lower surfaces was calculated. The results of the coated vacuum heat insulating materials of Examples 1 to 4 are shown in Table 1, and the results of the coated vacuum heat insulating materials of Comparative Examples 1 to 6 are shown in Table 2.
熱伝導率の測定
実施例1〜4及び比較例1〜6の被覆真空断熱材のそれぞれについて、JIS A 1412附属書B法 に準じて熱伝導率を測定した。実施例1〜4の被覆真空断熱材の結果を表1に、比較例1〜6の被覆真空断熱材の結果を表2に示す。
Measurement of thermal conductivity The thermal conductivity of each of the coated vacuum heat insulating materials of Examples 1 to 4 and Comparative Examples 1 to 6 was measured according to JIS A 1412 Annex B method. The results of the coated vacuum heat insulating materials of Examples 1 to 4 are shown in Table 1, and the results of the coated vacuum heat insulating materials of Comparative Examples 1 to 6 are shown in Table 2.
本発明の真空断熱材は、特に、冷蔵庫、保冷箱、自動販売機などの断熱性能向上材料として有用である。 The vacuum heat insulating material of the present invention is particularly useful as a heat insulating performance improving material for refrigerators, cold boxes, vending machines, and the like.
1 上面
2 下面
3 外周面
4 角部
5 角部から一定の範囲の領域
6 切断部分
7 頂点
8 頂点を構成する2辺
DESCRIPTION OF SYMBOLS 1 Upper surface 2 Lower surface 3 Outer peripheral surface 4 Corner | angular part 5 The area | region of a fixed range from a corner | angular part 6 Cut | disconnected part 7 Vertex 8 Two sides which comprise a vertex
Claims (11)
前記真空断熱材が、多角形の板状であり、
前記熱収縮フィルムが、前記真空断熱材の少なくとも外周面に密着しており、
前記被覆真空断熱材が、外周面において、前記被覆真空断熱材の少なくとも1つの角部から70mm以内の領域に少なくとも1つの脱気穴を有し、
前記脱気穴が、0.1〜5cm2の面積を有する、
被覆真空断熱材。 A vacuum insulation material comprising a vacuum insulation material and a heat shrink film covering the vacuum insulation material,
The vacuum heat insulating material is a polygonal plate,
The heat shrink film is in close contact with at least the outer peripheral surface of the vacuum heat insulating material;
The covering vacuum heat insulating material has at least one deaeration hole in a region within 70 mm from at least one corner of the covering vacuum heat insulating material on the outer peripheral surface;
The deaeration holes have an area of 0.1 to 5 cm 2 ;
Covered vacuum insulation.
1.未熱収縮フィルムからなる多角形の袋に、多角形の板状の真空断熱材を入れる工程であって、前記袋が開口部を有し、前記未熱収縮フィルムが20〜200μmの厚さを有する、工程、
2.前記開口部をシールする工程、
3.前記シールした袋の少なくとも一部を切断する工程であって、前記少なくとも一部が袋の頂点を含む、工程、
4.前記切断した袋を80℃〜200℃で加熱して熱収縮させる工程、及び
5.前記熱収縮させた袋を50℃以下に冷却する工程、
を含む、請求項1に記載の被覆真空断熱材の製造方法。 The following steps,
1. A step of putting a polygonal plate-like vacuum heat insulating material into a polygonal bag made of non-heat-shrinkable film, wherein the bag has an opening, and the non-heat-shrinkable film has a thickness of 20 to 200 μm. Having a process,
2. Sealing the opening;
3. Cutting at least a portion of the sealed bag, the at least a portion including the apex of the bag;
4). 4. Heat-shrink the cut bag at 80 ° C. to 200 ° C., and Cooling the heat-shrinked bag to 50 ° C. or lower,
The manufacturing method of the covering vacuum heat insulating material of Claim 1 containing this.
1.未熱収縮フィルムからなる多角形の袋の少なくとも一部を切断する工程であって、前記袋が開口部を有し、前記未熱収縮フィルムが20〜200μmの厚さを有し、前記少なくとも一部が袋の頂点を含む、工程、
2.前記切断した袋に多角形の板状の真空断熱材を入れる工程、
3.前記開口部をシールする工程、
4.前記シールした袋を80℃〜200℃で加熱して熱収縮させる工程、及び
5.前記熱収縮させた袋を50℃以下に冷却する工程、
を含む、請求項1に記載の被覆真空断熱材の製造方法。 The following steps,
1. A step of cutting at least a part of a polygonal bag made of an unheat-shrinkable film, wherein the bag has an opening, the unheat-shrink film has a thickness of 20 to 200 μm, and the at least one A process wherein the part includes the apex of the bag;
2. A step of placing a polygonal plate-like vacuum heat insulating material into the cut bag;
3. Sealing the opening;
4). 4. Heat-shrink the sealed bag at 80 ° C. to 200 ° C., and Cooling the heat-shrinked bag to 50 ° C. or lower,
The manufacturing method of the covering vacuum heat insulating material of Claim 1 containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017137882A JP7002871B2 (en) | 2017-07-14 | 2017-07-14 | Covered vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017137882A JP7002871B2 (en) | 2017-07-14 | 2017-07-14 | Covered vacuum heat insulating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019019866A true JP2019019866A (en) | 2019-02-07 |
JP7002871B2 JP7002871B2 (en) | 2022-01-20 |
Family
ID=65353738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017137882A Active JP7002871B2 (en) | 2017-07-14 | 2017-07-14 | Covered vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7002871B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816223A (en) * | 2020-07-13 | 2020-10-23 | 江苏都万电子科技有限公司 | Memory, heat insulating material for memory and bundling method of heat insulating material |
CN112720966A (en) * | 2020-12-17 | 2021-04-30 | 杭州德迪智能科技有限公司 | Curved surface construction device, curved surface construction apparatus, and curved surface construction method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863769A (en) * | 1985-06-17 | 1989-09-05 | Viskase Corporation | Puncture resistant, heat-shrinkable films containing very low density polyethylene |
JPH07232416A (en) * | 1993-12-28 | 1995-09-05 | Ube Ind Ltd | Polyolefinic heat-shrinkable laminated film and production thereof |
JP2002205712A (en) * | 2001-01-09 | 2002-07-23 | Fuji Seal Inc | Shrink packaging body and method for manufacturing the same |
JP2009075484A (en) * | 2007-09-21 | 2009-04-09 | Sony Corp | Liquid crystal display |
JP2016089962A (en) * | 2014-11-05 | 2016-05-23 | 日立アプライアンス株式会社 | Vacuum heat insulation material and refrigerator using vacuum heat insulation material |
-
2017
- 2017-07-14 JP JP2017137882A patent/JP7002871B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863769A (en) * | 1985-06-17 | 1989-09-05 | Viskase Corporation | Puncture resistant, heat-shrinkable films containing very low density polyethylene |
JPH07232416A (en) * | 1993-12-28 | 1995-09-05 | Ube Ind Ltd | Polyolefinic heat-shrinkable laminated film and production thereof |
JP2002205712A (en) * | 2001-01-09 | 2002-07-23 | Fuji Seal Inc | Shrink packaging body and method for manufacturing the same |
JP2009075484A (en) * | 2007-09-21 | 2009-04-09 | Sony Corp | Liquid crystal display |
JP2016089962A (en) * | 2014-11-05 | 2016-05-23 | 日立アプライアンス株式会社 | Vacuum heat insulation material and refrigerator using vacuum heat insulation material |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816223A (en) * | 2020-07-13 | 2020-10-23 | 江苏都万电子科技有限公司 | Memory, heat insulating material for memory and bundling method of heat insulating material |
CN111816223B (en) * | 2020-07-13 | 2024-10-18 | 江苏都万电子科技有限公司 | Heat insulation material for memory, memory and binding method thereof |
CN112720966A (en) * | 2020-12-17 | 2021-04-30 | 杭州德迪智能科技有限公司 | Curved surface construction device, curved surface construction apparatus, and curved surface construction method |
Also Published As
Publication number | Publication date |
---|---|
JP7002871B2 (en) | 2022-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3478780B2 (en) | Vacuum insulation material and refrigerator using vacuum insulation material | |
TWI543863B (en) | Vacuum insulation panel improved explosion defect and the method for manufacturing the same | |
WO2010087039A1 (en) | Vacuum insulation material and insulation box using the same | |
JP2007016927A (en) | Vacuum heat insulating material and its manufacturing method | |
JP2019019866A (en) | Coated vacuum heat insulation material | |
JP2018512544A5 (en) | ||
JP6286900B2 (en) | Insulation member and cold insulation box | |
JP4969436B2 (en) | Vacuum insulation material and equipment using the same | |
JP5111331B2 (en) | Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material | |
JP2014228135A (en) | Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material | |
JP2016038013A (en) | Vacuum heat insulation material, external capsule for vacuum heat insulation material and heat insulation item | |
JP2007155135A (en) | Vacuum insulation material and manufacturing method thereof | |
JP2006316872A (en) | Vacuum heat insulating material and heat retaining equipment adopting the same | |
AU2015405840B2 (en) | Vacuum thermal insulator and thermal insulation container | |
JP2011089740A (en) | Bag body and vacuum heat insulating material | |
JP2007138976A (en) | Vacuum heat insulating material and its manufacturing method | |
JP2017133694A (en) | Outer packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material | |
JP6929223B2 (en) | Vacuum heat insulating material, manufacturing method of vacuum heat insulating material and outer packaging material for vacuum heat insulating material | |
JP2016507704A (en) | Vacuum insulation core material made of melamine resin cured foam, vacuum insulation material using the same, and method for producing the same | |
JP2001295986A (en) | Vacuum heat insulating material and its manufacturing method | |
JP6422713B2 (en) | Bag body and vacuum heat insulating material using the bag body | |
JP4443727B2 (en) | Manufacturing method of vacuum insulation container | |
JP2016191468A (en) | External capsule material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material | |
JP6056169B2 (en) | Vacuum insulation | |
JP2011106653A (en) | Packing material for vacuum thermal insulation panel, and vacuum thermal insulation panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7002871 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |