JP2019019111A - Thiophene sulfonate - Google Patents

Thiophene sulfonate Download PDF

Info

Publication number
JP2019019111A
JP2019019111A JP2017142063A JP2017142063A JP2019019111A JP 2019019111 A JP2019019111 A JP 2019019111A JP 2017142063 A JP2017142063 A JP 2017142063A JP 2017142063 A JP2017142063 A JP 2017142063A JP 2019019111 A JP2019019111 A JP 2019019111A
Authority
JP
Japan
Prior art keywords
thiophene
thiophene sulfonate
sulfonate
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017142063A
Other languages
Japanese (ja)
Other versions
JP6977357B2 (en
Inventor
西山 正一
Shoichi Nishiyama
正一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017142063A priority Critical patent/JP6977357B2/en
Publication of JP2019019111A publication Critical patent/JP2019019111A/en
Application granted granted Critical
Publication of JP6977357B2 publication Critical patent/JP6977357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

To provide a high-purity thiophene sulfonate improved in filterability.MEANS FOR SOLVING THE PROBLEM: The invention employs a crystal of a thiophene sulfonate represented by the general formula (1) in the figure which has a mean particle diameter of 100 μm or more. (In the formula, Rrepresents a hydrogen atom, a methyl group, an ethyl group, a C3-6 linear or branched alkyl group, or a fluorine atom, m represents an integer from 1 to 5, and M represents an alkali metal ion.)SELECTED DRAWING: None

Description

本発明は、導電性ポリマーのモノマーとして有用なチオフェンスルホン酸塩の結晶に関する。   The present invention relates to crystals of thiophene sulfonate useful as monomers for conductive polymers.

高い導電率を有する水溶性導電性ポリマーのモノマーとして、4−(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル−メトキシ)−1−ブタンスルホ酸ナトリウム(非特許文献1)、3−[(2,3−ジヒドロチエノ[3,4−b][1,4]ジオキシン−2−イル)メトキシ]−1−メチル−1−プロパンスルホン酸ナトリウム等が報告されている(特許文献1〜4)。   As a monomer of a water-soluble conductive polymer having high conductivity, sodium 4- (2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl-methoxy) -1-butanesulfonate (non- Patent Document 1), sodium 3-[(2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-yl) methoxy] -1-methyl-1-propanesulfonate, and the like have been reported. (Patent Documents 1 to 4).

上記のモノマーの単離精製方法としては、トルエン等の有機溶媒中、水素化ナトリウムとチエノ[3,4−b]−1,4−ジオキシン−2−メタノールから合成されるアルコキシドを対応するスルトン化合物と反応させて得られる反応液(前記チオフェンスルホン酸塩のモノマーを含む)をアセトンに再沈させる方法が知られている。   As a method for isolating and purifying the monomer, an alkoxide synthesized from sodium hydride and thieno [3,4-b] -1,4-dioxin-2-methanol in an organic solvent such as toluene corresponds to a corresponding sultone compound. There is known a method of reprecipitation in acetone of a reaction solution (including the thiophene sulfonate monomer) obtained by reacting with benzene.

特開2016−135839号公報JP 2006-135839 A 特開2015−168793号公報JP2015-168793A 特開2014−065898号公報JP 2014-065898 A 国際公開第2014/007299号パンフレットInternational Publication No. 2014/007299 Pamphlet

Chemical Communications,40,6086−8(2009)Chemical Communications, 40, 6086-8 (2009)

しかし、上記再沈法により得られるチオフェンスルホン酸塩のモノマーの単離方法には、以下のような課題を有しており、工業的な固液分離法としては問題があり、チオフェンスルホン酸塩のモノマーの純度向上が困難であるという課題を有する。
(1)上記のアセトン再沈法により得られるスルホン酸塩は、粘ちょう質で濾過性が悪く、減圧濾過等の固液分離に非常に長時間要する。
(2)更に、前記固液分離後のスルホン酸塩の濾過ケーキは、割れを生じやすく十分な洗浄操作が困難である。 即ち、本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、濾過性に優れた高純度チオフェンスルホ酸塩結晶、及びその製造法を提供することである。
However, the method for isolating a thiophene sulfonate monomer obtained by the reprecipitation method has the following problems and has a problem as an industrial solid-liquid separation method. It is difficult to improve the purity of the monomer.
(1) The sulfonate obtained by the acetone reprecipitation method is viscous and poor in filterability, and requires a very long time for solid-liquid separation such as vacuum filtration.
(2) Furthermore, the filter cake of the sulfonate after the solid-liquid separation is liable to crack and difficult to perform a sufficient washing operation. That is, the present invention has been made in view of the background art described above, and an object thereof is to provide a high-purity thiophene sulfonate salt crystal excellent in filterability and a method for producing the same.

本発明者らは、鋭意検討した結果、チオフェンスルホン酸塩のモノマーを、特定の比率に調整した水とアルコールからなる混合溶媒を用いて冷却晶析させることによって、平均粒子径が100μm以上の粒子状のチオフェンスルホン酸塩の結晶が得られることを見出し、当該粒子状のチオフェンスルホン酸塩の結晶が前記課題を解決することを見出して、本発明を完成するに至った。   As a result of intensive studies, the inventors of the present invention conducted cooling and crystallization of a thiophene sulfonate monomer using a mixed solvent of water and alcohol adjusted to a specific ratio, whereby particles having an average particle size of 100 μm or more. The present inventors have found that a crystalline thiophene sulfonate salt crystal can be obtained and found that the particulate thiophene sulfonate crystal solves the above-mentioned problems, and have completed the present invention.

すなわち、本発明は以下に示す、粒子状のチオフェンスルホン酸塩の結晶及びその製造方法に関するものである。
[1] 平均粒径が100μm以上である下記一般式(1)
That is, the present invention relates to the following crystalline thiophene sulfonate crystals and a method for producing the same.
[1] The following general formula (1) having an average particle size of 100 μm or more

Figure 2019019111
Figure 2019019111

(上記式中、Rは水素原子、メチル基、エチル基、炭素数3〜6の直鎖状若しくは分岐状アルキル基、又はフッ素原子を表す。mは、1〜5の整数を表し、Mは、アルカリ金属イオンを表す。)
で表されるチオフェンスルホン酸塩の結晶。
[2] 一般式(1)で表されるチオフェンスルホン酸塩に、水とアルコールを含む混合溶媒を加え、冷却晶析を行うことを特徴とする[1]に記載の結晶の製造方法。
[3] 用いる水の量が一般式(1)で表されるチオフェンスルホン酸塩の1モルに対して、1.5倍モル〜15倍モルの範囲であることを特徴とする[2]に記載の製造方法。
[4] 用いるアルコールがエタノールであることを特徴とする[2]又は[3]に記載の製造方法。
[5] 晶析時の一般式(1)で表されるチオフェンスルホン酸塩の濃度が、10重量%〜25重量%であることを特徴とする[2]乃至[4]のいずれかに記載の製造方法。
(In the above formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, a linear or branched alkyl group having 3 to 6 carbon atoms, or a fluorine atom. M represents an integer of 1 to 5, Represents an alkali metal ion.)
Crystal of thiophene sulfonate represented by
[2] The method for producing a crystal according to [1], wherein a mixed solvent containing water and alcohol is added to the thiophene sulfonate represented by the general formula (1), and cooling crystallization is performed.
[3] In [2], the amount of water used is in the range of 1.5 times to 15 times the mol of 1 mol of the thiophenesulfonate represented by the general formula (1). The manufacturing method as described.
[4] The production method according to [2] or [3], wherein the alcohol used is ethanol.
[5] The concentration of the thiophene sulfonate represented by the general formula (1) at the time of crystallization is 10% by weight to 25% by weight, or any one of [2] to [4] Manufacturing method.

本発明のチオフェンスルホン酸塩の結晶は、従来公知のものと比較して得られる紛体の粒子径が大きいため、固液分離時の濾過性が大幅に向上する。その結果、チオフェンスルホン酸塩の純度も向上する。   The crystal of the thiophene sulfonate of the present invention has a large particle size of the powder obtained as compared with a conventionally known crystal, so that the filterability during solid-liquid separation is greatly improved. As a result, the purity of the thiophene sulfonate is also improved.

実施例1で得られたチオフェンスルホン酸ナトリウムのレーザー顕微鏡写真Laser micrograph of sodium thiophene sulfonate obtained in Example 1

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の原料となるチオフェンスルホン酸塩は、上記式(1)で表されるものであり、式中のRで示される炭素数3〜6の直鎖状又は分岐状アルキル基としては、特に限定するものではないが、例えば、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、n−へキシル基、2−エチルブチル基、又はシクロヘキシル基等が挙げられる。当該Rについては、製造原料の入手容易性の点で、水素原子又はメチル基であることが好ましい。 The thiophene sulfonate that is a raw material of the present invention is represented by the above formula (1), and the linear or branched alkyl group having 3 to 6 carbon atoms represented by R 1 in the formula is: Although it does not specifically limit, For example, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl Group, cyclopentyl group, n-hexyl group, 2-ethylbutyl group, cyclohexyl group and the like. R 1 is preferably a hydrogen atom or a methyl group from the viewpoint of easy availability of production raw materials.

一般式(1)において、mは、1〜5の整数を表す。mは、製造原料の入手容易性の点で、2〜4の整数が好ましく、3又は4であることが好ましい。   In General formula (1), m represents the integer of 1-5. m is preferably an integer of 2 to 4 and preferably 3 or 4 from the viewpoint of availability of production raw materials.

上記式(1)中、Mは、アルカリ金属イオンを表す。当該アルカリ金属イオンとしては、特に限定するものではないが、例えば、Liイオン、Naイオン、又はKイオンが挙げられる。   In said formula (1), M represents an alkali metal ion. Although it does not specifically limit as the said alkali metal ion, For example, Li ion, Na ion, or K ion is mentioned.

上記チオフェンスルホン酸塩を含む粗体は、公知の方法(下式(2)参照)、例えば、アルカリ金属水素化物に対して不活性な有機溶媒(テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒、トルエン、キシレン等の芳香族溶媒、ジメチルホルムアミド等の非極性溶媒等)中、アルカリ金属水素化物とチエノ[3,4−b]−1,4−ジオキシン−2−メタノールを反応させ、更に得られたアルコキシドを対応するスルトン化合物と反応させる方法、によって合成することができる。   The crude product containing the thiophene sulfonate is a known method (see the following formula (2)), for example, an organic solvent inert to an alkali metal hydride (tetrahydrofuran, dioxane, cyclopentyl methyl ether, etc.) In addition, an alkali metal hydride and thieno [3,4-b] -1,4-dioxin-2-methanol are further reacted in an aromatic solvent such as toluene and xylene, a nonpolar solvent such as dimethylformamide) Can be synthesized by a method of reacting the obtained alkoxide with a corresponding sultone compound.

次に得られたチオフェンスルホン酸塩の粗体から本発明の結晶を得るためには、前記反応に用いた有機溶媒を除去することが好ましい。有機溶媒の除去方法としては、特に制限はないが、例えば、減圧濃縮法又は前記チオフェンスルホン酸塩の貧溶媒となるアルコール等による溶媒置換法等が挙げられる。   Next, in order to obtain the crystal of the present invention from the obtained crude product of thiophene sulfonate, it is preferable to remove the organic solvent used in the reaction. The method for removing the organic solvent is not particularly limited, and examples thereof include a vacuum concentration method or a solvent replacement method with an alcohol or the like that is a poor solvent for the thiophene sulfonate.

Figure 2019019111
Figure 2019019111

このようにして得られたチオフェンスルホン酸の粗体を原料に、水とアルコールを含む混合溶媒から冷却晶析を行うことにより本願発明のチオフェンスルホン酸塩の結晶を製造することができる。 具体的には、前記反応で得られたチオフェンスルホン酸塩の1モルに対して1.5倍モル〜15倍モルの範囲の量の水、及び適量のアルコールを加えて用いたアルコールの沸点以下の温度でチオフェンスルホン酸塩を加熱溶解させて、冷却することによってチオフェンスルホン酸塩の結晶を晶析させ、固液分離することにより、目的とする本発明の平均粒子径100μm以上のチオフェンスルホン酸塩の結晶を単離することができる。   By using the crude thiophene sulfonic acid thus obtained as a raw material and cooling crystallization from a mixed solvent containing water and alcohol, the thiophene sulfonate salt crystal of the present invention can be produced. Specifically, it is below the boiling point of the alcohol used by adding water in an amount in the range of 1.5 times to 15 times mol and an appropriate amount of alcohol with respect to 1 mol of the thiophene sulfonate obtained in the above reaction. The thiophene sulfonic acid salt having an average particle diameter of 100 μm or more according to the present invention is obtained by crystallizing the thiophene sulfonic acid salt by heating and dissolving at a temperature of 5 ° Salt crystals can be isolated.

本願発明のチオフェンスルホン酸塩の結晶は、その平均粒子径(D50)が100μm以上のものであるが、濾過性に優れる点で、平均粒子径が150μm以上であることが好ましく、200μm以上であることがより好ましい。   The crystal of the thiophene sulfonate of the present invention has an average particle diameter (D50) of 100 μm or more, but the average particle diameter is preferably 150 μm or more and 200 μm or more in terms of excellent filterability. It is more preferable.

加える水の量については、良質な結晶が得られる点で、チオフェンスルホン酸塩の1モルに対して1.5倍モル以上であることが好ましく、チオフェンスルホン酸塩の回収率を高くできる点で、15倍モル以下であることが好ましく、10倍モル以下であることがより好ましい。   The amount of water added is preferably 1.5 times mol or more with respect to 1 mol of thiophene sulfonate in terms of obtaining high-quality crystals, and can improve the recovery rate of thiophene sulfonate. , Preferably 15 times mol or less, more preferably 10 times mol or less.

晶析に供するチオフェンスルホン酸塩溶液中のチオフェンスルホン酸塩の濃度は、十分高い回収率が得られる点で、10重量%以上であることが好ましく、晶析槽内部の撹拌均一性を保つ目的で、25重量%以下であることが好ましい。   The concentration of thiophene sulfonate in the thiophene sulfonate solution used for crystallization is preferably 10% by weight or more in terms of obtaining a sufficiently high recovery rate, and the purpose of maintaining the stirring uniformity inside the crystallization tank And preferably 25% by weight or less.

冷却晶析時の温度としては、チオフェンスルホン酸塩の飽和溶解度以下の温度であれば特に制限はないが、チオフェンスルホン酸塩の濃度が10重量%〜25重量%のものを晶析させる場合、10℃〜25℃の温度条件が好ましい。   The temperature at the time of cooling crystallization is not particularly limited as long as the temperature is equal to or lower than the saturation solubility of thiophene sulfonate, but when crystallizing a thiophene sulfonate having a concentration of 10 wt% to 25 wt%, A temperature condition of 10 ° C to 25 ° C is preferred.

本発明のチオフェンスルホン酸塩の粒子は比較的比重が大きいために、撹拌効率が不十分である場合には、晶析槽の下部に沈降する傾向がある。従って、晶析槽内を均一に撹拌させるためには、槽の垂直方向の循環流を効率よく作れるような攪拌翼を用いることが好ましい。具体的には、プロペラ型、ピッチパドル型、ファウドラー型、マックスブレンド型等が好適である。又、必要に応じて、バッフルの追加或いは多段型の撹拌翼にしてもよい。   Since the particles of the thiophene sulfonate of the present invention have a relatively large specific gravity, when the stirring efficiency is insufficient, the particles tend to settle in the lower part of the crystallization tank. Therefore, in order to uniformly stir the inside of the crystallization tank, it is preferable to use a stirring blade that can efficiently create a circulating flow in the vertical direction of the tank. Specifically, a propeller type, a pitch paddle type, a fouler type, a max blend type, and the like are preferable. If necessary, a baffle may be added or a multistage stirring blade may be used.

尚、晶析時には必要に応じて、チオフェンスルホン酸塩の種結晶を添加してもよい。   In addition, a seed crystal of thiophene sulfonate may be added as necessary at the time of crystallization.

晶析により得られたチオフェンスルホン酸塩スラリーは固液分離法操作により結晶と母液に分離される。固液分離方法としては特に制限はないが、具体例として、減圧濾過、加圧濾過、遠心分離等が挙げられる。   The thiophene sulfonate slurry obtained by crystallization is separated into crystals and mother liquor by solid-liquid separation method operation. The solid-liquid separation method is not particularly limited, and specific examples include vacuum filtration, pressure filtration, and centrifugal separation.

晶析に用いるアルコールとしては、特に限定するものではないが、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、iso−ブタノール、tert−ブタノールが挙げられる。これらのうち、平均粒子径の大きな粒子が得られる点で、エタノール、n−プロパノール、イソプロパノールが好ましく、エタノールがより好ましい。   Although it does not specifically limit as alcohol used for crystallization, Methanol, ethanol, n-propanol, isopropanol, n-butanol, iso-butanol, tert-butanol is mentioned. Among these, ethanol, n-propanol, and isopropanol are preferable, and ethanol is more preferable in that particles having a large average particle diameter can be obtained.

以下に本発明のチオフェンスルホン酸塩の単離精製法に関する実施例を示すが、本発明はこれら実施例に限定して解釈されるものではない。なお、本実施例で用いた分析機器及び測定方法を以下に列記する。
[HPLC分析]
・カラム:TSKgel ODS−120T(4.6mmφ×250mm)
・溶離液:CH3CN/リン酸緩衝液(pH=2.8)
・流速:1.0mL / min
・検出器(1):東ソー製UV−8020(254nm)
・検出器(2):東ソー製RI−8020
・温度:40℃
・注入量:100ppm(20μL)、又は2000ppm(20μL)
[粒子形状測定]
・装置:キーエンス社製レーザー顕微量VK−9510
合成例1 (式(1)中の、R=メチル基、m=3、M=Naであるチオフェンスルホン酸塩(以下、T1と略す)、及びテトラハイドロフラン溶液の合成)
1Lセパラブルフラスコに、水素化ナトリウム(油性、63%)22.1g(581mmol)及びテトラハイドロフラン(以下、THFと略す)450gを加えた後、チエノ[3,4−b]−1,4−ジオキシン−2−メタノール 100g(581mmol)を含むテトラハイドロフラン溶液 200gを室温下で滴下した。反応液を室温下で30分撹拌した後、更に還流温度で3時間反応させた。
Examples relating to the method for isolating and purifying thiophene sulfonate of the present invention are shown below, but the present invention is not construed as being limited to these examples. The analytical instruments and measurement methods used in this example are listed below.
[HPLC analysis]
Column: TSKgel ODS-120T (4.6 mmφ × 250 mm)
Eluent: CH3CN / phosphate buffer (pH = 2.8)
・ Flow rate: 1.0mL / min
Detector (1): Tosoh UV-8020 (254 nm)
Detector (2): Tosoh RI-8020
・ Temperature: 40 ℃
Injection amount: 100 ppm (20 μL) or 2000 ppm (20 μL)
[Particle shape measurement]
・ Device: Laser Microscopic VK-9510 manufactured by Keyence Corporation
Synthesis Example 1 (Synthesis of thiophene sulfonate (hereinafter abbreviated as T1) in which R 1 = methyl group, m = 3, M = Na, and tetrahydrofuran solution in formula (1))
To a 1 L separable flask was added 22.1 g (581 mmol) of sodium hydride (oiliness, 63%) and 450 g of tetrahydrofuran (hereinafter abbreviated as THF), and then thieno [3,4-b] -1,4. -200 g of tetrahydrofuran solution containing 100 g (581 mmol) of dioxin-2-methanol was added dropwise at room temperature. The reaction solution was stirred at room temperature for 30 minutes, and further reacted at reflux temperature for 3 hours.

その後、同温度で2,4−ブタンスルトン79.1g(581mmol)を含むテトラハイドロラン溶液 160gを滴下した後、更に同温度を保持しながら3時間加熱することによりT1を含むテトラハイドロフラン溶液 794gを得た。反応液を濃縮乾固して 191.6g(理論量)のT1を含む粉末を 208.4g得た。   Thereafter, 160 g of tetrahydrolane solution containing 79.1 g (581 mmol) of 2,4-butane sultone at the same temperature was added dropwise, and further heated for 3 hours while maintaining the same temperature to obtain 794 g of tetrahydrofuran solution containing T1. Obtained. The reaction solution was concentrated to dryness to obtain 208.4 g of a powder containing 191.6 g (theoretical amount) of T1.

実施例1
2段の4枚プロペラ翼を備えた500mLセパラブルフラスコに、合成例1で得た粉末 52.1g(T1を47.9g[理論量として、145mmol]含有)、水 13.5g(750mmol,チオフェンスルホン酸塩T1に対して5.2倍モル)、及びエタノール 254.0gを加えたのち60℃に加温してT1を15重量%含む晶析溶液を調製した。その後、130rpmで撹拌しながら晶析液を13℃/hrで冷却した後、20℃で5時間保持することによりスラリー溶液を得た。得られたスラリー溶液をNo2の定量濾紙を装着した90mmφのブフナー漏斗を用いて濾過(減圧)・乾燥することにより、チオフェンスルホン酸ナトリウムT1を31.0g得た(収率=65%,RI純度=92.0%)。この時、濾過ケーキは割れを起こすことがなく、濾過性が極めて良好であった。
Example 1
In a 500 mL separable flask equipped with a two-stage four-propeller blade, 52.1 g of the powder obtained in Synthesis Example 1 (containing 47.9 g of T1 [145 mmol as a theoretical amount]), 13.5 g of water (750 mmol, thiophene) After adding 5.2 mol of sulfonate T1) and 254.0 g of ethanol, the mixture was heated to 60 ° C. to prepare a crystallization solution containing 15% by weight of T1. Thereafter, the crystallization liquid was cooled at 13 ° C./hr while stirring at 130 rpm, and then kept at 20 ° C. for 5 hours to obtain a slurry solution. The obtained slurry solution was filtered (reduced pressure) and dried using a 90 mmφ Buchner funnel equipped with a No. 2 quantitative filter paper to obtain 31.0 g of sodium thiophenesulfonate T1 (yield = 65%, RI purity). = 92.0%). At this time, the filter cake did not crack and the filterability was very good.

得られたチオフェンスルホン酸ナトリウムT1の結晶の粒径は、図1に示すような400〜500μmの粒径を有していた。   The obtained sodium thiophenesulfonate T1 crystal had a particle size of 400 to 500 μm as shown in FIG.

実施例2
水 13.5g(750mmol)を5.2g(290mmol,チオフェンスルホン酸塩T1に対して2.0倍モル)に変更して実施例1と同様な実験を行ったところ、チオフェンスルホン酸ナトリウムT1を34.1g得た(収率=72%,RI純度=92.3%)。実施例1同様、チオフェンスルホン酸ナトリウムT1の粒径は、数百μmであり、濾過性が極めて良好であった。
Example 2
When 13.5 g (750 mmol) of water was changed to 5.2 g (290 mmol, 2.0-fold mol relative to thiophenesulfonate T1), an experiment similar to that of Example 1 was performed. As a result, sodium thiophenesulfonate T1 was obtained. 34.1 g was obtained (yield = 72%, RI purity = 92.3%). Similar to Example 1, the particle size of sodium thiophenesulfonate T1 was several hundred μm, and the filterability was very good.

比較例1
合成例1で得られたT1を含むテトラハイドロラン溶液(濃縮乾固前の反応溶液)の内、198.5g(T1を47.9g含む)を10℃に冷却したアセトン1kgに再沈させ、同温度を維持しながら3時間撹拌することによりスラリー溶液を得た。実施例1又は2と同様に、No2の定量濾紙を用いてスラリー溶液を減圧濾過したが、粒子径が微細なためか極めて濾過時間を要した。更に、濾紙上のケーキには割れが見られた。尚、乾燥後に得られたチオフェンスルホン酸ナトリウムのRI純度は84%であった。
Comparative Example 1
Of the tetrahydrolane solution containing T1 obtained in Synthesis Example 1 (reaction solution before concentration to dryness), 198.5 g (containing 47.9 g of T1) was reprecipitated in 1 kg of acetone cooled to 10 ° C., A slurry solution was obtained by stirring for 3 hours while maintaining the same temperature. As in Example 1 or 2, the slurry solution was filtered under reduced pressure using a No. 2 quantitative filter paper. However, it took a very long filtration time because the particle diameter was fine. Furthermore, cracks were observed in the cake on the filter paper. The RI purity of sodium thiophenesulfonate obtained after drying was 84%.

実施例3
合成例1で得られたT1を含むテトラハイドロフラン溶液(濃縮乾固前の反応溶液) 198.5g(T1を47.9g含む)にエタノール200gを加えた後、50℃、17kPaの条件下、濃縮残差が160gになるまで減圧濃縮した。得られた濃縮残渣に更に、エタノール200gを加えて、分散し、前記同様の減圧濃縮操作を行うことにより反応溶媒であるテトラハイドロフランを除去した。
Example 3
After adding 200 g of ethanol to 198.5 g (containing 47.9 g of T1) of the tetrahydrofuran solution containing T1 obtained in Synthesis Example 1 (reaction solution before concentration to dryness), conditions of 50 ° C. and 17 kPa, The solution was concentrated under reduced pressure until the concentration residue reached 160 g. Furthermore, 200 g of ethanol was added to the obtained concentrated residue, dispersed, and tetrahydrofuran under pressure was removed by performing the same vacuum concentration operation as described above.

以上の操作で得られたT1を含むエタノール溶液 160gに、水 12.5g(694mmol,チオフェンスルホン酸塩に対して4.8倍モル)、及びエタノール 127.5gを加えたのち60℃に加温してT1を16重量%含む晶析溶液を調製した。実施例1と同様な操作により晶析を行い、チオフェンスルホン酸ナトリウムを33.6g得た(収率=71%,RI純度=92.6%)。   To 160 g of the ethanol solution containing T1 obtained by the above operation, 12.5 g of water (694 mmol, 4.8 times mol with respect to thiophene sulfonate) and 127.5 g of ethanol were added, and then heated to 60 ° C. Thus, a crystallization solution containing 16% by weight of T1 was prepared. Crystallization was performed in the same manner as in Example 1 to obtain 33.6 g of sodium thiophenesulfonate (yield = 71%, RI purity = 92.6%).

Claims (5)

平均粒径が100μm以上である下記一般式(1)
Figure 2019019111
(上記式中、Rは水素原子、メチル基、エチル基、炭素数3〜6の直鎖状若しくは分岐状アルキル基、又はフッ素原子を表す。mは、1〜5の整数を表し、Mは、アルカリ金属イオンを表す。)
で表されるチオフェンスルホン酸塩の結晶。
The following general formula (1) having an average particle size of 100 μm or more
Figure 2019019111
(In the above formula, R 1 represents a hydrogen atom, a methyl group, an ethyl group, a linear or branched alkyl group having 3 to 6 carbon atoms, or a fluorine atom. M represents an integer of 1 to 5, Represents an alkali metal ion.)
Crystal of thiophene sulfonate represented by
一般式(1)で表されるチオフェンスルホン酸塩に、水とアルコールを含む混合溶媒を加え、冷却晶析を行うことを特徴とする請求項1に記載の結晶の製造方法。   The method for producing a crystal according to claim 1, wherein cooling crystallization is performed by adding a mixed solvent containing water and alcohol to the thiophene sulfonate represented by the general formula (1). 用いる水の量が一般式(1)で表されるチオフェンスルホン酸塩の1モルに対して、1.5倍モル〜15倍モルの範囲であることを特徴とする請求項2に記載の製造方法。   3. The production according to claim 2, wherein the amount of water used is in the range of 1.5 times to 15 times the mol of 1 mol of the thiophenesulfonate represented by the general formula (1). Method. 用いるアルコールがエタノールであることを特徴とする請求項2又は3に記載の製造方法。   The production method according to claim 2 or 3, wherein the alcohol used is ethanol. 晶析時の一般式(1)で表されるチオフェンスルホン酸塩の濃度が、10重量%〜25重量%であることを特徴とする請求項2乃至4のいずれかに記載の製造方法。   The production method according to any one of claims 2 to 4, wherein the concentration of the thiophene sulfonate represented by the general formula (1) at the time of crystallization is 10 wt% to 25 wt%.
JP2017142063A 2017-07-21 2017-07-21 Thiophene sulfonate Active JP6977357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142063A JP6977357B2 (en) 2017-07-21 2017-07-21 Thiophene sulfonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142063A JP6977357B2 (en) 2017-07-21 2017-07-21 Thiophene sulfonate

Publications (2)

Publication Number Publication Date
JP2019019111A true JP2019019111A (en) 2019-02-07
JP6977357B2 JP6977357B2 (en) 2021-12-08

Family

ID=65354918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142063A Active JP6977357B2 (en) 2017-07-21 2017-07-21 Thiophene sulfonate

Country Status (1)

Country Link
JP (1) JP6977357B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505099A (en) * 2002-08-23 2006-02-09 アグフア−ゲヴエルト Layer layout with improved stability against sun exposure
WO2014007299A1 (en) * 2012-07-03 2014-01-09 東ソー株式会社 Polythiophenes, water-soluble conductive polymer using same, and method for producing same
JP2014065898A (en) * 2012-09-06 2014-04-17 Tosoh Corp Polythiophene, aqueous solution thereof, and thiophene monomer thereof
JP2015168793A (en) * 2014-03-10 2015-09-28 東ソー株式会社 Thiophene copolymer, aqueous solution thereof, thiophene monomer composition and method for producing the same
JP2016135839A (en) * 2014-04-23 2016-07-28 東ソー株式会社 Conductive polymer aqueous solution, conductive polymer film, and article coated therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505099A (en) * 2002-08-23 2006-02-09 アグフア−ゲヴエルト Layer layout with improved stability against sun exposure
WO2014007299A1 (en) * 2012-07-03 2014-01-09 東ソー株式会社 Polythiophenes, water-soluble conductive polymer using same, and method for producing same
JP2014065898A (en) * 2012-09-06 2014-04-17 Tosoh Corp Polythiophene, aqueous solution thereof, and thiophene monomer thereof
JP2015168793A (en) * 2014-03-10 2015-09-28 東ソー株式会社 Thiophene copolymer, aqueous solution thereof, thiophene monomer composition and method for producing the same
JP2016135839A (en) * 2014-04-23 2016-07-28 東ソー株式会社 Conductive polymer aqueous solution, conductive polymer film, and article coated therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岩波理化学辞典, vol. 第5版, JPN6021017535, 1998, pages 413, ISSN: 0004504177 *

Also Published As

Publication number Publication date
JP6977357B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP5794028B2 (en) Method for producing lithium tetrafluoroborate solution
CN107635969B (en) Process for the manufacture of crystalline forms of enzalutamide
JP2020520361A (en) Separation of 1,4-bis(4-phenoxybenzoyl)benzene-Lewis acid complex in aqueous solution
JP2018508584A (en) Method for preparing PCI-32765 crystal form A
CN105016366B (en) A kind of preparation method of stable sodium aluminate solution
TW201343727A (en) Production process of polydialkylsilane
JP6977357B2 (en) Thiophene sulfonate
JP6709686B2 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt
CN111303003B (en) Olive-shaped N-methyl-4-nitrophthalimide crystal and preparation method thereof
CN109265355B (en) Pentanediamine suberate salt and crystal thereof
CN115974905A (en) Preparation method of lithium difluoro (oxalato) borate
CN107200758B (en) Preparation method of high-purity clindamycin and clindamycin salt
CN115557980A (en) Synthesis and purification process of sodium bisoxalato
JP2010229250A (en) Method for producing 2-acrylamido-2-methylpropanesulfonic acid
CN101600721A (en) (S)-(+)-and methyl-α-(2-chloro-phenyl-)-6, the preparation method of the polymorphic form form I of 7-dihydro-thieno-[3,2-c] pyridines-5 (4H)-acetic ester hydrosulfate
EP3103793B1 (en) Lithium styrene sulfonate
US9809523B2 (en) Process for the high-yield preparation of P-(R)calix[9-20]arenes
JP5766533B2 (en) Hydroxyphenylpropionate powder
JP2018080125A (en) METHOD FOR PRODUCING β CRYSTALS OF INDOLINE COMPOUNDS
CN101624361B (en) Synthetic method of high-purity 3-mercapto propyl-sodium sulfonate
JP2009001506A (en) Production method of trihydroxybenzophenone
CN111087295A (en) Pentanediamine succinic acid terephthalic acid eutectic salt and preparation method thereof
JP4815831B2 (en) Process for producing hydroxyphenylpropionic acid ester
JP6571497B2 (en) Manufacturing method of mirtazapine
CN111410623B (en) Process method for synthesizing canthaxanthin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151