JP2019019023A - Ceramic member and flow-channel member - Google Patents

Ceramic member and flow-channel member Download PDF

Info

Publication number
JP2019019023A
JP2019019023A JP2017137742A JP2017137742A JP2019019023A JP 2019019023 A JP2019019023 A JP 2019019023A JP 2017137742 A JP2017137742 A JP 2017137742A JP 2017137742 A JP2017137742 A JP 2017137742A JP 2019019023 A JP2019019023 A JP 2019019023A
Authority
JP
Japan
Prior art keywords
ceramic member
porosity
thermal expansion
ceramic
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017137742A
Other languages
Japanese (ja)
Other versions
JP6918351B2 (en
Inventor
晋也 小田
Shinya Oda
晋也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tipton Corp
Original Assignee
Tipton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tipton Corp filed Critical Tipton Corp
Priority to JP2017137742A priority Critical patent/JP6918351B2/en
Publication of JP2019019023A publication Critical patent/JP2019019023A/en
Application granted granted Critical
Publication of JP6918351B2 publication Critical patent/JP6918351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

To provide a ceramic member in which cracks are hard to occur, and to provide a flow-channel member filled with the ceramic member.SOLUTION: A ceramic member 20 of this invention is a sintered body of extrusion molded article which comprises a clay-based binder and a low thermal expansion material containing lithium alumino-silicate, this ceramic member is used as structured packing for a flow-channel member 10 in which this ceramic member has a suitable surface property for coming into contact with the fluid flowing in the flow-channel member 10, and it has a porosity of 4% or less. Accordingly this ceramic member has high resistance to crack even when receiving a thermal shock, and the drying efficiency can be enhanced.SELECTED DRAWING: Figure 1

Description

本発明は、流路部材などに用いられるセラミック部材に関するものである。   The present invention relates to a ceramic member used for a flow path member and the like.

特許文献1に開示された流路部材は、容器と、容器内に収容される第1〜第3の層とを備えている。第1の層は、不規則な方向を向いたセラミックの媒体を含み、第2の層は、セラミックのペレットの表面上に配置された触媒的に活性な金属を含む構成要素からなり、第3の層は、床支持媒体を含む。容器内には第1〜第3の層の各媒体と順次接触しながら流体が流れる。第1の層を構成するセラミックの媒体は、粘土等からなる原料を押出成形後、焼成して製造され、流体を均一に分散、拡散する機能を有する。   The flow path member disclosed in Patent Document 1 includes a container and first to third layers accommodated in the container. The first layer comprises an irregularly oriented ceramic medium, the second layer comprises a component comprising a catalytically active metal disposed on the surface of the ceramic pellet, and a third layer The layer comprises a floor support medium. A fluid flows in the container while sequentially contacting each medium of the first to third layers. The ceramic medium constituting the first layer is produced by extruding and firing a raw material made of clay or the like, and has a function of uniformly dispersing and diffusing the fluid.

特表2012−517347号公報Special table 2012-517347 gazette

ところで、流路部材が、例えば、石油精製装置等に適用されると、セラミックの媒体が、高温高圧環境に晒され、繰り返しの使用によって熱衝撃を受けるという事情があった。これに対し、セラミックの媒体は押出成形後に焼結されるものであるため、内外密度差を有する部位に応力が集中し易く、熱衝撃によってクラックが発生することがあった。仮に、クラックが発生すると、セラミックの媒体が流体と接触する面の接触抵抗が増大し、圧力損失が大きくなって、媒体の流体分散機能に支障を来たすおそれがあった。   By the way, when the flow path member is applied to, for example, an oil refining apparatus, the ceramic medium is exposed to a high temperature and high pressure environment and is subjected to thermal shock by repeated use. On the other hand, since the ceramic medium is sintered after extrusion molding, stress tends to concentrate on a portion having a difference in density between inside and outside, and cracks may occur due to thermal shock. If cracks occur, the contact resistance of the surface where the ceramic medium comes into contact with the fluid increases, and the pressure loss increases, which may hinder the fluid dispersion function of the medium.

本発明は上記のような事情に基づいて完成されたものであって、クラックが生じにくいセラミック部材及びセラミック部材を充填した流路部材を提供することを目的とする。   This invention is completed based on the above situations, Comprising: It aims at providing the flow path member which filled the ceramic member and ceramic member which a crack does not produce easily.

本発明のセラミック部材は、粘土質結合材とリチウムアルミノシリケート含有の低熱膨張材とを含む押出成形焼結体であるところに特徴を有する。   The ceramic member of the present invention is characterized in that it is an extruded sintered body containing a clayey binder and a low thermal expansion material containing lithium aluminosilicate.

本発明によれば、リチウムアルミノシリケート含有の低熱膨張材が熱膨張や熱衝撃による応力を緩和することができるため、押出成形焼結体であってもクラックが生じにくいセラミック部材を得ることができる。   According to the present invention, since the low thermal expansion material containing lithium aluminosilicate can relieve stress due to thermal expansion or thermal shock, it is possible to obtain a ceramic member that is less prone to crack even if it is an extruded sintered body. .

実施態様における流路部材の概略図である。It is the schematic of the flow-path member in embodiment.

本発明の好ましい形態を以下に記載する。
セラミック部材は、筒状に成形されているとよい。これによれば、熱応力を周方向に分散させることができるため、クラックの発生を良好に抑えることができる。
Preferred embodiments of the present invention are described below.
The ceramic member may be formed in a cylindrical shape. According to this, since thermal stress can be dispersed in the circumferential direction, occurrence of cracks can be suppressed satisfactorily.

前記低熱膨張材の平均粒度が♯46〜♯400であるとよい。低熱膨張材の平均粒度が上記範囲内であれば、押出成形時の成形性が良好となる。平均粒度が♯46より大きいと、成形機に損傷を与える可能性があって好ましくなく、平均粒度が♯400より小さいと、成形機との摩擦抵抗が大きくなって成形性が悪化するおそれがある。   The average particle size of the low thermal expansion material is preferably # 46 to # 400. If the average particle size of the low thermal expansion material is within the above range, the moldability during extrusion molding will be good. If the average particle size is larger than # 46, the molding machine may be damaged, which is not preferable. If the average particle size is smaller than # 400, the frictional resistance with the molding machine is increased and the moldability may be deteriorated. .

セラミック部材は、酸化物換算の重量百分率で、SiO65〜75%、Al18〜27%、LiO1〜2%の組成を含有するとよい。酸化物の組成が上記範囲にあれば、繰り返し熱衝撃を受ける環境下にあっても、クラックが生じにくいセラミック部材とすることができる。 Ceramic component, in weight percent terms of oxide, SiO 2 65~75%, Al 2 O 3 18~27%, may contain the composition of Li 2 O1~2%. If the composition of the oxide is within the above range, it is possible to obtain a ceramic member in which cracks are unlikely to occur even in an environment where repeated thermal shock is received.

セラミック部材は、低熱膨張材がペタライトを含むとよい。ペタライトは比較的安価に入手可能であるため、コスト的に有利である。   In the ceramic member, the low thermal expansion material may include petalite. Since petalite is available at a relatively low cost, it is advantageous in terms of cost.

セラミック部材の原料の配合割合が、重量百分率で、粘土質結合材50〜90%、低熱膨張材10〜50%、粘土0〜30%であるとよい。この範囲の配合割合であれば、成形性が良好なセラミック部材を得ることができる。特に、低熱膨張材が10%より小さいと、クラックの発生を抑える効果が薄くなり、低熱膨張材が50%より大きいと、効果が頭打ちになってコスト的に不利である。   The mixing ratio of the raw materials of the ceramic member is preferably 50 to 90% of the clayey binder, 10 to 50% of the low thermal expansion material, and 0 to 30% of the clay. When the blending ratio is within this range, a ceramic member having good formability can be obtained. In particular, if the low thermal expansion material is smaller than 10%, the effect of suppressing the occurrence of cracks becomes thin, and if the low thermal expansion material is larger than 50%, the effect reaches a peak, which is disadvantageous in terms of cost.

セラミック部材は、粘土を含むとよい。粘土が含まれることにより、押出成形時の成形性が良好となる。もっとも、粘土が30%より大きいと、粘性が強くなり過ぎ、かえって成形性を損なうため、好ましくない。   The ceramic member may include clay. By including clay, the moldability during extrusion molding is improved. However, if the clay is larger than 30%, the viscosity becomes too strong, and on the contrary, the moldability is impaired, which is not preferable.

セラミック部材は、流路部材に充填され、前記流路部材内を流れる流体と接触する面を有し、気孔率が4%以下であるとよい。セラミック部材の面が流体と接触して濡れ、その後乾燥され、この濡れと乾燥を繰り返すサイクルが行われる場合に、乾燥効率(乾燥速度)を高める必要があることから、気孔率が4%以下であることが望まれる。一方、気孔率が4%以下になると、クラックが生じ易くなる懸念があるが、このセラミック部材の場合、リチウムアルミノシリケートの低熱膨張材が含まれることで、クラックが生じにくくなっているため、気孔率が4%以下であっても、流路部材に支障なく適用可能となる。   The ceramic member is preferably filled with the flow path member, has a surface in contact with the fluid flowing in the flow path member, and has a porosity of 4% or less. When the surface of the ceramic member is wetted by contact with the fluid and then dried, and the cycle of repeating this wetting and drying is performed, it is necessary to increase the drying efficiency (drying speed), so the porosity is 4% or less. It is desirable to be. On the other hand, when the porosity is 4% or less, there is a concern that cracks are likely to occur. However, in the case of this ceramic member, since the low thermal expansion material of lithium aluminosilicate is included, cracks are less likely to occur. Even if the rate is 4% or less, it can be applied to the flow path member without any trouble.

セラミック部材は、気孔率が1%以下であるとよい。気孔率が1%以下であれば、セラミック部材の乾燥効率をいっそう高めることができる。   The ceramic member may have a porosity of 1% or less. If the porosity is 1% or less, the drying efficiency of the ceramic member can be further increased.

上記セラミック部材が充填される流路部材であって、セラミック部材の充填空間における空隙率が45〜65%となるように設定されているとよい。この範囲の空隙率であれば、圧力損失を小さく抑えることができる。また、セラミック部材の重量増加を抑えることもできる。これに対し、空隙率が65%より大きいと、押出成形時の成形性が悪化する懸念があり、空隙率が45%より小さいと、圧力損失が大きくなり好ましくない。   The flow path member is filled with the ceramic member, and is preferably set so that the porosity in the filling space of the ceramic member is 45 to 65%. If the porosity is within this range, the pressure loss can be kept small. In addition, an increase in the weight of the ceramic member can be suppressed. On the other hand, if the porosity is larger than 65%, the moldability at the time of extrusion molding may be deteriorated. If the porosity is smaller than 45%, the pressure loss increases, which is not preferable.

<実施態様>
実施態様のセラミック部材は、粘土質結合材と、低熱膨張材と、粘土とを含む押出成形体の焼結体である。このうち、粘土は、必須ではないが、押出成形時の成形性の向上のため、含まれているとよい。
<Embodiment>
The ceramic member of the embodiment is a sintered body of an extrusion-molded body including a clayey binder, a low thermal expansion material, and clay. Among these, although clay is not essential, it is good to contain for the improvement of the moldability at the time of extrusion molding.

粘土質結合材としては、一般窯業原料として市販されているもので、可塑性を有するものを用いることができるが、特に制限されるものではない。この場合の粘土質結合材は、長石、陶石、粘土等を原料とするものであり、シリカ(酸化珪素)、アルミナ(酸化アルミニウム)等を成分として含む。   The clayey binder is commercially available as a general ceramic raw material, and those having plasticity can be used, but are not particularly limited. The clayey binder in this case is made of feldspar, porcelain stone, clay, or the like, and contains silica (silicon oxide), alumina (aluminum oxide), or the like as a component.

低熱膨張材は、リチウムアルミノシリケート(リチウム含有複合酸化物であり、一般式LiO・Al・nSiO)を主成分とするものであって、焼結時の熱膨張を抑えるのに良好な低い熱膨張係数を有し、プラスに限らずマイナスの熱膨張係数を有していてもよい。低熱膨張材としては、ペタライト(Li0・Al・8SiO)、β−ユークリプタイト(Li0・Al・2SiO)、β−スポジューメン(Li0・Al・4SiO)のうちの1種又は2種以上を用いることができる。好ましくは、焼結後、β−石英固溶体(ビルジライト)が主結晶相として析出するものである。β−石英固溶体の結晶は、ほぼゼロかマイナスの熱膨張を有している。 The low thermal expansion material, (a lithium-containing composite oxide represented by the general formula Li 2 O · Al 2 O 3 · nSiO 2) lithium aluminosilicate comprising a mainly composed, suppress the thermal expansion during sintering It has a favorable low thermal expansion coefficient, and may have a negative thermal expansion coefficient, not limited to a plus. The low thermal expansion material, petalite (Li 2 0 · Al 2 O 3 · 8SiO 2), β- eucryptite (Li 2 0 · Al 2 O 3 · 2SiO 2), β- spodumene (Li 2 0 · Al 2 One or two or more of O 3 · 4SiO 2 ) can be used. Preferably, after sintering, β-quartz solid solution (bilgilite) is precipitated as the main crystal phase. The crystals of β-quartz solid solution have almost zero or negative thermal expansion.

低熱膨張材として好ましいのは、ペタライトである。ペタライトは、比較的安価に入手でき、安定供給が可能だからである。また、低熱膨張材は、ペタライトとともに、β−ユークリプタイトとβ−スポジューメンの一方又は両方を組み合わせることで、熱膨張係数を調整してもよく、リチウムアルミノシリケートが主材になっていれば、特に限定されない。   Preferred as the low thermal expansion material is petalite. This is because petalite is available at a relatively low cost and can be supplied stably. Moreover, the low thermal expansion material may adjust the thermal expansion coefficient by combining one or both of β-eucryptite and β-spodumene with petalite, and if lithium aluminosilicate is the main material, There is no particular limitation.

低熱膨張材の平均粒度は、主として押出成形機に与える影響が加味され、♯46〜♯400(平均粒子径(メジアン径D50)340〜37μm)に調整されるのが好ましい。平均粒度が♯46(平均粒子径340μm)より大きいと、あたかも砂利を含んで成形しているようで、押出成形機の損傷を早める可能性がある。一方、平均粒度が♯400(平均粒子径37μm)より小さいと、押出成形機の摩擦抵抗が大きくなって成形しにくいという事情がある。   The average particle size of the low thermal expansion material is preferably adjusted to # 46 to # 400 (average particle diameter (median diameter D50) 340 to 37 μm) mainly considering the influence on the extruder. If the average particle size is larger than # 46 (average particle size of 340 μm), it seems that molding is performed including gravel, and damage to the extruder may be accelerated. On the other hand, if the average particle size is smaller than # 400 (average particle size 37 μm), the friction resistance of the extrusion molding machine becomes large and it is difficult to mold.

粘土は、粘土鉱物を主成分とする土であり、特に限定されないが、粘土質結合材に含まれる粘土とは別に単独で入手されて用いられるものである。この粘土は、塑性変形が容易であるため、例えば、粘土質結合材のみでは成形品の可塑性を十分に確保できない場合に添加されるとよい。   Clay is soil mainly composed of clay minerals, and is not particularly limited, but is obtained and used separately from clay contained in the clayey binder. Since this clay is easy to be plastically deformed, it may be added, for example, when the plasticity of the molded product cannot be sufficiently ensured only by the clay binder.

図1に示すように、セラミック部材20(以下、図1に関連する場合に符号を付すが、特に関連しない場合は符号を省略する。)は、石油精製装置の蒸留塔や反応塔等の流路部材10における充填材として用いられるとよい。この種のセラミック部材20は、流路部材10の容器30内において、触媒支持材として、触媒材の上下両側のうちの少なくとも一方に設置される。図示する場合、容器30内には、セラミック部材20が充填される上層40と、触媒材が充填される中間層50と、セラミック部材20が充填される下層60とが、積み重ねられた状態で配置される。   As shown in FIG. 1, the ceramic member 20 (hereinafter referred to as a reference when related to FIG. 1 is omitted, but the reference is omitted when not particularly related) is a flow of a distillation column or a reaction tower of an oil refining apparatus. It may be used as a filler in the road member 10. This type of ceramic member 20 is installed in at least one of the upper and lower sides of the catalyst material as a catalyst support material in the container 30 of the flow path member 10. In the illustrated case, an upper layer 40 filled with the ceramic member 20, an intermediate layer 50 filled with the catalyst material, and a lower layer 60 filled with the ceramic member 20 are disposed in the container 30 in a stacked state. Is done.

容器30は、上端部に流体が流入する流入部31を有し、下端部に流体が流出する流出部32を有している。セラミック部材20と触媒材は、容器30内を流れる流体と接触する面を有しており、流体は、触媒材の面と接触することで硫黄分等が選択的に除去される。なお、図示する場合とは逆に、流入部31が容器30の下端部に設けられ、流出部32が容器30の上端部に設けられていてもよい。   The container 30 has an inflow portion 31 into which a fluid flows into the upper end portion, and an outflow portion 32 through which the fluid flows out into a lower end portion. The ceramic member 20 and the catalyst material have a surface that comes into contact with the fluid flowing in the container 30, and the sulfur content and the like are selectively removed by contacting the fluid with the surface of the catalyst material. Note that the inflow portion 31 may be provided at the lower end portion of the container 30 and the outflow portion 32 may be provided at the upper end portion of the container 30 contrary to the case illustrated.

セラミック部材20は、上層40において、流体を中間層50へ向けて均一に分散、拡散する流体分散機能を有している。また、セラミック部材20は、軸方向に一定の断面形状を有する押出成形体であり、ここでは略円筒状等の筒状に成形されている。セラミック部材20の軸方向端面と内外周面とが流体と接触する面となり、流体の流路を規定する面となる。そして、このセラミック部材20が不規則な方向を向いて充填されることにより、流体分散機能が適正に発揮されることになる。   The ceramic member 20 has a fluid dispersion function for uniformly dispersing and diffusing the fluid toward the intermediate layer 50 in the upper layer 40. The ceramic member 20 is an extruded body having a constant cross-sectional shape in the axial direction, and is formed into a cylindrical shape such as a substantially cylindrical shape here. The end surface in the axial direction and the inner and outer peripheral surfaces of the ceramic member 20 are surfaces that come into contact with the fluid, and are surfaces that define the fluid flow path. Then, when the ceramic member 20 is filled in an irregular direction, the fluid dispersion function is properly exhibited.

ところで、流路部材に用いられるセラミック部材は、昇温、降温のサイクルを繰り返すことによって熱衝撃を受けることから、クラックが生じることが懸念される。ここで、気孔率が4%を超えるセラミック部材であれば、後述するスポーリング試験により、クラックが生じにくいことが確認された。これは、気孔がクッションとなって熱衝撃を緩衝するからであると考えられる。   By the way, since the ceramic member used for a flow-path member receives a thermal shock by repeating the cycle of temperature rising and temperature falling, there is a concern that a crack may occur. Here, if the porosity of the ceramic member exceeds 4%, it was confirmed by the spalling test described later that cracks are hardly generated. This is presumably because the pores serve as cushions to buffer the thermal shock.

しかるに一方で、気孔率が4%を超えると、充填材としてのセラミック部材を次の使用に備えて乾燥させる乾燥時間が長くなるという問題がある。よって、乾燥効率(乾燥速度)を高めるためには、気孔率を4%以下に抑える必要があり、気孔率を4%以下にしてもなおクラックが生じにくいものであることが望まれる。   On the other hand, if the porosity exceeds 4%, there is a problem that the drying time for drying the ceramic member as a filler in preparation for the next use becomes long. Therefore, in order to increase the drying efficiency (drying speed), it is necessary to suppress the porosity to 4% or less, and it is desirable that cracks are hardly generated even if the porosity is 4% or less.

その点、本発明のセラミック部材は、リチウムアルミノシリケート含有の低熱膨張材を含み、筒状に成形されることにより、気孔率が4%以下であっても、極めてクラックが生じにくいものとなっている。より詳細には、セラミック部材は、気孔率が1%以下に抑えられることで、乾燥効率が一段と高められ、しかもクラックの発生も抑えられたものとなっている。気孔率が1%以下のセラミック部材は、気孔率が5%のセラミック部材に対し、乾燥時間を削減することができるのである。   In that respect, the ceramic member of the present invention includes a lithium aluminosilicate-containing low thermal expansion material, and is molded into a cylindrical shape, so that even if the porosity is 4% or less, cracks are extremely unlikely to occur. Yes. More specifically, in the ceramic member, the porosity is suppressed to 1% or less, so that the drying efficiency is further increased and the occurrence of cracks is also suppressed. A ceramic member having a porosity of 1% or less can reduce the drying time compared to a ceramic member having a porosity of 5%.

また、セラミック部材は、焼成前の段階において、重量百分率として、粘土質結合材が50〜90%、低熱膨張材が10〜50%、粘土が0〜30%の割合で配合されるのが好ましい。低熱膨張材が10%を下回ると、クラックの抑制効果が薄まる懸念があり、低熱膨張材が50%を上回ると、効果が頭打ちになり、無駄なコストアップを招く懸念がある。セラミック部材は、低熱膨張材の含有量をより減らし、粘土質結合材が60〜90%、低熱膨張材が10〜40%、粘土が0〜30%の割合で配合されるようにしてもよい。   Further, the ceramic member is preferably blended at a ratio of 50 to 90% of the clay binder, 10 to 50% of the low thermal expansion material, and 0 to 30% of the clay as a weight percentage in the stage before firing. . When the low thermal expansion material is less than 10%, there is a concern that the effect of suppressing cracks may be diminished, and when the low thermal expansion material exceeds 50%, there is a concern that the effect will reach its peak, resulting in unnecessary cost increase. In the ceramic member, the content of the low thermal expansion material may be further reduced, and the clayey binder may be blended in a proportion of 60 to 90%, the low thermal expansion material is 10 to 40%, and the clay is 0 to 30%. .

粘土質結合材は、低熱膨張材及び粘土のそれぞれよりも多い配合量であるのが好ましい。粘土は、成形性を考慮すると配合されているのが好ましく、全配合中、1〜30%で構成されるとよい。   It is preferable that the clayey binder has a larger blending amount than each of the low thermal expansion material and the clay. Clay is preferably blended in consideration of moldability, and may be comprised between 1 and 30% during all blending.

セラミック部材は、焼成後の段階において、酸化物換算の重量百分率で、全酸化物中、SiOが65〜75%、Alが18〜27%、LiOが1〜2%の割合で含まれるのが好ましい。組成中のSi、Al、Liが酸化物換算で上記範囲の含有量であると、繰り返しの熱衝撃に対してクラックが生じにくいセラミック部材とすることができる。特に、ペタライトのようなLi含有材料がクラックの発生を抑えるのに効果的である。 The ceramic member is a weight percentage in terms of oxide at the stage after firing, and the proportion of SiO 2 is 65 to 75%, Al 2 O 3 is 18 to 27%, and LiO 2 is 1 to 2% in the total oxide. Is preferably included. When Si, Al, and Li in the composition have a content in the above range in terms of oxides, a ceramic member that is less susceptible to cracking due to repeated thermal shocks can be obtained. In particular, a Li-containing material such as petalite is effective in suppressing the occurrence of cracks.

流路部材の容器内におけるセラミック部材の充填空間の空隙率(測定方法は後述する。)は、45〜65%となるように設定されているのが好ましい。空隙率が45〜65%の範囲にあれば、容器内の上層を流れる流体の圧力損失が大きくならずに済み、充填重量も比較的軽いので、中間層の触媒材が押し潰されにくいからである。空隙率が65%より大きいと、押出成形時に潰れ易くなり、空隙率が45%より小さいと、圧力損失が大きくなる。   It is preferable that the porosity of the space for filling the ceramic member in the container of the flow path member (measurement method will be described later) is set to be 45 to 65%. If the porosity is in the range of 45 to 65%, the pressure loss of the fluid flowing in the upper layer in the container is not increased, and the filling weight is relatively light, so that the catalyst material in the intermediate layer is not easily crushed. is there. When the porosity is larger than 65%, the material tends to be crushed during extrusion molding, and when the porosity is smaller than 45%, the pressure loss increases.

<製造方法(試料1〜5)>
試料1〜5の各原料を、表1に示す配合割合で調整し、混合機により乾式状態で5分間撹拌し、均一に混合した。粘土質結合材、ペタライト、粘土は、それぞれ市販のものを用いた。なお、表1中、結合材は、粘土質結合材の略であり、A〜Fは、原料の入手元である。
<Manufacturing method (samples 1 to 5)>
Each raw material of Samples 1 to 5 was adjusted at a blending ratio shown in Table 1, and was stirred for 5 minutes in a dry state by a mixer and mixed uniformly. Commercially available clay binders, petalite and clay were used. In Table 1, the binder is an abbreviation for clayey binder, and A to F are sources of raw materials.

Figure 2019019023
Figure 2019019023

続いて、水を添加して湿式で混合し、押出成形を行うのに好適な硬さに調整した。
次いで、上記混合物を押出成形機に投入して、長尺筒状に押し出し、押し出した長尺筒状体を所定長に切断して、筒状の押出素材を得た。
その後、自然乾燥した押出素材を1200〜1300度の温度で焼成した。なお、試料4、5は、焼結性が向上したため、試料1〜3より燃焼温度を下げた。試料1〜5の焼成後の化学組成(酸化物換算)を表2に示す。
Subsequently, water was added and mixed in a wet manner to adjust the hardness to be suitable for extrusion molding.
Next, the mixture was put into an extruder, extruded into a long cylindrical shape, and the extruded long cylindrical body was cut into a predetermined length to obtain a cylindrical extruded material.
Thereafter, the naturally dried extruded material was fired at a temperature of 1200 to 1300 degrees. In Samples 4 and 5, since the sinterability was improved, the combustion temperature was lowered from Samples 1 to 3. Table 2 shows the chemical compositions (as oxides) of Samples 1 to 5 after firing.

Figure 2019019023
Figure 2019019023

<測定方法>
(粒度分布測定)
レーザ回折散乱式粒子分布測定装置を使用し、ペタライトの粒度を測定した。詳細には、試料を測定装置に投入し、超音波で3分間、水中で分散させる。その後、試料が分散した水溶液にレーザ光を照射し、粒度を測定した。ここで、ペタライトの平均粒度が♯46〜♯400である場合、ペタライトの平均粒径は、メジアン径(D50)として、340〜37μmとなる。
<Measurement method>
(Particle size distribution measurement)
The particle size of the petalite was measured using a laser diffraction / scattering particle distribution measuring device. Specifically, the sample is put into a measuring apparatus and dispersed in water with ultrasonic waves for 3 minutes. Thereafter, the aqueous solution in which the sample was dispersed was irradiated with laser light, and the particle size was measured. Here, when the average particle size of petalite is # 46 to # 400, the average particle size of petalite is 340 to 37 μm as the median diameter (D50).

(気孔率測定)
JIS−R2205の煮沸法に従って気孔率を測定した。詳細には、試料(焼成後のセラミック部材)を乾燥機(105℃)で乾燥し、恒量に達したときの質量を乾燥重量W(g)とし、また、試料を煮沸槽の水面下に沈め、3時間以上煮沸して、室温まで放冷し、その飽水試料の水中重量W(g)を測定した。飽水試料を水中から取り出し、湿布で表面をぬぐい、表面の水滴を除去した後、飽水重量W(g)を測定した。気孔率は、次式で算出される。
気孔率(%)=(W−W)/(W−W)×100
(Porosity measurement)
The porosity was measured according to the boiling method of JIS-R2205. Specifically, the sample (ceramic member after firing) is dried with a dryer (105 ° C.), the mass when the constant weight is reached is the dry weight W 1 (g), and the sample is placed below the surface of the boiling tank. Submerged, boiled for more than 3 hours, allowed to cool to room temperature, and the weight of the saturated sample in water W 2 (g) was measured. A saturated water sample was taken out of the water, wiped with a compress, removed water droplets on the surface, and then the saturated water weight W 3 (g) was measured. The porosity is calculated by the following formula.
Porosity (%) = (W 3 −W 1 ) / (W 3 −W 2 ) × 100

(空隙率測定)
空隙率は、10Lの容器に試料(焼成後のセラミック部材)を自由落下で充填させ、その空隙に水を入れたときの「水の容量/容器の容量(10L)」で表した比率である。
(Porosity measurement)
The porosity is a ratio expressed by “capacity of water / capacity of container (10 L)” when a sample (ceramic member after firing) is filled in a 10 L container by free fall and water is put into the void. .

(空冷スポーリング試験)
試料(焼成後のセラミック部材)に繰り返し熱衝撃が加わったときに、クラックが入るかどうかを評価するため、500℃における空冷スポーリング試験を行った。空冷スポーリング試験は、キープ温度500℃、加熱30分、空冷30分を10サイクル行った。その後、クラックが入っているかどうかをカラーチェックで目視確認し、クラック数をカウントした。カラーチェックは、試料に赤色等の識別色を塗ってクラックが目立つようにしたものである。
気孔率及び空隙率の物性値、クラック発生数の結果、及び流路部材に適用した場合における圧力損失テストの結果を表3に示す。表3中の総合判定において、「○」は合格、「×」は不合格である。
(Air-cooled spalling test)
An air-cooled spalling test at 500 ° C. was conducted in order to evaluate whether cracks would occur when a thermal shock was repeatedly applied to the sample (ceramic member after firing). In the air cooling spalling test, 10 cycles of a keep temperature of 500 ° C., heating for 30 minutes, and air cooling for 30 minutes were performed. Thereafter, whether or not there were cracks was visually confirmed by a color check, and the number of cracks was counted. In the color check, an identification color such as red is applied to a sample so that cracks are conspicuous.
Table 3 shows the physical property values of the porosity and the porosity, the results of the number of cracks generated, and the results of the pressure loss test when applied to the flow path member. In the comprehensive judgment in Table 3, “◯” indicates pass and “x” indicates fail.

Figure 2019019023
Figure 2019019023

<考察>
表3に示すとおり、試料4、5のセラミック部材は、クラックの発生数が少なく、特に、試料5は、クラックの発生が完全に抑えられた。このことから、試料4、5は、乾燥効率を考慮して気孔率が1%以下に抑えられても、なお熱衝撃に対して強いものであることがわかった。
試料5は、試料4に比べて焼成後のアルミナ(Al)の含有量が多く、これがクラックの発生を抑えるのに寄与しているのではないかと考えられる。これに鑑みると、焼成後のセラミック部材におけるアルミナの含有量は、重量百分率として23〜27%含まれているのがより好ましいと言える。
<Discussion>
As shown in Table 3, the ceramic members of Samples 4 and 5 had a small number of occurrences of cracks. In particular, Sample 5 completely suppressed the occurrence of cracks. From this, it was found that Samples 4 and 5 were still resistant to thermal shock even when the porosity was suppressed to 1% or less in consideration of drying efficiency.
Sample 5 has a higher content of alumina (Al 2 O 3 ) after firing than sample 4, and this is considered to contribute to suppressing the occurrence of cracks. In view of this, it can be said that the alumina content in the fired ceramic member is more preferably 23 to 27% by weight.

試料4,5は、気孔率が4%以下、好ましくは1%以下に抑えられ、筒状に成形されて空隙率が45〜65%に設定されるため、蒸留塔や反応塔等の流路部材における繰り返しの使用に際して乾燥効率に優れるとともに、クラックが入りにくいことによって圧力損失が大きくなることもなく、流路部材として好適に使用可能であることがわかった。   Samples 4 and 5 have a porosity of 4% or less, preferably 1% or less, and are formed into a cylindrical shape with a porosity of 45 to 65%. It has been found that, when repeatedly used in a member, it is excellent in drying efficiency, and is less susceptible to cracking so that pressure loss does not increase and can be suitably used as a channel member.

<他の実施態様>
本発明のセラミック部材は、筒状に成形されるのが好ましいが、筒状の概念には角筒状も含まれる。さらに、本発明のセラミック部材は、筒状に限らず、例えば、中実ペレット状に成形されるものであってもよい。
本発明のセラミック部材に含まれる低熱膨張材は、ペタライトが含まれず、β−ユークリプタイトとβ−スポジューメンの一方又は両方のみで構成されるものであってもよい。
本発明の流路部材は、石油精製装置に限定されず、脱臭装置、脱水装置、クロマトグラフィー等の各種カラムに適用されるものであってもよい。また、流路部材内を流れる流体は、液体に限らず、ガスであってもよい。さらに、本発明のセラミック部材は、粘土質結合材、低熱膨張材、粘土以外の材料が含まれていてもよく、また、触媒担体としての機能を有するものであってもよい。
<Other embodiments>
The ceramic member of the present invention is preferably formed into a cylindrical shape, but the cylindrical shape includes a rectangular tube shape. Furthermore, the ceramic member of the present invention is not limited to a cylindrical shape, and may be formed into a solid pellet shape, for example.
The low thermal expansion material contained in the ceramic member of the present invention does not contain petalite and may be composed of only one or both of β-eucryptite and β-spodumene.
The flow path member of the present invention is not limited to an oil refining device, and may be applied to various columns such as a deodorizing device, a dehydrating device, and chromatography. Further, the fluid flowing in the flow path member is not limited to liquid but may be gas. Furthermore, the ceramic member of the present invention may contain a material other than a clayey binder, a low thermal expansion material, and clay, and may have a function as a catalyst carrier.

10…流路部材
20…セラミック部材
10 ... Channel member 20 ... Ceramic member

Claims (10)

粘土質結合材とリチウムアルミノシリケート含有の低熱膨張材とを含む押出成形焼結体であることを特徴とするセラミック部材。   A ceramic member characterized by being an extrusion-molded sintered body comprising a clayey binder and a low thermal expansion material containing lithium aluminosilicate. 筒状に成形されている請求項1記載のセラミック部材。   The ceramic member according to claim 1, which is formed in a cylindrical shape. 前記低熱膨張材の平均粒度が♯46〜♯400である請求項1又は2記載のセラミック部材。   The ceramic member according to claim 1 or 2, wherein the average particle size of the low thermal expansion material is # 46 to # 400. 酸化物換算の重量百分率で、SiO65〜75%、Al18〜27%、LiO1〜2%の組成を含有する請求項1ないし3のいずれか1項記載のセラミック部材。 In weight percent terms of oxide, SiO 2 65~75%, Al 2 O 3 18~27%, Li 2 O1~2% claims 1 containing composition to any one of claims ceramic member 3. 前記低熱膨張材がペタライトを含む請求項1ないし4のいずれか1項記載のセラミック部材。   The ceramic member according to claim 1, wherein the low thermal expansion material includes petalite. 原料の配合割合が、重量百分率で、前記粘土質結合材50〜90%、前記低熱膨張材10〜50%、粘土0〜30%である請求項1ないし5のいずれか1項記載のセラミック部材。   The ceramic member according to any one of claims 1 to 5, wherein the blending ratio of the raw materials is 50% to 90% of the clay binder, 10% to 50% of the low thermal expansion material, and 0% to 30% of the clay. . 前記粘土を含む請求項6記載のセラミック部材。   The ceramic member according to claim 6, comprising the clay. 流路部材に充填され、前記流路部材内を流れる流体と接触する面を有し、気孔率が4%以下である請求項1ないし7のいずれか1項記載のセラミック部材。   The ceramic member according to any one of claims 1 to 7, wherein the ceramic member has a surface in contact with a fluid flowing in the flow channel member and having a porosity of 4% or less. 気孔率が1%以下である請求項8記載のセラミック部材。   The ceramic member according to claim 8, wherein the porosity is 1% or less. 請求項8又は9記載のセラミック部材が充填される流路部材であって、
前記セラミック部材の充填空間における空隙率が45〜65%となるように設定されていることを特徴とする流路部材。
A flow path member filled with the ceramic member according to claim 8 or 9,
A flow path member characterized in that a porosity in a filling space of the ceramic member is set to 45 to 65%.
JP2017137742A 2017-07-14 2017-07-14 Ceramic member and flow path member Active JP6918351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017137742A JP6918351B2 (en) 2017-07-14 2017-07-14 Ceramic member and flow path member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137742A JP6918351B2 (en) 2017-07-14 2017-07-14 Ceramic member and flow path member

Publications (2)

Publication Number Publication Date
JP2019019023A true JP2019019023A (en) 2019-02-07
JP6918351B2 JP6918351B2 (en) 2021-08-11

Family

ID=65352606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137742A Active JP6918351B2 (en) 2017-07-14 2017-07-14 Ceramic member and flow path member

Country Status (1)

Country Link
JP (1) JP6918351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156240B2 (en) 2016-02-12 2021-10-26 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
US11752477B2 (en) 2020-09-09 2023-09-12 Crystaphase Products, Inc. Process vessel entry zones

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156240B2 (en) 2016-02-12 2021-10-26 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
US11754100B2 (en) 2016-02-12 2023-09-12 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
US11752477B2 (en) 2020-09-09 2023-09-12 Crystaphase Products, Inc. Process vessel entry zones

Also Published As

Publication number Publication date
JP6918351B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6082065B2 (en) Honeycomb structure including cement shell and cement therefor
JP6049142B2 (en) Cordierite porous ceramic honeycomb structure with delayed generation of microcracks
JP6043340B2 (en) Porous material, honeycomb structure, and method for producing porous material
CN101585005B (en) Honeycomb structure
JP2015187044A5 (en)
CN106220224A (en) A kind of heat-resistant light adiabator with double-hole structure and preparation method thereof
JP2008543701A (en) Geopolymer composite and structure formed therefrom
US20070160825A1 (en) Composition for ceramic bonding and ceramic bonded article
US10315961B2 (en) Porous material and heat insulating film
JP5532606B2 (en) Ceramic honeycomb structure and manufacturing method thereof
CN107001149A (en) Without boron aluminum alloy ceramic foam filter
JP6245896B2 (en) Honeycomb catalyst and exhaust gas purification device
JP2019019023A (en) Ceramic member and flow-channel member
JP2014189447A (en) Porous material, honeycomb structure, and method for manufacturing porous material
JP6231908B2 (en) Plugged honeycomb structure
JP5478025B2 (en) Cordierite ceramics and method for producing the same
JP6245895B2 (en) Honeycomb catalyst and exhaust gas purification device
TW200918205A (en) Cast bodies, castable compositions, and methods for their production
JP5518327B2 (en) Silicon carbide based porous material and method for producing the same
JP6214514B2 (en) Insulation
JP2016030710A (en) Insulating fire brick
JP4517104B2 (en) Manufacturing method of ceramic structure and ceramic structure
Malaiškienė et al. Influence of assorted waste on building ceramic properties
JP6982555B2 (en) Honeycomb structure manufacturing method
JP2001278676A (en) Inorganic fiber reinforced article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6918351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150