JP2019015685A - Constituent concentration measuring apparatus and analyzing method - Google Patents

Constituent concentration measuring apparatus and analyzing method Download PDF

Info

Publication number
JP2019015685A
JP2019015685A JP2017135028A JP2017135028A JP2019015685A JP 2019015685 A JP2019015685 A JP 2019015685A JP 2017135028 A JP2017135028 A JP 2017135028A JP 2017135028 A JP2017135028 A JP 2017135028A JP 2019015685 A JP2019015685 A JP 2019015685A
Authority
JP
Japan
Prior art keywords
light
intensity
lights
measured
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017135028A
Other languages
Japanese (ja)
Other versions
JP6730963B2 (en
Inventor
信建 小勝負
Nobutake Koshobu
信建 小勝負
雄次郎 田中
Yujiro Tanaka
雄次郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017135028A priority Critical patent/JP6730963B2/en
Publication of JP2019015685A publication Critical patent/JP2019015685A/en
Application granted granted Critical
Publication of JP6730963B2 publication Critical patent/JP6730963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide a high-precision constituent concentration measuring apparatus and measuring method that reduce temporal variation in intensity of light irradiating a sample to be measured during measurement by an OPBS method and an influence of noise in measurement of a photoacoustic wave.SOLUTION: Lights A, B are multiplexed at a frequency ω in mutually opposite-phase relation and made to irradiate a body to be measured (S111). While the light B has its light intensity held at P'=P+δP, the light A has its light intensity swept, and light intensity dependency of S' associated with the body to be measured is measured (S112). After Fourier transformation of time variation of S', light intensity dependency of respective spectrum intensities of S'(ω) of frequency ω and S'(2ω) of double waves is calculated (S113). Then PA'=P+δPof the light A when a magnitude R=S'(2ω)/SA'(ω) of SA'(2ω) to SA'(ω) has a maximum value is acquired (S114). A concentration of a specific component is derived using values of obtained δα, δα, P, P, δP, and δP(S115).SELECTED DRAWING: Figure 14

Description

本発明は、水など光と音響信号が共に伝搬する媒体内において、その分散または溶解成分の濃度を測定する成分濃度測定装置および分析方法に関する。   The present invention relates to a component concentration measuring apparatus and analysis method for measuring the concentration of a dispersed or dissolved component in a medium in which light and an acoustic signal propagate together, such as water.

糖尿病予防のためには、糖尿病患者の血糖値を連続的に監視することが重要となる。血糖値の監視では、血液中に存在するグルコース濃度を正確に測定する必要がある。この測定の方法として、光音響法がある。光音響法による測定によれば、連続的な血液中のグルコース濃度の監視が可能となる。また、光音響法の測定は、糖尿病患者にとって無痛であり、血液サンプルを必要とせず、糖尿病患者に不快感を与えることがない。また、光音響法の測定では、他の光学的な測定方法と比較し、散乱メディアによる効率の悪化がなく、光学と音響学の結合により高感度の特性を得ることができる。   In order to prevent diabetes, it is important to continuously monitor the blood glucose level of diabetic patients. In monitoring blood glucose levels, it is necessary to accurately measure the glucose concentration present in blood. As a measuring method, there is a photoacoustic method. According to the measurement by the photoacoustic method, it is possible to continuously monitor the glucose concentration in the blood. In addition, the photoacoustic measurement is painless for diabetic patients, does not require a blood sample, and does not cause discomfort to the diabetic patient. Also, in the photoacoustic method measurement, compared to other optical measurement methods, efficiency is not deteriorated due to the scattering media, and high sensitivity characteristics can be obtained by combining optics and acoustics.

光音響法には、パルス(pulse)法と連続波(continuous−wave:CW)法の2つの方式がある。しかし、従来のパルス法やCW法では、数回にわたる血漿中のグルコース濃度測定中に、グルコース濃度以外の他の血漿中パラメータ(例えば体温や、他の成分の濃度等)も変わる可能性が高いので、グルコース選択性が悪く、正確なグルコース濃度を得ることが難しいという問題があった。   There are two photoacoustic methods, a pulse method and a continuous-wave (CW) method. However, in the conventional pulse method and CW method, during the measurement of the glucose concentration in plasma several times, there is a high possibility that other plasma parameters other than the glucose concentration (for example, body temperature, concentration of other components, etc.) will also change. Therefore, there is a problem that the glucose selectivity is poor and it is difficult to obtain an accurate glucose concentration.

そこで、2つの波長のπ(180°)の位相差を有する連続した矩形波により成分濃度を測定する光パワーバランスシフト(Optical power balance shift:OPBS)法が開発されている(特許文献1−5参照)。   Therefore, an optical power balance shift (OPPBS) method has been developed in which component concentration is measured by a continuous rectangular wave having a phase difference of π (180 °) between two wavelengths (Patent Documents 1-5). reference).

具体的には、波長λ1と波長λ2の2つの位相差πの強度変調光を合波して被測定物に出射する。そして、その被測定物の成分に吸収されて発生する音波を検出し、その音波の大きさから被測定物内の測定対象成分の濃度を測定する方法である。   Specifically, the two intensity-modulated lights having the phase difference π of the wavelengths λ1 and λ2 are combined and output to the object to be measured. Then, a sound wave generated by being absorbed by the component of the object to be measured is detected, and the concentration of the measurement target component in the object to be measured is measured from the magnitude of the sound wave.

ここで、例えば、波長λAと波長λBは、被測定物内の背景成分である水による吸収度が互いに等しくなるように設定されている。また、波長λAは、被測定物内の測定対象成分であるグルコースによる吸収度が極大になるように設定されている。 Here, for example, the wavelength λ A and the wavelength λ B are set so that the absorbance by water, which is the background component in the object to be measured, is equal to each other. The wavelength λ A is set so that the absorbance due to glucose, which is a measurement target component in the object to be measured, is maximized.

このような異なる2つの波長の光を出射した場合、波長λAの光をグルコースと水の両方が吸収して被測定物から発生する音波と、波長λBの光を水が吸収して被測定物から発生する音波とは、周波数が等しくかつ逆位相であることから、被測定物の内部で重畳し、音波の差として、グルコースが吸収して被測定物から発生する音波の大きさのみが残留することになる。 When light of such two different wavelengths is emitted, the light of wavelength λ A is absorbed by both glucose and water, and the sound wave generated from the object to be measured and the light of wavelength λ B are absorbed by water. Since the sound wave generated from the measurement object has the same frequency and opposite phase, it is superimposed inside the measurement object, and only the magnitude of the sound wave generated from the measurement object as glucose is absorbed as glucose difference. Will remain.

すなわち、検出された音波の大きさSは、波長λAの光のみを用いて計測した音波の大きさと波長λBの光のみを用いて計測した音波の大きさとの差分に相当し、被測定物内の特定成分(ここではグルコース)の吸収のみに基づく大きさとなる。 That is, the size S of the detected acoustic wave is equivalent to the difference between the magnitude of the acoustic wave was measured using only the light of the size and the wavelength lambda B of the waves measured by using only the light of wavelength lambda A, to be measured The size is based only on the absorption of a specific component (here, glucose) in the object.

[OPBS測定法]
ここで従来のOPBS法の測定原理を簡単に説明する。従来のOPBS法では、被測定物から超音波が発生しない点、すなわち光音響信号の強度Sが0となる点を探索するために、前記2波長の光のパワーの調整を行う。
[OPBS measurement method]
Here, the measurement principle of the conventional OPBS method will be briefly described. In the conventional OPBS method, in order to search for a point where no ultrasonic wave is generated from the object to be measured, that is, a point where the intensity S of the photoacoustic signal is 0, the power of the two wavelengths of light is adjusted.

例えば、前記光音響信号の強度Sが0ではなく定数S0であっても既知の定数であれば問題がないが、以下、説明の簡略化のため、定数S0が0となるとして考える。 For example, even if the intensity S of the photoacoustic signal is not 0 but is a constant S 0 , there is no problem as long as it is a known constant. However, for the sake of simplification of explanation, it is assumed that the constant S 0 is 0.

光音響信号の強度S=0の場合には、次式のような理論式が成立する。
αAA−αBB=0 ・・・(1)
When the intensity S of the photoacoustic signal is S = 0, the following theoretical formula is established.
α A P A −α B P B = 0 (1)

ここでPA、PBは2波長の光A、Bのパワー、αA、αBはそれぞれ光のパワーがPA、PBの光に対する被測定物の光吸収係数である。 Here, P A and P B are the powers of the two wavelengths of light A and B, and α A and α B are the light absorption coefficients of the object to be measured for the light powers of P A and P B , respectively.

このとき、2波長の光からそれぞれ発生する音波は、周波数が等しくかつ逆位相であることから、被測定物の内部で打ち消し合い光音響信号の強度S=0(もしくは、極小値:S0)とすることができる。言い換えると、この時は2波長の光の音波の強度バランスが取れた状態とも言える。 At this time, since the sound waves generated from the two wavelengths of light have the same frequency and opposite phases, the intensity S = 0 of the photoacoustic signal cancels inside the object to be measured (or the minimum value: S 0 ). It can be. In other words, at this time, it can be said that the intensity balance of the sound waves of the light of two wavelengths is balanced.

ここで、測定したい成分の濃度が変化した場合、例えば被測定物の成分としてグルコース濃度がCgだけ変化したと仮定する。この濃度変化により光吸収係数αA、αBがそれぞれδαA、δαBだけ変化した場合、式(1)が成立する状態から式(2)の状態に変化する。
(αA+δαAg)PA−(αB+δαBg)PB≠0 ・・・(2)
Here, when the concentration of the component to be measured changes, for example, it is assumed that the glucose concentration has changed by Cg as the component of the object to be measured. When the light absorption coefficients α A and α B change by δα A and δα B , respectively, due to this change in concentration, the state changes from the state in which equation (1) holds to the state in equation (2).
A + δα A C g ) P A − (α B + δα B C g ) P B ≠ 0 (2)

ここで、光吸収係数変化率δαA,δαBは、被測定物の成分であるグルコースに関する光A、Bの光波長λA、λBでの単位濃度当たりの光吸収係数であるので、グルコース単体の試薬溶液での光吸収スペクトル測定などで別途検出可能な値である。 Here, the light absorption coefficient change rates δα A and δα B are light absorption coefficients per unit concentration at the light wavelengths λ A and λ B of light A and B relating to glucose as a component of the object to be measured. It is a value that can be separately detected by light absorption spectrum measurement using a single reagent solution.

S=0の状態に戻すために、例えば光Aの光強度PAを変化させると次式が成立する。
(αA+δαAg)(PA+δPA)−(αB+δαBg)PB=0 ・・・(3)
In order to return to the state of S = 0, for example, when the light intensity PA of the light A is changed, the following equation is established.
A + δα A C g ) (P A + δP A ) − (α B + δα B C g ) P B = 0 (3)

続いて、それと同時に、もう一方の光Bの光強度PBを変化させると、式(3)と同様に次式が成り立つ。
(αA+δαACg)(PA+δPA)−(αB+δαBCg)(PB+δPB)=0 ・・・(4)
Subsequently, when the light intensity P B of the other light B is changed at the same time, the following equation is established as in the equation (3).
A + δα A Cg) (P A + δP A ) − (α B + δα B Cg) (P B + δP B ) = 0 (4)

式(3)、(4)におけるδPA、δPBは光A、Bの光強度PA、PBの各変化量である。 In formulas (3) and (4), δP A and δP B are the amounts of change in the light intensities P A and P B of the light A and B , respectively.

このとき、式(4)より次式が得られる。   At this time, the following equation is obtained from equation (4).

Figure 2019015685
Figure 2019015685

式(1)、(3)、(4)より、未知であった光吸収係数αA、αBが求まることから、式(5)より、グルコース濃度Cgを測ることができることが分かる。 From formulas (1), (3), and (4), unknown light absorption coefficients α A and α B are obtained, and it can be seen from formula (5) that the glucose concentration C g can be measured.

引き続いて、OPBS法の測定手順について、具体的に図表を用いて説明する。   Subsequently, the measurement procedure of the OPBS method will be specifically described with reference to a chart.

特許文献1−5に開示されたOPBS法では、図1に示すように光波長が異なり、互いに位相差がπの2つの矩形連続波形の光Aと光Bを被測定物に対して、同一光出力口から照射する。この時、被測定物より発生する光音響波信号Sは、被測定物の光吸収係数をα、一定強度の光強度をPとすると次式で表され、図1中の各照射光の時間変化である矩形連続波形の面積となる。
S=α×P ・・・(6)
In the OPBS method disclosed in Patent Documents 1-5, as shown in FIG. 1, two rectangular continuous waveforms of light A and light B having different light wavelengths and having a phase difference of π are identical to the object to be measured. Irradiate from the light output port. At this time, the photoacoustic wave signal S generated from the object to be measured is represented by the following equation where the light absorption coefficient of the object to be measured is α and the light intensity of a certain intensity is P, and the time of each irradiation light in FIG. It becomes the area of a rectangular continuous waveform that is a change.
S = α × P (6)

OPBS法は、これら2波長の光A、Bの光強度PA、PBを増減させながら、光音響信号の振幅が最小な箇所の位相の変曲点を探し、この探索結果から血液中に溶解している被測定物の濃度を求める方法である。 The OPBS method searches for an inflection point of the phase where the amplitude of the photoacoustic signal is minimum while increasing or decreasing the light intensities P A and P B of these two wavelengths of light A and B. This is a method for obtaining the concentration of a dissolved object to be measured.

より具体的には、図2(a)から図2(c)に示すように、まず波長の異なる2つの光A、Bのうち一方の光Bの光強度PBを一定にし、もう一方の光Aの光強度PAを変えながら光音響信号強度Sを測定していく。このとき、光音響信号強度Sが図2(d)に示すような極小値を取る曲線変化が得られる。特に図2(b)の位置で、光音響信号強度Sは極小値を示すが、これは2波長の光A、Bに起因する音波の強度バランスが取れた状態であり、式(1)が成り立つ状態である。 More specifically, as shown in FIGS. 2A to 2C, first, the light intensity P B of one of the two lights A and B having different wavelengths is made constant, and the other continue to measure the photoacoustic signal intensity S while changing the light intensity P a light a. At this time, a curve change in which the photoacoustic signal intensity S takes a minimum value as shown in FIG. In particular, at the position shown in FIG. 2B, the photoacoustic signal intensity S shows a minimum value. This is a state in which the intensity balance of sound waves caused by the two wavelengths of light A and B is balanced. It is a state that holds.

その後、被測定物内の特定成分(例えばグルコース)の濃度の増減によって生じる光吸収係数αBが変化すると、図2(d)の破線のように光音響信号強度Sの曲線はシフトする。図2(b)と同様の位置で光音響信号強度が極小値をとるとき、式(3)の状態となり、光Aの光強度PAも変化する(図2(d)の破線)。さらに、光Bの光強度PBも同様に変化させることにより、式(4)の状態を再現することができるため、式(1)、(3)〜(5)より、被測定物内の特定成分(例えばグルコース)の濃度Cgの評価が行える。 Thereafter, when the light absorption coefficient α B caused by the increase or decrease in the concentration of a specific component (for example, glucose) in the object to be measured changes, the curve of the photoacoustic signal intensity S shifts as indicated by the broken line in FIG. When the photoacoustic signal intensity takes the minimum value at the same position as in FIG. 2B, the state of Expression (3) is obtained, and the light intensity PA of the light A also changes (broken line in FIG. 2D). Furthermore, since the state of the equation (4) can be reproduced by changing the light intensity P B of the light B in the same manner, from the equations (1) and (3) to (5), allows evaluation of the concentration C g of the specific component (e.g. glucose).

しかし実際には、一方の光Aは、被測定物内の特定成分(例えばグルコース)の光吸収係数変化率δαAが無視できるほど小さい(δαA≒0)光波長を選択することも可能であり、それにより測定は光Aのみの光強度変化と式(1)、(3)で評価できるため、つまり、光音響信号強度が最低となる光強度PBのみ変化させることより被測定物内の特定成分(例えばグルコース)の濃度の正確な測定が可能となる。 However, in practice, the light wavelength of one light A can be selected so that the light absorption coefficient change rate δα A of a specific component (for example, glucose) in the object to be measured is so small that it can be ignored (δα A ≈0). Yes, since the measurement can be evaluated by the change in the light intensity of only the light A and the expressions (1) and (3), that is, by changing only the light intensity P B at which the photoacoustic signal intensity is minimum, It is possible to accurately measure the concentration of a specific component (for example, glucose).

つまり、被測定物内の特定成分(例えばグルコース)の濃度C=C0のときの図2(d)の実線の極小値を取る光Bの強度PB(C0)と式(1)、および、被測定物内の特定成分(例えばグルコース)の濃度がΔCだけ増えた場合の濃度C1=C0+ΔCのときの図2(d)の破線の極小値を取る光Bの強度PB’(C1=C0+ΔC)と式(3)から、被測定物内の特定成分(例えばグルコース)の濃度増加分ΔCが得られる。 That is, the concentration C = C intensity P B (C 0) of light B which takes a minimum value of the solid line shown in FIG. 2 (d) when the 0 in the formula (1) of a specific component in the measuring object (e.g. glucose), Further, the intensity P B of the light B taking the minimum value of the broken line in FIG. 2D when the concentration C 1 = C 0 + ΔC when the concentration of the specific component (for example, glucose) in the object to be measured is increased by ΔC. From (C 1 = C 0 + ΔC) and equation (3), a concentration increase ΔC of a specific component (for example, glucose) in the object to be measured is obtained.

特開2016−154585号公報Japanese Patent Laid-Open No. 2006-154585 特開2015−31670号公報JP2015-31670A 特開2014−50563号公報JP 2014-50563 A 特開2013−106874号公報JP 2013-106874 A 特開2012−179212号公報JP 2012-179212 A

従来のOPBS法では、光源の出力の安定性が良くない場合や環境温度の変動などにより、光パワーPA、PBはレーザダイオードの駆動電流が一定でも変化する。例えば式(1)において、光パワーPAがεだけ変化すると、次式のようになる。
αA(PA+ε)−αBB≠0 ・・・(7)
In the conventional OPBS method, the optical powers P A and P B change even when the driving current of the laser diode is constant, due to the case where the output stability of the light source is not good or the environmental temperature varies. For example, in the formula (1), the optical power P A is changed by epsilon, expressed by the following equation.
α A (P A + ε) −α B P B ≠ 0 (7)

式(7)の状態では、グルコース濃度が一定であっても、S=0の状態にするために一方の光強度(例えばPA)を調整しなければならない。
αA((PA+δPA)+ε)−αBB=0 ・・・(8)
In the state of Expression (7), even if the glucose concentration is constant, one of the light intensities (for example, P A ) must be adjusted in order to make S = 0.
α A ((P A + δP A ) + ε) −α B P B = 0 (8)

したがって、光源の出力の変化が光音響信号の強度Sに与える影響とグルコース濃度の変化が光音響信号の強度Sに与える影響とは同じであり、これらの変化を測定結果のδPAから区別することはできないため、光源の出力の変化があると、グルコース濃度を正確に測ることが難しくなる。つまり、従来のOPBS法では、光源の出力パワーを常時測定し、光源の出力を一定に保つ必要があった。 Therefore, the effect of changes in impact and glucose concentration change in the output of the light source has on the intensity of the photoacoustic signal S is supplied to the intensity S of photoacoustic signal is the same, to distinguish these changes from [delta] P A measurement result Therefore, it is difficult to accurately measure the glucose concentration when there is a change in the output of the light source. That is, in the conventional OPBS method, it is necessary to always measure the output power of the light source and keep the output of the light source constant.

つまり、従来のOPBS法では、光音響信号の強度が最低な点を探索するために、光強度PAを一定強度に保ったまま、パワーPBを細かく変えながら光音響信号の強度の測定を行う必要がある。 That is, in the conventional OPBS method, in order to search for the point where the intensity of the photoacoustic signal is the lowest, the intensity of the photoacoustic signal is measured while finely changing the power P B while keeping the light intensity P A constant. There is a need to do.

そのため、レーザダイオードの光強度、PA、PBの安定性が必要となり、光音響信号の極小値を求める1サイクルの測定時間内での短時間安定性と測定再現性のための長時間安定性の両方が必要となる。 Therefore, the laser diode light intensity, P A , and P B stability are required, and long-term stability for short-term stability and measurement reproducibility within one cycle of measurement time for obtaining the minimum value of the photoacoustic signal. Both sexes are required.

しかし、実際には、フィードバック回路を有する注入電流制御を行っていてもLD(レーザダイオード)光の光強度の時間変化安定性は、さほど高くなく、温度などの環境変化などで、数%の光強度変動は生じてしまう。そのため、実際に上記測定を行う場合、極小値を測定する時間内に数%の光強度ノイズを含んでしまい、改善の困難なOPBS法の測定誤差の原因となってしまうという課題があった。   However, in practice, even if injection current control with a feedback circuit is performed, the temporal change stability of the light intensity of LD (laser diode) light is not so high. Intensity fluctuations will occur. Therefore, when the above measurement is actually performed, there is a problem that light intensity noise of several percent is included in the time for measuring the minimum value, which causes a measurement error of the OPBS method that is difficult to improve.

また、実際の生体内で成分濃度測定を行う場合には、外部からの信号や音源を遮断する実験室内の標準セル内とは異なり、心臓鼓動や血液や体液の流動音、筋肉運動など生体内に内在する様々な外部の音波発生源からの振動や外部環境音など、非常に多くの雑音ノイズが存在する。この雑音ノイズの影響により、前記光音響信号の極小値を検出する際、その極小値の信号が雑音ノイズに埋もれてしまい、前記光音響信号の極小値の光強度が不明確になるという課題があった。   In addition, when measuring the concentration of components in an actual living body, unlike the standard cell in the laboratory that shuts off external signals and sound sources, the heart beat, blood and fluid flow sounds, muscle movement, etc. There are many noises such as vibrations from various external sound wave sources and external environmental sounds. Due to the influence of noise noise, when detecting the minimum value of the photoacoustic signal, the signal of the minimum value is buried in noise noise, and the light intensity of the minimum value of the photoacoustic signal becomes unclear. there were.

本発明は、上記課題を解決するためになされたもので、OPBS法での測定時に被測定試料への照射光強度の時間的変動、および光音響波の測定時の雑音ノイズの影響を低減した高精度の成分濃度分析装置および分析方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has reduced the influence of temporal fluctuations in the intensity of irradiated light on a sample to be measured during measurement using the OPBS method and noise noise during measurement of photoacoustic waves. An object of the present invention is to provide a highly accurate component concentration analyzer and analysis method.

上記の課題を解決するために、本発明は、成分濃度分析装置であって、同一の周波数で互いに逆位相の信号により強度変調された異なる波長の2つの光をそれぞれ出力する光出力手段と、前記2つの光を合波する光合波手段と、前記2つの光の光強度を測定する光強度測定手段と、前記合波された光又は一方の光のみを被測定物に照射する光照射手段と、前記照射により被測定物の内部で発生した音波を検出する音波検出手段と、前記検出された音波の大きさに基づく光音響信号を用いて被測定物内の測定対象成分の濃度を算出する成分濃度算出手段と、を備え、前記成分濃度算出手段は、前記光音響信号の強度の時間変化をフーリエ変換して周波数スペクトルを算出し、前記2つの光の一方を強度掃引しながら前記2つの光の周波数での光音響信号強度に対する、前記2つの光の周波数の2倍の周波数での光音響信号強度の大きさである周波数スペクトル強度比を算出し、前記周波数スペクトル強度比が最大となる前記2つの光の光強度、前記2つの光の光強度の変化量、光吸収係数および光吸収係数変化率に基づいて、前記測定対象成分の濃度を算出することを特徴とする。   In order to solve the above-mentioned problems, the present invention is a component concentration analyzer, and a light output means for outputting two lights of different wavelengths, which are intensity-modulated by signals having opposite phases at the same frequency, and Optical combining means for combining the two lights, light intensity measuring means for measuring the light intensity of the two lights, and light irradiation means for irradiating the object to be measured with the combined light or only one of the lights And a sound wave detecting means for detecting a sound wave generated inside the object to be measured by the irradiation, and a photoacoustic signal based on the magnitude of the detected sound wave, to calculate the concentration of the measurement target component in the object to be measured. Component concentration calculating means for calculating the frequency spectrum by Fourier transforming the temporal change of the intensity of the photoacoustic signal, and performing the intensity sweeping of one of the two lights. Light at one light frequency Calculating a frequency spectrum intensity ratio that is a magnitude of photoacoustic signal intensity at a frequency twice the frequency of the two lights with respect to an echo signal intensity, and the light of the two lights having the maximum frequency spectrum intensity ratio The concentration of the measurement target component is calculated based on the intensity, the amount of change in the light intensity of the two lights, the light absorption coefficient, and the light absorption coefficient change rate.

請求項2に記載の発明は、請求項1記載の成分濃度分析装置において、前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、台形波形もしくは、三角波形であることを特徴とする。   According to a second aspect of the present invention, in the component concentration analyzer according to the first aspect, a modulated signal waveform of light of two different wavelengths, which is intensity-modulated by signals having opposite phases at the same frequency, has a trapezoidal waveform or It is a triangular waveform.

請求項3に記載の発明は、請求項1記載の成分濃度分析装置において、前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、正弦波形であることを特徴とする。   According to a third aspect of the present invention, in the component concentration analyzer according to the first aspect, the modulated signal waveforms of the light of two different wavelengths that are intensity-modulated by the signals having the opposite phases at the same frequency are sinusoidal waveforms. It is characterized by being.

請求項4に記載の発明は、成分濃度分析方法であって、同一の周波数で互いに逆位相の信号により強度変調された異なる波長の2つの光をそれぞれ出力する光出力ステップと、前記2つの光を合波する光合波ステップと、前記2つの光の光強度を測定する光強度測定ステップと、前記合波された光又は一方の光のみを被測定物に照射する光照射ステップと、前記照射により被測定物の内部で発生した音波を検出する音波検出ステップと、前記検出された音波の大きさに基づく光音響信号を用いて被測定物内の測定対象成分の濃度を算出する成分濃度算出ステップと、を有し、前記成分濃度算出ステップは、前記光音響信号の強度の時間変化をフーリエ変換して周波数スペクトルを算出し、前記2つの光の一方を強度掃引しながら前記2つの光の周波数での光音響信号強度に対する、前記2つの光の周波数の2倍の周波数での光音響信号強度の大きさである周波数スペクトル強度比を算出し、前記周波数スペクトル強度比が最大となる前記2つの光の光強度、前記2つの光の光強度の変化量、光吸収係数および光吸収係数変化率に基づいて、前記測定対象成分の濃度を算出するステップを含むことを特徴とする。   The invention according to claim 4 is a component concentration analysis method, wherein an optical output step of outputting two lights of different wavelengths, which are intensity-modulated by signals having opposite phases at the same frequency, respectively, and the two lights A light combining step for combining the two lights, a light intensity measuring step for measuring the light intensity of the two lights, a light irradiation step for irradiating the object to be measured with the combined light or only one light, and the irradiation A sound wave detecting step for detecting a sound wave generated inside the object to be measured by means of, and a component concentration calculation for calculating the concentration of the measurement target component in the object to be measured using a photoacoustic signal based on the magnitude of the detected sound wave And the component concentration calculating step calculates a frequency spectrum by Fourier-transforming a temporal change in the intensity of the photoacoustic signal, and sweeps the intensity of one of the two lights while scanning the two lights. The frequency spectrum intensity ratio, which is the magnitude of the photoacoustic signal intensity at a frequency twice the frequency of the two lights with respect to the photoacoustic signal intensity at the frequency, is calculated, and the frequency spectrum intensity ratio becomes the maximum 2 And calculating the concentration of the measurement target component based on the light intensity of one light, the amount of change in the light intensity of the two lights, the light absorption coefficient, and the light absorption coefficient change rate.

請求項5に記載の発明は、請求項4記載の成分濃度分析方法において、前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、台形波形もしくは、三角波形であることを特徴とする。   According to a fifth aspect of the present invention, in the component concentration analysis method according to the fourth aspect, the modulated signal waveforms of light of two different wavelengths whose intensity is modulated by signals having opposite phases at the same frequency are trapezoidal waveforms or It is a triangular waveform.

請求項6に記載の発明は、請求項4記載の成分濃度分析方法において、前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、正弦波形であることを特徴とする。   According to a sixth aspect of the present invention, in the component concentration analysis method according to the fourth aspect, the modulated signal waveforms of the light of two different wavelengths that are intensity-modulated by signals of opposite phases at the same frequency are sinusoidal waveforms. It is characterized by being.

請求項7に記載の発明は、請求項4乃至6のいずれかに記載の成分濃度分析方法において、前記成分濃度算出ステップは、前記測定対象成分の濃度および溶媒の光吸収係数が既知である標準試料を用いて、前記2つの光の前記光吸収係数変化率を導出するステップを含むことを特徴とする。   The invention according to claim 7 is the component concentration analysis method according to any one of claims 4 to 6, wherein the component concentration calculation step includes a standard in which the concentration of the measurement target component and the light absorption coefficient of the solvent are known. The method includes a step of deriving the rate of change of the light absorption coefficient of the two lights using a sample.

請求項8に記載の発明は、請求項4乃至7のいずれかに記載の成分濃度分析方法において、前記成分濃度算出ステップは、前記光音響信号強度が極小値となるように前記2つの光の光強度を調整した後、前記測定対象成分の濃度を増減させ、前記測定対象成分の濃度の増減後に前記光音響信号強度が極小値となる前記2つの光の光強度の変化量、光吸収係数変化率を測定するステップを含むことを特徴とする。   The invention according to claim 8 is the component concentration analysis method according to any one of claims 4 to 7, wherein the component concentration calculation step is configured to reduce the intensity of the two lights so that the photoacoustic signal intensity becomes a minimum value. After adjusting the light intensity, the concentration of the measurement target component is increased / decreased, and the amount of change in the light intensity of the two lights at which the photoacoustic signal intensity becomes a minimum value after the increase / decrease of the concentration of the measurement target component, the light absorption coefficient It includes the step of measuring the rate of change.

従来のOPBS法における光A、Bを交互に照射した際の光強度の時間変化を示す図である。It is a figure which shows the time change of the light intensity at the time of irradiating light A and B by the conventional OPBS method alternately. 従来のOPBS法における光音響信号強度Sの光強度依存性を示す図である。It is a figure which shows the light intensity dependence of the photoacoustic signal strength S in the conventional OPBS method. 従来のOPBS法に対する雑音ノイズの影響を示す概略図である。It is the schematic which shows the influence of the noise noise with respect to the conventional OPBS method. 光Aの光吸収量が光Bの光吸収量より大きい場合の光吸収量の時間変化を示す概略図である。It is the schematic which shows the time change of the light absorption amount when the light absorption amount of the light A is larger than the light absorption amount of the light B. 光Aの光吸収量が光Bの光吸収量より小さい場合の光吸収量の時間変化を示す概略図である。It is the schematic which shows the time change of the light absorption amount when the light absorption amount of the light A is smaller than the light absorption amount of the light B. 光Aと光Bの光吸収量の差が大きい場合の光音響信号強度Sの周波数スペクトルを示す図である。It is a figure which shows the frequency spectrum of the photoacoustic signal strength S in case the difference of the light absorption amount of the light A and the light B is large. 光Aの光吸収量と光Bの光吸収量がほぼ等しい場合の光吸収量の時間変化を示す概略図である。It is the schematic which shows the time change of the light absorption amount when the light absorption amount of the light A and the light absorption amount of the light B are substantially equal. 光Aと光Bの光吸収量の差が小さい場合の光音響信号強度Sの周波数スペクトルを示す図である。It is a figure which shows the frequency spectrum of the photoacoustic signal strength S in case the difference of the light absorption amount of the light A and the light B is small. 光Aと光Bの光吸収量の時間変化が台形波形である場合の光吸収量の時間変化を示す概略図である。It is the schematic which shows the time change of the light absorption amount in case the time change of the light absorption amount of the light A and the light B is a trapezoid waveform. 基本波の光音響信号強度S(ω)に対する2倍波の光音響信号強度S(2ω)の大きさRの光強度依存性を示す図である。It is a figure which shows the optical intensity dependence of the magnitude | size R of the photoacoustic signal strength S (2 (omega)) of a 2nd harmonic with respect to the photoacoustic signal strength S ((omega)) of a fundamental wave. 光Aと光Bの光吸収量の時間変化が三角波形である場合の光吸収量の時間変化を示す概略図である。It is the schematic which shows the time change of the light absorption amount in case the time change of the light absorption amount of the light A and the light B is a triangular waveform. 光Aと光Bの光吸収量の時間変化が正弦波形である場合の光吸収量の時間変化を示す概略図である。It is the schematic which shows the time change of the light absorption amount in case the time change of the light absorption amount of the light A and the light B is a sine waveform. 本発明の第1の実施形態に係る成分濃度測定装置の概略構成図である。It is a schematic block diagram of the component concentration measuring apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る成分濃度分析方法の処理フロー図である。It is a processing flow figure of the component concentration analysis method concerning a 1st embodiment of the present invention.

(基本周波数と2倍波の比によるノイズ低減化)
従来のOPBS法による測定誤差の発生要因について、図を用いて詳細に説明する。
(Noise reduction by ratio of fundamental frequency and second harmonic)
The cause of the measurement error by the conventional OPBS method will be described in detail with reference to the drawings.

図3に、従来のOPBS法による照射光の光強度Pに対する光音響信号強度Sの変化を示す。従来のOPBS法では、光音響信号強度Sが最低な点(極小値)を探索するために、一方の光ビームのパワーPAを常時測定し、パワーPAを一定強度に保ったまま、他方の光ビームのパワーPBを細かく変えながら光音響信号強度Sの測定を行っていた。この場合、パワーPAは、常に一定に保たれていることが前提条件であり、測定中に変動した場合のパワー変動幅ΔPAは、光音響信号強度Sが最低な点(極小値)を求める際の誤差原因となっていた。 FIG. 3 shows a change in the photoacoustic signal intensity S with respect to the light intensity P of the irradiation light by the conventional OPBS method. While the conventional OPBS methods for the photoacoustic signal intensity S is to search the lowest point (minimum value), constantly measures the power P A of one of the light beam, maintaining the power P A constant intensity, the other The photoacoustic signal intensity S was measured while finely changing the power P B of the light beam. In this case, it is a precondition that the power P A is always kept constant, and the power fluctuation width ΔP A when it fluctuates during measurement is the point (minimum value) where the photoacoustic signal intensity S is the lowest. It was a cause of error when seeking.

つまり、図3中の光強度Pに対する光音響信号強度Sの変化は、パワー変動幅ΔPAが加わることにより、光音響信号強度Sが極小値となる光強度Pの位置が変動することになる。このため、正確な光音響信号強度Sが極小値となる光強度Pが検出できなくなる。 That is, the change of the photoacoustic signal intensity S against the light intensity P in Figure 3, by the power variation width [Delta] P A is applied, so that the position of the light intensity P of the photoacoustic signal intensity S is the minimum value fluctuates . For this reason, it becomes impossible to detect the light intensity P at which the accurate photoacoustic signal intensity S is a minimum value.

さらに、外部からの様々な音響波の雑音ノイズが光音響信号の強度に加わった場合を考えると、図3中のハッチングされた雑音ノイズが光音響信号強度Sの測定結果に加わることになる。そのため、光強度に対する光音響信号強度Sの変化の極小値が雑音ノイズに埋もれてしまい、光音響信号強度Sの極小値および光音響信号強度Sが極小値となる光強度Pの位置が不明確となってしまう。   Further, considering the case where noise noise of various acoustic waves from the outside is added to the intensity of the photoacoustic signal, the hatched noise noise in FIG. 3 is added to the measurement result of the photoacoustic signal intensity S. For this reason, the minimum value of the change in the photoacoustic signal intensity S relative to the light intensity is buried in noise noise, and the position of the light intensity P at which the photoacoustic signal intensity S becomes the minimum value and the photoacoustic signal intensity S is unclear. End up.

つまり、照射光の光強度揺らぎや、様々な音響波の雑音ノイズが発生する環境下では、揺らぎやノイズによる影響が大きく、光音響信号強度Sの極小値の検出自体に問題があった。   That is, in the environment where the light intensity fluctuation of the irradiation light and the noise noise of various acoustic waves are generated, the influence of the fluctuation and noise is large, and there is a problem in the detection of the minimum value of the photoacoustic signal intensity S itself.

そこで本発明の成分濃度測定装置は、従来のOPBS法のように光音響信号強度Sが最低な点を探索するために、一方の光Aの光強度PAを常時測定し、光強度PAを一定強度に保ったまま、光Bの光強度PBを細かく変えながら光音響信号の強度の測定を行う際、光音響信号強度S自体を測定し、光強度PBを変化させて光音響信号強度Sが極小値となる位置を探索するのではなく、光音響信号自体をフーリエ変換し、周波数スペクトル上において、光音響信号の分析を行うことを特徴としている。 Therefore constituent concentration measuring apparatus of the present invention, in order to photoacoustic signal intensity S as in the conventional OPBS method searches for a minimum point, constantly measuring the light intensity P A of one of the light A, the light intensity P A When measuring the intensity of the photoacoustic signal while finely changing the light intensity P B of the light B while maintaining a constant intensity, the photoacoustic signal intensity S itself is measured, and the light intensity P B is changed to change the photoacoustic signal. Rather than searching for a position where the signal intensity S is a minimum value, the photoacoustic signal itself is subjected to Fourier transform, and the photoacoustic signal is analyzed on the frequency spectrum.

従来のOPBS法における周波数ωで周期的な波長λA、λBの2つの位相差π(180°)の矩形波形状の強度変調光A、Bを合波して被測定物に出射する場合において、光Aの光吸収量αAAが光Bの光吸収量αBBより十分大きいときの光吸収量αPの時間変化を図4に示し、逆に光Bの光強度PBが光Aの光強度PAより十分大きいときの光吸収量αPの時間変化を図5に示す。 When combining intensity-modulated light beams A and B in the form of a rectangular wave having two phase differences π (180 °) of periodic wavelengths λ A and λ B at a frequency ω in the conventional OPBS method and emitting them to the object to be measured 4 shows the time change of the light absorption amount αP when the light absorption amount α A P A of the light A is sufficiently larger than the light absorption amount α B P B of the light B, and conversely, the light intensity P B of the light B FIG. 5 shows the temporal change of the light absorption amount αP when is sufficiently larger than the light intensity PA of the light A.

図4または図5のように光Aの光吸収量αAAと光Bの光吸収量αBBの差が大きい場合には、各光吸収量の差分により発生する光音響信号の周波数スペクトル成分の大部分が周波数ωの成分となる。図6に、このときの光音響信号の時間変化をフーリエ変換した周波数スペクトルを示す。周波数3ωのピークは、周波数ωで繰り返す光吸収量変化によって発生する高調波成分である。 When the difference between the light absorption amount α A P A of light A and the light absorption amount α B P B of light B is large as shown in FIG. 4 or FIG. 5, the photoacoustic signal generated by the difference between the light absorption amounts Most of the frequency spectrum components are components of the frequency ω. FIG. 6 shows a frequency spectrum obtained by Fourier transforming the time change of the photoacoustic signal at this time. The peak at the frequency 3ω is a harmonic component generated by the change in the amount of light absorption repeated at the frequency ω.

このとき、ON(ハイレベル)とOFF(ローレベル)の時間間隔が等しいデューティ比が1で、周波数ωの矩形波の周波数スペクトルは、その時間変化内の対称性から、周波数が(2n+1)ωの成分のみ有する(nは0と正の整数)。つまり、光A、Bの光吸収量差が大きいときは、図6のように光音響信号の周波数スペクトルは、周波数ωのスペクトル強度が大きくなり、それに比較して2倍波の周波数2ωのスペクトル強度は小さくなる。   At this time, the frequency ratio of the rectangular wave having the duty ratio equal to the time interval of ON (high level) and OFF (low level) being 1 and the frequency ω is (2n + 1) ω because of the symmetry within the time change. (N is 0 and a positive integer). That is, when the difference in the amount of light absorption between the light A and B is large, the frequency spectrum of the photoacoustic signal has a large spectrum intensity at the frequency ω as shown in FIG. The strength is reduced.

一方、図7に示すように、前記式(1)や式(3)のように光A、Bのバランスが取れた状態に近くなると、光A、Bの光吸収量差が非常に小さくなる。このとき、光音響信号強度Sの時間変化をフーリエ変換した周波数スペクトルは、図8のようになる。つまり、光音響信号強度Sは、周波数ωのときの基本波のS(ω)が非常に小さくなり、それに比較すると、周波数2ωのときの2倍波のS(2ω)が相対的の大きくなってくる。   On the other hand, as shown in FIG. 7, when the light A and B are close to a balanced state as in the equations (1) and (3), the light absorption difference between the light A and B becomes very small. . At this time, the frequency spectrum obtained by Fourier transforming the time change of the photoacoustic signal intensity S is as shown in FIG. That is, in the photoacoustic signal intensity S, the fundamental wave S (ω) at the frequency ω is very small, and compared with that, the double wave S (2ω) at the frequency 2ω is relatively large. Come.

2倍波の光音響信号強度S(2ω)が大きくなる原因は、本来、正確な矩形波の信号形状で光Aの光吸収量αAAと光Bの光吸収量αBBが発生している場合に、光吸収量αAAと光吸収量αBBが同じ大きさであれば、原理的に、光吸収量は一定強度を維持し続けることになり、S(ω)やS(2ω)、S(3ω)などの成分は発生しない。 The reason why the photoacoustic signal intensity S (2ω) of the second harmonic wave becomes large is that the light absorption amount α A P A of the light A and the light absorption amount α B P B of the light B are originally in an accurate rectangular wave signal shape. If the light absorption amount α A P A and the light absorption amount α B P B have the same magnitude, in principle, the light absorption amount will continue to maintain a constant intensity, and S ( Components such as ω), S (2ω), and S (3ω) are not generated.

しかし、実際には、正確な矩形波の信号形状にて、光吸収量αAAと光吸収量αBBを発生させることは困難であり、光照射の開始と終了のときの光吸収量の立ち上がり、立下りに僅かなエネルギー変換の緩和時間が必要なため、実際には、図9に示すように台形の信号形状(台形波形)となる。この場合、必ず2倍波の光音響信号強度S(2ω)が発生し、その強度は、図7の光吸収量αAAと光吸収量αBBのいずれか小さい方の大きさを反映したものとなる。そのため、光吸収量αAAと光吸収量αBBとが同程度の値をとり、その差が小さい場合、2倍波の光音響信号強度S(2ω)は、基本波の光音響信号強度S(ω)より大きな値となる。 However, in practice, it is difficult to generate the light absorption amount α A P A and the light absorption amount α B P B with an accurate rectangular wave signal shape, and light at the start and end of light irradiation is difficult. Since a slight relaxation time for energy conversion is required for the rise and fall of the absorption amount, a trapezoidal signal shape (trapezoid waveform) is actually obtained as shown in FIG. In this case, the photoacoustic signal intensity S (2ω) of the second harmonic is always generated, and the intensity is the smaller of the light absorption amount α A P A and the light absorption amount α B P B in FIG. Will be reflected. Therefore, when the light absorption amount α A P A and the light absorption amount α B P B have the same value and the difference is small, the photoacoustic signal intensity S (2ω) of the second harmonic wave is the light of the fundamental wave. The value is larger than the acoustic signal intensity S (ω).

つまり、光音響信号強度S(ω)に対するS(2ω)の大きさRが最大となるとき、式(1)、式(3)が成り立ち、光音響信号強度Sが極小値を示すことになり、その変化は、模式的に示すと図10のようになる。
R=S(2ω)/S(ω) ・・・(9)
That is, when the magnitude R of S (2ω) with respect to the photoacoustic signal intensity S (ω) is maximized, the expressions (1) and (3) hold, and the photoacoustic signal intensity S shows a minimum value. The change is schematically shown in FIG.
R = S (2ω) / S (ω) (9)

以上の結果より、本発明は上記式(9)の値が最大となるときの光Aと光Bの光強度PAと光強度PBを求め、式(1)式(4)〜(5)より、被測定物内の特定成分の濃度を求めることが出来る。 From the above results, the present invention obtains the light intensity P A and the light intensity P B of the light A and the light B when the value of the above expression (9) becomes maximum, and the expressions (1), (4) to (5) ), The concentration of the specific component in the object to be measured can be obtained.

この方法では、基本波の光音響信号強度S(ω)に対する2倍波の光音響信号強度S(2ω)の大きさを計算することから、図2で示すような音響的な雑音ノイズが、例えば周波数依存性のないホワイトノイズであれば、雑音ノイズ自体が計算上、打ち消し合うので、雑音ノイズが無視できるようになる。また、もし周波数依存性がある雑音ノイズの場合には、周波数スペクトル上で、周波数ωと2倍周波数2ωの雑音ノイズの強度が同じか、両方とも小さな周波数をω、2ωとすることで雑音ノイズを低減化することは可能となる。   In this method, since the magnitude of the photoacoustic signal intensity S (2ω) of the double wave relative to the photoacoustic signal intensity S (ω) of the fundamental wave is calculated, the acoustic noise noise as shown in FIG. For example, in the case of white noise having no frequency dependency, the noise noise itself can be neglected in calculation, so that the noise noise can be ignored. Also, in the case of noise noise having frequency dependence, the noise noise intensity is set so that the frequency ω and the double frequency 2ω have the same noise noise intensity or both have a small frequency ω, 2ω on the frequency spectrum. Can be reduced.

また、図11に示すように、三角波形状の波形で、光Aの光吸収量αAAと光Bの光吸収量αBBが発生し、それらの光吸収量が等しい場合にも、周波数スペクトルは、その時間変化内の対称性から、周波数が(2n+1)ωの成分(nは0と正の整数)のみ有するため、理論的には、周波数2ωの光音響信号強度S(2ω)がゼロとなる。 In addition, as shown in FIG. 11, the light absorption amount α A P A of the light A and the light absorption amount α B P B of the light B are generated in a triangular waveform, and the light absorption amount is equal. Since the frequency spectrum has only a component of frequency (2n + 1) ω (n is 0 and a positive integer) due to symmetry within the time change, theoretically, the photoacoustic signal intensity S (2ω of frequency 2ω is used. ) Becomes zero.

このため、台形波形の場合と同様に、式(9)の基本波の光音響信号強度S(ω)に対する2倍波の光音響信号強度S(2ω)の大きさRの最大値を測定する。このRの値が最大となるときの光Aと光Bの光強度PAと光強度PBを求めることにより、式(1)式(4)〜(5)より、被測定物内の特定成分の濃度を求めることが出来る。 Therefore, as in the case of the trapezoidal waveform, the maximum value of the magnitude R of the double-wave photoacoustic signal intensity S (2ω) with respect to the fundamental photoacoustic signal intensity S (ω) of Equation (9) is measured. . By obtaining the light intensity P A and light intensity P B of the light A and the light B when the value of R is maximized, the identification in the object to be measured is obtained from the expressions (1), (4) to (5). The concentration of the component can be determined.

さらに、図12に示すような、光Aの光吸収量αAAと光Bの光吸収量αBBの時間変化が、正弦波形であり、それらの光吸収量が等しい場合には、そのフーリエ変換後の周波数スペクトルは、周波数ωの整数倍の成分を持つが、周波数ωの偶数倍の成分が奇数倍の成分より大きく、かつ、周波数2ωの成分の大きさが他の偶数倍の成分より大きくなる。このため、上述の雑音ノイズなど様々なノイズが検出されても、光音響信号S(ω)の周波数ωと2ωの付近以外の信号を削除するバンドパスフィルターを用いることにより、図10のように光音響信号S(ω)に対するS(2ω)の大きさRが最大となる位置が高感度に検出可能であり、様々なノイズの影響を受けにくくなるという特徴を有している。 Further, when the light absorption amount α A P A of light A and the light absorption amount α B P B of light B are sinusoidal and the light absorption amounts are equal as shown in FIG. The frequency spectrum after the Fourier transform has a component that is an integral multiple of the frequency ω, but the component that is an even multiple of the frequency ω is larger than the component that is an odd multiple, and the size of the component of the frequency 2ω is another even multiple. Larger than the ingredients. For this reason, even if various noises such as the above-mentioned noise noise are detected, a bandpass filter that deletes signals other than those near the frequency ω and 2ω of the photoacoustic signal S (ω) is used as shown in FIG. The position where the magnitude R of S (2ω) with respect to the photoacoustic signal S (ω) is maximum can be detected with high sensitivity, and is less susceptible to various noises.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。
(第1の実施形態)
図13は、第1の実施形態に係る成分濃度分析装置1の基本構成を示す図である。この成分濃度分析装置は、発振器101と、第1の駆動回路102と、第1の光源103と、180°移相器104と、第2の駆動回路105と、第2の光源106を備える。また、第1の光源103と第2の光源106からの出力光を合波する光合波器107と、その合波光を分波する光分波器108と、それら分波光が入射される光強度測定器109と、被測定物セル110とを備える。また、被測定物セル110に設置された音波検出器111と、増幅器112と、波形観測器113と、記録・演算装置114とを備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 13 is a diagram showing a basic configuration of the component concentration analyzer 1 according to the first embodiment. This component concentration analyzer includes an oscillator 101, a first drive circuit 102, a first light source 103, a 180 ° phase shifter 104, a second drive circuit 105, and a second light source 106. Also, an optical multiplexer 107 that combines the output light from the first light source 103 and the second light source 106, an optical demultiplexer 108 that demultiplexes the combined light, and the light intensity at which the demultiplexed light is incident. A measuring instrument 109 and a device cell 110 to be measured are provided. In addition, a sound wave detector 111, an amplifier 112, a waveform observer 113, and a recording / calculating device 114 are provided in the device under test cell 110.

発振器101は、第1の光源103と第2の光源106から出力されるそれぞれの光を強度変調するための変調信号を出力する。180°移相器104は、発振器101からの変調信号のうち一方を反転して出力する。   The oscillator 101 outputs a modulation signal for intensity-modulating each light output from the first light source 103 and the second light source 106. The 180 ° phase shifter 104 inverts one of the modulation signals from the oscillator 101 and outputs the result.

第1の駆動回路102は、発振器101からの変調信号を基に第1の光源103を駆動させる。また、第2の駆動回路105は、180°移相器104で反転された変調信号を基に第2の光源106を駆動させる。   The first drive circuit 102 drives the first light source 103 based on the modulation signal from the oscillator 101. The second drive circuit 105 drives the second light source 106 based on the modulation signal inverted by the 180 ° phase shifter 104.

第1の光源103は、第1の駆動回路102からの信号により波長λAの光を強度変調して出力する。また、第2の光源106は、第2の駆動回路105からの信号により波長λBの光を強度変調して出力する。これにより、異なる2つの波長の光を同一周波数ωで逆位相の信号により電気的に強度変調して出力することができる。 The first light source 103 modulates the intensity of the light of wavelength λ A by the signal from the first drive circuit 102 and outputs the light. The second light source 106 modulates the intensity of the light having the wavelength λ B with the signal from the second drive circuit 105 and outputs the light. As a result, it is possible to output light having two different wavelengths that are electrically intensity-modulated with signals of the opposite phase at the same frequency ω.

ここで、波長λAと波長λBは、被測定物を構成している背景成分(非測定対象成分)の呈する吸収が互いに等しくなるように設定されてことが望ましい。例えば、被測定物が生体であり、測定対象成分がグルコースやコレステロールの場合、被測定物の大部分を示す水による吸収度が互いに等しい波長である。 Here, it is desirable that the wavelength λ A and the wavelength λ B are set so that the absorption exhibited by the background component (non-measurement target component) constituting the object to be measured is equal to each other. For example, when the object to be measured is a living body and the measurement target component is glucose or cholesterol, the absorbance by water indicating most of the object to be measured is the same wavelength.

また、波長λAは、測定対象成分の呈する吸収が極大となるように設定されていることが望ましい。例えば、波長λAは、グルコースやコレステロールによって最も良く吸収される波長である1600nm又は2100nmであることが好ましい。 Further, it is desirable that the wavelength λ A is set so that the absorption exhibited by the measurement target component is maximized. For example, the wavelength λ A is preferably 1600 nm or 2100 nm, which is the wavelength that is best absorbed by glucose or cholesterol.

このような第1の光源103及び第2の光源106は、波長を可変可能であり、連続的に強度変調した光を出力可能な光源であればよい。例えば、DFB(Distributed Feedback)半導体レーザを用いることができる。また、波長可変レーザを用いる場合、温度調整により発振周波数を変化させる方法や外部共振器を用いる方法等がある。その他、ガスレーザや固体レーザも用いることも可能であり、プリズムや回折格子等の分散素子を利用して所定の波長を取り出すようにしてもよい。   The first light source 103 and the second light source 106 may be any light source that can change the wavelength and can output light whose intensity is continuously modulated. For example, a DFB (Distributed Feedback) semiconductor laser can be used. When using a wavelength tunable laser, there are a method of changing the oscillation frequency by adjusting the temperature, a method of using an external resonator, and the like. In addition, a gas laser or a solid-state laser can also be used, and a predetermined wavelength may be extracted using a dispersion element such as a prism or a diffraction grating.

光合波器107は、第1の光源103からの測定光と第2の光源106からの参照光とを合波し、合波された光又は合波されていない一方の光のみを導いて被測定物セル110に照射する。被測定物セル110の表面形状に合わせて、光出射端部に直角プリズム、光ファイバコリメータ、フィルール等を接着してもよい。   The optical multiplexer 107 combines the measurement light from the first light source 103 and the reference light from the second light source 106, and guides only the combined light or one of the light that is not combined. Irradiate the measurement object cell 110. A right-angle prism, an optical fiber collimator, a filler, or the like may be bonded to the light emitting end in accordance with the surface shape of the measured object cell 110.

また、光分波器108は、光合波器107から被測定物セル110に向けて出射された光の一部を分波して、光強度測定器109に導き測定することにより、光分波器108の分岐比に基づき被測定物セル110中の被測定物に照射されている光強度を算出する。   The optical demultiplexer 108 demultiplexes a part of the light emitted from the optical multiplexer 107 toward the device cell 110 to be measured, and guides it to the optical intensity measuring device 109 for measurement. Based on the branching ratio of the vessel 108, the light intensity applied to the measurement object in the measurement object cell 110 is calculated.

音波検出器111は、光合波器107の光出射端部から一定距離の位置に配置され、光合波器107から出射された光により被測定物セル110の内部で発生する音波を検出し、その音波の大きさ(振幅)に比例した電気信号に変換して光音響信号として出力する。例えば、マイクロフォンや圧電素子を用いることができる。   The sound wave detector 111 is disposed at a fixed distance from the light emitting end of the optical multiplexer 107, detects sound waves generated inside the measured object cell 110 by the light emitted from the optical multiplexer 107, and It is converted into an electrical signal proportional to the magnitude (amplitude) of the sound wave and output as a photoacoustic signal. For example, a microphone or a piezoelectric element can be used.

増幅器112は、音波検出器111から出力された光音響信号を増幅する。波形観測器113は、増幅後の光音響信号の振幅及び位相を測定する。波形観測器113に加え、位相検波増幅器(不図示)により検波増幅して光音響信号の振幅及び位相を測定してもよい。   The amplifier 112 amplifies the photoacoustic signal output from the sound wave detector 111. The waveform observer 113 measures the amplitude and phase of the amplified photoacoustic signal. In addition to the waveform observer 113, the amplitude and phase of the photoacoustic signal may be measured by detection and amplification by a phase detection amplifier (not shown).

記録・演算装置114は、波形観測器113で測定された光音響信号強度の時間変化をフーリエ変換し、時間変動信号を周波数スペクトルとして記録する機能や、ノイズ除去のためのバンドパスフィルターや、基本波の周波数ωや2倍波の周波数2ωでの光音響信号強度S(ω)、S(2ω)のピーク強度の抽出、記録、演算機能を有している。例えば、メモリやCPUを備えたコンピュータ等を用いることができる。   The recording / computing device 114 performs a Fourier transform on the time change of the photoacoustic signal intensity measured by the waveform observer 113 and records a time-varying signal as a frequency spectrum, a bandpass filter for noise removal, It has photoacoustic signal intensities S (ω) and S (2ω) peak intensity extraction, recording, and calculation functions at a wave frequency ω and a double wave frequency 2ω. For example, a computer equipped with a memory and a CPU can be used.

さらに記録・演算装置114は、光音響信号において、基本波の周波数ωと2倍波の周波数2ωを検出する際に、2つのLD光LD1、LD2から検出されるそれぞれの光音響信号強度SLD1とSLD2をそれぞれLD1とLD2の光強度変動の波形(正弦波)を元にロックイン検出することもできる。これにより、より高感度な測定が出来るとともに、各光音響信号強度SLD1とSLD2の位相ズレ量φも検出可能である。このとき検出される位相ズレ量φは、被測定試料においてLD2によって発生する光音響信号特有の位相ズレとなるため、LD2特有の光音響信号へのエネルギー変換過程を検出することになる。これを用いて被測定試料に対する光音響的なスペクトル分析も可能となる。 Further, when the recording / calculation device 114 detects the fundamental frequency ω and the double frequency 2ω in the photoacoustic signal, the respective photoacoustic signal intensities S LD1 detected from the two LD lights LD1 and LD2 are detected. And S LD2 can also be detected by lock-in detection based on the light intensity fluctuation waveforms (sine waves) of LD1 and LD2 , respectively. Thereby, measurement with higher sensitivity can be performed, and the phase shift amount φ between the photoacoustic signal intensities S LD1 and S LD2 can be detected. Since the phase shift amount φ detected at this time is a phase shift specific to the photoacoustic signal generated by the LD 2 in the sample to be measured, an energy conversion process into a photoacoustic signal specific to the LD 2 is detected. Using this, photoacoustic spectrum analysis can be performed on the sample to be measured.

以下、図14を参照しながら、本実施の形態に係る成分濃度分析方法について説明する。最初に、光波長がそれぞれ異なる光波長λAと光波長λBの光の光強度変化に対する被測定物内の特定成分の光吸収係数の光強度変化率δαを測定する。 Hereinafter, the component concentration analysis method according to the present embodiment will be described with reference to FIG. First, the light intensity change rate δα of the light absorption coefficient of the specific component in the object to be measured is measured with respect to the light intensity changes of the light wavelengths λ A and λ B having different light wavelengths.

まず、光Aの光強度変化に対する被測定物内の特定成分の光吸収係数の光強度変化率δαAを求めるために、特定成分の濃度や溶媒の光吸収係数が既知の標準試料を準備し、光Aを照射する(ステップS101)。そして光Aの光強度を掃引し、光Aの特定成分の光音響信号強度SAGの光強度依存性を測定する(ステップS102)。この測定結果より、光Aの特定成分の光音響信号強度SAGから光Aの光吸収係数の光強度変化率δαAを算出する(ステップS103)。 First, in order to obtain the light intensity change rate δα A of the light absorption coefficient of the specific component in the object to be measured with respect to the light intensity change of the light A, a standard sample having a known concentration of the specific component and a light absorption coefficient of the solvent is prepared. The light A is irradiated (step S101). Then, the light intensity of the light A is swept, and the light intensity dependence of the photoacoustic signal intensity SAG of the specific component of the light A is measured (step S102). From this measurement result, the light intensity change rate δα A of the light absorption coefficient of the light A is calculated from the photoacoustic signal intensity S AG of the specific component of the light A (step S103).

続いて、光Bの光強度変化に対する被測定物内の特定成分の光吸収係数の光強度変化率δαBを求めるために、特定成分の濃度や溶媒の光吸収係数が既知の標準試料を準備し、光Bを照射する(ステップS104)。そして光Bの光強度を掃引し、光Bの特定成分の光音響信号強度SBGの光強度依存性を測定する(ステップS105)。この測定結果より、光Bの特定成分の光音響信号強度SBGから光Bの光吸収係数の光強度変化率δαBを算出する(ステップS106)。 Subsequently, in order to obtain the light intensity change rate δα B of the light absorption coefficient of the specific component in the object to be measured with respect to the light intensity change of the light B, a standard sample whose concentration of the specific component and the light absorption coefficient of the solvent are known is prepared. Then, the light B is irradiated (step S104). Then, the light intensity of the light B is swept, and the light intensity dependency of the photoacoustic signal intensity SBG of the specific component of the light B is measured (step S105). From this measurement result, the light intensity change rate δα B of the light absorption coefficient of the light B is calculated from the photoacoustic signal intensity S BG of the specific component of the light B (step S106).

次に被測定物の測定に移行する。例えば図13に示すような成分濃度測定装置を用いて、周波数ωで180°位相が異なっている2つの光Aと光Bを交互に被測定物に照射する(ステップS107)。このとき周波数ωは、光音響信号強度Sの周波数となるため、マイクロフォンや圧電素子のような音波電気変換素子111が検出可能な周波数帯であることが望ましい。具体的には、20KHz以下であることが望ましい。   Next, the process proceeds to measurement of an object to be measured. For example, using a component concentration measuring apparatus as shown in FIG. 13, the light to be measured is alternately irradiated with two light A and light B having a phase difference of 180 ° at the frequency ω (step S107). At this time, since the frequency ω is the frequency of the photoacoustic signal intensity S, it is desirable that the frequency ω be a frequency band that can be detected by the sonic electric transducer 111 such as a microphone or a piezoelectric element. Specifically, it is desirable that it is 20 KHz or less.

まず、一方の光Bは一定の光強度PBになるように調整したまま、光Aの光強度を掃引し、被測定物の光音響信号強度SAの光強度依存性を測定する(ステップS108)。この測定結果より、光音響信号強度SAの時間変化をフーリエ変換した後、周波数ωの光音響信号強度SA(ω)と2倍波の周波数2ωの光音響信号強度SA(2ω)の各スペクトル強度の光強度依存性を算出する(ステップS109)。そして、光音響信号強度SAを強度掃引してSA(ω)に対するSA(2ω)の大きさR=SA(2ω)/SA(ω)の最大値を探索し、その時の光Aの光強度PAを取得する(ステップS110)。 First, while adjusting one light B so as to have a constant light intensity P B , the light intensity of the light A is swept to measure the light intensity dependency of the photoacoustic signal intensity S A of the object to be measured (step). S108). From this measurement result, after the time variation of the photoacoustic signal intensity S A Fourier transform photoacoustic signal intensity of the frequency omega S A (omega) and the second harmonic frequency 2 [omega of the photoacoustic signal intensity S A of (2 [omega) The light intensity dependency of each spectrum intensity is calculated (step S109). Then, the photoacoustic signal intensity S A and intensity swept searches the maximum value of S A (2 [omega) of size R = S A (2ω) / S A (ω) with respect to S A (omega), the light at that time A light intensity PA of A is acquired (step S110).

続いて、測定の初期状態に戻し、2つの光Aと光Bを周波数ωで互いに逆相の状態にて合波して、被測定物に照射する(ステップS111)。光Bの光強度をPB’=PB+δPBに増やした状態で一定に保ったまま、光Aを光強度掃引し、被測定物に関する光音響信号強度SA’の光強度依存性を測定する(ステップS112)。この測定結果より、光音響信号強度SA’の時間変化をフーリエ変換した後、基本波の光音響信号強度SA’(ω)と2倍波の光音響信号強度SA’(2ω)の各スペクトル強度の光強度依存性を算出する(ステップS113)。そして、光音響信号強度SA’を強度掃引してSA’(ω)に対するSA’(2ω)の大きさR=SA’(2ω)/SA’(ω)の光強度変化から最大値を探索し、その時の光Aの光強度PA’=PA+δPAを取得する(ステップS114)。 Subsequently, the measurement is returned to the initial state, and the two light A and light B are combined in the opposite phase with each other at the frequency ω, and irradiated on the object to be measured (step S111). The light intensity of the photoacoustic signal intensity S A 'relating to the object to be measured is changed by sweeping the light intensity of the light A while keeping the light intensity of the light B constant while increasing the light intensity to P B ' = P B + δP B. Measure (Step S112). From this measurement result, the time change of the photoacoustic signal intensity S A ′ is Fourier transformed, and then the fundamental wave photoacoustic signal intensity S A ′ (ω) and the double wave photoacoustic signal intensity S A ′ (2ω) are obtained. The light intensity dependency of each spectrum intensity is calculated (step S113). Then, the intensity of the photoacoustic signal intensity S A ′ is swept, and the magnitude of S A ′ (2ω) relative to S A ′ (ω) R = S A ′ (2ω) / S A ′ (ω) The maximum value is searched, and the light intensity P A ′ = P A + δP A of the light A at that time is acquired (step S114).

最後に、これまで得られたδαA、δαB、PA、PB、δPA、δPBの値を用いて、被測定物内の特定成分の濃度を導出する(ステップS115)。 Finally, using the values of δα A , δα B , P A , P B , δP A , and δP B obtained so far, the concentration of the specific component in the object to be measured is derived (step S115).

101 発振器
102、105 駆動回路
103、106 光源
107 光合波器
108 光分波器
109 光強度測定器
110 被測定物セル
111 音波検出器
112 増幅器
113 波形観測器
114 記録・演算装置
DESCRIPTION OF SYMBOLS 101 Oscillator 102, 105 Drive circuit 103, 106 Light source 107 Optical multiplexer 108 Optical demultiplexer 109 Optical intensity measuring device 110 Device under test 111 Sound wave detector 112 Amplifier 113 Waveform observation device 114 Recording / calculation device

Claims (8)

同一の周波数で互いに逆位相の信号により強度変調された異なる波長の2つの光をそれぞれ出力する光出力手段と、
前記2つの光を合波する光合波手段と、
前記2つの光の光強度を測定する光強度測定手段と、
前記合波された光又は一方の光のみを被測定物に照射する光照射手段と、
前記照射により被測定物の内部で発生した音波を検出する音波検出手段と、
前記検出された音波の大きさに基づく光音響信号を用いて被測定物内の測定対象成分の濃度を算出する成分濃度算出手段と、
を備え、前記成分濃度算出手段は、前記光音響信号の強度の時間変化をフーリエ変換して周波数スペクトルを算出し、前記2つの光の一方を強度掃引しながら前記2つの光の周波数での光音響信号強度に対する、前記2つの光の周波数の2倍の周波数での光音響信号強度の大きさである周波数スペクトル強度比を算出し、前記周波数スペクトル強度比が最大となる前記2つの光の光強度、前記2つの光の光強度の変化量、光吸収係数および光吸収係数変化率に基づいて、前記測定対象成分の濃度を算出することを特徴とする成分濃度分析装置。
Light output means for outputting two lights of different wavelengths, each of which is intensity-modulated by signals having opposite phases at the same frequency, and
Optical multiplexing means for multiplexing the two lights;
A light intensity measuring means for measuring the light intensity of the two lights;
A light irradiation means for irradiating the object to be measured with the combined light or only one light;
Sound wave detecting means for detecting sound waves generated inside the object to be measured by the irradiation;
Component concentration calculating means for calculating the concentration of the component to be measured in the object to be measured using a photoacoustic signal based on the magnitude of the detected sound wave;
The component concentration calculation means calculates a frequency spectrum by Fourier transforming the temporal change of the intensity of the photoacoustic signal, and scans the light at the frequency of the two lights while sweeping the intensity of one of the two lights. A frequency spectrum intensity ratio, which is the magnitude of the photoacoustic signal intensity at a frequency twice the frequency of the two lights with respect to the acoustic signal intensity, is calculated, and the light of the two lights having the maximum frequency spectrum intensity ratio A component concentration analyzer that calculates the concentration of the measurement target component based on intensity, a change amount of light intensity of the two lights, a light absorption coefficient, and a light absorption coefficient change rate.
前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、台形波形もしくは、三角波形であることを特徴とする請求項1記載の成分濃度分析装置。   2. The component concentration analyzer according to claim 1, wherein the modulated signal waveforms of light of two different wavelengths, which are intensity-modulated by signals having opposite phases at the same frequency, are trapezoidal waveforms or triangular waveforms. 前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、正弦波形であることを特徴とする請求項1記載の成分濃度分析装置。   2. The component concentration analyzer according to claim 1, wherein the modulated signal waveforms of light of two different wavelengths whose intensity is modulated by signals having opposite phases at the same frequency are sinusoidal waveforms. 同一の周波数で互いに逆位相の信号により強度変調された異なる波長の2つの光をそれぞれ出力する光出力ステップと、
前記2つの光を合波する光合波ステップと、
前記2つの光の光強度を測定する光強度測定ステップと、
前記合波された光又は一方の光のみを被測定物に照射する光照射ステップと、
前記照射により被測定物の内部で発生した音波を検出する音波検出ステップと、
前記検出された音波の大きさに基づく光音響信号を用いて被測定物内の測定対象成分の濃度を算出する成分濃度算出ステップと、
を有し、前記成分濃度算出ステップは、前記光音響信号の強度の時間変化をフーリエ変換して周波数スペクトルを算出し、前記2つの光の一方を強度掃引しながら前記2つの光の周波数での光音響信号強度に対する、前記2つの光の周波数の2倍の周波数での光音響信号強度の大きさである周波数スペクトル強度比を算出し、前記周波数スペクトル強度比が最大となる前記2つの光の光強度、前記2つの光の光強度の変化量、光吸収係数および光吸収係数変化率に基づいて、前記測定対象成分の濃度を算出するステップを含むことを特徴とする成分濃度分析方法。
An optical output step for outputting two lights of different wavelengths, which are intensity-modulated by signals having opposite phases at the same frequency, and
A light combining step for combining the two lights;
A light intensity measurement step for measuring the light intensity of the two lights;
A light irradiation step of irradiating the object to be measured with the combined light or only one light; and
A sound wave detection step for detecting sound waves generated inside the object to be measured by the irradiation;
A component concentration calculating step for calculating the concentration of the component to be measured in the object to be measured using a photoacoustic signal based on the magnitude of the detected sound wave;
And the component concentration calculating step calculates a frequency spectrum by Fourier-transforming the time change of the intensity of the photoacoustic signal, and sweeps one of the two lights at an intensity at the frequency of the two lights. A frequency spectrum intensity ratio that is the magnitude of the photoacoustic signal intensity at a frequency twice the frequency of the two lights with respect to the photoacoustic signal intensity is calculated, and the two light beams having the maximum frequency spectrum intensity ratio are calculated. A component concentration analysis method comprising calculating a concentration of the measurement target component based on light intensity, a change amount of light intensity of the two lights, a light absorption coefficient, and a light absorption coefficient change rate.
前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、台形波形もしくは、三角波形であることを特徴とする請求項4記載の成分濃度分析方法。   5. The component concentration analysis method according to claim 4, wherein the modulated signal waveforms of light of two different wavelengths whose intensity is modulated by signals having opposite phases at the same frequency are trapezoidal waveforms or triangular waveforms. 前記同一の周波数で互いに逆位相の信号により強度変調された異なる2つの波長の光の変調信号波形が、正弦波形であることを特徴とする請求項4記載の成分濃度分析方法。   5. The component concentration analysis method according to claim 4, wherein the modulated signal waveforms of light of two different wavelengths whose intensity is modulated by signals having opposite phases at the same frequency are sinusoidal waveforms. 前記成分濃度算出ステップは、前記測定対象成分の濃度および溶媒の光吸収係数が既知である標準試料を用いて、前記2つの光の前記光吸収係数変化率を導出するステップを含むことを特徴とする請求項4乃至6のいずれかに記載の成分濃度分析方法。   The component concentration calculation step includes a step of deriving the light absorption coefficient change rate of the two lights using a standard sample whose concentration of the measurement target component and the light absorption coefficient of the solvent are known. The component concentration analysis method according to any one of claims 4 to 6. 前記成分濃度算出ステップは、前記光音響信号強度が極小値となるように前記2つの光の光強度を調整した後、前記測定対象成分の濃度を増減させ、前記測定対象成分の濃度の増減後に前記光音響信号強度が極小値となる前記2つの光の光強度の変化量、光吸収係数変化率を測定するステップを含むことを特徴とする請求項4乃至7のいずれかに記載の成分濃度分析方法。   In the component concentration calculation step, after adjusting the light intensity of the two lights so that the photoacoustic signal intensity becomes a minimum value, the concentration of the measurement target component is increased or decreased, and after the increase or decrease of the concentration of the measurement target component The component concentration according to any one of claims 4 to 7, further comprising a step of measuring a change amount of light intensity and a light absorption coefficient change rate of the two lights at which the photoacoustic signal intensity is a minimum value. Analysis method.
JP2017135028A 2017-07-10 2017-07-10 Component concentration measuring device and analysis method Active JP6730963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135028A JP6730963B2 (en) 2017-07-10 2017-07-10 Component concentration measuring device and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135028A JP6730963B2 (en) 2017-07-10 2017-07-10 Component concentration measuring device and analysis method

Publications (2)

Publication Number Publication Date
JP2019015685A true JP2019015685A (en) 2019-01-31
JP6730963B2 JP6730963B2 (en) 2020-07-29

Family

ID=65357415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135028A Active JP6730963B2 (en) 2017-07-10 2017-07-10 Component concentration measuring device and analysis method

Country Status (1)

Country Link
JP (1) JP6730963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116429880A (en) * 2023-06-05 2023-07-14 武汉迈威瑞达科技有限公司 Urea concentration detection method, device, electronic equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338805A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Method and apparatus for measuring concentration of gas
JP2008045938A (en) * 2006-08-11 2008-02-28 Toshiba Medical Systems Corp Photoacoustic analysis and photoacoustic analyzer for concentration measurement of analysis object in specimen tissue
JP2016154607A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Constituent concentration measuring apparatus and measuring method
JP2016154584A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Constituent concentration measuring apparatus and measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338805A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Method and apparatus for measuring concentration of gas
JP2008045938A (en) * 2006-08-11 2008-02-28 Toshiba Medical Systems Corp Photoacoustic analysis and photoacoustic analyzer for concentration measurement of analysis object in specimen tissue
JP2016154607A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Constituent concentration measuring apparatus and measuring method
JP2016154584A (en) * 2015-02-23 2016-09-01 日本電信電話株式会社 Constituent concentration measuring apparatus and measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116429880A (en) * 2023-06-05 2023-07-14 武汉迈威瑞达科技有限公司 Urea concentration detection method, device, electronic equipment and storage medium
CN116429880B (en) * 2023-06-05 2023-09-15 武汉迈威瑞达科技有限公司 Urea concentration detection method, device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6730963B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP5411180B2 (en) Component concentration measuring method and apparatus
JP5519152B2 (en) Device for acquiring information about anatomical samples using optical microscopy
US9949717B2 (en) Ultrasound detector and detecting device for optoacoustic or thermoacoustic imaging
WO1998053733A1 (en) Inspection apparatus using optical interferometer
JP5647092B2 (en) Component concentration measuring method and apparatus
JP4963482B2 (en) Component concentration measuring apparatus and component concentration measuring method
US20140058226A1 (en) Method and Apparatus for In Vivo Optical Measurement of Blood Glucose Concentration
JP5839489B2 (en) Component concentration measurement method
JP5947761B2 (en) Component concentration analyzer and component concentration analysis method
JP6730963B2 (en) Component concentration measuring device and analysis method
US11428672B2 (en) Component-concentration measuring apparatus and method
JP2018013417A (en) Component concentration measuring device and method
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP5336438B2 (en) Component concentration measuring method and apparatus
MacLean et al. Cavity-enhanced photoacoustic detection using acoustic and fiber-optic resonators
JP2016154607A (en) Constituent concentration measuring apparatus and measuring method
JP6080004B2 (en) Parameter measuring apparatus, parameter measuring method, and program
WO2012134515A1 (en) Method and apparatus for in vivo optical measurement of blood glucose concentration
JP6619379B2 (en) Component concentration measuring apparatus and method
Camou et al. Towards non-invasive and continuous monitoring of blood glucose level based on CW photoacoustics: New concept for selective and sensitive measurements of aqueous glucose
CN116138771B (en) Energy correction method for multispectral blood glucose photoacoustic detection
JP5313016B2 (en) Component concentration analyzer and component concentration analysis method
JP5345439B2 (en) Component concentration analyzer and component concentration analysis method
JP2019004946A (en) Component concentration measuring device and measuring method
JP2015230469A (en) Light source device and information acquisition device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6730963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150