JP2019014938A - High-strength plating steel plate and method for producing the same - Google Patents

High-strength plating steel plate and method for producing the same Download PDF

Info

Publication number
JP2019014938A
JP2019014938A JP2017133033A JP2017133033A JP2019014938A JP 2019014938 A JP2019014938 A JP 2019014938A JP 2017133033 A JP2017133033 A JP 2017133033A JP 2017133033 A JP2017133033 A JP 2017133033A JP 2019014938 A JP2019014938 A JP 2019014938A
Authority
JP
Japan
Prior art keywords
steel plate
steel sheet
steel
plate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017133033A
Other languages
Japanese (ja)
Other versions
JP6958037B2 (en
Inventor
裕之 川田
Hiroyuki Kawada
川田  裕之
邦夫 林
Kunio Hayashi
邦夫 林
登代充 中村
Toyomitsu Nakamura
登代充 中村
仁寿 ▲徳▼永
仁寿 ▲徳▼永
Masatoshi Tokunaga
上西 朗弘
Akihiro Uenishi
朗弘 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017133033A priority Critical patent/JP6958037B2/en
Publication of JP2019014938A publication Critical patent/JP2019014938A/en
Application granted granted Critical
Publication of JP6958037B2 publication Critical patent/JP6958037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a high-strength plating steel plate having excellent corrosion resistance and a method of producing the same.SOLUTION: A high-strength plating steel plate has different steel plates and butt-welding parts thereof, where, a maximum tensile strength of at least one steel plate of the different steel plates is 780 MPa or more, and in the whole steel plate including the butt-welding part and a welding heat-affected zone, a plating layer is provided on the surface.SELECTED DRAWING: Figure 1

Description

本発明は、耐食性に優れた高強度めっき鋼板とその製造方法に関する。   The present invention relates to a high-strength plated steel sheet excellent in corrosion resistance and a method for producing the same.

近年、自動車には、車体を軽量化して燃費を高め、炭酸ガスの排出量を低減するため、また、衝突時、衝突エネルギーを吸収して、搭乗者の保護・安全を確保するため、高強度鋼板が多く使用されている。しかし、一般に、鋼板を高強度化すると、成形性(延性、穴拡げ性等)が低下し、複雑な形状への加工が困難になるので、強度と成形性(延性、穴拡げ性等)の両立を図ることは簡単ではなく、これまで、種々の技術が提案されている。   In recent years, automobiles have high strength in order to reduce the body weight and improve fuel efficiency, reduce carbon dioxide emissions, and to absorb collision energy and ensure passenger protection and safety in the event of a collision. Many steel plates are used. However, in general, increasing the strength of a steel sheet decreases formability (ductility, hole expandability, etc.) and makes it difficult to process complex shapes, so strength and formability (ductility, hole expandability, etc.) It is not easy to achieve both, and various techniques have been proposed so far.

例えば、非特許文献1には、板厚、強度、あるいはめっきの種類の異なる鋼板を溶接し、溶接後の鋼板を成形する「テーラードブランク溶接」が紹介されている。この工法を採用することで、強度が必要な部位には板厚の薄い高強度鋼板を配置し、成形性が必要な部位には軟鋼板を配置することで、高強度化と複雑な形状を両立し、軽量化と衝突安全性を両立することができる。   For example, Non-Patent Document 1 introduces “tailored blank welding” in which steel plates having different plate thicknesses, strengths, or plating types are welded to form a steel plate after welding. By adopting this method, high strength steel sheets with thin plate thickness are placed in areas where strength is required, and mild steel sheets are placed in areas where formability is required, resulting in high strength and complex shapes. It is possible to achieve both weight reduction and collision safety.

自動車車体には高い耐食性を要求される部位もあり、そのような部位にはめっき鋼板が適用されることが多い。めっき鋼板にテーラードブランク溶接を適用すると、溶接部およびその周辺のめっき層は蒸散するため、溶接部およびその周辺はめっき層に保護されず、母材と比べて耐食性が劣位となる課題がある。この課題に対し、例えば特許文献1は、Cu−P−Nb−Moを含有する鋼板表面に犠牲防食作用のあるめっきを施すことで、めっき層が消失する溶接部であっても周辺母材のめっき層による犠牲防食作用によって耐食性を高めることができるとしている。しかしながら、めっき層が消失した部位の耐食性が母材と比べて劣位であることに変わりは無く、本課題を解決できない。   There are parts in automobile bodies that require high corrosion resistance, and plated steel sheets are often applied to such parts. When tailored blank welding is applied to a plated steel sheet, the welded portion and the surrounding plating layer are evaporated, and therefore the welded portion and its surroundings are not protected by the plating layer, and there is a problem that the corrosion resistance is inferior to that of the base material. In response to this problem, for example, Patent Document 1 discloses that the peripheral base material of the peripheral base material even if the plating layer disappears by performing plating with sacrificial anticorrosive action on the steel plate surface containing Cu-P-Nb-Mo. It is said that the corrosion resistance can be enhanced by the sacrificial anticorrosive action by the plating layer. However, the corrosion resistance of the portion where the plating layer disappears remains inferior to that of the base material, and this problem cannot be solved.

また、特許文献2では、鋼板の化学組成を制限することで溶接部耐食性の劣化を抑制することができるとしている。しかしながら、本技術により達成できるのはめっきを有さない母材相当の耐食性を有する溶接部であり、めっきを有する母材と比べて溶接部の耐食性が劣位であることに変わりは無く、本課題を解決できない。   Moreover, in patent document 2, it is supposed that deterioration of welding part corrosion resistance can be suppressed by restrict | limiting the chemical composition of a steel plate. However, this technology can achieve a welded part with corrosion resistance equivalent to the base material without plating, and the corrosion resistance of the welded part is inferior to that of the base material with plating. Cannot be resolved.

更に、特許文献3では、めっき種をZn−Al−Mg系合金とすることで、通常用いられる亜鉛めっきと比べて犠牲防食作用を強め、溶接部の耐食性を向上させることができるとしている。しかしながら、めっき層が消失した部位の耐食性が母材と比べて劣位であることに変わりは無く、本課題を解決できない。   Furthermore, Patent Document 3 states that by using a Zn—Al—Mg alloy as the plating type, the sacrificial anticorrosive action can be enhanced as compared with the commonly used zinc plating, and the corrosion resistance of the welded portion can be improved. However, the corrosion resistance of the portion where the plating layer disappears remains inferior to that of the base material, and this problem cannot be solved.

また、高強度鋼板にテーラードブランク溶接を適用すると、溶接時に溶接部は高温に加熱された後に急冷されて硬質化するため、溶接部における成形性の劣化および溶接部における耐衝撃性の劣化が課題となる。また、溶接部周辺は溶接時に加熱される溶接熱影響部(HAZ:Heat Affected Zone)となるが、HAZの軟化によるHAZへのひずみ集中による成形性の劣化やHAZの硬質化による耐衝撃性および/または成形性の劣化も課題である。   In addition, when tailored blank welding is applied to high-strength steel sheets, the welded part is heated to a high temperature and then hardened by quenching at the time of welding, so deterioration in formability in the welded part and impact resistance in the welded part are problems. It becomes. In addition, the periphery of the welded portion is a heat affected zone (HAZ) that is heated during welding. However, the HAZ is softened and the formability is deteriorated due to strain concentration on the HAZ, and the HAZ is hardened. Degradation of formability is also a problem.

それに対し、例えば特許文献4ではプレス成形方法を制限することで、溶接部近傍での割れの発生を回避する手段が提案されている。また、特許文献5では、溶接条件を制限し、溶接熱影響部の範囲を制御することで、高強度鋼板において成形性に優れた溶接部を得る手法が提案されている。しかしながら、これらの技術では成形方法や溶接方法が限定されるため、適用できる部品、材料が制約され、適正な形状や材料を選択できない場合がある。また、これら技術を適用するために、特殊な設備を要するため、生産上のコストも大きくなる。   On the other hand, for example, Patent Document 4 proposes a means for avoiding the occurrence of cracks in the vicinity of the welded part by limiting the press forming method. Patent Document 5 proposes a technique for obtaining a welded portion having excellent formability in a high-strength steel sheet by limiting the welding conditions and controlling the range of the heat affected zone. However, in these techniques, since the forming method and the welding method are limited, applicable parts and materials are restricted, and an appropriate shape and material may not be selected. In addition, since special equipment is required to apply these techniques, the production cost also increases.

溶接部の成形性を改善するため、例えば特許文献6および特許文献7では溶接の前あるいは後に溶接部周辺に熱処理を加えることで溶接部の硬度を抑える手法が提案されている。しかしながら、溶接部に熱を加える際、周辺の鋼板も同様に加熱されてしまい特性が劣化し、成形時の破壊や形状不良を起こす場合がある。また、溶接および/または後熱処理によるHAZの成形性、耐衝撃性が劣化する場合がある。   In order to improve the formability of the welded part, for example, Patent Document 6 and Patent Document 7 propose a technique of suppressing the hardness of the welded part by applying a heat treatment around the welded part before or after welding. However, when heat is applied to the welded portion, the surrounding steel plates are also heated in the same manner, so that the characteristics are deteriorated, and there is a case where destruction during molding or shape failure occurs. Further, the formability and impact resistance of the HAZ by welding and / or post heat treatment may deteriorate.

特許文献8、9では、鋼板の化学組成を制限した、HAZ軟化の小さい高強度鋼板が提案されている。しかしながら、HAZの耐衝撃性の劣化、あるいは溶接部の成形性および耐衝撃性の劣化については触れられていない。   Patent Documents 8 and 9 propose high-strength steel sheets with small HAZ softening that limit the chemical composition of the steel sheets. However, no mention is made of the deterioration of the HAZ impact resistance, or the deterioration of the weld formability and impact resistance.

特許文献10〜12では、鋼板の化学組成を制限し、かつ、ミクロ組織を制御した溶接部およびHAZの成形性に優れた鋼板が提案されている。しかしながら、溶接部およびHAZにおける耐衝撃性の劣化については触れられていない。   Patent Documents 10 to 12 propose steel sheets that limit the chemical composition of the steel sheets and have excellent weldability and HAZ formability with controlled microstructure. However, there is no mention of impact resistance degradation in the weld zone and HAZ.

以上のように、特性の異なる鋼板を溶接して用いることで車体の軽量化を図ることができるが、溶接部の耐食性を高めることは困難であり、このような鋼板の用途が限定されることが課題であった。また、耐食性を損なうことなく、更に溶接部における耐衝撃特性を改善することが求められている。   As described above, it is possible to reduce the weight of the vehicle body by welding and using steel plates with different characteristics, but it is difficult to increase the corrosion resistance of the welded parts, and the use of such steel plates is limited. Was an issue. Moreover, it is required to further improve the impact resistance characteristics in the welded part without impairing the corrosion resistance.

特開平5−255806号公報JP-A-5-255806 特開2013−53330号公報JP 2013-53330 A 国際公開第2014/156671号International Publication No. 2014/156671 特開2006−218501号公報JP 2006-218501 A 特開2006−218500号公報JP 2006-218500 A 特開2009−721号公報JP 2009-721 A 特開平5−9561号公報JP-A-5-9561 特開2000−87175号公報JP 2000-87175 A 特開2000−178654号公報JP 2000-178654 A 特開2000−290749号公報JP 2000-290749 A 特開2003−231941号公報JP 2003-231941 A 特開2007−277729号公報JP 2007-277729 A

鉄と鉄鋼がわかる本、ISBN 4−534−03835−6Book that understands iron and steel, ISBN 4-534-03835-6

本発明は、引張強度が780MPa以上の高強度鋼板において、成形性−強度バランスの向上に加え、耐食性の向上が求められていることに鑑み、引張強度が780MPa以上の高強度鋼板(めっき鋼板を含む)を含む降伏強度および/または板厚の異なる2種以上の鋼板からなる、母材と同等の耐食性を示す突き合わせ溶接継手を有する高強度鋼板およびその製造方法を提供することを目的とする。   In view of the demand for improved corrosion resistance in addition to improving the formability-strength balance in high-strength steel sheets having a tensile strength of 780 MPa or more, the present invention provides a high-strength steel sheet (plated steel sheets) having a tensile strength of 780 MPa or more. It is an object of the present invention to provide a high-strength steel plate having a butt-welded joint that includes two or more types of steel plates having different yield strengths and / or different plate thicknesses, including butt weld joints, and a method for producing the same.

本発明者らは、上記課題を解決する手法について鋭意検討を行った。その結果、引張強度が780MPa以上の高強度鋼板(めっき鋼板を含む)を含む降伏強度および/または板厚の異なる2種以上の鋼板およびそれらの溶接部からなる鋼板において、溶接部表面および溶接熱影響部表面を含めた鋼板表面全体がめっき層を有することで、成形性−強度バランスの向上と耐食性を両立することができることが分かった。   The present inventors have intensively studied a method for solving the above problems. As a result, the surface of the welded portion and the heat of welding in a steel plate composed of two or more types of steel plates having different yield strength and / or thickness, including high strength steel plates (including plated steel plates) having a tensile strength of 780 MPa or more, and welds thereof. It has been found that the entire surface of the steel sheet including the surface of the affected part has a plated layer, so that both improvement in formability-strength balance and corrosion resistance can be achieved.

更に、図1に示されるような鋼板1、鋼板2とを突き合わせ溶接して形成した突き合わせ溶接部及びその近傍における硬度、板厚及び結晶粒径が、突き合わせ溶接継手の成形性と耐衝撃特性に与える影響を鋭意研究した。その結果、以下の要件によって、耐食性に加えて、突き合わせ溶接継手の成形性と耐衝撃特性を向上できることが分かった。
(1)鋼板1、鋼板2と、これら鋼板1、2の突き合わせ溶接部からなる範囲における硬度と板厚の積HTの分布において、溶接部およびHAZにかけてのHTと鋼板1および鋼板2におけるHTとの比を1に近づけ、かつ、当該範囲における最大硬度と上記鋼板1、鋼板2のより硬い側の硬度との硬度差を小さくすること;
(2)さらに、鋼板1、鋼板2と、これら鋼板1、2の突き合わせ溶接部からなる範囲の有効結晶粒径の分布において、溶接部およびHAZにかけての有効結晶粒径の最大値と、上記鋼板1、鋼板2の有効結晶粒径の平均値のうち粗大な方の有効結晶粒径の平均値との比を小さくすること。
Furthermore, the hardness, plate thickness, and crystal grain size at the butt weld and its vicinity formed by butt welding the steel plate 1 and the steel plate 2 as shown in FIG. 1 contribute to the formability and impact resistance characteristics of the butt weld joint. I studied the effect of this. As a result, it has been found that the following requirements can improve the formability and impact resistance of the butt-welded joint in addition to the corrosion resistance.
(1) In the distribution of the product HT of hardness and plate thickness in the range consisting of the steel plate 1 and the steel plate 2 and the butt welds of these steel plates 1 and 2, the HT over the weld and HAZ and the HT in the steel plate 1 and the steel plate 2 And the ratio of the maximum hardness in the range and the hardness difference between the steel plate 1 and the harder side of the steel plate 2 are reduced;
(2) Further, in the distribution of the effective crystal grain size in the range consisting of the steel plate 1 and the steel plate 2 and the butt welds of these steel plates 1 and 2, the maximum value of the effective crystal grain size over the weld and HAZ, and the steel plate 1. To reduce the ratio of the average value of the effective crystal grain size of the steel plate 2 to the average value of the coarser effective crystal grain size.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)異なる鋼板およびそれらの突き合わせ溶接部からなり、
前記異なる鋼板のうち少なくとも1種の鋼板の最大引張強度が780MPa以上であり、
前記突き合わせ溶接部及び溶接熱影響部を含む鋼板全体において、表面にめっき層を有することを特徴とする高強度めっき鋼板。
(2)前記突き合わせ溶接部及び溶接熱影響部を含む領域の硬度と板厚の積HTの分布における最小値HTminが、前記異なる鋼板のうち1つの鋼板における平均値HTと前記異なる鋼板のうち他の鋼板における平均値HTのうち小さい方の値の0.80倍以上であり、
前記HTの分布における最大値HTmaxが前記HTとHTのうち大きい方の値の1.50倍以下であり、
前記突き合わせ溶接部及び溶接熱影響部を含む領域の硬度の最大値Hmaxと前記1つの鋼板における硬度Hと前記他の鋼板における硬度Hのうち大きい方の値との差ΔHが100Hv以下であることを特徴とする、(1)に記載の高強度めっき鋼板。
(3)前記突き合わせ溶接部及び溶接熱影響部を含む領域の有効結晶粒径の分布において、前記1つの鋼板の有効結晶粒径の平均値と前記他の鋼板の有効結晶粒径の平均値のうち大きい方の有効結晶粒径dと、前記有効結晶粒径の最大値dmaxとの比が5.0以下であることを特徴とする、(1)または(2)に記載の高強度めっき鋼板。
(4)突き合わせ溶接部及び溶接熱影響部を含む領域の残留オーステナイトの体積率の分布において残留オーステナイトの多い側の鋼板における残留オーステナイト体積率Vと前記1つの鋼板から前記他の鋼板にかけての最大残留オーステナイト体積率Vmaxの差が5.0%以下であることを特徴とする(1)〜(3)のいずれかに記載の高強度めっき鋼板。
(5)溶接部および溶接熱影響部を含む鋼板表面全体に亜鉛めっき層を有することを特徴とする(1)〜(4)のいずれかに記載の高強度めっき鋼板。
(6)前記亜鉛めっき層が合金化亜鉛めっき層であることを特徴とする(5)に記載の高強度めっき鋼板。
(7)質量%で、
C:0.020%以上0.800%以下、
Si:0.001%以上3.00%以下、
Mn:0.01%以上25.00%以下、
P:0.100%以下、
S:0.0100%以下、
Al:0.001%〜2.500%、
N:0.0150%以下、
O:0.0050%以下、
を含有し、残部が鉄および不可避不純物からなる1つの鋼板と、
前記鋼板とは化学組成および/または板厚の異なる他の鋼板とを、溶接部における板厚比を3.0以下として突き合わせ溶接し、
溶接後にめっき処理を施すことを特徴とする高強度めっき鋼板の製造方法。
(8)前記1つの鋼板の化学組成が、
Feの一部に替えて、更に質量%で、
Cr 0.03〜5.00%
Mo 0.03〜5.00%
Ni 0.03〜5.00%
Cu 0.03〜5.00%
W 0.03〜5.00%
B 0.0004〜0.0100%
Nb 0.005〜0.200%
Ti 0.010〜0.500%
V 0.05〜2.00%
Sb 0.003〜1.000%
Sn 0.005〜1.000%
Ca 0.0010〜0.0100%
Ce 0.0010〜0.0100%
Mg 0.0010〜0.0100%
Zr 0.0010〜0.0100%
La 0.0010〜0.0100%
Hf 0.0010〜0.0100%
REM 0.0010〜0.0100%
のいずれか1種以上を含むことを特徴とする(7)に記載の高強度めっき鋼板の製造方法。
(9)前記鋼板の溶接後、めっき処理の前に、前記鋼板のうち少なくとも1つの鋼板のAc1温度を上回る温度まで加熱する熱処理を行い、
前記熱処理は、加熱開始から冷却開始までの温度履歴が式(1)を満たすことを特徴とする、(7)または(8)に記載の高強度めっき鋼板の製造方法。

Figure 2019014938
但し、式(1)は、鋼板の温度がT[℃]に到達してから冷却を開始するまでの時間を10ステップに等分に分割し、分割した各ステップにおける式Fn(Tn, T*, r, tn, C*, Si*, Mn*, Cr*, Mo*)の計算値を合計するものである。T[℃]はnステップ目における到達温度を、t[秒]はTに到達してからnステップ目までの総経過時間をそれぞれ表わす。C、Si、Mn、CrおよびMoは、前記2種の鋼板の化学組成のC、Si、Mn、Cr及びMoのそれぞれの含有量[質量%]の単純平均を示し、当該元素が含まれないときは、0を代入する。rは前記2種の鋼板の板厚比であり、板厚の薄い鋼板の板厚に対する板厚の厚い鋼板の比率であり、鋼板の板厚が等しい場合、r=1とする。α、β、γはそれぞれ定数項であり、それぞれ2.25×10、2.20×10、2.41×10とする。また、Tは下記の式(2)によって得られる。
Figure 2019014938
ここで、元素の右肩に記載のかっこ内の添え字1および2は前記2種の鋼板をそれぞれ表わし、Tは各鋼におけるAc1[℃]、各鋼板の化学組成におけるSi、Mn、Cr及びMoのそれぞれの含有量[質量%]、および板厚比rから求められる。但し、当該元素が含まれないときは、0を代入する。
(10)前記鋼板の溶接後、めっき処理の前に、前記鋼板のうち少なくとも1つの鋼板の(Ac1+40)℃を上回る温度まで加熱する熱処理を行い、
前記熱処理は、加熱開始から冷却開始までの温度履歴が式(3)を満たすことを特徴とする、(7)〜(9)のいずれかに記載の高強度めっき鋼板の製造方法。
Figure 2019014938
但し、vはAc1からAc1+40℃の区間における平均加熱速度[℃/秒]であり、kは2つの鋼板の平均冷間圧延率[%]をそれぞれ示す。
(11)前記熱処理のうち、加熱を開始してから冷却を開始するまでの加熱工程において、予熱バーナーに用いる空気と燃料ガスの混合ガスにおいて、単位体積の混合ガスに含まれる空気の体積と、単位体積の混合ガスに含まれる燃料ガスを完全燃焼させるために理論上必要となる空気の体積との比である空気比:0.7〜1.2とされた条件の酸化帯において加熱し、次いで、水蒸気(HO)と水素(H)との分圧比P(HO)/P(H):0.0001〜2.0とされた還元帯において最高加熱温度まで加熱することを特徴とする、(9)または(10)に記載の高強度めっき鋼板の製造方法。
(12)突き合わせ溶接後、めっき処理の前に、溶接部を研削することを特徴とする(7)〜(11)のうちいずれかに記載の高強度めっき鋼板の製造方法。
(13)前記熱処理前に、前記1つの鋼板及び他の鋼板のうち少なくともいずれかのAc1温度以上に加熱する予備熱処理を1回以上施すことを特徴とする(9)〜(12)のうちいずれかに記載の高強度めっき鋼板の製造方法。
(14)前記1つの鋼板及び他の鋼板のうち1種以上が下記式(4)を満たす化学組成を有することを特徴とする(7)〜(13)のうちいずれかに記載の高強度めっき鋼板の製造方法。
Figure 2019014938
但し、式(4)中の元素記号は前記1つの鋼板及び他の鋼板における各元素の含有量[質量%]を示し、当該元素が含まれないときは、0を代入する。
(15)前記1つの鋼板及び他の鋼板のうち少なくともいずれかの鋼板が、熱延鋼板に0.01〜85%の冷間圧延を施した冷延鋼板であることを特徴とする(7)〜(14)のうちいずれかに記載の高強度めっき鋼板の製造方法。
(16)前記1つの鋼板及び他の鋼板のうち少なくともいずれかの鋼板が、Ac以上の温度まで加熱した後に1.0℃/秒以上の速度で冷却する予備熱処理を施した鋼板であることを特徴とする(9)〜(15)のうちのいずれかに記載の高強度めっき鋼板の製造方法。
(17)めっき処理が溶融亜鉛めっき処理であることを特徴とする(7)〜(16)のいずれかに記載の高強度めっき鋼板の製造方法。
(18)めっき処理の後に合金化処理を施すことを特徴とする(17)に記載の高強度めっき鋼板の製造方法。 (1) consisting of different steel plates and their butt welds,
The maximum tensile strength of at least one of the different steel plates is 780 MPa or more,
A high strength plated steel sheet having a plated layer on the entire surface of the steel sheet including the butt weld and the weld heat affected zone.
(2) The minimum value HT min in the distribution of the product HT of the hardness and the plate thickness of the region including the butt weld and the weld heat affected zone is an average value HT 1 of one of the different steel plates and the difference of the different steel plates. of not less than 0.80 times the smaller value among the average values HT 2 in the other steel sheet,
The maximum value HT max in the HT distribution is not more than 1.50 times the larger value of HT 1 and HT 2 ;
The difference ΔH between the maximum value H max of the hardness of the region including the butt weld and the weld heat affected zone, the hardness H 1 of the one steel plate, and the hardness H 2 of the other steel plate is 100 Hv or less. The high-strength plated steel sheet according to (1), characterized in that
(3) In the distribution of the effective crystal grain size in the region including the butt weld and the weld heat affected zone, the average value of the effective crystal grain size of the one steel plate and the average value of the effective crystal grain size of the other steel plate The ratio of the larger effective crystal grain diameter d to the maximum value d max of the effective crystal grain diameter is 5.0 or less, and the high-strength plating according to (1) or (2) steel sheet.
(4) Residual austenite volume ratio V in the steel sheet on the side with a large amount of retained austenite in the distribution of the volume ratio of retained austenite in the region including the butt weld and the heat affected zone, and the maximum residual from the one steel sheet to the other steel sheet high strength plated steel sheet according to any one of and a difference austenite volume fraction V max is equal to or less than 5.0% (1) to (3).
(5) The high strength plated steel sheet according to any one of (1) to (4), wherein the entire surface of the steel sheet including the welded portion and the weld heat affected zone has a galvanized layer.
(6) The high strength plated steel sheet according to (5), wherein the galvanized layer is an alloyed galvanized layer.
(7) By mass%
C: 0.020% or more and 0.800% or less,
Si: 0.001% to 3.00%,
Mn: 0.01% or more and 25.00% or less,
P: 0.100% or less,
S: 0.0100% or less,
Al: 0.001% to 2.500%
N: 0.0150% or less,
O: 0.0050% or less,
One steel plate containing the balance of iron and inevitable impurities,
The steel plate and other steel plates having different chemical compositions and / or plate thicknesses are butt welded with a plate thickness ratio of 3.0 or less at the weld,
A method for producing a high-strength galvanized steel sheet, characterized by performing a plating treatment after welding.
(8) The chemical composition of the one steel plate is
In place of a part of Fe, further in mass%,
Cr 0.03-5.00%
Mo 0.03-5.00%
Ni 0.03-5.00%
Cu 0.03-5.00%
W 0.03-5.00%
B 0.0004-0.0100%
Nb 0.005 to 0.200%
Ti 0.010-0.500%
V 0.05-2.00%
Sb 0.003 to 1.000%
Sn 0.005 to 1.000%
Ca 0.0010 to 0.0100%
Ce 0.0010-0.0100%
Mg 0.0010-0.0100%
Zr 0.0010-0.0100%
La 0.0010-0.0100%
Hf 0.0010 to 0.0100%
REM 0.0010-0.0100%
Any one of these is included, The manufacturing method of the high strength plated steel plate as described in (7) characterized by the above-mentioned.
(9) After the welding of the steel plate, before the plating treatment, a heat treatment is performed to heat to a temperature exceeding the Ac1 temperature of at least one of the steel plates,
The method for producing a high-strength plated steel sheet according to (7) or (8), wherein in the heat treatment, a temperature history from the start of heating to the start of cooling satisfies the formula (1).
Figure 2019014938
However, Formula (1) divides time from the time when the temperature of the steel plate reaches T * [° C.] until the start of cooling into 10 steps equally, and Formula F n (T n in each divided step is , T *, r, t n , C *, Si *, Mn *, Cr *, is to sum the calculated values of Mo *). T n [° C.] represents the temperature reached at the n-th step, and t n [second] represents the total elapsed time from reaching T * to the n-th step. C * , Si * , Mn * , Cr *, and Mo * are simple averages of the contents [mass%] of C, Si, Mn, Cr, and Mo of the chemical compositions of the two types of steel plates, respectively. If no element is included, 0 is substituted. r is a plate thickness ratio of the two types of steel plates, and is a ratio of a steel plate having a large plate thickness to a plate thickness of a steel plate having a small plate thickness. When the plate thicknesses of the steel plates are equal, r = 1. α, β, and γ are constant terms, which are 2.25 × 10 6 , 2.20 × 10 0 , and 2.41 × 10 4 , respectively. T * is obtained by the following equation (2).
Figure 2019014938
Here, the subscripts 1 and 2 in the parentheses described on the right shoulder of the element represent the two types of steel plates, respectively, T * is A c1 [° C.] in each steel, Si, Mn in the chemical composition of each steel plate, It is determined from the respective contents [% by mass] of Cr and Mo and the plate thickness ratio r. However, 0 is substituted when the element is not included.
(10) After the welding of the steel plate, before the plating treatment, heat treatment is performed to heat the steel plate to a temperature exceeding (A c1 +40) ° C. of at least one of the steel plates,
The method for producing a high-strength plated steel sheet according to any one of (7) to (9), wherein in the heat treatment, a temperature history from the start of heating to the start of cooling satisfies formula (3).
Figure 2019014938
However, v is an average heating rate [° C./second] in a section from A c1 to A c1 + 40 ° C., and k indicates an average cold rolling rate [%] of the two steel plates.
(11) Among the heat treatments, in the heating process from the start of heating to the start of cooling, in the mixed gas of air and fuel gas used for the preheating burner, the volume of air contained in the unit gas mixture; Heating in an oxidation zone under the condition of air ratio: 0.7 to 1.2, which is a ratio to the volume of air theoretically required to completely burn the fuel gas contained in the unit volume of the mixed gas, Next, heating is performed up to the maximum heating temperature in the reduction zone where the partial pressure ratio P (H 2 O) / P (H 2 ) of water vapor (H 2 O) and hydrogen (H 2 ) is 0.0001 to 2.0. The method for producing a high-strength plated steel sheet according to (9) or (10), wherein
(12) The method for producing a high-strength plated steel sheet according to any one of (7) to (11), wherein the welded portion is ground after the butt welding and before the plating treatment.
(13) Before the heat treatment, a pre-heat treatment for heating at least one of the one steel plate and the other steel plate to at least one Ac1 temperature or more is performed once or more (9) to (12) The manufacturing method of the high strength plated steel plate in any one.
(14) The high-strength plating according to any one of (7) to (13), wherein at least one of the one steel plate and the other steel plate has a chemical composition satisfying the following formula (4): A method of manufacturing a steel sheet.
Figure 2019014938
However, the element symbol in Formula (4) shows content [mass%] of each element in the said 1 steel plate and another steel plate, and substitutes 0 when the said element is not contained.
(15) At least one of the one steel plate and the other steel plate is a cold-rolled steel plate obtained by subjecting a hot-rolled steel plate to 0.01 to 85% cold rolling (7) The manufacturing method of the high strength plated steel plate in any one of-(14).
(16) At least one of the one steel plate and the other steel plate is a steel plate that has been subjected to preliminary heat treatment that is heated to a temperature of Ac 3 or higher and then cooled at a rate of 1.0 ° C./second or higher. (9) The manufacturing method of the high strength plated steel plate according to any one of (9) to (15).
(17) The method for producing a high-strength plated steel sheet according to any one of (7) to (16), wherein the plating treatment is a hot dip galvanizing treatment.
(18) The method for producing a high-strength plated steel sheet according to (17), wherein an alloying treatment is performed after the plating treatment.

本発明によれば、耐食性に優れた高強度めっき鋼板およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high strength plated steel plate excellent in corrosion resistance and its manufacturing method can be provided.

一般的な突き合わせ溶接部における板厚、硬さ分布の例を示すグラフである。It is a graph which shows the example of the plate | board thickness and hardness distribution in a general butt welding part. 本発明の高強度鋼板における溶接部における板厚、硬さ分布の例を示すグラフである。It is a graph which shows the example of the plate | board thickness and hardness distribution in the welding part in the high strength steel plate of this invention. 溶接部における硬さの分布の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of distribution of hardness in a welding part. 本発明の高強度鋼板における溶接部周辺の有効結晶粒径の分布を示すグラフである。It is a graph which shows distribution of the effective crystal grain diameter around the welding part in the high strength steel plate of this invention. ノッチ付き試験片の模式図である。It is a schematic diagram of a test piece with a notch. 実験例20〜22の構造を示す概略斜視図である。It is a schematic perspective view which shows the structure of Experimental Examples 20-22.

以下、本発明鋼板とその製造方法について説明する。
本発明鋼板は、降伏強度および/または板厚の異なる2種以上の鋼板およびそれらの突き合わせ溶接部からなり、当該鋼板の少なくとも1種以上の最大引張強度が780MPa以上であり、溶接部および溶接熱影響部を含む鋼板全体において、表面がめっき層を有することを特徴とする。
Hereinafter, the steel sheet of the present invention and the manufacturing method thereof will be described.
The steel sheet of the present invention comprises two or more kinds of steel sheets having different yield strengths and / or thicknesses and butt welds thereof. At least one of the steel sheets has a maximum tensile strength of 780 MPa or more. The entire steel plate including the affected part is characterized in that the surface has a plating layer.

更に、成形性および耐衝撃性を高めるため、最大引張強度が780MPa以上の鋼板を含む突き合わせ溶接部について、溶接部を挟む鋼板1、鋼板2、溶接継手および鋼板1と鋼板2におけるHAZは以下の要件を満たすことが好ましい。   Furthermore, in order to improve the formability and impact resistance, the HAZ in the steel plate 1, the steel plate 2, the welded joint and the steel plate 1 and the steel plate 2 sandwiching the weld portion is as follows for the butt weld including a steel plate having a maximum tensile strength of 780 MPa or more. It is preferable to satisfy the requirements.

[硬度と板厚の積HT]
成形時の割れにはひずみ集中による割れと靭性不足による割れがあり、溶接部およびHAZにおいて、ひずみ集中による割れの発生しやすさは、当該箇所における硬度と板厚の積HTによって整理できる。HTは当該箇所における耐荷重に相当するので、鋼板に変形を加えると、周辺と比べてHTの低い箇所、すなわち耐荷重の低い箇所には変形が集中しやすい。そのため、溶接影響を受けない鋼板部分に比べて溶接部あるいはHAZにおけるHTが著しく小さい場合、プレス成形時にHTの小さい箇所にひずみが集中し、割れる場合がある。
[Product of hardness and thickness HT]
Cracks at the time of forming include cracks due to strain concentration and cracks due to insufficient toughness, and the ease of occurrence of cracks due to strain concentration in the weld zone and HAZ can be arranged by the product HT of hardness and plate thickness at the relevant location. Since HT corresponds to the load resistance at the location, when deformation is applied to the steel sheet, the deformation tends to concentrate at locations where the HT is low compared to the periphery, that is, locations where the load resistance is low. Therefore, when the HT in the welded part or HAZ is remarkably small as compared with the steel plate part not affected by the welding, the strain may concentrate on the part having a small HT during the press forming and may crack.

このようなひずみの集中を避けるため、溶接部およびHAZにおけるHTは、突き合わせ溶接された鋼板のうちHTの小さい方の鋼板側に対して、過度に小さい値であってはならない。具体的には、図1に示される突き合わせ溶接のような場合、ひずみの集中を避けるため、溶接部及びHAZを含む領域におけるHTの分布における最小値HTminが、鋼板1における平均値HTと鋼板2における平均値HTのうち小さい方の値の0.80倍以上であることが好ましい。両者の関係は0.85倍以上であることがより好ましく、0.90倍以上であることが更に好ましく、両者が等しいことが最も好ましい。尚、鋼板1における平均値HTと鋼板2における平均値HTは、溶接部及びHAZを含まない鋼板領域における硬度の平均値である。 In order to avoid such strain concentration, the HT in the weld zone and the HAZ should not be excessively small with respect to the steel plate having the smaller HT among the butt welded steel plates. Specifically, in the case of butt welding shown in FIG. 1, in order to avoid strain concentration, the minimum value HT min in the distribution of HT in the region including the weld and HAZ is the average value HT 1 in the steel plate 1. is preferably at least 0.80 times the smaller value among the average values HT 2 in the steel plate 2. The relationship between the two is more preferably 0.85 times or more, further preferably 0.90 times or more, and most preferably both are equal. The average value HT 2 in the average value HT 1 and the steel plate 2 in the steel sheet 1 is the average value of the hardness in the steel sheet area not including the welds and HAZ.

一方、HTが周辺と比べて極端に高い箇所では、荷重を加えても容易に変形しないため、変形時にその周辺にひずみが集中し、割れる場合がある。これを避けるため、溶接部およびHAZにおけるHTは、突き合わせ溶接された鋼板のうちHTの大きい方の鋼板側に対して、過度に大きい値であってはならない。具体的には、図1に示される突き合わせ溶接のような場合、ひずみの集中を避けるため、溶接部及びHAZを含む領域の鋼板1から鋼板2におけるHTの分布における最大値HTmaxが、鋼板1における平均値HTと鋼板2における平均値HTのうち大きい方の値の1.50倍以下であることが好ましい。両者の関係は1.40倍以下であることがより好ましく、1.30倍以下であることが更に好ましく、両者が等しいことが最も好ましい。 On the other hand, in places where HT is extremely high compared to the surrounding area, even if a load is applied, the deformation does not easily occur. In order to avoid this, the HT in the weld zone and the HAZ should not be an excessively large value with respect to the steel plate having the larger HT among the butt welded steel plates. Specifically, in the case of butt welding shown in FIG. 1, in order to avoid strain concentration, the maximum value HT max in the HT distribution in the steel plate 1 to the steel plate 2 in the region including the weld and HAZ is the steel plate 1. it is preferably not more than 1.50 times the value of the larger of the average value HT 2 in the average value HT 1 and the steel plate 2 in. The relationship between the two is more preferably 1.40 times or less, still more preferably 1.30 times or less, and most preferably both are equal.

[最大硬度Hmax
一方、靭性不足による成形時の割れの発生しやすさは、硬度によって整理できる。溶接部およびHAZにおける硬度が周辺の鋼板と比べて極端に高い場合、当該箇所は鋼板に比べて大きく脆化している危険性が有り、成形時に割れる場合がある。具体的には、図1に示される突き合わせ溶接のような場合、突き合わせ溶接部及びHAZを含む領域の鋼板1から鋼板2にかけての硬度の最大値Hmaxと鋼板1における硬度Hと鋼板2における硬度Hのうち大きい方の値との差ΔHが100[Hv]を超えると、プレス成形時に割れが発生する場合があるため、ΔHの上限を100[Hv]とすることが好ましい。ΔHは小さいほど好ましく、50[Hv]以下とすることがより好ましく、30[Hv]以下とすることが更に好ましい。成形時に割れた部位ではめっきを有さない表面が暴露され、成形後耐食性が著しく劣化するため、耐食性の観点からも上記を満たすことが好ましい。
[Maximum hardness H max ]
On the other hand, the ease of cracking during molding due to insufficient toughness can be organized by hardness. When the hardness in the welded part and the HAZ is extremely high as compared with the surrounding steel plates, there is a risk that the portion is greatly embrittled as compared with the steel plates, and may break during forming. Specifically, in the case of butt welding shown in FIG. 1, the maximum value H max of the hardness from the steel plate 1 to the steel plate 2 in the region including the butt weld and HAZ, the hardness H 1 in the steel plate 1, and the steel plate 2 If the difference ΔH from the larger value of the hardness H 2 exceeds 100 [Hv], cracks may occur during press molding, so the upper limit of ΔH is preferably set to 100 [Hv]. ΔH is preferably as small as possible, more preferably 50 [Hv] or less, and even more preferably 30 [Hv] or less. Since the surface which does not have plating is exposed in the site | part cracked at the time of shaping | molding and corrosion resistance after shaping | molding deteriorates remarkably, it is preferable to satisfy | fill the said also from a corrosion-resistant viewpoint.

鋼板および溶接部の硬さの測定方法について説明する。硬さは、溶接部および板面に垂直な断面において、JIS Z 2244に記載のマイクロビッカース試験を行って測定する。測定は、突き合わせ溶接された鋼板のうち薄い側の鋼板における板厚の1/4を通る板面に平行な直線上において硬さを測定する。まず、溶接部の中央で硬さを測定し、そこから各鋼板側へ0.1〜0.2mmごとに硬さを測定する。各鋼板における測定は、それぞれ連続する10点の硬さ測定値の変動が、10点の平均値の±10%以内に収まるまで続け、その平均値を持って各鋼板の平均硬さHおよびHとする。測定荷重は10〜100gfの範囲で、圧痕の大きさが100μm以下となるように調整し、設定する。 A method for measuring the hardness of the steel plate and the welded portion will be described. The hardness is measured by performing a micro Vickers test described in JIS Z 2244 in a cross section perpendicular to the welded part and the plate surface. In the measurement, the hardness is measured on a straight line parallel to the plate surface passing through ¼ of the plate thickness of the thin steel plate among the butt welded steel plates. First, the hardness is measured at the center of the welded portion, and the hardness is measured every 0.1 to 0.2 mm from there to each steel plate. The measurement on each steel plate is continued until the variation of the hardness measurement values at 10 consecutive points falls within ± 10% of the average value at 10 points, and the average hardness H 1 of each steel plate and the average value are obtained. and H 2. The measurement load is adjusted and set so that the size of the indentation is 100 μm or less in the range of 10 to 100 gf.

[最大有効結晶粒径dmax
成形した部品の耐衝撃性を高めるには、破壊の発生に寄与する硬さを上記の通り制御するとともに、破壊の伝播を抑制するために結晶粒径を細かくする必要がある。特にHAZでは、溶接時にミクロ組織が粗大化し、有効結晶粒径が周辺の鋼材と比べて著しく大きくなる場合があり、耐衝撃性が劣化しやすい。具体的には、図1に示される突き合わせ溶接のような場合、突き合わせ溶接部及びHAZを含む領域における有効結晶粒径の最大値dmaxと鋼板1における有効結晶粒径の平均値dと鋼板2における有効結晶粒径の平均値dのうち大きい方の値dとの成す比を5.0以下とすることで、耐衝撃特性は改善する。この比は4.0以下とすることが好ましく、3.0以下とすることが更に好ましく、両者が等しいことが最も好ましい。尚、鋼板1における有効結晶粒径の平均値dと鋼板2における有効結晶粒径の平均値dは、溶接部及びHAZを含まないそれぞれの鋼板領域における有効結晶粒径の平均値である。以下、「有効結晶粒径の平均値」を単に「平均有効結晶粒径」という。
[Maximum effective crystal grain size d max ]
In order to increase the impact resistance of the molded part, it is necessary to control the hardness that contributes to the occurrence of fracture as described above, and to reduce the crystal grain size in order to suppress the propagation of the fracture. In particular, in HAZ, the microstructure becomes coarse during welding, and the effective crystal grain size may be significantly larger than that of the surrounding steel, and the impact resistance is likely to deteriorate. Specifically, in the case of butt welding shown in FIG. 1, the maximum value d max of the effective crystal grain size in the region including the butt weld and the HAZ, the average value d 1 of the effective crystal grain size in the steel plate 1, and the steel plate By making the ratio of the average value d 2 of the effective crystal grain diameters of 2 and the larger value d 2 5.0 or less, the impact resistance is improved. This ratio is preferably 4.0 or less, more preferably 3.0 or less, and most preferably both are equal. The average value d 2 of the effective crystal grain size in average d 1 and the steel plate 2 of the effective crystal grain size in the steel sheet 1 is the average value of the effective crystal grain size in each of the steel sheet region not including the welds and HAZ . Hereinafter, the “average value of effective crystal grain size” is simply referred to as “average effective crystal grain size”.

[最大残留オーステナイト体積率Vmax
ミクロ組織に含まれる残留オーステナイトは、成形性を改善するため、鋼板、HAZおよび溶接部に含まれていても構わない。しかしながら、残留オーステナイトは成形によって硬質なマルテンサイトとなり、衝撃時に破壊の基点として働くため、特にHAZおよび溶接部において鋼板よりも多量に残留オーステナイトが存在する場合、耐衝撃性が著しく劣化する。
[Maximum retained austenite volume fraction V max ]
Residual austenite contained in the microstructure may be contained in the steel sheet, HAZ and welds in order to improve formability. However, the retained austenite becomes hard martensite by molding and acts as a base point of fracture at the time of impact, and therefore, when there is a large amount of retained austenite in the HAZ and the welded portion in comparison with the steel plate, the impact resistance is significantly deteriorated.

具体的には、図1に示される突き合わせ溶接のような場合、突き合わせ溶接部及びHAZを含む領域の残留オーステナイトの体積率の分布において、最大残留オーステナイト体積率Vmaxと残留オーステナイトの多い側の鋼板における残留オーステナイト体積率Vとの差が5.0%を超えると、耐衝撃性が劣化する場合がある。そのため、両者の差は5.0%以下とすることが好ましく、3.5%以下とすることが更に好ましく、2.0%以下とすることがより一層好ましい。両者の差は小さいほど好ましく、両者が等しいことが最も好ましい。 Specifically, in the case such as the butt weld shown in Figure 1, butt welds and in the distribution of the volume fraction of residual austenite region including the HAZ, the maximum residual austenite volume fraction V max and high residual austenite side steel If the difference from the retained austenite volume fraction V exceeds 5.0%, the impact resistance may deteriorate. Therefore, the difference between the two is preferably 5.0% or less, more preferably 3.5% or less, and even more preferably 2.0% or less. The smaller the difference between the two, the better, and it is most preferable that the two are equal.

有効結晶粒径および残留オーステナイト分率の測定手法について説明する。両者は硬さ測定を行った面と同一の平面において、硬さ測定点の中間点を中心に結晶方位解析を行い、測定する。結晶方位の測定は、電界放射型走査型電子顕微鏡(FE−SEM:Field Emission Scanning Electron Microscope)を用い、電子線後方散乱回折図形を得るEBSD法(Electron BackScattering Diffraction)によって行う。1点当たりの測定面積は1.0×10−8以上とし、測定点の大きさは0.1〜0.3μmとする。 A method for measuring the effective crystal grain size and the retained austenite fraction will be described. Both are measured by analyzing the crystal orientation around the midpoint of the hardness measurement point on the same plane as the surface on which the hardness measurement was performed. The crystal orientation is measured by a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope) by an EBSD method (Electron Backscattering Diffraction) for obtaining an electron beam backscattering diffraction pattern. The measurement area per point is 1.0 × 10 −8 m 2 or more, and the size of the measurement point is 0.1 to 0.3 μm.

有効結晶粒径は、EBSD法によって得られた結晶方位の情報を解析し、10°以上の方位差を有する境界をマッピングし、切断法によって境界の平均間隔を測定し、測定値を有効結晶粒径とみなす。一方、EBSD法によって得られた結晶方位の情報を解析し、結晶構造がFCCである点の占める面積率を求め、当該領域における残留オーステナイトの体積率と見なす。   The effective crystal grain size is obtained by analyzing the crystal orientation information obtained by the EBSD method, mapping the boundary having an orientation difference of 10 ° or more, measuring the average interval of the boundary by the cutting method, and obtaining the measured value as the effective crystal grain size. Consider diameter. On the other hand, the crystal orientation information obtained by the EBSD method is analyzed, the area ratio occupied by the point where the crystal structure is FCC is obtained, and is regarded as the volume ratio of residual austenite in the region.

また、HAZを除く各鋼板における平均有効結晶粒径および残留オーステナイト分率は、硬さの測定において各鋼板の平均硬さを求める際に用いた10点の測定点からなる9点の中間点の任意の2点以上において結晶方位の測定を行い、得られた値の平均値をもって各鋼板における平均有効結晶粒径および残留オーステナイトの体積率とみなす。なお、EBSD法により得られたデータの解析には、TSL社製の「OIM Analysys 7.0」を用いて行う。   Moreover, the average effective crystal grain size and the retained austenite fraction in each steel plate excluding HAZ are 9 intermediate points consisting of 10 measurement points used for determining the average hardness of each steel plate in the measurement of hardness. The crystal orientation is measured at two or more arbitrary points, and the average value of the obtained values is regarded as the average effective crystal grain size and the volume fraction of retained austenite in each steel plate. The data obtained by the EBSD method is analyzed using “OIM Analysis 7.0” manufactured by TSL.

(化学組成)
本発明のめっき鋼板を構成する母材としての鋼板(以下、「母材鋼板」ともいう。)の少なくとも1種以上の母材鋼板は、本発明の鋼板の強度を780MPa以上とするため、下記の化学組成を有する鋼板を用いることが好ましい。なお、化学組成に関して%は質量%を表わす。
(Chemical composition)
Since at least one base steel plate of the steel plate (hereinafter also referred to as “base steel plate”) as the base material constituting the plated steel plate of the present invention has a strength of the steel plate of the present invention of 780 MPa or more, It is preferable to use a steel plate having a chemical composition of In the chemical composition,% represents mass%.

(C:0.020〜0.800%)
Cは、強度の向上に寄与する元素である。C含有量が0.020%未満であると、添加効果が十分に得られないので、含有量は0.020%以上とすることが好ましい。Cは0.050%以上含有することが好ましく、0.100%以上含有することがより好ましい。一方、C含有量が0.800%を超えると、鋳造スラブが脆化して割れやすくなるため、含有量は0.800%以下とすることが好ましい。また、突き合わせ溶接における溶接性が劣化するため、Cの含有量は0.600%以下とすることが好ましい。部材の溶接性を確保するため、Cの含有量は0.300%以下とすることがより一層好ましい。
(C: 0.020-0.800%)
C is an element that contributes to improving the strength. If the C content is less than 0.020%, the effect of addition cannot be sufficiently obtained, so the content is preferably 0.020% or more. C is preferably contained in an amount of 0.050% or more, and more preferably 0.100% or more. On the other hand, if the C content exceeds 0.800%, the cast slab becomes brittle and easily breaks, so the content is preferably 0.800% or less. Moreover, since the weldability in butt welding deteriorates, the C content is preferably 0.600% or less. In order to ensure the weldability of the member, the C content is more preferably 0.300% or less.

(Si:0.001〜3.00%)
Siは、鉄系炭化物を微細化し、強度と成形性の向上に寄与する元素であるが、鋼を脆化する元素でもある。Si含有量が3.00%を超えると、鋳造スラブが脆化して割れ易くなり、また、溶接性が低下するので、Si含有量は3.00%以下とすることが好ましい。耐衝撃性を確保する点で、2.50%以下が好ましく、2.00%以下がより好ましい。一方、Siの含有量を0.001%未満に低減するには特別な処理が必要となるため、Si含有量は0.001%以上とすることが好ましい。鋼を強化するには、Siの含有量は0.010%以上が好ましく、0.030%以上とすることがより好ましい。
(Si: 0.001 to 3.00%)
Si is an element that refines iron-based carbides and contributes to improvement in strength and formability, but is also an element that embrittles steel. If the Si content exceeds 3.00%, the cast slab becomes brittle and easily cracked, and the weldability is lowered. Therefore, the Si content is preferably 3.00% or less. From the viewpoint of ensuring impact resistance, it is preferably 2.50% or less, and more preferably 2.00% or less. On the other hand, since special treatment is required to reduce the Si content to less than 0.001%, the Si content is preferably 0.001% or more. In order to strengthen steel, the content of Si is preferably 0.010% or more, and more preferably 0.030% or more.

(Mn:0.01〜25.00%)
Mnは、焼入れ性を高めて、強度の向上に寄与する元素であるが、鋼を脆化する元素でもある。Mnの含有量が25.00%を超えると、鋳造スラブが脆化して割れ易くなり、また、溶接性が劣化するため、Mnは25.00%以下とすることが好ましい。鋳造スラブの脆化を防ぐには、Mn含有量は12.00%以下とすることが好ましく、7.00%以下とすることが更に好ましい。一方、Mnの含有量を0.01%未満とするには特殊な処理が必要となるため、Mnの含有量は0.01%以上とすることが好ましい。鋼を強化するには、Mnは0.10%以上含有することが好ましく、0.50%以上添加することが更に好ましい。
(Mn: 0.01 to 25.00%)
Mn is an element that enhances hardenability and contributes to improvement in strength, but is also an element that embrittles steel. If the Mn content exceeds 25.00%, the cast slab becomes brittle and easily cracked, and weldability deteriorates, so Mn is preferably 25.00% or less. In order to prevent embrittlement of the cast slab, the Mn content is preferably 12.00% or less, and more preferably 7.00% or less. On the other hand, since special treatment is required to make the Mn content less than 0.01%, the Mn content is preferably 0.01% or more. In order to strengthen steel, Mn is preferably contained in an amount of 0.10% or more, and more preferably 0.50% or more.

(Al:0.001〜2.500%)
Alは、脱酸材として機能するが、一方で、鋼を脆化する元素でもある。Al含有量が0.001%未満であると、脱酸効果が十分に得られないので、Al含有量は0.001%以上とすることが好ましい。一方、Alの含有量が2.500%を超えると、粗大な酸化物が生成し、鋳造スラブが割れ易くなるため、Al含有量は2.500%以下とすることが好ましい。良好なスポット溶接性を確保する点で、Alの含有量は2.000%以下が好ましい。
(Al: 0.001 to 2.500%)
Al functions as a deoxidizing material, but is also an element that embrittles steel. If the Al content is less than 0.001%, a sufficient deoxidation effect cannot be obtained. Therefore, the Al content is preferably 0.001% or more. On the other hand, when the Al content exceeds 2.500%, a coarse oxide is generated and the cast slab is easily cracked. Therefore, the Al content is preferably 2.500% or less. From the viewpoint of ensuring good spot weldability, the Al content is preferably 2.000% or less.

本発明のめっき鋼板を製造するにあたり、母材鋼板の成分組成は、上記元素の他、特性向上のため、以下の元素を含んでもよい。   In producing the plated steel sheet according to the present invention, the component composition of the base steel sheet may include the following elements in addition to the above elements in order to improve characteristics.

(Cr:0.03〜5.00%以下)
Crは、焼入れ性を高め、鋼板強度の向上に寄与する元素であり、C及び/又はMnの一部に替わり得る元素である。Cr含有量が5.00%を超えると、熱間加工性が低下して生産性が低下するので、Cr含有量は5.00%以下が好ましい。下限は0%を含むが、Crの強度向上効果を十分に得るには、0.03%以上含有することが好ましい。
(Cr: 0.03 to 5.00% or less)
Cr is an element that enhances hardenability and contributes to an improvement in steel sheet strength, and is an element that can replace a part of C and / or Mn. If the Cr content exceeds 5.00%, the hot workability decreases and the productivity decreases, so the Cr content is preferably 5.00% or less. The lower limit includes 0%, but it is preferable to contain 0.03% or more in order to sufficiently obtain the effect of improving the strength of Cr.

(Mo:0.03〜5.00%以下)
Moは、高温での相変態を抑制し、鋼板強度の向上に寄与する元素であり、C及び/又はMnの一部に替わり得る元素である。Mo含有量が5.00%を超えると、熱間加工性が低下して生産性が低下するので、Mo含有量は5.00%以下が好ましい。下限は0%を含むが、Moの強度向上効果を十分に得るたには、0.03%以上含有することが好ましい。
(Mo: 0.03-5.00% or less)
Mo is an element that suppresses phase transformation at a high temperature and contributes to the improvement of the strength of the steel sheet, and is an element that can replace a part of C and / or Mn. If the Mo content exceeds 5.00%, the hot workability decreases and the productivity decreases, so the Mo content is preferably 5.00% or less. The lower limit includes 0%, but in order to sufficiently obtain the effect of improving the strength of Mo, the content is preferably 0.03% or more.

(Ni:0.03〜5.00%)
Niは、高温での相変態を抑制し、鋼板強度の向上に寄与する元素であり、C及び/又はMnの一部に替わり得る元素である。Niが5.00%を超えると、溶接性が低下するので、Ni含有量は5.00%以下が好ましい。下限は0%を含むが、Niの強度向上効果を十分に得るには、0.03%以上含有することが好ましい。
(Ni: 0.03-5.00%)
Ni is an element that suppresses phase transformation at a high temperature and contributes to an improvement in the strength of the steel sheet, and is an element that can replace a part of C and / or Mn. If Ni exceeds 5.00%, the weldability is lowered, so the Ni content is preferably 5.00% or less. The lower limit includes 0%, but it is preferable to contain 0.03% or more in order to sufficiently obtain the Ni strength improvement effect.

(Cu:0.03〜5.00%以下)
Cuは、微細な粒子で鋼中に存在し、鋼板強度の向上に寄与する元素であり、C及び/又はMnの一部に替わり得る元素である。Cuが5.00%を超えると、溶接性が低下するので、Cu含有量は5.00%以下が好ましい。下限は0%を含むが、Cuの強度向上効果を十分に得るには、0.03%以上含有することが好ましい。
(Cu: 0.03 to 5.00% or less)
Cu is an element that exists in steel as fine particles and contributes to the improvement of the strength of the steel sheet, and is an element that can replace a part of C and / or Mn. If Cu exceeds 5.00%, the weldability decreases, so the Cu content is preferably 5.00% or less. The lower limit includes 0%, but it is preferable to contain 0.03% or more in order to sufficiently obtain the effect of improving the strength of Cu.

(W:0.03〜5.00%以下)
Wは、高温での相変態を抑制し、鋼板強度の向上に寄与する元素であり、C及び/又はMnの一部に替わり得る元素である。Wが5.00%を超えると、熱間加工性が低下して生産性が低下するので、W含有量は5.00%以下が好ましい。下限は0%を含むが、Wの強度向上効果を十分に得るには、0.03%以上含有することが好ましい。
(W: 0.03-5.00% or less)
W is an element that suppresses phase transformation at a high temperature and contributes to an improvement in the strength of the steel sheet, and is an element that can replace a part of C and / or Mn. If W exceeds 5.00%, the hot workability is lowered and the productivity is lowered. Therefore, the W content is preferably 5.00% or less. The lower limit includes 0%, but in order to sufficiently obtain the effect of improving the strength of W, the content is preferably 0.03% or more.

(B:0.0004〜0.0100%以下)
Bは、高温での相変態を抑制し、鋼板強度の向上に寄与する元素であり、C及び/又はMnの一部に替わり得る元素である。B含有量が0.0100%を超えると、熱間加工性が低下して生産性が低下するので、B含有量は0.0100%以下が好ましい。下限は0%を含むが、Bの強度向上効果を十分に得るには、0.0004%以上含有することが好ましい。
(B: 0.0004 to 0.0100% or less)
B is an element that suppresses phase transformation at a high temperature and contributes to the improvement of the strength of the steel sheet, and is an element that can replace a part of C and / or Mn. If the B content exceeds 0.0100%, the hot workability decreases and the productivity decreases, so the B content is preferably 0.0100% or less. The lower limit includes 0%, but in order to sufficiently obtain the effect of improving the strength of B, the content is preferably 0.0004% or more.

(Nb:0.005〜0.200%以下)
Nbは、析出物による強化と結晶粒の成長抑制による靭性の向上に寄与する元素であり、0.200%を上限として含有しても構わない。Nbの含有量が0.200%を超えると、炭窒化物が多量に析出して、成形性が低下するため、好ましくない。下限は0%を含むが、HAZにおける有効結晶粒の微細化効果を得るには、0.005%以上含有することが好ましい。
(Nb: 0.005 to 0.200% or less)
Nb is an element that contributes to the improvement of toughness by strengthening by precipitates and suppressing the growth of crystal grains, and may be contained up to 0.200%. If the content of Nb exceeds 0.200%, a large amount of carbonitride precipitates and the moldability deteriorates, which is not preferable. The lower limit includes 0%, but it is preferable to contain 0.005% or more in order to obtain the effect of refining effective crystal grains in HAZ.

(Ti:0.010〜0.500%以下)
Tiは、析出物による強化と結晶粒の成長抑制による靭性の向上に寄与する元素であり、0.500%を上限として含有しても構わない。Tiの含有量が0.500%を超えると、炭窒化物が多量に析出して、成形性が低下するため、好ましくない。下限は0%を含むが、HAZにおける有効結晶粒の微細化効果を得るには、0.010%以上含有することが好ましい。
(Ti: 0.010 to 0.500% or less)
Ti is an element that contributes to improvement of toughness by strengthening by precipitates and suppressing the growth of crystal grains, and may be contained up to 0.500%. If the Ti content exceeds 0.500%, a large amount of carbonitride precipitates and the formability deteriorates, such being undesirable. The lower limit includes 0%, but in order to obtain the effect of refining effective crystal grains in HAZ, the content is preferably 0.010% or more.

(V:0.05〜2.00%以下)
Vは、析出物による強化と結晶粒の成長抑制による靭性の向上に寄与する元素であり、2.00%を上限として含有しても構わない。Vの含有量が2.00%を超えると、炭窒化物が多量に析出して、成形性が低下するため、好ましくない。下限は0%を含むが、HAZにおける有効結晶粒の微細化効果を得るには、0.05%以上含有することが好ましい。
(V: 0.05 to 2.00% or less)
V is an element that contributes to improvement of toughness by strengthening by precipitates and suppressing the growth of crystal grains, and may be contained up to 2.00%. If the V content exceeds 2.00%, a large amount of carbonitride precipitates and the formability deteriorates, such being undesirable. The lower limit includes 0%, but it is preferably 0.05% or more in order to obtain the effect of refining effective crystal grains in HAZ.

(Sb:0.003〜1.000%以下)
Sbは、結晶粒の粗大化を抑制し、鋼板強度の向上に寄与する元素である。Sb含有量が1.000%を超えると、鋼板が脆化し、圧延時に破断することがあるので、Sb含有量は1.000%以下が好ましい。下限は0%を含むが、Sbの添加効果を十分に得るには、0.003%以上含有することが好ましい。
(Sb: 0.003 to 1.000% or less)
Sb is an element that suppresses the coarsening of crystal grains and contributes to the improvement of steel plate strength. If the Sb content exceeds 1.000%, the steel sheet becomes brittle and may break during rolling. Therefore, the Sb content is preferably 1.000% or less. The lower limit includes 0%, but it is preferable to contain 0.003% or more in order to sufficiently obtain the effect of adding Sb.

(Sn:0.005〜1.000%以下)
Snは、結晶粒の粗大化を抑制し、鋼板強度の向上に寄与する元素である。Sn含有量が1.000%を超えると、鋼板が脆化し、圧延時に破断することがあるので、Sn含有量は1.000%以下が好ましい。下限は0.000%を含むが、Snの添加効果を十分に得るには、Sn含有量は0.005%以上が好ましい。
(Sn: 0.005 to 1.000% or less)
Sn is an element that suppresses the coarsening of crystal grains and contributes to the improvement of steel plate strength. If the Sn content exceeds 1.000%, the steel sheet becomes brittle and may break during rolling. Therefore, the Sn content is preferably 1.000% or less. The lower limit includes 0.000%, but the Sn content is preferably 0.005% or more in order to sufficiently obtain the effect of adding Sn.

本発明鋼板の成分組成は、必要に応じて、Ca、Ce、Mg、Zr、La、Hf、REMの1種又は2種以上を合計で0.0100%以下となるように含んでもよい。Ca、Ce、Mg、Zr、La、HfおよびREMは、介在物のサイズを微細化し、成形性の向上に寄与する元素である。しかしながら、Ca、Ce、Mg、Zr、La、Hfおよび/またはREMの1種又は2種以上を、合計で0.0100%を超えて含有すると、却って介在物の生成が助長され、成形性が劣化する恐れがあるので、上記元素の含有量は、合計で0.0100%以下とすることが好ましく、0.0070%以下とすることがより好ましい。Ca、Ce、Mg、Zr、La、Hf、REMの1種又は2種以上の合計の下限は0%を含むが、成形性向上効果を十分に得るには、合計で0.0010%以上が好ましい。   The component composition of the steel sheet of the present invention may include one or more of Ca, Ce, Mg, Zr, La, Hf, and REM as necessary so that the total amount is 0.0100% or less. Ca, Ce, Mg, Zr, La, Hf, and REM are elements that contribute to improvement of moldability by reducing the size of inclusions. However, if one or more of Ca, Ce, Mg, Zr, La, Hf and / or REM is contained in total exceeding 0.0100%, the formation of inclusions is promoted on the contrary, and the moldability is improved. Since there is a possibility of deterioration, the total content of the above elements is preferably 0.0100% or less, and more preferably 0.0070% or less. The lower limit of the total of one or more of Ca, Ce, Mg, Zr, La, Hf, and REM includes 0%, but 0.0010% or more in total is necessary to sufficiently obtain the formability improvement effect. preferable.

なお、REM(Rare Earth Metal)は、ランタノイド系列に属する元素を意味する。LaやCeは、多くの場合、ミッシュメタルの形態で添加するが、La、Ceの他に、ランタノイド系列の元素を不可避的に含有していてもよい。   REM (Rare Earth Metal) means an element belonging to the lanthanoid series. In many cases, La and Ce are added in the form of misch metal, but in addition to La and Ce, lanthanoid series elements may be unavoidably contained.

(不可避的不純物)
本発明鋼板の成分組成において、上記元素を除く残部は、Fe及び不可避的不純物である。不可避的不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素である。本発明において、不可避的不純物のうち、P、S、N及びOの含有量は、下記のように規定される。
(Inevitable impurities)
In the component composition of the steel sheet of the present invention, the balance excluding the above elements is Fe and inevitable impurities. Inevitable impurities are elements that are inevitably mixed from the steel raw materials and / or in the steel making process. In the present invention, among the inevitable impurities, the contents of P, S, N, and O are defined as follows.

(P:0.100%以下)
Pは、鋼を脆化する元素である。Pが0.100%を超えると、鋳造スラブが脆化して割れ易くなるので、Pは0.100%以下とする。下限は0%を含むが、Pを0.0001%未満に低減すると、製造コストが大幅に上昇するので、実用鋼板上、0.0001%が実質的な下限である。
(P: 0.100% or less)
P is an element that embrittles steel. If P exceeds 0.100%, the cast slab becomes brittle and easily cracked, so P is made 0.100% or less. The lower limit includes 0%, but if P is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% is a practical lower limit on a practical steel sheet.

(S:0.0100%以下)
Sは、MnSを形成し、延性、穴拡げ性、伸びフランジ性、及び、曲げ性などの成形性を損なう元素である。S含有量が0.0100%を超えると、溶接部およびHAZの成形性が著しく低下するため、S含有量は0.0100%以下とする。
下限は0%を含むが、0.0001%未満に低減すると、製造コストが大幅に上昇するので、実用鋼板上、0.0001%が実質的な下限である。
(S: 0.0100% or less)
S is an element that forms MnS and impairs formability such as ductility, hole expansibility, stretch flangeability, and bendability. If the S content exceeds 0.0100%, the formability of the weld zone and the HAZ is significantly reduced, so the S content is set to 0.0100% or less.
The lower limit includes 0%, but if it is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% is a practical lower limit on the practical steel sheet.

(N:0.0150%以下)
Nは、窒化物を形成し、延性、穴拡げ性、伸びフランジ性、及び、曲げ性などの成形性を阻害する元素であり、また、溶接時、ブローホール発生の原因になり、溶接性を阻害する元素である。N含有量が0.0150%を超えると、成形性と溶接性が低下するので、N含有量は0.0150%以下とする。N含有量は0.0100%以下とすることが好ましく、0.0075%以下とすることがより好ましい。N含有量の下限は0%を含むが、0.0001%未満に低減すると、製造コストが大幅に上昇するので、実用鋼板上、0.0001%が実質的な下限である。
(N: 0.0150% or less)
N is an element that forms nitrides and inhibits formability such as ductility, hole expansibility, stretch flangeability, and bendability, and also causes blowholes during welding, resulting in poor weldability. It is an element that inhibits. If the N content exceeds 0.0150%, formability and weldability deteriorate, so the N content is set to 0.0150% or less. The N content is preferably 0.0100% or less, and more preferably 0.0075% or less. The lower limit of the N content includes 0%, but if it is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% is a practical lower limit on the practical steel sheet.

(O:0.0050%以下)
Oは、酸化物を形成し、延性、穴拡げ性、伸びフランジ性、及び、曲げ性などの成形性を阻害する元素である。O含有量が0.0050%を超えると、成形性が著しく低下するので、O含有量は0.0050%以下とする。下限は0%を含むが、Oを0.0001%未満に低減すると、製造コストが大幅に上昇するので、実用鋼板上、0.0001%が実質的な下限である。
(O: 0.0050% or less)
O is an element that forms an oxide and inhibits formability such as ductility, hole expansibility, stretch flangeability, and bendability. If the O content exceeds 0.0050%, the moldability is remarkably lowered, so the O content is set to 0.0050% or less. The lower limit includes 0%, but if O is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% is a practical lower limit on a practical steel sheet.

また、不可避的不純物として、H、Na、Cl、Sc、Co、Zn、Ga、Ge、As、Se、Y、Zr、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ta、Re、Os、Ir、Pt、Au、Pbを、合計で0.0100%以下含んでもよい。   Inevitable impurities include H, Na, Cl, Sc, Co, Zn, Ga, Ge, As, Se, Y, Zr, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te. , Cs, Ta, Re, Os, Ir, Pt, Au, and Pb may be included in a total amount of 0.0100% or less.

(製造方法)
母材鋼板の製造方法については特に規定しないが、生産コストの観点からは、鋳造スラブを熱間圧延し、必要に応じて冷間圧延して製造することが好ましい。熱間圧延に供するスラブは、連続鋳造スラブや薄スラブキャスターなどで製造したものを用いることができる。鋳造後のスラブは、一旦常温まで冷却しても構わないが、高温のまま直接熱間圧延に供することが、加熱に必要なエネルギーを削減できるため、より好ましい。
(Production method)
The manufacturing method of the base steel sheet is not particularly defined, but from the viewpoint of production cost, it is preferable that the cast slab is hot-rolled and cold-rolled as necessary. As the slab used for hot rolling, a slab produced by a continuous casting slab, a thin slab caster or the like can be used. Although the slab after casting may be once cooled to room temperature, it is more preferable to subject it to hot rolling directly at a high temperature because energy required for heating can be reduced.

熱間圧延工程において、スラブの加熱温度は1150℃以上とすることが好ましい。これは、鋳造時に生成する粗大な炭化物を溶解するためである。一方、加熱温度を1300℃超としても特性の改善効果は無いため、生産コストの観点から、加熱温度は1300℃以下とすることが好ましい。   In the hot rolling step, the heating temperature of the slab is preferably 1150 ° C. or higher. This is to dissolve coarse carbides produced during casting. On the other hand, there is no effect of improving the characteristics even if the heating temperature is higher than 1300 ° C. From the viewpoint of production cost, the heating temperature is preferably 1300 ° C. or lower.

熱間圧延の開始温度が低下すると、スラブの強度が上がり、所定の板厚精度が得られない可能性があるため、熱間圧延の開始温度は1030℃以上とすることが好ましい。一方、熱間圧延の完了温度が1000℃を上回ると、組織が過度に粗大化し、最終製品の組織も粗大化する可能性が有り、熱間圧延の完了温度は1000℃以下とすることが好ましい。一方、熱間圧延の完了温度が830℃未満となると、圧延時の荷重が過度に高まり、所定の板厚精度が得られない可能性があるため、熱間圧延の完了温度は830℃以上とすることが好ましい。   When the hot rolling start temperature is lowered, the strength of the slab is increased and the predetermined sheet thickness accuracy may not be obtained. Therefore, the hot rolling start temperature is preferably 1030 ° C. or higher. On the other hand, when the completion temperature of hot rolling exceeds 1000 ° C., the structure becomes excessively coarse and the structure of the final product may also become coarse, and the completion temperature of hot rolling is preferably 1000 ° C. or less. . On the other hand, when the completion temperature of hot rolling is less than 830 ° C., the load during rolling is excessively increased, and a predetermined sheet thickness accuracy may not be obtained. Therefore, the completion temperature of hot rolling is 830 ° C. or more. It is preferable to do.

熱間圧延完了後、組織の粗大化を防ぐため、圧延完了から5.0秒以内に冷却処理を開始することが好ましい。また、組織の粗大化を防ぐため、冷却処理における平均冷却速度は10℃/秒以上とすることが好ましく、かつ、冷却停止温度は680℃以下とすることが好ましい。   In order to prevent coarsening of the structure after completion of hot rolling, it is preferable to start the cooling treatment within 5.0 seconds after the completion of rolling. Moreover, in order to prevent the coarsening of a structure | tissue, it is preferable that the average cooling rate in a cooling process shall be 10 degreeC / second or more, and it is preferable that a cooling stop temperature shall be 680 degrees C or less.

得られた熱延鋼板には酸洗処理を施すことが好ましい。   The obtained hot-rolled steel sheet is preferably subjected to pickling treatment.

例えば上記のように製造した熱延鋼板をもって、本発明の高強度鋼板を製造するための母材鋼板とすることができる。母材鋼板として、化学組成および/または板厚の異なる鋼板を用い、そのうち1種以上は、当該鋼板の強度を780MPa以上とするため、上記の化学組成を有する鋼板を用いる。   For example, the hot-rolled steel plate manufactured as described above can be used as a base steel plate for manufacturing the high-strength steel plate of the present invention. As the base steel plate, steel plates having different chemical compositions and / or plate thicknesses are used, and one or more of them use steel plates having the above chemical composition in order to make the strength of the steel plates be 780 MPa or more.

母材鋼板には、鋼板を平坦として突き合わせ溶接を容易とするため、形状矯正処理を施しても構わない。平坦度を高めるため、鋼板に与える塑性変形量は0.01%以上とすることが好ましく、0.05%以上とすることが更に好ましい。   The base steel plate may be subjected to a shape correction treatment in order to make the steel plate flat and facilitate butt welding. In order to increase the flatness, the amount of plastic deformation applied to the steel sheet is preferably 0.01% or more, and more preferably 0.05% or more.

また、形状矯正のほか、製品に要求される板厚を容易に得るために、母材鋼板に冷間圧延を施しても構わない。しかしながら、冷延率が85%を超えると圧延中に鋼板が破断する可能性があるため、冷延率は85%以下とすることが好ましく、75%以下とすることが更に好ましい。   In addition to shape correction, the base steel plate may be cold-rolled in order to easily obtain the plate thickness required for the product. However, if the cold rolling rate exceeds 85%, the steel sheet may break during rolling, so the cold rolling rate is preferably 85% or less, and more preferably 75% or less.

上記冷間圧延は、複数の母材鋼板において、それぞれ個別の条件で施して構わない。例えば、冷間圧延を施す鋼板と施さない鋼板が母材鋼板として混在しても構わない。   The cold rolling may be performed under individual conditions in a plurality of base steel plates. For example, a steel plate that is subjected to cold rolling and a steel plate that is not subjected to cold rolling may be mixed as a base steel plate.

更に、後述する溶接処理に先立って、母材鋼板に予備熱処理を施しても構わない。予備熱処理における最高加熱温度をAc1温度以上とすることで、母材鋼板中の粗大炭化物を低減させることができ、特に後述する熱処理後の組織が均質化し、特性が改善する。 Furthermore, prior to the welding process described later, a preliminary heat treatment may be performed on the base steel sheet. By setting the maximum heating temperature in the preliminary heat treatment to the Ac1 temperature or higher, coarse carbides in the base steel plate can be reduced, and the structure after heat treatment, which will be described later, is particularly homogenized and the characteristics are improved.

また、予備熱処理における最高加熱温度をAc温度以上とし、加熱後の冷却工程における最高加熱温度から400℃までの平均冷却速度1.0℃/秒以上とすることで、母材鋼板中のミクロ組織を均質微細な組織とすることができ、特に後述する熱処理を施す場合、熱処理後の組織が均質化・微細化し、特性が改善する。前記予備熱処理は、複数の母材鋼板において、それぞれ個別の条件で施して構わない。例えば、予備熱処理を施す鋼板と施さない鋼板が母材鋼板として混在しても構わない。 In addition, the maximum heating temperature in the preliminary heat treatment is set to Ac 3 temperature or higher, and the average cooling rate from the highest heating temperature to 400 ° C. in the cooling step after heating is set to 1.0 ° C./second or higher. The structure can be a homogeneous fine structure. Particularly, when the heat treatment described later is performed, the structure after the heat treatment is homogenized and refined, and the characteristics are improved. The preliminary heat treatment may be performed on each of a plurality of base material steel plates under individual conditions. For example, a steel plate that is subjected to preliminary heat treatment and a steel plate that is not subjected to the heat treatment may be mixed as a base material steel plate.

化学組成および/または板厚の異なる2種以上の鋼板に、突き合わせ溶接処理を施し、1枚の板とする。溶接に先立って、安定した溶接ができるよう、突き合わせ部は切断し、必要に応じてテーパー加工を施すことが好ましい。   Two or more types of steel plates having different chemical compositions and / or plate thicknesses are subjected to a butt welding process to form a single plate. Prior to welding, it is preferable that the butt portion is cut and tapered as necessary so that stable welding can be performed.

鋼板は鋼帯コイルの長手方向に渡って突き合わせ溶接処理を施し、溶接処理済み鋼帯コイルを製造し、後述する熱処理を施しても構わない。あるいは、適当なサイズに切断した鋼板を溶接し、後述する熱処理を施しても構わない。   The steel sheet may be subjected to a butt welding process in the longitudinal direction of the steel strip coil to produce a welded steel strip coil, and may be subjected to a heat treatment described later. Alternatively, a steel plate cut to an appropriate size may be welded and subjected to heat treatment described later.

突き合わせ溶接は、溶接異常の少ない溶接部が得られるのであれば、手法は問わない。例えば、レーザー溶接のほか、マッシュシーム溶接で行っても構わない。突き合わせ溶接部及びHAZを挟む2枚の鋼板の板組において、両者の板厚が過度に異なると、めっき処理において、段差に起因する不めっきが生じ、耐食性が損なわれる場合がある。そのため、前記2枚の鋼板の板組は、母材鋼板の板厚比が3.0以下となるように選定することが好ましい。   The butt welding is not limited as long as a welded portion with little welding abnormality can be obtained. For example, in addition to laser welding, mash seam welding may be used. If the plate thickness of the two steel plates sandwiching the butt weld and HAZ is excessively different, unplating due to a step may occur in the plating process, and corrosion resistance may be impaired. Therefore, it is preferable to select the plate set of the two steel plates so that the thickness ratio of the base steel plate is 3.0 or less.

また、後述する熱処理を施す場合、両者の板厚が過度に異なると、鋼板および溶接部の温度変動やめっき処理のむらが生じ、安定した特性が得られない場合がある。この観点からも、突き合わせ溶接部及びHAZを挟む2枚の鋼板の板組は、母材鋼板の板厚比が3.0以下となるように選定する必要がある。鋼板全体で温度を安定化し、優れた衝撃特性を得るには、母材鋼板の板厚比は2.6以下であることが好ましい。   Moreover, when performing the heat processing mentioned later, if both plate | board thickness differs too much, the temperature fluctuation of a steel plate and a welding part and the nonuniformity of a plating process may arise, and the stable characteristic may not be acquired. Also from this viewpoint, it is necessary to select the plate set of the two steel plates sandwiching the butt weld and the HAZ so that the thickness ratio of the base steel plate is 3.0 or less. In order to stabilize the temperature of the entire steel plate and obtain excellent impact characteristics, the thickness ratio of the base steel plate is preferably 2.6 or less.

突き合わせ溶接後、熱処理を施す前に予備熱処理を施しても構わない。特に予備熱処理の最高加熱温度を、母材鋼板の1種以上におけるAc3温度以上とすることで、当該母材鋼板、その母材鋼板からなるHAZおよび溶接部のミクロ組織を均質微細とすることができ、鋼板の特性が向上する。   After butt welding, preliminary heat treatment may be performed before heat treatment. In particular, by setting the maximum heating temperature of the preliminary heat treatment to an Ac3 temperature or higher in one or more types of base steel plates, the base steel plate, the HAZ composed of the base steel plates, and the microstructure of the weld can be made homogeneous and fine. And the properties of the steel sheet are improved.

突き合わせ溶接後、めっき処理における濡れ性を高め、外観品位および耐食性を高めるため、溶接部および溶接熱影響部の表面に存在する酸化物を除去する必要がある。酸化物を除去する方法は特に問わないが、例えば酸洗処理を施すことができる。または、ショットピーニング処理を施しても構わない。   After the butt welding, it is necessary to remove oxides present on the surface of the welded portion and the weld heat affected zone in order to improve the wettability in the plating process and improve the appearance quality and the corrosion resistance. The method for removing the oxide is not particularly limited. For example, pickling treatment can be performed. Alternatively, shot peening may be performed.

あるいは、突き合せ溶接後、溶接部および溶接熱影響部において表面を研削することが好ましい。研削により、酸化物を除去するとともに、溶接部における段差が小さくなるため、製品の溶接ビードが目立たなくなり、外観が向上する。この処理は、酸洗処理の前後で行っても構わない。   Or it is preferable to grind the surface in a welding part and a welding heat affected zone after butt welding. Grinding removes oxides and reduces the level difference at the welded portion, making the weld bead of the product less noticeable and improving the appearance. This treatment may be performed before and after the pickling treatment.

突き合せ溶接後、めっき処理後の製品の外観品位を向上するため、めっき処理を施す前に表面処理を施しても構わない。例えば、FeまたはNiを主体とするプレめっき処理を施しても構わない。   In order to improve the appearance quality of the product after the butt welding and after the plating treatment, the surface treatment may be performed before the plating treatment. For example, a pre-plating process mainly composed of Fe or Ni may be performed.

[めっき処理]
本発明の高強度めっき鋼板を製造するにあたり、突き合わせ溶接部およびHAZを含めた鋼板の全面において、溶接後にめっき処理を施し、めっき鋼板とする。溶接後に電気めっき処理を施すことで、Zn、Znを主体とする合金のいずれかを鋼板表面に付着した、電気めっき鋼板が得られる。
[Plating treatment]
In producing the high-strength plated steel sheet of the present invention, the entire surface of the steel sheet including the butt weld and HAZ is plated after welding to obtain a plated steel sheet. By performing electroplating after welding, an electroplated steel sheet in which either Zn or an alloy mainly composed of Zn is adhered to the steel sheet surface is obtained.

あるいは、溶接後に、溶融金属浴相当の温度まで再加熱し、溶融金属浴に浸漬することで、Zn、Al、Znを主体とする合金あるいはAlを主体とする合金のいずれかを鋼板表面に付着した、溶融めっき鋼板が得られる。   Or, after welding, it is reheated to a temperature equivalent to a molten metal bath, and immersed in the molten metal bath, so that either Zn, Al, an alloy mainly composed of Zn or an alloy mainly composed of Al adheres to the steel sheet surface. A hot-dip galvanized steel sheet is obtained.

または、溶接とめっき処理の間に、後述する熱処理を施しても構わない。熱処理とめっき処理を連続して行う場合、最高加熱温度からの冷却途中に溶融金属浴に浸漬することで、Zn、Al、Znを主体とする合金あるいはAlを主体とする合金のいずれかを鋼板表面に付着した、溶融めっき鋼板が得られる。あるいは、熱処理後に一度室温まで冷却してから、溶融金属浴相当の温度まで再加熱し、溶融金属浴に浸漬することで、Zn、Al、Znを主体とする合金あるいはAlを主体とする合金のいずれかを鋼板表面に付着した、溶融めっき鋼板が得られる。   Or you may give the heat processing mentioned later between welding and plating processes. When heat treatment and plating treatment are performed continuously, either Zn, Al, an alloy mainly composed of Zn or an alloy mainly composed of Al is steel sheet by being immersed in a molten metal bath during cooling from the maximum heating temperature. A hot dipped steel sheet adhered to the surface is obtained. Alternatively, after cooling to room temperature once after the heat treatment, reheating to a temperature equivalent to a molten metal bath and immersing in a molten metal bath, Zn, Al, an alloy mainly composed of Zn or an alloy mainly composed of Al A hot-dip galvanized steel sheet in which either one is adhered to the steel sheet surface is obtained.

これらのめっき処理は、いずれも、突き合わせ溶接後に施すため、通常のテーラードブランク材では溶接部のめっき層は溶接時に蒸発するが、開発鋼では溶接部にもめっき層が存在する鋼板が得られる。   Since all of these plating treatments are performed after butt welding, the plating layer of the welded portion evaporates at the time of welding in a normal tailored blank material, but in the developed steel, a steel plate having a plated layer in the welded portion is obtained.

溶融金属浴に浸漬した後、連続あるいは一旦冷却した後に再加熱し、めっき層と地鉄との境界を合金化する、合金化処理を施しても構わない。   After being immersed in the molten metal bath, it may be subjected to an alloying treatment in which the boundary between the plating layer and the ground iron is alloyed by continuous or once cooling and then reheating.

亜鉛めっき層および合金化亜鉛めっき層は、Al、Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Fe、Ge、Hf、Zr、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr、REMの1種又は2種以上を、耐食性や成形性を阻害しない範囲で、含有してもよい。特に、Ni、Al、Mgは、耐食性の向上に有効であり、構成元素の質量割合でZnが最大のものである範囲において、積極的に添加して構わない。なお、めっき層の化学組成は上記に制限されるものではない。例えば、Al、Ni、Alを主体とする合金あるいはNiを主体とする合金をめっき層としても構わない。   Zinc plating layer and galvannealed layer are Al, Ag, B, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ge, Hf, Zr, I, K, La, Li, Mg , Mn, Mo, Na, Nb, Ni, Pb, Rb, Sb, Si, Sn, Sr, Ta, Ti, V, W, Zr, REM, one or more types, do not inhibit corrosion resistance and moldability In a range, you may contain. In particular, Ni, Al, and Mg are effective in improving corrosion resistance, and may be positively added in a range where Zn is the maximum in the mass ratio of the constituent elements. The chemical composition of the plating layer is not limited to the above. For example, Al, Ni, an alloy mainly containing Al, or an alloy mainly containing Ni may be used as the plating layer.

[熱処理]
溶接後、めっき処理に先だって、熱処理を施し、鋼板、HAZおよび溶接部のミクロ組織を作り込み、本発明の鋼板を製造することが好ましい。熱処理は、後述する条件が達成できる任意の熱処理装置において施せばよい。例えば、十分に加熱した還元雰囲気の炉に鋼板を挿入して熱処理を施せばよい。あるいは誘導加熱法、通電加熱法により熱処理を施しても構わない。
[Heat treatment]
After the welding, prior to the plating treatment, it is preferable to perform a heat treatment to produce the steel sheet, the HAZ and the microstructure of the welded portion, thereby manufacturing the steel sheet of the present invention. What is necessary is just to perform heat processing in the arbitrary heat processing apparatuses which can achieve the conditions mentioned later. For example, a heat treatment may be performed by inserting a steel plate into a sufficiently heated reducing atmosphere furnace. Alternatively, heat treatment may be performed by an induction heating method or an electric heating method.

特に、突き合わせ溶接を施した溶接処理済み鋼帯コイルを製造した場合、当該コイルを連続熱処理炉によって処理することで、本発明の鋼板を低コストで製造することができる。   In particular, when a welded steel strip coil subjected to butt welding is manufactured, the steel sheet of the present invention can be manufactured at low cost by processing the coil with a continuous heat treatment furnace.

熱処理を施すにあたり、780MPa以上の最大引張強度を得るため、前述の化学組成を有する母材鋼板の最高加熱温度を当該母材鋼板におけるAc1温度以上とすることが好ましい。これは、炭化物を溶解し、炭素により鋼板を高強度化するためである。炭化物を十分に溶解するため、当該母材鋼板に対する最高加熱温度は(Ac1+30)℃以上とすることがより好ましく、(Ac1+45)℃以上とすることが更に好ましい。最高加熱温度の上限は特に設定しないが、加熱温度が1000℃を超えると特性の改善効果は見られないため、製造コストの観点から最高加熱温度は1000℃以下とすることが好ましい。 Upon heat treatment, for maximum tensile strength of at least 780 MPa, a maximum heating temperature of the base material steel plate having a chemical composition described above is preferably set to A c1 temperature or more at the base steel sheet. This is because the carbide is dissolved and the steel sheet is strengthened with carbon. In order to sufficiently dissolve the carbide, the maximum heating temperature for the base steel plate is more preferably (A c1 +30) ° C. or higher, and further preferably (A c1 +45) ° C. or higher. The upper limit of the maximum heating temperature is not particularly set, but if the heating temperature exceeds 1000 ° C., the effect of improving the characteristics is not seen. Therefore, the maximum heating temperature is preferably set to 1000 ° C. or less from the viewpoint of manufacturing cost.

また、前記熱処理のうち、加熱を開始してから冷却を開始するまでの加熱工程での母材鋼板における温度履歴は下記の式(1)を満たすことが好ましい。式(1)は母材鋼板周辺のHAZおよび溶接部における炭化物の溶け具合を表わす指標であり、式(1)が満たされない場合、HAZおよび溶接部において低強度の部位が生じ、成形時のひずみが集中しやすくなる。   Moreover, it is preferable that the temperature history in the base material steel plate in the heating process from the start of heating to the start of cooling among the heat treatments satisfies the following formula (1). Equation (1) is an index representing the degree of carbide dissolution in the HAZ and welds around the base steel plate. If equation (1) is not satisfied, low strength parts are produced in the HAZ and welds, and distortion during molding Makes it easier to concentrate.

Figure 2019014938
式(1)は、炭化物の溶け始める目安となる温度T[℃]に到達してから冷却を開始するまでの時間を10ステップに等分に分割し、分割した各ステップにおける炭化物の溶け具合をT、T、鋼1と鋼2の化学組成のC、Si、Mn、Cr及びMoのそれぞれの含有量の単純平均及び鋼1の板厚tk1に対する鋼2の板厚tk2の比率(tk2/tk1;但し、tk2≧tk1)をパラメータとして含む関数Fn(Tn, T*, r, tn, C*, Si*, Mn*, Cr*, Mo*)にて計算し、合計するものである。但し、当該元素が含まれないときは、0を代入する。T[℃]はnステップ目における到達温度を、t[秒]はTに到達してからnステップ目までの総経過時間をそれぞれ表わす。C、Si、Mn、CrおよびMo[質量%]は、溶接される鋼1と鋼2の化学組成のC、Si、Mn、Cr及びMoのそれぞれの含有量の単純平均を示す。
rは前記2種の鋼板のうち板厚の薄い鋼板の板厚に対する板厚の厚い鋼板の比率であり、板厚の薄い鋼板を鋼1とし、板厚の厚い鋼板を鋼2とした場合、鋼2の板厚を鋼1の板厚で除した値とする。α、β、γはそれぞれ定数項であり、それぞれ2.25×10、2.20×10、2.41×10とする。なお、加熱温度がTよりも低い場合、左辺の値を0とし、式(1)は満たされないものとする。
Figure 2019014938
Formula (1) divides the time from reaching the temperature T * [° C.], which is a guideline for starting the dissolution of carbide, to the start of cooling into 10 steps, and the melting degree of the carbide in each divided step. Tn , T * , the simple average of the contents of C, Si, Mn, Cr and Mo in the chemical composition of steel 1 and steel 2 and the thickness tk 2 of steel 2 relative to the thickness tk 1 of steel 1 Function F n (T n , T * , r, t n , C * , Si * , Mn * , Cr * , Mo * ) including the ratio (tk 2 / tk 1 ; tk 2 ≧ tk 1 ) as a parameter It is calculated by and summed up. However, 0 is substituted when the element is not included. T n [° C.] represents the temperature reached at the n-th step, and t n [second] represents the total elapsed time from reaching T * to the n-th step. C * , Si * , Mn * , Cr *, and Mo * [mass%] are the simple average of the respective contents of C, Si, Mn, Cr, and Mo of the chemical compositions of Steel 1 and Steel 2 to be welded. Show.
r is the ratio of the thick steel plate to the thin steel plate thickness of the two types of steel plates, where the thin steel plate is steel 1 and the thick steel plate is steel 2. The thickness of steel 2 is divided by the thickness of steel 1. α, β, and γ are constant terms, which are 2.25 × 10 6 , 2.20 × 10 0 , and 2.41 × 10 4 , respectively. In addition, when heating temperature is lower than T * , the value of a left side shall be 0 and Formula (1) shall not be satisfy | filled.

また、Tは下記の式(2)によって得られる。

Figure 2019014938
ここで、かっこ内の添え字は溶接される鋼1、鋼2をそれぞれ表わす。すなわち、式(2)は各鋼におけるAc1[℃]、化学組成におけるSi、Mn、Cr及びMoのそれぞれの含有量[質量%](但し、当該元素が含まれないときは、0を代入する)、および式(1)に示した板厚比rからなる式である。なお、鋼2がAc1を持たない場合、Tは鋼1のAc1と等しいとする。 T * is obtained by the following equation (2).
Figure 2019014938
Here, the subscripts in parentheses represent steel 1 and steel 2 to be welded, respectively. That is, the formula (2) is A c1 [° C.] in each steel, and each content [mass%] of Si, Mn, Cr and Mo in the chemical composition (however, when the element is not included, 0 is substituted. And the plate thickness ratio r shown in the equation (1). When steel 2 does not have A c1 , T * is assumed to be equal to A c1 of steel 1.

前記加熱工程における温度履歴が式(1)を満たす場合、HAZおよび溶接部における炭化物の溶解は十分に進行するため、母材鋼板と近しい強度を有する溶接部が得られる。この観点から、式(1)の左辺は1.10以上であることがより好ましく、1.20以上であることが更に好ましい。   When the temperature history in the heating step satisfies the formula (1), the carbides in the HAZ and the welded portion are sufficiently dissolved, so that a welded portion having a strength close to that of the base steel plate is obtained. From this viewpoint, the left side of the formula (1) is more preferably 1.10 or more, and further preferably 1.20 or more.

鋼板のAc1点およびAc3点は、それぞれ加熱工程における逆変態の開始点と完了点であり、具体的には、熱処理に先だって熱間圧延後の鋼板から小片を切り出し、10℃/秒で1200℃まで加熱し、その間の体積膨張を測定することで得られる。 The points A c1 and A c3 of the steel sheet are the starting point and the completion point of reverse transformation in the heating process, respectively. Specifically, a small piece is cut out from the steel sheet after hot rolling prior to the heat treatment at 10 ° C./second. It is obtained by heating to 1200 ° C. and measuring the volume expansion during that time.

前記熱処理工程において、鋼板組織の多くをオーステナイトとし、その後冷却して変態させることで、溶接によって生じた粗大な組織が解消し、有効結晶粒径のばらつきdmax/dが小さい、耐衝撃特性に優れた鋼板が得られる。具体的には、下記の式(3)を満たすことで、dmax/dを十分に小さくすることができる。

Figure 2019014938
ここでvはAc1からAc1+40℃の区間における平均加熱速度[℃/秒]であり、kは2つの鋼板の平均冷間圧延率[%]をそれぞれ示す。式(3)の値が0.1を下回ると、Ac1近傍で生成したオーステナイト粒の一部が極端に成長し、dmax/dが小さくならない場合がある。また、式(3)の値が10.0を超えると、Ac1近傍で隣接して生成するオーステナイト粒の結晶方位が揃いやすくなり、これらオーステナイト粒が合体して粗大な組織となるため、dmax/dが小さくならない場合がある。なお、最高加熱温度がAc1+40℃に達しない場合、式(3)の値は0とする。 In the heat treatment step, most of the steel sheet structure is made to be austenite, and then cooled and transformed, thereby eliminating the coarse structure caused by welding and reducing the variation in effective crystal grain size d max / d. An excellent steel sheet is obtained. Specifically, d max / d can be made sufficiently small by satisfying the following formula (3).
Figure 2019014938
Here, v is an average heating rate [° C./second] in a section from A c1 to A c1 + 40 ° C., and k is an average cold rolling rate [%] of the two steel plates. When the value of the formula (3) is less than 0.1, a part of austenite grains generated in the vicinity of A c1 grows extremely, and d max / d may not become small. Further, since the value of the equation (3) exceeds 10.0, easily aligned crystal orientations of the austenite grains produced by adjacent A c1 vicinity become coarse tissue these austenite grains coalesce, d max / d may not be reduced. When the maximum heating temperature does not reach A c1 + 40 ° C., the value of equation (3) is 0.

尚、dmax/dを小さくし、耐衝撃性を高めるには、式(3)の値は0.5以上かつ5.0以下とすることが好ましい。 In order to reduce d max / d and improve the impact resistance, the value of formula (3) is preferably 0.5 or more and 5.0 or less.

本発明の高強度めっき鋼板において、めっき処理における鋼板、HAZおよび溶接部の濡れ性を高め、製品の概観およびめっきと鋼板の密着性を改善するため、熱処理における雰囲気を制御することが好ましい。例えば、熱処理における露点を−35℃以下に制御することで、鋼板表面における酸化物の生成を抑制し、めっき処理前の鋼板表面を清浄とすることで、濡れ性を高めることができる。   In the high-strength plated steel sheet of the present invention, it is preferable to control the atmosphere in the heat treatment in order to improve the wettability of the steel sheet, HAZ and welds in the plating process, and to improve the appearance of the product and the adhesion between the plating and the steel sheet. For example, by controlling the dew point in the heat treatment to −35 ° C. or lower, the generation of oxide on the steel sheet surface is suppressed, and the wettability can be improved by cleaning the steel sheet surface before plating.

あるいは、熱処理として、酸化雰囲気下における予熱過程と、続いて還元雰囲気下において最高加熱温度まで加熱する本加熱過程とに分け、それぞれ雰囲気を制御して加熱することが好ましい。   Alternatively, it is preferable that the heat treatment is divided into a preheating process in an oxidizing atmosphere and a main heating process in which heating is performed to a maximum heating temperature in a reducing atmosphere, and heating is performed while controlling the atmosphere.

前記酸化雰囲気下における予熱過程は、空気比:0.7〜1.2に制御した予熱炉において、鋼板表層部に酸化物を生成させることにより行う。なお、「空気比」とは、単位体積の混合ガスに含まれる空気の体積と、単位体積の混合ガスに含まれる燃料ガスとを完全燃焼させるために理論上必要となる空気の体積との比である。予熱過程の完了温度が400℃未満の場合、鋼板表層部での酸化物形成が不十分となる。一方、予熱過程の完了温度が800℃を超えると、鋼板表層部において過剰に脱炭が進行し、鋼板強度が劣化する。予熱過程の完了温度は、400〜800℃の範囲で、最高加熱温度未満の任意の温度とすることができる。空気比が0.7未満では鋼板表層部での酸化物形成が不十分となる。一方、空気比が1.2を超えると、鋼板表層部において過剰に脱炭が進行し、鋼板および/または溶接部の強度が劣化する。空気比は0.7〜1.2の範囲に制御することが好ましく、0.8〜1.1の範囲に制御することが更に好ましい。   The preheating process in the oxidizing atmosphere is performed by generating an oxide on the steel sheet surface layer in a preheating furnace controlled to an air ratio of 0.7 to 1.2. The “air ratio” is the ratio between the volume of air contained in a unit volume of mixed gas and the volume of air theoretically required for complete combustion of the fuel gas contained in the unit volume of mixed gas. It is. When the completion temperature of the preheating process is less than 400 ° C., oxide formation at the steel sheet surface layer becomes insufficient. On the other hand, when the completion temperature of the preheating process exceeds 800 ° C., decarburization proceeds excessively in the steel sheet surface layer portion, and the steel sheet strength deteriorates. The completion temperature of the preheating process can be any temperature below the maximum heating temperature in the range of 400-800 ° C. When the air ratio is less than 0.7, oxide formation at the surface layer of the steel sheet becomes insufficient. On the other hand, when the air ratio exceeds 1.2, decarburization proceeds excessively in the surface layer portion of the steel sheet, and the strength of the steel sheet and / or the welded portion deteriorates. The air ratio is preferably controlled in the range of 0.7 to 1.2, and more preferably in the range of 0.8 to 1.1.

続いて、本加熱過程では、HOとHとの分圧比P(HO)/P(H):0.0001〜2.00とした本加熱炉において最高加熱温度まで加熱することにより、予熱過程において生成した酸化物を還元し、清浄な表面とした後に冷却を行うことで、濡れ性を大きく改善することができる。分圧比が0.001未満であると、鋼板表面に酸化物が生成し、清浄な表面が得られない。一方、分圧比が2.0を超えると、鋼板表層部において過剰に脱炭が進行し、鋼板および/または溶接部の強度が劣化する。分圧比は0.001〜2.00の範囲に制御することが好ましく、0.005〜1.50の範囲に制御することが更に好ましい。 Subsequently, in the main heating process, heating is performed up to the maximum heating temperature in the main heating furnace in which the partial pressure ratio of H 2 O and H 2 is P (H 2 O) / P (H 2 ): 0.0001 to 2.00. Thus, the wettability can be greatly improved by reducing the oxide generated in the preheating process and cooling it after obtaining a clean surface. If the partial pressure ratio is less than 0.001, oxides are generated on the surface of the steel sheet, and a clean surface cannot be obtained. On the other hand, when the partial pressure ratio exceeds 2.0, decarburization proceeds excessively in the steel sheet surface layer portion, and the strength of the steel plate and / or the welded portion deteriorates. The partial pressure ratio is preferably controlled in the range of 0.001 to 2.00, more preferably in the range of 0.005 to 1.50.

本発明の高強度めっき鋼板において、母材鋼板からなる部位の強度を高めるには、最高加熱温度から600℃までの平均冷却速度を1℃/秒以上とすることが好ましい。これは、冷却中の軟質組織および粗大炭化物の生成を抑制するためであり、この観点から、平均冷却速度は5℃/秒以上とすることがより好ましい。   In the high-strength plated steel sheet of the present invention, in order to increase the strength of the portion made of the base steel sheet, the average cooling rate from the maximum heating temperature to 600 ° C. is preferably 1 ° C./second or more. This is to suppress the formation of soft tissues and coarse carbides during cooling, and from this viewpoint, the average cooling rate is more preferably 5 ° C./second or more.

残留オーステナイトによる成形性の改善を図るには、オーステナイトへの炭素の濃縮を進めるため、450〜300℃の温度域における滞留時間を10秒以上とすることが好ましい。オーステナイトの体積率を高め、成形性をより向上させるには、当該温度域における滞留時間は30秒以上とすることが更に好ましい。
なお、滞留時間とは当該温度域に滞在する時間の合計を指し、当該温度域であれば適宜冷却および/または加熱を行っても構わない。また、冷却終点温度が100℃以上あるいは加熱終点温度が600℃以下であれば、滞留の途中で当該温度域450〜300℃から一度逸脱してから再び当該温度域に戻って滞留しても構わない。
In order to improve the formability by retained austenite, it is preferable to set the residence time in the temperature range of 450 to 300 ° C. to 10 seconds or more in order to promote the concentration of carbon to austenite. In order to increase the volume ratio of austenite and further improve the moldability, the residence time in the temperature range is more preferably 30 seconds or more.
The residence time indicates the total time spent in the temperature range, and cooling and / or heating may be performed as appropriate within the temperature range. In addition, if the cooling end point temperature is 100 ° C. or higher or the heating end point temperature is 600 ° C. or lower, the temperature once deviates from the temperature range of 450 to 300 ° C. during the staying and then returns to the temperature range and stays again. Absent.

特に、鋼板が残留オーステナイトを含むミクロ組織とし、成形性を改善する場合、鋼板の化学組成は下記(式(4))を満たすことが好ましい。式(4)は鋼板におけるオーステナイトの残存しやすさを表す指標であり、式(4)の値が大きいほど、熱処理後にオーステナイトが残りやすく、残留オーステナイトが得やすい。

Figure 2019014938
但し、元素記号は各元素の母材鋼板における含有量[質量%]を示し、当該元素が含まれないときは、0を代入する。 In particular, when the steel sheet has a microstructure containing residual austenite and improves formability, the chemical composition of the steel sheet preferably satisfies the following (formula (4)). Equation (4) is an index representing the ease with which austenite remains in the steel sheet. The larger the value of equation (4), the more austenite remains after heat treatment, and the more likely retained austenite is obtained.
Figure 2019014938
However, the element symbol indicates the content [% by mass] of the base material steel plate of each element, and 0 is substituted when the element is not included.

熱処理後の鋼板を、特性を更に改善するため、焼戻処理を施しても構わない。焼戻処理温度が600℃を超えると、高強度鋼板からなる部位の最大引張強度が780MPaを下回る場合があり、焼戻処理温度は600℃以下とすることが好ましい。また、焼戻処理温度が150℃を下回ると、十分な効果が得られないため、焼戻処理温度は150℃以上とすることが好ましい。焼戻処理時間は特に指定せず、処理温度および目的の特性に応じて、適宜設定して構わない。   The steel plate after heat treatment may be tempered to further improve the properties. When the tempering temperature exceeds 600 ° C, the maximum tensile strength of the portion made of the high-strength steel sheet may be lower than 780 MPa, and the tempering temperature is preferably 600 ° C or lower. Further, if the tempering temperature is lower than 150 ° C., a sufficient effect cannot be obtained, and therefore the tempering temperature is preferably 150 ° C. or higher. The tempering time is not particularly specified, and may be set as appropriate according to the processing temperature and target characteristics.

熱処理後の鋼板に、形状の矯正を目的として、最大圧下率2.00%のスキンパス圧延を施しても構わない。   The steel plate after the heat treatment may be subjected to skin pass rolling with a maximum reduction ratio of 2.00% for the purpose of correcting the shape.

熱処理後にめっき処理を施す場合、熱処理後の鋼板に酸洗処理を施すことが好ましい。また、熱処理後にめっき処理を施す場合、表面の酸化物を除くため、熱処理後に溶接部のみ、あるいは溶接部を含む鋼板表面全体に研削を施しても構わない。   When the plating treatment is performed after the heat treatment, it is preferable to subject the steel plate after the heat treatment to a pickling treatment. Moreover, when performing a plating process after heat processing, in order to remove | exclude the oxide of a surface, you may grind only the welding part or the whole steel plate surface containing a welding part after heat processing.

本発明の鋼板は、耐食性および/または成形性を改善するため、突き合わせ溶接部およびHAZを含めた鋼板の全面において、リン酸化物および/またはリンを含む複合酸化物からなる皮膜を有しても構わない。   In order to improve the corrosion resistance and / or formability, the steel plate of the present invention may have a film made of a phosphorus oxide and / or a composite oxide containing phosphorus on the entire surface of the steel plate including the butt weld and HAZ. I do not care.

次に、本発明の実施例について説明する。
塗装後耐食性の評価は、曲げ曲げ戻し加工後の試験片において行う。溶接部を中央に配置した150×60mmの試験材を切出し、溶接部が曲げ稜線と垂直になるようにJIS Z 2248に従って曲げ角度60度の曲げ加工を施し、プレス加工によって平坦に戻して曲げ曲げ戻し加工後の試験片とし、日本パーカライジング(株)社製化成処理液(PB−SX35)で化成処理後、日本ペイント(株)社製電着塗料(パワーニクス110)を、厚みが20μmとなるように塗装し、170℃で焼付け、塗装後耐食性試験材とした。なお、前記曲げ加工における内側半径は、溶接部を構成する鋼板の厚い方の板厚の3.0〜5.0倍とする。
Next, examples of the present invention will be described.
Evaluation of corrosion resistance after coating is performed on the test piece after bending and bending back. A test piece of 150 x 60 mm with the welded portion placed in the center is cut out, bent at a bending angle of 60 degrees in accordance with JIS Z 2248 so that the welded portion is perpendicular to the bending ridgeline, and is bent back to flat by pressing. After the chemical conversion treatment with a conversion treatment liquid (PB-SX35) manufactured by Nippon Parkerizing Co., Ltd., the electrodeposition paint (Powernics 110) manufactured by Nippon Paint Co., Ltd. (Powernics 110) becomes 20 μm in thickness as a test piece after reversion. And then baked at 170 ° C. to obtain a corrosion resistance test material after coating. In addition, the inner radius in the said bending process shall be 3.0 to 5.0 times the plate | board thickness of the thicker steel plate which comprises a welding part.

塗装後耐食性の評価は、自動車技術会制定のJASO M609に規定する腐食試験方法で行った。溶接部および母材鋼板の塗膜に、溶接線と曲げ稜線の交点を中心として、あらかじめカッターでクロスカットを入れ、腐食試験180サイクル(60日)後のクロスカットからの塗膜膨れの幅(片側最大値)を計測し、7mmを超える場合を不合格(×)とする。また、膨れの幅が7mm以下であり、かつ、曲げ稜線および溶接線に孔食状の腐食が見られない場合を◎、孔食状の腐食が見られる場合を○とし、いずれも合格とする。   The corrosion resistance after coating was evaluated by a corrosion test method specified in JASO M609 established by the Automotive Engineers Association. A crosscut is made in advance with a cutter centering on the intersection of the weld line and the bending ridgeline on the coating of the welded part and the base steel plate, and the width of the film bulge from the crosscut after the corrosion test 180 cycles (60 days) ( The maximum value on one side) is measured, and the case where it exceeds 7 mm is regarded as rejected (x). In addition, when the bulge width is 7 mm or less and pitting corrosion is not observed on the bending ridge line and the weld line, ◎ is indicated, and when pitting corrosion is observed, both are acceptable. .

表1−1及び表1−2に示すA,E,AA,ABの化学組成を有するスラブを鋳造し、常法に沿って製造される母材鋼板を、表2に記載の板組みで突き合わせレーザー溶接処理後にめっき処理を施す。表2に、得られた鋼板の特性を示す。   Casting a slab having the chemical composition of A, E, AA, AB shown in Table 1-1 and Table 1-2, and matching the base steel plate manufactured in accordance with a conventional method with the plate assembly described in Table 2 Plating is performed after the laser welding process. Table 2 shows the characteristics of the obtained steel sheet.

実験例A3は、母材としてめっき鋼板を用い、突き合わせ溶接を施す比較例であり、溶接部および溶接熱影響部のめっき層が蒸散するため、耐食性が劣位な鋼板が得られる。   Experimental Example A3 is a comparative example in which a plated steel plate is used as a base material and butt welding is performed. Since the plating layer of the welded portion and the weld heat affected zone evaporates, a steel plate with inferior corrosion resistance is obtained.

実験例A4は、母材として冷延鋼板および熱延鋼板を用い、突き合わせ溶接を施し、461℃まで加熱し、溶融亜鉛浴に浸漬する例である。母材鋼板の板厚比が大きく、本発明の範囲を逸脱するため、溶接線近傍にめっき不良が生じ、鋼板の耐食性は劣位となる。   Experimental Example A4 is an example in which a cold-rolled steel plate and a hot-rolled steel plate are used as a base material, butt welding is performed, the steel is heated to 461 ° C., and immersed in a molten zinc bath. Since the thickness ratio of the base steel plate is large and deviates from the scope of the present invention, plating failure occurs in the vicinity of the weld line, and the corrosion resistance of the steel plate becomes inferior.

実験例A1、A2、A5、A6は、本発明の製法によって、溶接部を含む鋼板表面全体がめっき層を有する、耐食性に優れためっき鋼板を得る例である。   Experimental examples A1, A2, A5, and A6 are examples in which a plated steel sheet having excellent corrosion resistance, in which the entire steel sheet surface including the welded portion has a plating layer, is produced by the manufacturing method of the present invention.

実験例A1は、冷延鋼板を溶接した後、462℃まで加熱し、溶融亜鉛浴に浸漬し、さらに加熱して合金化処理を施す例であり、溶接部を含む鋼板表面全体がめっき層を有する、耐食性に優れた合金化溶融亜鉛めっき鋼板が得られる。   Experimental Example A1 is an example in which a cold-rolled steel sheet is welded, then heated to 462 ° C., immersed in a molten zinc bath, and further heated for alloying treatment. The entire steel sheet surface including the welded portion has a plating layer. An alloyed hot-dip galvanized steel sheet having excellent corrosion resistance is obtained.

実験例A2は、熱延鋼板を溶接した後、459℃まで加熱し、AlおよびMgを含む溶融亜鉛合金浴に浸漬し、さらに加熱して合金化処理を施す例であり、溶接部を含む鋼板表面全体がめっき層を有する、耐食性に優れた合金化溶融亜鉛合金めっき鋼板が得られる。   Experimental Example A2 is an example in which a hot-rolled steel sheet is welded, heated to 459 ° C., immersed in a molten zinc alloy bath containing Al and Mg, and further heated to be alloyed. An alloyed hot dip galvanized steel sheet having excellent corrosion resistance, having a plated layer on the entire surface, is obtained.

実験例A5は、冷延鋼板を溶接した後、458℃まで加熱し、溶融亜鉛浴に浸漬する例であり、溶接部を含む鋼板表面全体がめっき層を有する、耐食性に優れた溶融亜鉛めっき鋼板が得られる。   Experimental Example A5 is an example in which a cold-rolled steel plate is welded and then heated to 458 ° C. and immersed in a hot-dip zinc bath. The hot-dip galvanized steel plate having excellent corrosion resistance, in which the entire steel plate surface including the welded portion has a plating layer. Is obtained.

実験例A6は、冷延鋼板を溶接した後、電気めっきを施す例であり、溶接部を含む鋼板表面全体がめっき層を有する、耐食性に優れた亜鉛めっき鋼板が得られる。   Experimental example A6 is an example in which electroplating is performed after welding a cold-rolled steel sheet, and a galvanized steel sheet having excellent corrosion resistance in which the entire steel sheet surface including the welded portion has a plating layer is obtained.

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

続いて、溶接後にめっき処理に先だって熱処理を施す例を示す。表1−1、表1−2に示すA〜AEの化学組成を有するスラブを鋳造し、表3−1〜表3−3に示すスラブ加熱温度に加熱し、表3−1〜表3−3に示す圧延開始温度から圧延完了温度までの温度域において熱間圧延をする。その後、表3−1〜表3−3に示す冷却開始時間まで放冷し、表3−1〜表3−3に示す平均冷却速度で冷却停止温度まで冷却し、コイルとして巻き取る。   Subsequently, an example in which heat treatment is performed prior to plating after welding will be described. Slabs having chemical compositions A to AE shown in Table 1-1 and Table 1-2 were cast, heated to slab heating temperatures shown in Tables 3-1 to 3-3, and Tables 3-1 to 3- Hot rolling is performed in a temperature range from the rolling start temperature shown in 3 to the rolling completion temperature. Then, it cools to the cooling start time shown to Table 3-1 to Table 3-3, cools to cooling stop temperature with the average cooling rate shown to Table 3-1 to Table 3-3, and winds up as a coil.

その後、熱延鋼板を酸洗し、表3−1〜表3−3に示す合計の圧下率とする冷間圧延を行い、溶接に供する冷延鋼板を得る。なお、冷延率が0%の条件では熱延鋼板を溶接に供する。また、溶接に供する熱延鋼板の一部では、形状矯正のため、張力を付与して塑性変形させる。   Thereafter, the hot-rolled steel sheet is pickled and cold-rolled to obtain the total reduction shown in Tables 3-1 to 3-3 to obtain a cold-rolled steel sheet to be used for welding. Note that the hot-rolled steel sheet is subjected to welding under the condition where the cold rolling rate is 0%. In addition, a part of the hot-rolled steel sheet used for welding is subjected to plastic deformation by applying a tension for shape correction.

次いで、表3−1〜表3−3に示す組み合わせで鋼板を溶接する。溶接に先だって、突き合わせ部は切断し、直線性に優れた端部を得る。特に、実験例2〜10は、切断後の端部にテーパー加工を施す例である。   Next, the steel plates are welded in combinations shown in Tables 3-1 to 3-3. Prior to welding, the butt portion is cut to obtain an end portion having excellent linearity. In particular, Experimental Examples 2 to 10 are examples in which an end portion after cutting is subjected to taper processing.

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

実験例27は、後述する熱処理およびめっき処理の後にレーザー溶接を行う比較例である。実験例28は、後述する熱処理およびめっき処理の後にレーザー溶接を施し、再び溶接部にレーザーを照射して溶接部に後熱処理を施す例である。   Experimental example 27 is a comparative example in which laser welding is performed after heat treatment and plating treatment described later. Experimental Example 28 is an example in which laser welding is performed after the heat treatment and plating treatment described later, and the weld is irradiated with laser again to perform post-heat treatment on the weld.

実験例19および24はマッシュシーム溶接法によって溶接する例である。その他の実験例はレーザー溶接法によって溶接する例である。   Experimental examples 19 and 24 are examples of welding by the mash seam welding method. Other experimental examples are examples of welding by laser welding.

溶接後、熱処理に先だって、実験例3,7,9〜16、21〜24においては溶接部の表面を研削する。   After welding, prior to heat treatment, the surface of the welded portion is ground in Experimental Examples 3, 7, 9-16, and 21-24.

また、実験例18は、熱処理の前に溶接後の鋼板に再度酸洗処理を施す例である。   Experimental Example 18 is an example in which the steel plate after welding is subjected to pickling again before heat treatment.

また、実験例5、9は、熱処理の前に900℃まで加熱し、室温まで急冷する予備熱処理を施した後、酸洗処理を施す例である。   Experimental Examples 5 and 9 are examples in which a pickling treatment is performed after a preliminary heat treatment in which the sample is heated to 900 ° C. and rapidly cooled to room temperature before the heat treatment.

また、実験例2および14は、熱処理の前に溶接後の鋼板にNiめっき処理を施す例である。   Experimental Examples 2 and 14 are examples in which Ni plating treatment is performed on a steel plate after welding before heat treatment.

また、実験例20〜22は、溶接によって3枚の鋼板を連接させて1枚の熱間プレス用鋼板を得る例である。実験例20〜22は、図6に示すように、鋼板1の端部に鋼板2aを溶接して得られる溶接部aと、前記鋼板2aの反対側の鋼板1の端部において鋼板1と鋼板2bを溶接して得られる溶接部bを有する構造である。   Experimental Examples 20 to 22 are examples in which three steel plates are connected by welding to obtain one hot pressing steel plate. As shown in FIG. 6, in Experimental Examples 20 to 22, the steel plate 1 and the steel plate at the end of the steel plate 1 on the opposite side of the steel plate 2a and the welded portion a obtained by welding the steel plate 2a to the end of the steel plate 1. It is the structure which has the welding part b obtained by welding 2b.

次いで、溶接後の鋼板に表4−1、表4−2に示す条件の熱処理を施す。鋼板を、表4−1、表4−2に示す加熱温度まで、式(1)で表わされる加熱条件で加熱する。その後、表4−1、表4−2に示す平均冷却速度で600℃まで冷却し、450〜300℃において表4−1、表4−2に示す滞留時間だけ滞留させ、100℃未満の温度域まで冷却する。その後、一部の鋼板においては、焼戻処理および/またはスキンパス圧延処理を施す。   Next, heat treatment under the conditions shown in Table 4-1 and Table 4-2 is performed on the steel plate after welding. A steel plate is heated on the heating conditions represented by Formula (1) to the heating temperature shown to Table 4-1 and Table 4-2. Then, it cools to 600 degreeC with the average cooling rate shown to Table 4-1, Table 4-2, and it is made to stay only for the residence time shown to Table 4-1, Table 4-2 at 450-300 degreeC, and the temperature below 100 degreeC Cool to area. Thereafter, a tempering process and / or a skin pass rolling process is performed on some steel plates.

また、熱処理中または熱処理後に、表4−1、表4−2に示すめっき種別、すなわち溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)、溶融亜鉛合金めっき(Zn合金)、溶融アルミめっき(Al)、亜鉛めっき(EG)の各めっき処理を施す。   Further, during or after the heat treatment, the types of plating shown in Table 4-1 and Table 4-2, that is, hot dip galvanizing (GI), alloyed hot dip galvanizing (GA), hot dip zinc alloy plating (Zn alloy), molten aluminum Each plating treatment of plating (Al) and zinc plating (EG) is performed.

実験例2,6,10,13,16,28,29,31,32,34では、露点を制御した加熱炉において加熱処理を施す。それ以外の実験例では、酸化雰囲気とした予熱炉と、還元雰囲気とした本加熱炉とを用い、加熱処理を施す。   In Experimental Examples 2, 6, 10, 13, 16, 28, 29, 31, 32, and 34, heat treatment is performed in a heating furnace with a controlled dew point. In other experimental examples, heat treatment is performed using a preheating furnace in an oxidizing atmosphere and a main heating furnace in a reducing atmosphere.

特に、実験例8,9,13,21,26は、鋼板を600℃まで冷却した後、溶融亜鉛浴に浸漬してから、450℃以下まで冷却することで、溶融亜鉛めっき鋼板を得る例である。   In particular, Experimental Examples 8, 9, 13, 21, and 26 are examples in which a hot dip galvanized steel sheet is obtained by cooling the steel sheet to 600 ° C. and then immersing it in a hot dip zinc bath and then cooling to 450 ° C. or lower. is there.

また、実験例14は、450〜300℃における滞留の後、鋼板を460℃まで再加熱し、溶融亜鉛浴に浸漬してから室温まで冷却することで、溶融亜鉛めっき鋼板を得る例である。   Experimental Example 14 is an example of obtaining a hot dip galvanized steel sheet by reheating the steel sheet to 460 ° C. after dwelling at 450 to 300 ° C., immersing it in a hot dip galvanizing bath, and then cooling to room temperature.

更に、実験例6は、熱処理後、すなわち鋼板を100℃以下まで冷却してから、457℃まで再加熱する焼戻処理を施し、加熱後に溶融亜鉛浴に浸漬し、室温まで冷却することで、溶融亜鉛めっき鋼板を得る例である。   Furthermore, in Experimental Example 6, after the heat treatment, that is, the steel sheet was cooled to 100 ° C. or lower, and then subjected to a tempering treatment that was reheated to 457 ° C., immersed in a molten zinc bath after heating, and cooled to room temperature. This is an example of obtaining a hot-dip galvanized steel sheet.

実験例1,2,4,10,17,19,20,22,25,27〜38は、鋼板を600℃まで冷却した後、溶融亜鉛浴に浸漬し、470〜560℃まで再加熱する合金化処理を施し、450℃以下まで冷却することで、合金化溶融亜鉛めっき鋼板を得る例である。   Experimental Examples 1, 2, 4, 10, 17, 19, 20, 22, 25, 27 to 38 are alloys in which a steel sheet is cooled to 600 ° C., immersed in a molten zinc bath, and reheated to 470 to 560 ° C. This is an example of obtaining an alloyed hot-dip galvanized steel sheet by performing a heat treatment and cooling to 450 ° C. or lower.

また、実験例11および18は、450〜300℃における滞留の後、鋼板を460℃まで再加熱し、溶融亜鉛浴に浸漬し、470〜560℃まで再加熱する合金化処理を施し、室温まで冷却することで、合金化溶融亜鉛めっき鋼板を得る例である。   In Experimental Examples 11 and 18, the steel sheet was reheated to 460 ° C after dwelling at 450 to 300 ° C, immersed in a molten zinc bath, and subjected to an alloying treatment to be reheated to 470 to 560 ° C. This is an example of obtaining a galvannealed steel sheet by cooling.

更に、実験例3は、熱処理後、すなわち鋼板を100℃以下まで冷却してから、460℃まで再加熱し、溶融亜鉛浴に浸漬し、488℃まで再加熱することで焼戻処理と合金化処理を同時に施し、室温まで冷却することで、合金化溶融亜鉛めっき鋼板を得る例である。   Further, in Experimental Example 3, after the heat treatment, that is, the steel sheet was cooled to 100 ° C. or lower, reheated to 460 ° C., immersed in a molten zinc bath, and reheated to 488 ° C. to be tempered and alloyed. This is an example of obtaining an alloyed hot-dip galvanized steel sheet by simultaneously performing the treatment and cooling to room temperature.

実験例12および15は、鋼板を600℃まで冷却した後、AlおよびMgを含む溶融亜鉛合金浴に浸漬し、450℃以下まで冷却することで、溶融亜鉛合金めっき鋼板を得る例である。   Experimental examples 12 and 15 are examples in which a hot-dip galvanized steel sheet is obtained by cooling the steel sheet to 600 ° C., then immersing it in a hot-dip zinc alloy bath containing Al and Mg, and cooling to 450 ° C. or lower.

実験例5および16は、鋼板を加熱後に600℃まで冷却する過程において、溶融アルミニウム浴に浸漬することで、アルミニウムめっき鋼板を得る例である。   Experimental Examples 5 and 16 are examples of obtaining an aluminum-plated steel sheet by dipping in a molten aluminum bath in the process of cooling the steel sheet to 600 ° C. after heating.

実験例22は、鋼板を加熱後に600℃まで冷却する過程において、Mgを含む溶融アルミニウム合金浴に浸漬することで、アルミニウムめっき鋼板を得る例である。   Experimental Example 22 is an example of obtaining an aluminum-plated steel sheet by immersing it in a molten aluminum alloy bath containing Mg in the process of cooling the steel sheet to 600 ° C. after heating.

実験例7および24は、熱処理後の鋼板を酸洗し、電気めっき処理を施すことで、亜鉛めっき鋼板を得る例である。   Experimental Examples 7 and 24 are examples in which a galvanized steel sheet is obtained by pickling the steel sheet after heat treatment and performing electroplating treatment.

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

以上のようにして得られる高強度めっき鋼板において、硬さおよびミクロ組織の分布の評価、機械特性の評価、および塗装後耐食性の評価を行った。塗装後耐食性の評価は、自動車技術会制定のJASO M609に規定する腐食試験方法にて、表2の実施例と同様の方法で行った。   In the high-strength plated steel sheet obtained as described above, evaluation of hardness and microstructure distribution, evaluation of mechanical properties, and evaluation of corrosion resistance after coating were performed. Evaluation of corrosion resistance after painting was carried out in the same manner as in the examples in Table 2, using the corrosion test method defined in JASO M609 established by the Automotive Engineers Association.

図1は一般的な突き合わせ溶接部における板厚、硬さ分布の例であり、表1−1、表1−2に示す化学組成Aの鋼板と化学組成ACの鋼板に対し、一般的なテーラードブランク工法によって得られる溶接部およびその周辺から得られる。また、図2は本発明の高強度鋼板における溶接部における板厚、硬さ分布の例であり、同じ鋼板を本発明の方法によって溶接および熱処理を施すことで得られる。また、図4は本発明の高強度鋼板および一般的な突き合せ溶接部における溶接部周辺の有効結晶粒径の分布であり、図3に示す測定方法にて実験例1および2から得られる。   FIG. 1 is an example of sheet thickness and hardness distribution in a general butt weld, and is generally tailored for steel sheets of chemical composition A and chemical composition AC shown in Table 1-1 and Table 1-2. It is obtained from the welded part obtained by the blank method and its periphery. FIG. 2 is an example of the thickness and hardness distribution in the welded portion of the high-strength steel sheet of the present invention, and can be obtained by subjecting the same steel sheet to welding and heat treatment by the method of the present invention. FIG. 4 is a distribution of effective crystal grain size around the welded portion in the high-strength steel sheet of the present invention and a general butt weld, and is obtained from Experimental Examples 1 and 2 by the measuring method shown in FIG.

鋼板の機械特性は引張試験によって評価する。母材部の特性は、溶接線に垂直な方向を引張軸とする、JIS Z 2201に記載のJIS5号試験片を用いて評価する。その他の条件は、JIS Z 2241に記載の引張試験方法に準ずる。これらの評価結果を表5−1〜表5−3に示す。尚、表5−1、表5−2の項目「比(1)」は、鋼板1の硬さと板厚の積の分布の平均値HT及び鋼板2の硬さと板厚の積の分布の平均値HTに対する、前記突き合わせ溶接部及び溶接熱影響部を含む領域の硬度と板厚の積HTの分布における最大値HTmaxの割合、すなわち、HTmax/HT及びHTmax/HT2のうち、大きい方の値である。また、項目「比(2)」は、前記平均値HT及び前記HTに対する前記HTの分布における最小値HTminの割合、すなわち、HTmin/HT及びHTmin/HT2のうち、小さい方の値である。また、「比(3)」は、溶接された鋼板1及び鋼板2のそれぞれの有効結晶粒径の平均値のうち大きい方の有効結晶粒径dと、突き合わせ溶接部及び溶接熱影響部を含む領域の有効結晶粒径の分布における最大値dmaxとの比(dmax/d)の値である。 The mechanical properties of the steel sheet are evaluated by a tensile test. The characteristics of the base metal part are evaluated by using a JIS No. 5 test piece described in JIS Z 2201 whose tensile axis is a direction perpendicular to the weld line. Other conditions conform to the tensile test method described in JIS Z 2241. These evaluation results are shown in Tables 5-1 to 5-3. In addition, the item “ratio (1)” in Tables 5-1 and 5-2 is the average value HT 1 of the product distribution of the hardness and the plate thickness of the steel plate 1 and the product distribution of the hardness and the plate thickness of the steel plate 2. The ratio of the maximum value HT max in the distribution of the product HT of the hardness and thickness of the region including the butt weld and the weld heat affected zone to the average value HT 2 , that is, HT max / HT 1 and HT max / HT 2 Of these, the larger value. In addition, the item “ratio (2)” is the smaller of the ratio of the minimum value HT min in the distribution of the HT to the average value HT 1 and the HT 2 , that is, HT min / HT 1 and HT min / HT 2. Is the value of “Ratio (3)” includes the larger effective crystal grain size d of the average values of the effective crystal grain sizes of the welded steel plate 1 and steel plate 2, the butt weld and the weld heat affected zone. This is the ratio (d max / d) to the maximum value d max in the effective crystal grain size distribution in the region.

溶接部の特性は2種類の引張試験片によって評価した。1つ目はJIS5号試験片であり、溶接線に垂直な方向を引張軸として、溶接線を試験片中央に配して試験片を作成し、評価した。この試験結果を表5−3の項目「溶接線直行」の欄に示す。この引張試験における最大荷重は静的な変形に伴う溶接部周辺へのひずみ集中の起こりやすさの指標となる。同最大荷重が母材部の引張試験における最大荷重の0.80倍以上である場合、静的な変形に伴う溶接部周辺へのひずみ集中が起こりづらいと判断でき、同鋼板には母材部相当の成形性が期待できる。表5−3の項目「比(4)」は、この引張試験における母材部の前記最大荷重に対する「溶接線直行」の欄の荷重の割合を示す。   The properties of the weld were evaluated using two types of tensile test pieces. The first was a JIS No. 5 test piece, and a test piece was prepared and evaluated by placing the weld line in the center of the test piece with the direction perpendicular to the weld line as the tensile axis. This test result is shown in the column of item “Direct welding line” in Table 5-3. The maximum load in this tensile test is an index of the likelihood of strain concentration around the weld due to static deformation. If the maximum load is 0.80 times or more the maximum load in the tensile test of the base metal part, it can be judged that strain concentration around the welded part due to static deformation is difficult to occur. Considerable moldability can be expected. The item “ratio (4)” in Table 5-3 indicates the ratio of the load in the column “Welding line direct” to the maximum load of the base metal part in this tensile test.

2つめは図5に示すノッチ付き試験片であり、溶接線に垂直な方向を引張軸として、溶接線を試験片中央に配し、溶接線中心とノッチ底とを揃えた試験片を作成し、評価した。ノッチ底半径は1.5mmとする。ノッチ底の間隔は25mmとする。この試験結果を表5−3の項目「切欠試験」の欄に示す。この引張試験における最大荷重は衝撃時の動的な変形に伴う溶接部周辺の破壊耐力を表す指標となる。同最大荷重が母材部の引張試験における最大荷重の0.80倍以上である場合、溶接部は衝撃時に脆性破壊しづらいと判断でき、同鋼板には母材部相当の耐衝撃特性が期待できる。表5−3の項目「比(5)」は、この引張試験における母材部の前記最大荷重に対する「切欠試験」の欄の荷重の割合を示す。   The second is a test piece with a notch shown in FIG. 5. A test piece is prepared by arranging the weld line at the center of the test piece with the direction perpendicular to the weld line as the tensile axis and aligning the center of the weld line with the notch bottom. ,evaluated. The notch bottom radius is 1.5 mm. The interval between the notch bottoms is 25 mm. The test results are shown in the column “Notch Test” in Table 5-3. The maximum load in this tensile test is an index that represents the fracture strength around the welded part due to dynamic deformation at the time of impact. If the maximum load is 0.80 or more times the maximum load in the tensile test of the base metal part, it can be judged that the welded part is difficult to brittle fracture at the time of impact, and the steel sheet is expected to have impact resistance equivalent to the base material part. it can. The item “ratio (5)” in Table 5-3 indicates the ratio of the load in the column of “notch test” with respect to the maximum load of the base material portion in this tensile test.

実験例27は、通常のテーラードブランク工法によって高強度めっき鋼板を得る例であり、溶接部周辺のめっきは溶接時に消失するため、耐食性は極めて劣位である。   Experimental Example 27 is an example in which a high-strength plated steel sheet is obtained by a normal tailored blank method. Since the plating around the welded portion disappears during welding, the corrosion resistance is extremely inferior.

実験例28は、めっき鋼板を溶接後に溶接部を後熱処理する例であり、溶接部周辺のめっきは溶接時に消失するため、耐食性は極めて劣位である。   Experimental example 28 is an example in which the welded portion is post-heat treated after welding the plated steel sheet, and since the plating around the welded portion disappears during welding, the corrosion resistance is extremely inferior.

実験例29および30は、高強度めっき鋼板を構成する母材の板厚比が大きい例であり、溶接部周辺にめっき不良が生じ、耐食性が劣位となる例である。また、熱処理中に溶接部周辺において生じる温度ムラに起因して、溶接部周辺の硬度偏差が大きくなり、成形性および耐衝撃性が劣位となる。   Experimental examples 29 and 30 are examples in which the thickness ratio of the base material constituting the high-strength plated steel sheet is large, in which poor plating occurs in the vicinity of the weld and the corrosion resistance is inferior. In addition, due to temperature unevenness that occurs around the weld during heat treatment, the hardness deviation around the weld becomes large, resulting in inferior formability and impact resistance.

実験例31は、熱処理における加熱温度が低く、鋼板の強度が700MPaを下回る例である。   Experimental example 31 is an example in which the heating temperature in the heat treatment is low and the strength of the steel sheet is lower than 700 MPa.

実験例32,33は、熱処理における加熱条件が式(1)を満たさない例であり、溶接部周辺の炭化物の溶解が十分に進まず、成形性が劣位となる。   Experimental examples 32 and 33 are examples in which the heating conditions in the heat treatment do not satisfy the formula (1), and the dissolution of the carbide around the welded portion does not proceed sufficiently, resulting in inferior formability.

実験例34は、加熱炉の露点が過度に高く、耐食性が劣位となる例である。   Experimental Example 34 is an example in which the dew point of the heating furnace is excessively high and the corrosion resistance is inferior.

実験例35は、予熱炉の空気比が過度に小さく、耐食性が劣位となる例である。   Experimental Example 35 is an example in which the air ratio of the preheating furnace is excessively small and the corrosion resistance is inferior.

実験例36は、予熱炉の空気比が過度に大きく、溶接部周辺の強度が低下し、成形性が劣位となる例である。   Experimental Example 36 is an example in which the air ratio of the preheating furnace is excessively large, the strength around the welded portion is lowered, and the formability is inferior.

実験例37は、本加熱炉の雰囲気が本発明の範囲を逸脱し、耐食性が劣位となる例である。   Experimental Example 37 is an example in which the atmosphere of the heating furnace deviates from the scope of the present invention and the corrosion resistance is inferior.

実験例38は、本加熱炉の雰囲気が本発明の範囲を逸脱し、溶接部周辺の強度が低下し、成形性が劣位となる例である。   Experimental Example 38 is an example in which the atmosphere of the heating furnace departs from the scope of the present invention, the strength around the welded portion is lowered, and the formability is inferior.

実験例1〜26は、本発明に従って高強度めっき鋼板を製造する例であり、かつ、溶接後にめっき処理に先だって適切な熱処理を施すことで、成形性、耐衝撃性および耐食性に優れた高強度めっき鋼板が得られる。   Experimental Examples 1 to 26 are examples of producing a high-strength plated steel sheet according to the present invention, and high strength excellent in formability, impact resistance and corrosion resistance by performing an appropriate heat treatment prior to plating after welding. A plated steel sheet is obtained.

以上、本発明の各実施形態について詳細に説明したが、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎない。本発明は、これらの実施形態によって技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明は、その技術思想またはその主要な特徴から逸脱することなく、さまざまな形で実施することができる。   As mentioned above, although each embodiment of this invention was described in detail, all the said embodiment showed only the example of actualization in implementing this invention. The technical scope of the present invention should not be limitedly interpreted by these embodiments. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

Figure 2019014938
Figure 2019014938

本発明の高強度めっき鋼板は耐食性に優れており、自動車の車体への適用に好適である。   The high-strength plated steel sheet of the present invention is excellent in corrosion resistance and is suitable for application to the body of an automobile.

Claims (18)

異なる鋼板およびそれらの突き合わせ溶接部からなり、
前記異なる鋼板のうち少なくとも1種の鋼板の最大引張強度が780MPa以上であり、
前記突き合わせ溶接部及び溶接熱影響部を含む鋼板全体において、表面にめっき層を有することを特徴とする高強度めっき鋼板。
Consisting of different steel plates and their butt welds,
The maximum tensile strength of at least one of the different steel plates is 780 MPa or more,
A high strength plated steel sheet having a plated layer on the entire surface of the steel sheet including the butt weld and the weld heat affected zone.
前記突き合わせ溶接部及び溶接熱影響部を含む領域の硬度と板厚の積HTの分布における最小値HTminが、前記異なる鋼板のうち1つの鋼板における平均値HTと前記異なる鋼板のうち他の鋼板における平均値HTのうち小さい方の値の0.80倍以上であり、
前記HTの分布における最大値HTmaxが前記HTとHTのうち大きい方の値の1.50倍以下であり、
前記突き合わせ溶接部及び溶接熱影響部を含む領域の硬度の最大値Hmaxと前記1つの鋼板における硬度Hと前記他の鋼板における硬度Hのうち大きい方の値との差ΔHが100Hv以下であることを特徴とする、請求項1に記載の高強度めっき鋼板。
The minimum value HT min in the distribution of the product HT of the hardness and the plate thickness HT in the region including the butt weld and the heat affected zone is an average value HT 1 in one of the different steel plates and the other of the different steel plates. It is 0.80 times or more the smaller value of the average value HT 2 in the steel sheet,
The maximum value HT max in the HT distribution is not more than 1.50 times the larger value of HT 1 and HT 2 ;
The difference ΔH between the maximum value H max of the hardness of the region including the butt weld and the weld heat affected zone, the hardness H 1 of the one steel plate, and the hardness H 2 of the other steel plate is 100 Hv or less. The high-strength plated steel sheet according to claim 1, wherein
前記突き合わせ溶接部及び溶接熱影響部を含む領域の有効結晶粒径の分布において、前記1つの鋼板の有効結晶粒径の平均値と前記他の鋼板の有効結晶粒径の平均値のうち大きい方の有効結晶粒径dと、前記有効結晶粒径の最大値dmaxとの比が5.0以下であることを特徴とする、請求項1又は2に記載の高強度めっき鋼板。 In the distribution of effective crystal grain size in the region including the butt weld and the weld heat affected zone, the larger of the average value of the effective crystal grain size of the one steel plate and the average value of the effective crystal grain size of the other steel plate The high-strength plated steel sheet according to claim 1 or 2, wherein the ratio of the effective crystal grain size d to the maximum value d max of the effective crystal grain size is 5.0 or less. 前記突き合わせ溶接部及び溶接熱影響部を含む領域の残留オーステナイトの体積率の分布において残留オーステナイトの多い側の鋼板における残留オーステナイト体積率Vと前記1つの鋼板から前記他の鋼板にかけての最大残留オーステナイト体積率Vmaxの差が5.0%以下であることを特徴とする請求項1〜3のうちいずれか1項に記載の高強度めっき鋼板。 In the distribution of the volume fraction of retained austenite in the region including the butt weld and the weld heat affected zone, the retained austenite volume ratio V in the steel sheet on the side with much retained austenite and the maximum retained austenite volume from the one steel sheet to the other steel sheet high strength plated steel sheet according to any one of claims 1 to 3, the difference between the rate V max is equal to or less than 5.0%. 溶接部および溶接熱影響部を含む鋼板表面全体に亜鉛めっき層を有することを特徴とする請求項1〜4のうちいずれか1項に記載の高強度めっき鋼板。   The high-strength galvanized steel sheet according to any one of claims 1 to 4, further comprising a galvanized layer on the entire surface of the steel sheet including the welded portion and the weld heat affected zone. 前記亜鉛めっき層は合金化亜鉛めっき層であることを特徴とする請求項5に記載の高強度めっき鋼板。   6. The high strength plated steel sheet according to claim 5, wherein the galvanized layer is an alloyed galvanized layer. 質量%で、
C:0.020%以上0.800%以下、
Si:0.001%以上3.00%以下、
Mn:0.01%以上25.00%以下、
P:0.100%以下、
S:0.0100%以下、
Al:0.001%〜2.500%、
N:0.0150%以下、
O:0.0050%以下、
を含有し、残部が鉄および不可避不純物からなる1つの鋼板と、
前記鋼板とは化学組成および/または板厚の異なる他の鋼板とを、溶接部における板厚比を3.0以下として突き合わせ溶接し、
溶接後にめっき処理を施すことを特徴とする高強度めっき鋼板の製造方法。
% By mass
C: 0.020% or more and 0.800% or less,
Si: 0.001% to 3.00%,
Mn: 0.01% or more and 25.00% or less,
P: 0.100% or less,
S: 0.0100% or less,
Al: 0.001% to 2.500%
N: 0.0150% or less,
O: 0.0050% or less,
One steel plate containing the balance of iron and inevitable impurities,
The steel plate and other steel plates having different chemical compositions and / or plate thicknesses are butt welded with a plate thickness ratio of 3.0 or less at the weld,
A method for producing a high-strength galvanized steel sheet, characterized by performing a plating treatment after welding.
前記1つの鋼板の化学組成が、
Feの一部に替えて、更に質量%で、
Cr 0.03〜5.00%
Mo 0.03〜5.00%
Ni 0.03〜5.00%
Cu 0.03〜5.00%
W 0.03〜5.00%
B 0.0004〜0.0100%
Nb 0.005〜0.200%
Ti 0.010〜0.500%
V 0.05〜2.00%
Sb 0.003〜1.000%
Sn 0.005〜1.000%
Ca 0.0010〜0.0100%
Ce 0.0010〜0.0100%
Mg 0.0010〜0.0100%
Zr 0.0010〜0.0100%
La 0.0010〜0.0100%
Hf 0.0010〜0.0100%
REM 0.0010〜0.0100%
のいずれか1種以上を含むことを特徴とする請求項7に記載の高強度めっき鋼板の製造方法。
The chemical composition of the one steel plate is
In place of a part of Fe, further in mass%,
Cr 0.03-5.00%
Mo 0.03-5.00%
Ni 0.03-5.00%
Cu 0.03-5.00%
W 0.03-5.00%
B 0.0004-0.0100%
Nb 0.005 to 0.200%
Ti 0.010-0.500%
V 0.05-2.00%
Sb 0.003 to 1.000%
Sn 0.005 to 1.000%
Ca 0.0010 to 0.0100%
Ce 0.0010-0.0100%
Mg 0.0010-0.0100%
Zr 0.0010-0.0100%
La 0.0010-0.0100%
Hf 0.0010 to 0.0100%
REM 0.0010-0.0100%
Any one or more of these are included, The manufacturing method of the high strength plated steel plate of Claim 7 characterized by the above-mentioned.
前記鋼板の溶接後、めっき処理の前に、前記鋼板のうち少なくとも1つの鋼板のAc1温度を上回る温度まで加熱する熱処理を行い、
前記熱処理は、加熱開始から冷却開始までの温度履歴が式(1)を満たすことを特徴とする、請求項7又は8に記載の高強度めっき鋼板の製造方法。
Figure 2019014938
但し、式(1)は、鋼板の温度がT[℃]に到達してから冷却を開始するまでの時間を10ステップに等分に分割し、分割した各ステップにおける式Fn(Tn, T*, r, tn, C*, Si*, Mn*, Cr*, Mo*)の計算値を合計するものである。T[℃]はnステップ目における到達温度を、t[秒]はTに到達してからnステップ目までの総経過時間をそれぞれ表わす。C、Si、Mn、CrおよびMoは、前記2種の鋼板の化学組成のC、Si、Mn、Cr及びMoのそれぞれの含有量[質量%]の単純平均を示し、当該元素が含まれないときは、0を代入する。rは前記2種の鋼板の板厚比であり、板厚の薄い鋼板の板厚に対する板厚の厚い鋼板の比率であり、鋼板の板厚が等しい場合、r=1とする。α、β、γはそれぞれ定数項であり、それぞれ2.25×10、2.20×10、2.41×10とする。また、Tは下記の式(2)によって得られる。
Figure 2019014938
ここで、元素の右肩に記載のかっこ内の添え字1および2は前記2種の鋼板をそれぞれ表わし、Tは各鋼におけるAc1[℃]、各鋼板の化学組成におけるSi、Mn、Cr及びMoのそれぞれの含有量[質量%]、および板厚比rから求められる。但し、当該元素が含まれないときは、0を代入する。
After the steel plate is welded and before the plating treatment, heat treatment is performed to heat the steel plate to a temperature exceeding the Ac1 temperature of at least one of the steel plates,
The method for producing a high-strength plated steel sheet according to claim 7 or 8, wherein the heat history satisfies a formula (1) in a temperature history from a heating start to a cooling start.
Figure 2019014938
However, Formula (1) divides time from the time when the temperature of the steel plate reaches T * [° C.] until the start of cooling into 10 steps equally, and Formula F n (T n in each divided step is , T *, r, t n , C *, Si *, Mn *, Cr *, is to sum the calculated values of Mo *). T n [° C.] represents the temperature reached at the n-th step, and t n [second] represents the total elapsed time from reaching T * to the n-th step. C * , Si * , Mn * , Cr *, and Mo * are simple averages of the contents [mass%] of C, Si, Mn, Cr, and Mo of the chemical compositions of the two types of steel plates, respectively. If no element is included, 0 is substituted. r is a plate thickness ratio of the two types of steel plates, and is a ratio of a steel plate having a large plate thickness to a plate thickness of a steel plate having a small plate thickness. When the plate thicknesses of the steel plates are equal, r = 1. α, β, and γ are constant terms, which are 2.25 × 10 6 , 2.20 × 10 0 , and 2.41 × 10 4 , respectively. T * is obtained by the following equation (2).
Figure 2019014938
Here, the subscripts 1 and 2 in the parentheses described on the right shoulder of the element represent the two types of steel plates, respectively, T * is A c1 [° C.] in each steel, Si, Mn in the chemical composition of each steel plate, It is determined from the respective contents [% by mass] of Cr and Mo and the plate thickness ratio r. However, 0 is substituted when the element is not included.
前記鋼板の溶接後、めっき処理の前に、前記鋼板のうち少なくとも1つの鋼板の(Ac1+40)℃を上回る温度まで加熱する熱処理を行い、
前記熱処理は、加熱開始から冷却開始までの温度履歴が式(3)を満たすことを特徴とする、請求項7〜9のうちいずれか1項に記載の高強度めっき鋼板の製造方法。
Figure 2019014938
但し、vはAc1からAc1+40℃の区間における平均加熱速度[℃/秒]であり、kは2つの鋼板の平均冷間圧延率[%]をそれぞれ示す。
After the welding of the steel plate, prior to the plating treatment, heat treatment is performed to heat at least one of the steel plates to a temperature exceeding (A c1 +40) ° C.,
The method for producing a high-strength plated steel sheet according to any one of claims 7 to 9, wherein in the heat treatment, a temperature history from the start of heating to the start of cooling satisfies formula (3).
Figure 2019014938
However, v is an average heating rate [° C./second] in a section from A c1 to A c1 + 40 ° C., and k indicates an average cold rolling rate [%] of the two steel plates.
前記熱処理は、予熱バーナーに用いる空気と燃料ガスの混合ガスにおいて、単位体積の混合ガスに含まれる空気の体積と、単位体積の混合ガスに含まれる燃料ガスを完全燃焼させるために理論上必要となる空気の体積との比である空気比:0.7〜1.2とされた条件の酸化帯において加熱し、次いで、水蒸気(HO)と水素(H)との分圧比P(HO)/P(H):0.0001〜2.0とされた還元帯において最高加熱温度まで加熱することを特徴とする、請求項9又は10に記載の高強度めっき鋼板の製造方法。 The heat treatment is theoretically necessary to completely burn the volume of air contained in the unit volume of mixed gas and the fuel gas contained in the unit volume of mixed gas in the mixed gas of air and fuel gas used for the preheating burner. comprising air ratio is the ratio of the volume of air: heating in the oxidation zone of 0.7 to 1.2 and conditions, then, water vapor (H 2 O) and the partial pressure ratio P of hydrogen (H 2) ( H 2 O) / P (H 2): characterized by heating to a maximum heating temperature in has been reducing zone and 0.0001 to 2.0, the production of high-strength plated steel sheet according to claim 9 or 10 Method. 突き合わせ溶接後、めっき処理の前に、溶接部を研削することを特徴とする請求項7〜11のうちいずれか1項に記載の高強度めっき鋼板の製造方法。   The method for producing a high-strength plated steel sheet according to any one of claims 7 to 11, wherein the welded portion is ground after the butt welding and before the plating treatment. 前記熱処理前に、前記1つの鋼板及び他の鋼板のうち少なくともいずれかのAc1温度以上に加熱する予備熱処理を1回以上施すことを特徴とする請求項9〜12のうちいずれか1項に記載の高強度めっき鋼板の製造方法。 In any one of Claims 9-12, before the said heat processing, the preliminary heat processing heated to more than Ac1 temperature more than at least any one among said one steel plate and another steel plate is given once or more. The manufacturing method of the high strength plated steel plate of description. 前記1つの鋼板及び他の鋼板のうち1種以上が下記式(4)を満たす化学組成を有することを特徴とする請求項7〜13のうちいずれか1項に記載の高強度めっき鋼板の製造方法。
Figure 2019014938
但し、式(4)中の元素記号は前記1つの鋼板及び他の鋼板における含有量[質量%]を示し、当該元素が含まれないときは、0を代入する。
One or more types among said one steel plate and another steel plate have a chemical composition which satisfy | fills following formula (4), The manufacture of the high strength plated steel plate of any one of Claims 7-13 characterized by the above-mentioned. Method.
Figure 2019014938
However, the element symbol in Formula (4) shows content [mass%] in the said one steel plate and another steel plate, and substitutes 0 when the said element is not contained.
前記1つの鋼板及び他の鋼板のうち少なくともいずれかの鋼板が、熱延鋼板に0.01〜85%の冷間圧延を施した冷延鋼板であることを特徴とする請求項7〜14のうちいずれか1項に記載の高強度めっき鋼板の製造方法。   The steel sheet according to claim 7, wherein at least one of the one steel sheet and the other steel sheet is a cold-rolled steel sheet obtained by subjecting a hot-rolled steel sheet to 0.01 to 85% cold rolling. The manufacturing method of the high strength plated steel plate of any one of them. 1つの鋼板及び他の鋼板のうち少なくともいずれかの鋼板が、Ac以上の温度まで加熱した後に1.0℃/秒以上の速度で冷却する予備熱処理を施した鋼板であることを特徴とする請求項9〜15のうちいずれか1項に記載の高強度めっき鋼板の製造方法。 At least one of the one steel plate and the other steel plate is a steel plate that has been subjected to a preheat treatment that is heated to a temperature of Ac 3 or higher and then cooled at a rate of 1.0 ° C./second or higher. The manufacturing method of the high strength plated steel plate of any one of Claims 9-15. めっき処理が溶融亜鉛めっき処理であることを特徴とする請求項7〜16のうちいずれか1項に記載の高強度めっき鋼板の製造方法。   The method for producing a high-strength plated steel sheet according to any one of claims 7 to 16, wherein the plating process is a hot dip galvanizing process. めっき処理の後に合金化処理を施すことを特徴とする請求項17に記載の高強度めっき鋼板の製造方法。   18. The method for producing a high-strength plated steel sheet according to claim 17, wherein an alloying treatment is performed after the plating treatment.
JP2017133033A 2017-07-06 2017-07-06 High-strength galvanized steel sheet and its manufacturing method Active JP6958037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017133033A JP6958037B2 (en) 2017-07-06 2017-07-06 High-strength galvanized steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017133033A JP6958037B2 (en) 2017-07-06 2017-07-06 High-strength galvanized steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019014938A true JP2019014938A (en) 2019-01-31
JP6958037B2 JP6958037B2 (en) 2021-11-02

Family

ID=65357101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017133033A Active JP6958037B2 (en) 2017-07-06 2017-07-06 High-strength galvanized steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6958037B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015353A (en) * 1998-06-30 2000-01-18 Kawasaki Steel Corp Welded joining metallic plate excellent in press formability and production thereof
JP2000167673A (en) * 1998-12-08 2000-06-20 Sumitomo Metal Ind Ltd Tailored blank, and its manufacture
JP2000297348A (en) * 1999-04-15 2000-10-24 Nippon Steel Corp Nigh strength cold rolled steel sheet excellent in fatigue characteristic of base material, excellent in formability after welding and hard to be softened in welding heat affected zone and high strength surface treated steel sheet
JP2001342536A (en) * 2000-06-01 2001-12-14 Nippon Steel Corp Joint steel sheet having differential thickness and high friction
JP2004058082A (en) * 2002-07-26 2004-02-26 Aisin Takaoka Ltd Method for producing tailored blank press formed article
JP2006219741A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High strength automobile member having excellent uniformity of hardness in the member and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015353A (en) * 1998-06-30 2000-01-18 Kawasaki Steel Corp Welded joining metallic plate excellent in press formability and production thereof
JP2000167673A (en) * 1998-12-08 2000-06-20 Sumitomo Metal Ind Ltd Tailored blank, and its manufacture
JP2000297348A (en) * 1999-04-15 2000-10-24 Nippon Steel Corp Nigh strength cold rolled steel sheet excellent in fatigue characteristic of base material, excellent in formability after welding and hard to be softened in welding heat affected zone and high strength surface treated steel sheet
JP2001342536A (en) * 2000-06-01 2001-12-14 Nippon Steel Corp Joint steel sheet having differential thickness and high friction
JP2004058082A (en) * 2002-07-26 2004-02-26 Aisin Takaoka Ltd Method for producing tailored blank press formed article
JP2006219741A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High strength automobile member having excellent uniformity of hardness in the member and its production method

Also Published As

Publication number Publication date
JP6958037B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6354075B1 (en) High strength thin steel sheet and method for producing the same
JP4990500B2 (en) High-strength automotive member excellent in uniformity of internal hardness and manufacturing method thereof
JP5574061B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and corrosion resistance and its manufacturing method
KR102145293B1 (en) Plated steel sheet and its manufacturing method
JP4791992B2 (en) Method for producing alloyed hot-dip galvanized steel sheet for spot welding
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP6885232B2 (en) Hot-press plated steel sheet and its manufacturing method, and hot-press molded member and its manufacturing method
WO2018043456A1 (en) High strength cold-rolled steel sheet and method for manufacturing same
WO2019003449A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
US11939651B2 (en) Al—Fe-alloy plated steel sheet for hot forming, having excellent TWB welding characteristics, hot forming member, and manufacturing methods therefor
JP6308333B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
WO2014156671A1 (en) High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
JP2020179413A (en) Spot welding member
JP6950826B2 (en) High-strength steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full-hard steel sheet manufacturing method, and high-strength steel sheet manufacturing method
JP2003231941A (en) HOT-ROLLED STEEL SHEET SUPERIOR IN FORMABILITY AFTER WELDING, WITH HIGH STRENGTH HAVING TENSILE STRENGTH OF 780 MPa OR HIGHER, OF MAKING HEAT AFFECTED ZONE HARDLY BE SOFTENED, COLD-ROLLED STEEL SHEET WITH HIGH STRENGTH, AND SURFACE-TREATED STEEL SHEET WITH HIGH STRENGTH
JP6828622B2 (en) Hot-pressed steel sheet and its manufacturing method, and hot-press formed member and its manufacturing method
JP2022023085A (en) Steel sheet, member and method for manufacturing them
JP2003193194A (en) High strength steel sheet having excellent weldability and hole expansibility and production method therefor
JP7276614B2 (en) Automobile member and its resistance spot welding method
US20230045352A1 (en) Pre-coated steel sheet comprising an additional coating for increasing the mechanical strength of the weld metal zone of a welded steel part prepared from said pre-coated sheet.
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP4580402B2 (en) Hot-dip hot-dip steel sheet for press working and manufacturing method thereof
JP6958036B2 (en) High-strength steel sheet and its manufacturing method
JP6958037B2 (en) High-strength galvanized steel sheet and its manufacturing method
JP2007169739A (en) High strength cold rolled steel sheet for deep drawing, high strength hot dip plated steel sheet for deep drawing and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210730

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210810

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6958037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151