JP2019013461A - プローブ型共焦点レーザー顕微内視鏡画像診断支援装置 - Google Patents
プローブ型共焦点レーザー顕微内視鏡画像診断支援装置 Download PDFInfo
- Publication number
- JP2019013461A JP2019013461A JP2017133235A JP2017133235A JP2019013461A JP 2019013461 A JP2019013461 A JP 2019013461A JP 2017133235 A JP2017133235 A JP 2017133235A JP 2017133235 A JP2017133235 A JP 2017133235A JP 2019013461 A JP2019013461 A JP 2019013461A
- Authority
- JP
- Japan
- Prior art keywords
- diagnosis
- endoscopic image
- classifier
- image
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 70
- 239000000523 sample Substances 0.000 title abstract description 4
- 238000012333 histopathological diagnosis Methods 0.000 claims abstract description 13
- 238000013527 convolutional neural network Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 10
- 238000013500 data storage Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 19
- 230000008569 process Effects 0.000 abstract description 11
- 238000013528 artificial neural network Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 12
- 238000000605 extraction Methods 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 210000002429 large intestine Anatomy 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 208000026900 bile duct neoplasm Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 description 2
- 238000001839 endoscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 201000011591 microinvasive gastric cancer Diseases 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002052 colonoscopy Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010827 pathological analysis Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000012567 pattern recognition method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Microscoopes, Condenser (AREA)
- Endoscopes (AREA)
Abstract
Description
学習教材はESD対象の早期胃癌20症例24病変よりプローブ型共焦点レーザー顕微画像は正常41枚、病変47を作成。試験教材は学習教材とは別に構成し、作成した分類器を検証した。精度(accuracy)66.4%の分類器が作成可能であった。試験教材での感度60%、特異度100%、陰性的中率71.4%、陽性的中率100%であった。それぞれの診断時の確率(probability)は癌で平均0.602、正常で平均0.91であった。
胆管癌症例にて学習教材画像を正常49枚、癌部23枚作成した。試験教材は学習教材とは別に正常部6枚、癌部14枚で構成し、作成した分類器にて検証した。
20 分類器自動作成手段
21 学習用画像取り込み手段
22 数値化手段
23 特徴量抽出手段
24 特徴量データ作成手段
25 特徴量データ格納手段
30 分類手段
Claims (2)
- プローブ型共焦点レーザー顕微内視鏡から得られた内視鏡画像が病理組織学上のいずれの診断に分類されるかを自動診断する自動診断手段を備え、前記自動診断手段は、病理組織学上の診断の紐付けがなされた学習用の内視鏡画像を用いて畳み込みニューラルネットワークにより内視鏡画像の分類器を自動作成する分類器自動作成手段と、この分類器自動作成手段により自動作成された分類器により内視鏡画像を病理組織学上のいずれかの診断に分類する分類手段とを備えたことを特徴とするプローブ型共焦点レーザー顕微内視鏡画像診断支援装置。
- 前記分類器自動作成手段は、病理組織学上の診断の紐付けがなされた学習用の内視鏡画像を取り込む学習用画像取り込み手段と、この学習用画像取り込み手段により得られた内視鏡画像を分割して数値化する数値化手段と、この数値化手段により得られた数値をもとに畳み込みニューラルネットワークにより特徴量の抽出を行う特徴量抽出手段と、この特徴量抽出手段により得られた特徴量を統計処理してもとの学習用の内視鏡画像に紐付けがなされた診断ごとに分類された特徴量データを作成する特徴量データ作成手段と、この特徴量データ作成手段で得られた特徴量データを格納する特徴量データ格納手段を備えたことを特徴とする請求項1記載のプローブ型共焦点レーザー顕微内視鏡画像診断支援装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017133235A JP6710853B2 (ja) | 2017-07-07 | 2017-07-07 | プローブ型共焦点レーザー顕微内視鏡画像診断支援装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017133235A JP6710853B2 (ja) | 2017-07-07 | 2017-07-07 | プローブ型共焦点レーザー顕微内視鏡画像診断支援装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019013461A true JP2019013461A (ja) | 2019-01-31 |
JP6710853B2 JP6710853B2 (ja) | 2020-06-17 |
Family
ID=65357805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017133235A Active JP6710853B2 (ja) | 2017-07-07 | 2017-07-07 | プローブ型共焦点レーザー顕微内視鏡画像診断支援装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6710853B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111126474A (zh) * | 2019-12-18 | 2020-05-08 | 山东大学齐鲁医院 | 共聚焦激光显微内镜消化道图像识别方法及系统 |
US11450079B2 (en) | 2019-03-08 | 2022-09-20 | Fujifilm Corporation | Endoscopic image learning device, endoscopic image learning method, endoscopic image learning program, and endoscopic image recognition device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016087370A (ja) * | 2014-11-04 | 2016-05-23 | 株式会社スタットラボ | 大腸拡大内視鏡画像診断支援装置 |
WO2016144341A1 (en) * | 2015-03-11 | 2016-09-15 | Siemens Aktiengesellschaft | Systems and methods for deconvolutional network based classification of cellular images and videos |
WO2017023569A1 (en) * | 2015-08-04 | 2017-02-09 | Siemens Aktiengesellschaft | Visual representation learning for brain tumor classification |
JP2017520864A (ja) * | 2014-04-09 | 2017-07-27 | エントルピー インコーポレーテッドEntrupy Inc. | 微視的差異からの機械学習を使用する物体の真贋鑑定 |
-
2017
- 2017-07-07 JP JP2017133235A patent/JP6710853B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017520864A (ja) * | 2014-04-09 | 2017-07-27 | エントルピー インコーポレーテッドEntrupy Inc. | 微視的差異からの機械学習を使用する物体の真贋鑑定 |
JP2016087370A (ja) * | 2014-11-04 | 2016-05-23 | 株式会社スタットラボ | 大腸拡大内視鏡画像診断支援装置 |
WO2016144341A1 (en) * | 2015-03-11 | 2016-09-15 | Siemens Aktiengesellschaft | Systems and methods for deconvolutional network based classification of cellular images and videos |
WO2017023569A1 (en) * | 2015-08-04 | 2017-02-09 | Siemens Aktiengesellschaft | Visual representation learning for brain tumor classification |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11450079B2 (en) | 2019-03-08 | 2022-09-20 | Fujifilm Corporation | Endoscopic image learning device, endoscopic image learning method, endoscopic image learning program, and endoscopic image recognition device |
CN111126474A (zh) * | 2019-12-18 | 2020-05-08 | 山东大学齐鲁医院 | 共聚焦激光显微内镜消化道图像识别方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
JP6710853B2 (ja) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6998474B2 (ja) | 生体組織のコンピュータ分類 | |
CN109670510B (zh) | 一种基于深度学习的胃镜活检病理数据筛查系统 | |
US20210191094A1 (en) | Real-time Pathological Microscopic Image Collection and Analysis System, Method and Device and Medium | |
US20180263568A1 (en) | Systems and Methods for Clinical Image Classification | |
CN110335241B (zh) | 肠镜检查后对肠道准备自动进行评分的方法 | |
KR102531400B1 (ko) | 인공 지능 기반 대장 내시경 영상 진단 보조 시스템 및 방법 | |
KR20230097646A (ko) | 위장 질환 및 위암 검출률 향상을 위한 인공 지능 기반 위 내시경 영상 진단 보조 시스템 및 방법 | |
WO2022041222A1 (en) | Process and system for image classification | |
JP6580446B2 (ja) | 画像処理装置及び画像処理方法 | |
CN114372951A (zh) | 基于图像分割卷积神经网络的鼻咽癌定位分割方法和系统 | |
Désir et al. | An SVM-based distal lung image classification using texture descriptors | |
Xu et al. | Upper gastrointestinal anatomy detection with multi‐task convolutional neural networks | |
Seok et al. | The semantic segmentation approach for normal and pathologic tympanic membrane using deep learning | |
Tran et al. | Support of deep learning to classify vocal fold images in flexible laryngoscopy | |
JP2016154810A (ja) | 画像処理装置及び画像処理方法 | |
Shrivastava et al. | Deep learning for visual recognition of environmental enteropathy and celiac disease | |
JP2022126373A (ja) | 情報処理装置及び情報処理方法、コンピュータプログラム、並びに医療診断システム | |
Do et al. | Supporting thyroid cancer diagnosis based on cell classification over microscopic images | |
JP6710853B2 (ja) | プローブ型共焦点レーザー顕微内視鏡画像診断支援装置 | |
CN113570592A (zh) | 肠胃病检测和模型训练方法、装置、设备及介质 | |
Li et al. | Computer-aided Diagnosis (CAD) for cervical cancer screening and diagnosis: a new system design in medical image processing | |
Shi et al. | Ammonia-net: a multi-task joint learning model for multi-class segmentation and classification in tooth-marked tongue diagnosis | |
JP6879520B2 (ja) | 画像処理装置及び画像処理方法 | |
Gatoula et al. | Enhanced CNN-based gaze estimation on wireless capsule endoscopy images | |
Abinaya et al. | A systematic review: Intellectual detection and prediction of cancer using dl techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6710853 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |