JP2019012677A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2019012677A
JP2019012677A JP2017130205A JP2017130205A JP2019012677A JP 2019012677 A JP2019012677 A JP 2019012677A JP 2017130205 A JP2017130205 A JP 2017130205A JP 2017130205 A JP2017130205 A JP 2017130205A JP 2019012677 A JP2019012677 A JP 2019012677A
Authority
JP
Japan
Prior art keywords
tip
spark plug
space
insulator
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017130205A
Other languages
Japanese (ja)
Other versions
JP6767938B2 (en
Inventor
俊介 津荷
Shunsuke Tsuga
俊介 津荷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017130205A priority Critical patent/JP6767938B2/en
Publication of JP2019012677A publication Critical patent/JP2019012677A/en
Application granted granted Critical
Publication of JP6767938B2 publication Critical patent/JP6767938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a spark plug capable of improving preignition inhibitory effect.SOLUTION: A spark plug includes an insulation extending from the tip side to the rear end side in the axial direction, and having a radially outward protruding part, and a cylindrical main body metal fitting arranged on the outer peripheral side of the insulation, where the main body metal fitting includes a shelf part having a locking part where the protruding part of the insulation is locked. When dividing a space formed between a tip, which is a part of the main body metal fitting closer to the tip side than the locking part, and the insulation into two by a plane along the axis line including the axis line, the volume of the first space is larger than the volume of the remaining second space.SELECTED DRAWING: Figure 1

Description

本発明はスパークプラグに関し、特にプレイグニッションを抑制できるスパークプラグに関するものである。   The present invention relates to a spark plug, and more particularly to a spark plug that can suppress pre-ignition.

スパークプラグが装着された内燃機関では、スパークプラグの絶縁体と主体金具との間の空間に滞留した混合気が受熱して、プレイグニッション(過早着火)が発生することがある。この種のプレイグニッションを抑制するため、特許文献1には、主体金具のうち軸線方向の先端側の部分の内径を全周に亘って拡大する技術が開示されている。   In an internal combustion engine equipped with a spark plug, the air-fuel mixture staying in the space between the spark plug insulator and the metal shell may receive heat and preignition (pre-ignition) may occur. In order to suppress this kind of pre-ignition, Patent Literature 1 discloses a technique for enlarging the inner diameter of a portion on the distal end side in the axial direction of the metal shell over the entire circumference.

特開2014−13667号公報JP 2014-13667 A

しかし、上記従来の技術ではプレイグニッションの抑制効果が不十分である。   However, the effect of suppressing pre-ignition is not sufficient with the above conventional technique.

本発明は上述した問題点を解決するためになされたものであり、プレイグニッションの抑制効果を向上できるスパークプラグを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a spark plug capable of improving the pre-ignition suppression effect.

この目的を達成するために本発明のスパークプラグは、先端側から後端側へと軸線方向に延び、径方向外側へ張り出す張出部を備える絶縁体と、絶縁体の外周側に配置される筒状の主体金具と、を備える。主体金具は、絶縁体の張出部が直接または他部材を介して係止される係止部を有する棚部を備える。主体金具のうち係止部よりも先端側の部位である先端部と絶縁体との間にできる空間を、軸線を含み軸線に沿う平面で二分したときに、その一方の第1空間の体積は、残りの第2空間の体積よりも大きい。   In order to achieve this object, the spark plug of the present invention is disposed on the outer peripheral side of the insulator, which has an overhang extending in the axial direction from the front end side to the rear end side and projecting radially outward. A cylindrical metal shell. The metal shell includes a shelf portion having a locking portion to which the protruding portion of the insulator is locked directly or via another member. When the space formed between the front end portion and the insulator, which is a portion on the front end side of the locking portion of the metal shell, is divided into two by a plane including the axis and along the axis, the volume of the first space of the one is The volume of the remaining second space is larger.

請求項1記載のスパークプラグによれば、内燃機関の吸気行程における気流の上流側に第1空間を配置すると、吸気行程において、先端部の内側に進入した混合気は第2空間から第1空間へ流れる。第1空間の体積は第2空間の体積よりも大きいので、第1空間に混合気を滞留させ難くできる。その結果、第1空間に滞留した混合気が受熱して生じるプレイグニッションを抑制できるので、プレイグニッションの抑制効果を向上できる。   According to the spark plug of the first aspect, when the first space is arranged on the upstream side of the air flow in the intake stroke of the internal combustion engine, the air-fuel mixture entering the inside of the tip portion in the intake stroke is transferred from the second space to the first space. To flow. Since the volume of the first space is larger than the volume of the second space, it is difficult for the air-fuel mixture to stay in the first space. As a result, the pre-ignition generated when the air-fuel mixture staying in the first space receives heat can be suppressed, so that the pre-ignition suppression effect can be improved.

請求項2記載のスパークプラグによれば、軸線と直交し先端部を通る断面において、径方向外側に凹んだ凹部が、先端部の内周に設けられる。また、軸線から凹部の両端に対して引かれた2つの直線のなす角は60〜180°の所定角度に設定される。そのため、請求項1の効果に加え、先端部の内周に凹部を設けることによって第1空間の体積を簡易に拡大できる。   According to the spark plug of the second aspect, in the cross section orthogonal to the axis and passing through the tip portion, the concave portion recessed radially outward is provided on the inner periphery of the tip portion. The angle formed by two straight lines drawn from the axis to both ends of the recess is set to a predetermined angle of 60 to 180 °. Therefore, in addition to the effect of the first aspect, the volume of the first space can be easily enlarged by providing the concave portion on the inner periphery of the tip portion.

請求項3記載のスパークプラグによれば、主体金具に接合された接地電極は、主体金具のうち、2つの直線および軸線を含み凹部を挟む2つの平面によって切り取られる部分以外の部分に接合されている。これにより、接地電極が、吸気行程における混合気の流れを妨げ難くできるので、請求項2の効果に加え、プレイグニッションの抑制効果をさらに向上できる。   According to the spark plug of claim 3, the ground electrode joined to the metal shell is joined to a portion of the metal shell other than a portion cut by two planes including two straight lines and an axis and sandwiching the recess. Yes. Thereby, since the ground electrode can make it difficult to prevent the flow of the air-fuel mixture in the intake stroke, in addition to the effect of claim 2, the effect of suppressing pre-ignition can be further improved.

請求項4記載のスパークプラグによれば、絶縁体のうち先端部に取り囲まれる部分は、先端側へ向かうにつれて外径が縮径する縮径部と、縮径部の先端に連接されると共に外径が一定の第1直線部と、を備えている。第1直線部が設けられているので、第1直線部が設けられていない場合に比べて、先端部と絶縁体との径方向の隙間を大きくできる。一方、第1直線部と先端部との径方向の隙間に比べて、縮径部と先端部との径方向の隙間は小さいので、先端部のうち縮径部を取り囲む部分に凹部を少なくとも設けることにより、縮径部と先端部との間に混合気を滞留させ難くできる。よって、請求項2又は3の効果に加え、混合気の受熱に起因するプレイグニッションをより生じ難くできる。   According to the spark plug of the fourth aspect, the portion surrounded by the tip portion of the insulator is connected to the diameter-reduced portion whose outer diameter is reduced toward the tip side, and is connected to the tip of the diameter-reduced portion and is externally connected. A first straight portion having a constant diameter. Since the first straight portion is provided, the radial gap between the tip portion and the insulator can be increased as compared with the case where the first straight portion is not provided. On the other hand, since the radial gap between the reduced diameter portion and the tip portion is smaller than the radial gap between the first straight portion and the tip portion, at least a recess is provided in the portion surrounding the reduced diameter portion of the tip portion. This makes it difficult for the air-fuel mixture to stay between the reduced diameter portion and the tip portion. Therefore, in addition to the effect of the second or third aspect, pre-ignition caused by heat reception of the air-fuel mixture can be made more difficult to occur.

請求項5記載のスパークプラグによれば、断面は、先端部の任意の断面なので、先端部の軸線方向の一部に凹部が形成されている場合に比べて、混合気を滞留させ難くできる。よって、請求項2から4のいずれかの効果に加え、混合気の受熱に起因するプレイグニッションをより生じ難くできる。   According to the spark plug of the fifth aspect, since the cross section is an arbitrary cross section of the tip portion, the air-fuel mixture can be made difficult to stay as compared with the case where the concave portion is formed in a part of the tip portion in the axial direction. Therefore, in addition to the effect of any one of claims 2 to 4, preignition caused by heat reception of the air-fuel mixture can be made less likely to occur.

請求項6記載のスパークプラグによれば、絶縁体のうち先端部に取り囲まれる部分は、外径が一定の第2直線部と、第2直線部の先端に連接されると共に先端側へ向かうにつれて外径が縮径する縮径部と、を備えている。断面は、先端部のうち絶縁体の縮径部の後端よりも先端側の部分の任意の断面なので、先端部の一部に凹部が形成されている場合に比べて、混合気を滞留させ難くできる。よって、請求項2又は3の効果に加え、混合気の受熱に起因するプレイグニッションをより生じ難くできる。   According to the spark plug of claim 6, the portion surrounded by the tip portion of the insulator is connected to the second straight portion having a constant outer diameter and the tip of the second straight portion, and toward the tip side. A reduced diameter portion whose outer diameter is reduced. Since the cross section is an arbitrary cross section of the tip portion of the tip portion of the reduced diameter portion of the insulator, the air-fuel mixture is retained as compared with a case where a recess is formed in a part of the tip portion. It can be difficult. Therefore, in addition to the effect of the second or third aspect, pre-ignition caused by heat reception of the air-fuel mixture can be made more difficult to occur.

請求項7記載のスパークプラグによれば、軸線と直交し先端部を通る断面において、絶縁体のうち先端部に取り囲まれる部分は、先端部の内周との径方向の距離が、他の部位と比較して大きな小径部を備えている。軸線から小径部の両端に対して引かれた2つの直線のなす角は60〜180°の所定角度に設定される。従って、請求項1の効果に加え、絶縁体に小径部を設けることによって第1空間の体積を簡易に拡大できる。   According to the spark plug of claim 7, in the cross section orthogonal to the axis and passing through the tip portion, the portion surrounded by the tip portion of the insulator has a radial distance from the inner periphery of the tip portion to other parts. Compared with, it has a large diameter part. An angle formed by two straight lines drawn from the axis to both ends of the small diameter portion is set to a predetermined angle of 60 to 180 °. Therefore, in addition to the effect of the first aspect, the volume of the first space can be easily expanded by providing the insulator with the small diameter portion.

本発明の第1実施の形態におけるスパークプラグの部分断面図である。It is a fragmentary sectional view of the spark plug in a 1st embodiment of the present invention. スパークプラグの先端側の部分断面図である。It is a fragmentary sectional view by the side of the tip of a spark plug. 図1のIII−III線におけるスパークプラグの断面図である。It is sectional drawing of the spark plug in the III-III line of FIG. 第2実施の形態におけるスパークプラグの断面図である。It is sectional drawing of the spark plug in 2nd Embodiment. 第3実施の形態におけるスパークプラグの断面図である。It is sectional drawing of the spark plug in 3rd Embodiment. 第4実施の形態におけるスパークプラグの断面図である。It is sectional drawing of the spark plug in 4th Embodiment. (a)は比較例におけるスパークプラグの断面図であり、(b)は実施例1におけるスパークプラグの断面図であり、(c)は実施例2におけるスパークプラグの断面図であり、(d)は実施例3におけるスパークプラグの断面図である。(A) is sectional drawing of the spark plug in a comparative example, (b) is sectional drawing of the spark plug in Example 1, (c) is sectional drawing of the spark plug in Example 2, (d) These are sectional drawings of the spark plug in Example 3. FIG. 実施例1から3及び比較例におけるスパークプラグのクランク角と空間の平均温度との関係を示す図である。It is a figure which shows the relationship between the crank angle of the spark plug in Examples 1-3 and a comparative example, and the average temperature of space.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の第1実施の形態におけるスパークプラグ10の部分断面図であり、図2はスパークプラグ10の先端側の部分断面図である。図1及び図2では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という。図1に示す矢印Fは、スパークプラグ10が装着された内燃機関(図示せず)の吸気行程において生じる気流(タンブル流)の向きである。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a partial cross-sectional view of the spark plug 10 according to the first embodiment of the present invention, and FIG. 2 is a partial cross-sectional view of the tip side of the spark plug 10. 1 and 2, the lower side of the drawing is referred to as the front end side of the spark plug 10, and the upper side of the drawing is referred to as the rear end side of the spark plug 10. An arrow F shown in FIG. 1 indicates the direction of an air flow (tumble flow) generated in an intake stroke of an internal combustion engine (not shown) to which the spark plug 10 is attached.

図1に示すようにスパークプラグ10は、絶縁体11及び主体金具30を備えている。絶縁体11は、高温下の絶縁性や機械的特性に優れるアルミナ等により形成された略円筒状の部材である。絶縁体11は、先端側から後端側へ順に、軸線Oに沿って第1直線部12、縮径部13、第2直線部14、張出部15、係合部16及び後端部17が連接されている。絶縁体11は軸線Oに沿って軸孔18が貫通する。軸孔18の先端側の張出部15の内周には、先端側に向かって縮径する後端向き面19が形成されている。   As shown in FIG. 1, the spark plug 10 includes an insulator 11 and a metal shell 30. The insulator 11 is a substantially cylindrical member formed of alumina or the like that is excellent in insulation at high temperatures and mechanical properties. The insulator 11 has a first straight portion 12, a reduced diameter portion 13, a second straight portion 14, an overhang portion 15, an engagement portion 16, and a rear end portion 17 along the axis O in order from the front end side to the rear end side. Are connected. The insulator 11 has a shaft hole 18 extending along the axis O. A rear end-facing surface 19 that is reduced in diameter toward the front end side is formed on the inner periphery of the protruding portion 15 on the front end side of the shaft hole 18.

第1直線部12は、絶縁体11のうち最も先端側に位置する部位である。第1直線部12の外径は、軸線O方向の全長に亘って略同一である。第1直線部12の後端側に、縮径部13を介して、第1直線部12よりも外径の大きい第2直線部14が連接されている。縮径部13は先端側に向かって縮径している。第2直線部14の外径は、軸線O方向の全長に亘って略同一である。   The first straight portion 12 is a portion located on the most distal side of the insulator 11. The outer diameter of the first straight portion 12 is substantially the same over the entire length in the axis O direction. A second straight line portion 14 having an outer diameter larger than that of the first straight line portion 12 is connected to the rear end side of the first straight line portion 12 via a reduced diameter portion 13. The reduced diameter portion 13 is reduced in diameter toward the distal end side. The outer diameter of the second straight portion 14 is substantially the same over the entire length in the direction of the axis O.

第2直線部14の後端側に、径方向外側へ向かって張り出す張出部15が連接されている。張出部15の外径は、軸線O方向の全長に亘って略同一である。張出部15の先端面15aは、先端側に向かって縮径している。係合部16は、張出部15の後端側に連接されている。係合部16は、絶縁体11のうち外径が最も大きい円環状の部分である。係合部16の後端側に、後端部17が連接されている。後端部17の外径は、軸線O方向の全長に亘って略同一であり、係合部16の外径よりも小さい。   An overhanging portion 15 that projects outward in the radial direction is connected to the rear end side of the second linear portion 14. The outer diameter of the overhanging portion 15 is substantially the same over the entire length in the direction of the axis O. The distal end surface 15a of the overhanging portion 15 is reduced in diameter toward the distal end side. The engaging portion 16 is connected to the rear end side of the overhang portion 15. The engaging portion 16 is an annular portion having the largest outer diameter in the insulator 11. A rear end portion 17 is connected to the rear end side of the engaging portion 16. The outer diameter of the rear end portion 17 is substantially the same over the entire length in the direction of the axis O, and is smaller than the outer diameter of the engaging portion 16.

中心電極20は、軸孔18の先端側に配置され軸線Oに沿って絶縁体11に保持される棒状の電極である。中心電極20は、軸孔18に形成された後端向き面19に係止されている。中心電極20は、熱伝導性に優れる芯材が電極母材に埋設されている。電極母材は、Niを主体とする合金またはNiからなる金属材料で形成されており、芯材は銅または銅を主成分とする合金で形成されている。端子金具21は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具21は軸孔18に挿入され、軸孔18内で中心電極20に電気的に接続されている。   The center electrode 20 is a rod-shaped electrode that is disposed on the distal end side of the shaft hole 18 and is held by the insulator 11 along the axis O. The center electrode 20 is locked to a rear end facing surface 19 formed in the shaft hole 18. The center electrode 20 has a core material excellent in thermal conductivity embedded in the electrode base material. The electrode base material is made of an alloy mainly composed of Ni or a metal material made of Ni, and the core material is made of copper or an alloy mainly composed of copper. The terminal fitting 21 is a rod-like member to which a high voltage cable (not shown) is connected, and is formed of a conductive metal material (for example, low carbon steel). The terminal fitting 21 is inserted into the shaft hole 18 and is electrically connected to the center electrode 20 in the shaft hole 18.

主体金具30は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具30は、後端側から先端側へ順に、屈曲部31、工具係合部32、連絡部33、座部34及び胴部35が連接されている。胴部35の外周にはおねじ36が形成されている。屈曲部31は、絶縁体11の係合部16の後端側に配置される部位である。工具係合部32は、内燃機関(図示せず)のねじ穴におねじ36を締め付けるときに、レンチ等の工具を係合させる部位である。連絡部33は、主体金具30を絶縁体11に組み付けるときに、塑性変形(屈曲)させて加締め固定するための部位である。座部34は、内燃機関(図示せず)のねじ穴とおねじ36との隙間を塞ぐための部位であり、胴部35の外径よりも外径が大きく形成されている。   The metal shell 30 is a substantially cylindrical member formed of a conductive metal material (for example, low carbon steel). In the metal shell 30, a bent part 31, a tool engaging part 32, a connecting part 33, a seat part 34, and a body part 35 are connected in order from the rear end side to the front end side. A male screw 36 is formed on the outer periphery of the body portion 35. The bent portion 31 is a portion disposed on the rear end side of the engaging portion 16 of the insulator 11. The tool engaging portion 32 is a portion that engages a tool such as a wrench when the screw 36 is tightened in a screw hole of an internal combustion engine (not shown). The connecting portion 33 is a portion for plastically deforming (bending) and fixing by caulking when the metal shell 30 is assembled to the insulator 11. The seat portion 34 is a portion for closing a gap between the screw hole of the internal combustion engine (not shown) and the external screw 36, and has an outer diameter larger than the outer diameter of the body portion 35.

図2に示すように胴部35の内周には、径方向の内側へ突出する棚部37が、全周に亘って形成されている。絶縁体11の張出部15と棚部37との間にパッキン38が介在する。パッキン38は、主体金具30を構成する金属材料よりも軟質の軟鋼板等の金属材料で形成される円環状の板材である。棚部37は、パッキン38を介して張出部15を先端側から係止する係止部39を備えている。係止部39は、棚部37のうちパッキン38が接触する部位である。棚部37の後端面37aは、先端側に向かうにつれて縮径している。胴部35のうち係止部39の先端よりも先端側の部位である先端部40は、径方向の隙間をあけて、絶縁体11の第1直線部12、縮径部13及び第2直線部14を取り囲む。第1直線部12の一部(先端側)は、先端部40から先端側に突出する。   As shown in FIG. 2, a shelf 37 that protrudes inward in the radial direction is formed on the inner circumference of the body 35 over the entire circumference. A packing 38 is interposed between the overhanging portion 15 of the insulator 11 and the shelf portion 37. The packing 38 is an annular plate formed of a metal material such as a mild steel plate that is softer than the metal material constituting the metal shell 30. The shelf portion 37 includes a locking portion 39 that locks the overhanging portion 15 from the distal end side via a packing 38. The locking portion 39 is a portion of the shelf portion 37 that contacts the packing 38. The rear end surface 37a of the shelf portion 37 is reduced in diameter toward the front end side. The distal end portion 40 which is a portion on the distal end side of the distal end of the locking portion 39 in the body portion 35 is spaced apart in the radial direction so that the first straight portion 12, the reduced diameter portion 13 and the second straight portion of the insulator 11. Enclose part 14. A part (front end side) of the first straight portion 12 protrudes from the front end portion 40 to the front end side.

棚部37は、棚部37よりも先端側の先端部40の内周面41と軸線Oとの距離が、棚部37の内周面37bと軸線Oとの距離よりも長くなるように、先端部40の軸線O方向の一部に設けられている。棚部37は、絶縁体11の第2直線部14の径方向の外側に位置する。先端部40のうち棚部37よりも先端側の内周面41と絶縁体11との径方向の隙間は、棚部37と絶縁体11との径方向の隙間よりも大きい。先端部40の内周の一部には、径方向の外側に凹んだ凹部42が形成されている。   The shelf portion 37 is configured such that the distance between the inner peripheral surface 41 of the distal end portion 40 on the front end side of the shelf portion 37 and the axis O is longer than the distance between the inner peripheral surface 37b of the shelf 37 and the axis O. It is provided in a part of the tip portion 40 in the axis O direction. The shelf portion 37 is located on the outer side in the radial direction of the second straight portion 14 of the insulator 11. The radial gap between the inner peripheral surface 41 and the insulator 11 on the distal end side of the shelf portion 37 in the distal end portion 40 is larger than the radial gap between the shelf portion 37 and the insulator 11. A concave portion 42 that is recessed outward in the radial direction is formed on a part of the inner periphery of the distal end portion 40.

本実施の形態では、凹部42の後端面43は、縮径部13の後端13aよりも後端側(図2上側)に位置する。凹部42は、棚部37から先端部40の先端まで軸線O方向に延びている。絶縁体11と先端部40との間にできる空間を、軸線Oを含む平面47(図3参照)で二分したときにできる第1空間44及び第2空間45は、凹部42に臨む第1空間44の体積が、残りの第2空間45の体積よりも大きい。   In the present embodiment, the rear end surface 43 of the recess 42 is located on the rear end side (upper side in FIG. 2) than the rear end 13 a of the reduced diameter portion 13. The recess 42 extends in the direction of the axis O from the shelf 37 to the tip of the tip 40. The first space 44 and the second space 45 formed when the space formed between the insulator 11 and the tip portion 40 is divided into two by a plane 47 (see FIG. 3) including the axis O, the first space facing the recess 42. The volume of 44 is larger than the volume of the remaining second space 45.

主体金具30の先端に接地電極46が接合されている。接地電極46は、棒状の金属製(例えばニッケル基合金製)の部材であり、先端部が、中心電極20と間隙(火花ギャップ)を介して対向する。本実施の形態では、接地電極46は屈曲している。   A ground electrode 46 is joined to the tip of the metal shell 30. The ground electrode 46 is a rod-shaped metal member (for example, a nickel-base alloy member), and a tip portion thereof faces the center electrode 20 via a gap (spark gap). In the present embodiment, the ground electrode 46 is bent.

主体金具30の屈曲部31と絶縁体11の係合部16との間に、タルク等の充填材47が介在する。主体金具30は、屈曲部31及び棚部37が、充填材47及びパッキン38を介して係合部16及び張出部15に軸線O方向の荷重を加える。これにより主体金具30は、棚部37と絶縁体11の張出部15との間(第1空間44及び第2空間45の後端側)を密閉し、第1空間44及び第2空間45の先端側を開放した状態で、絶縁体11を保持する。   A filler 47 such as talc is interposed between the bent portion 31 of the metal shell 30 and the engaging portion 16 of the insulator 11. In the metal shell 30, the bent portion 31 and the shelf portion 37 apply a load in the axis O direction to the engaging portion 16 and the overhanging portion 15 via the filler 47 and the packing 38. Thereby, the metal shell 30 seals the space between the shelf portion 37 and the overhanging portion 15 of the insulator 11 (the rear end side of the first space 44 and the second space 45), and the first space 44 and the second space 45. The insulator 11 is held in a state in which the tip end side is opened.

図3は図1のIII−III線におけるスパークプラグ10の断面図である。図3では、軸線Oと直交し縮径部13及び先端部40を通る切断面によって切断されたスパークプラグ10の断面が図示されている。   FIG. 3 is a cross-sectional view of the spark plug 10 taken along line III-III in FIG. In FIG. 3, a cross section of the spark plug 10 cut by a cut surface that is orthogonal to the axis O and passes through the reduced diameter portion 13 and the distal end portion 40 is illustrated.

本実施の形態では、先端部40(主体金具30)と縮径部13(絶縁体11)との間にできる空間を第1空間44と第2空間45とに二分する平面47は、接地電極46の対称面(軸線Oを含み図3紙面に垂直な面)である。第1空間44の体積を第2空間45の体積より大きくするため、先端部40の内周の一部(第1空間44に臨む部分)に、径方向の外側に凹んだ凹部42が形成される。本実施の形態では、凹部42の径方向の深さは、先端部40の内周の仮想円v(軸線Oを中心とする円)に対して周方向に亘って同一に設定されている。   In the present embodiment, the plane 47 that bisects the space formed between the tip portion 40 (the metal shell 30) and the reduced diameter portion 13 (the insulator 11) into the first space 44 and the second space 45 is the ground electrode. 46 symmetry planes (planes including the axis O and perpendicular to the plane of FIG. 3). In order to make the volume of the first space 44 larger than the volume of the second space 45, a recess 42 that is recessed outward in the radial direction is formed in a part of the inner periphery of the tip portion 40 (portion facing the first space 44). The In the present embodiment, the depth in the radial direction of the recess 42 is set to be the same in the circumferential direction with respect to the virtual circle v (a circle centered on the axis O) on the inner periphery of the tip end portion 40.

スパークプラグ10は、内燃機関(図示せず)の吸気行程における気流Fの上流側に第1空間44が位置するように、内燃機関に配置される。内燃機関の吸気行程において、気流F(混合気)は第2空間45を経て第1空間44に進入する。第1空間44の体積は第2空間45の体積より大きいので、第1空間44に混合気が滞留しないようにできる。その結果、第1空間44に滞留した混合気が受熱して生じるプレイグニッション(過早着火)を抑制できる。   The spark plug 10 is disposed in the internal combustion engine such that the first space 44 is positioned on the upstream side of the airflow F in the intake stroke of the internal combustion engine (not shown). In the intake stroke of the internal combustion engine, the air flow F (air mixture) enters the first space 44 through the second space 45. Since the volume of the first space 44 is larger than the volume of the second space 45, the air-fuel mixture can be prevented from staying in the first space 44. As a result, pre-ignition (premature ignition) generated when the air-fuel mixture staying in the first space 44 receives heat can be suppressed.

凹部42は、先端部40のうち第1空間44に臨む部分に切削等を施すことによって形成される。凹部42の周方向の両端に対して軸線Oから引かれた2つの直線48,49のなす角θは、60〜180°の所定角度に設定される。直線48,49と先端部40の内周とが交わる2点間の沿面距離は、直線48,49と縮径部13(絶縁体11)の外周とが交わる2点間の沿面距離より長いので、先端部40に凹部42を形成することによって、絶縁体11の外径を部分的に小さくする場合に比べて、第1空間44の体積を効率良く拡大できる。   The recess 42 is formed by cutting or the like in the portion of the tip 40 that faces the first space 44. An angle θ formed by two straight lines 48 and 49 drawn from the axis O with respect to both ends in the circumferential direction of the recess 42 is set to a predetermined angle of 60 to 180 °. The creepage distance between the two points where the straight lines 48 and 49 intersect the inner periphery of the tip 40 is longer than the creepage distance between the two points where the straight lines 48 and 49 intersect with the outer periphery of the reduced diameter portion 13 (insulator 11). By forming the recess 42 in the distal end portion 40, the volume of the first space 44 can be efficiently expanded as compared with the case where the outer diameter of the insulator 11 is partially reduced.

接地電極46は、主体金具30のうち、2つの直線48,49及び軸線Oを含み凹部42を挟む2つの平面48,49(図3紙面に垂直な面)によって切り取られる扇形状の部分(角度θの部分)以外の部分(360°−θの部分)に接合されている。これにより、第1空間44から気流F(混合気)が出やすくなる。よって、プレイグニッションの抑制効果をさらに向上できる。   The ground electrode 46 is a fan-shaped portion (angle) cut out by two flat surfaces 48 and 49 (surfaces perpendicular to the paper surface of FIG. 3) including two straight lines 48 and 49 and the axis O and sandwiching the recess 42 in the metal shell 30. It is joined to a portion (360 ° -θ portion) other than (θ portion). As a result, the air flow F (air mixture) is easily emitted from the first space 44. Therefore, the pre-ignition suppression effect can be further improved.

絶縁体11(図2参照)は、張出部15よりも先端側に、第2直線部14、縮径部13及び第1直線部12が連接されている。棚部37は、第2直線部14の径方向の外側に配置されている。第2直線部14の先端側に縮径部13及び第1直線部12が連接されているので、第2直線部14から絶縁体11の先端までの部分が円錐台状に形成される場合に比べて、先端部40と絶縁体11との径方向の隙間を大きくできる。よって、先端部40と絶縁体11との間の気流(混合気)を流れ易くできる。   In the insulator 11 (see FIG. 2), the second straight portion 14, the reduced diameter portion 13, and the first straight portion 12 are connected to the distal end side of the overhang portion 15. The shelf portion 37 is disposed on the outer side in the radial direction of the second linear portion 14. Since the reduced diameter portion 13 and the first linear portion 12 are connected to the distal end side of the second linear portion 14, when the portion from the second linear portion 14 to the distal end of the insulator 11 is formed in a truncated cone shape. In comparison, the radial gap between the tip 40 and the insulator 11 can be increased. Therefore, the airflow (air mixture) between the tip 40 and the insulator 11 can be easily flowed.

第1直線部12と先端部40との径方向の隙間に比べて、縮径部13と先端部40との径方向の隙間は小さいが、凹部42が、先端部40のうち、少なくとも縮径部13の径方向の外側の部分に形成されているので、縮径部13と先端部40との間に混合気を滞留させ難くできる。よって、混合気の受熱に起因するプレイグニッションを生じ難くできる。   The radial gap between the reduced diameter portion 13 and the distal end portion 40 is smaller than the radial clearance between the first straight portion 12 and the distal end portion 40, but the concave portion 42 is at least reduced in diameter in the distal end portion 40. Since it is formed in the radially outer portion of the portion 13, it is difficult to retain the air-fuel mixture between the reduced diameter portion 13 and the tip portion 40. Therefore, pre-ignition caused by the heat reception of the air-fuel mixture can be made difficult to occur.

凹部42の後端面43(図2参照)は、縮径部13の後端13aよりも後端側に位置するので、第2直線部14の先端側の一部と凹部42との隙間を大きくできる。その結果、第1空間44の軸線O方向の長さを長くできる。なお、凹部42の後端面43の位置は、棚部37の軸線O方向の厚さが薄くなり過ぎないように、棚部37の機械的強度を考慮して設定される。   Since the rear end surface 43 (see FIG. 2) of the concave portion 42 is located on the rear end side with respect to the rear end 13a of the reduced diameter portion 13, a gap between a portion on the front end side of the second linear portion 14 and the concave portion 42 is increased. it can. As a result, the length of the first space 44 in the axis O direction can be increased. The position of the rear end surface 43 of the recess 42 is set in consideration of the mechanical strength of the shelf 37 so that the thickness of the shelf 37 in the direction of the axis O is not too thin.

さらに、凹部42は、棚部37から先端部40の先端まで軸線O方向に延びているので、先端部40の軸線O方向の一部に凹部42が形成される場合に比べて、先端部40の内側に混合気を滞留させ難くできる。よって、第1空間44内の混合気の受熱に起因するプレイグニッションを生じ難くできる。   Furthermore, since the recess 42 extends in the axis O direction from the shelf 37 to the tip of the tip 40, the tip 40 is compared to the case where the recess 42 is formed in a part of the tip 40 in the axis O direction. The air-fuel mixture can be made difficult to stay inside. Therefore, preignition caused by heat reception of the air-fuel mixture in the first space 44 can be made difficult to occur.

凹部42の後端面43は、棚部37の先端側の部分を軸線Oに垂直に切断するので、後端面43が棚部37を切断しない場合に比べて、その分だけ第1空間44を軸線O方向に広げることができる。第1空間44の体積を軸線O方向に広げることにより、第1空間44の体積を径方向の外側に広げなくて済むので、その分だけ胴部35の径方向の厚さ(肉厚)を大きくできる。その結果、胴部35の機械的強度を確保できる。   Since the rear end surface 43 of the recess 42 cuts the portion on the front end side of the shelf 37 perpendicular to the axis O, the first space 44 is axially increased by that amount compared to the case where the rear end surface 43 does not cut the shelf 37. Can be expanded in the O direction. By expanding the volume of the first space 44 in the direction of the axis O, it is not necessary to expand the volume of the first space 44 outward in the radial direction, so that the thickness (wall thickness) of the body portion 35 in the radial direction is increased accordingly. Can be big. As a result, the mechanical strength of the trunk portion 35 can be ensured.

次に図4を参照して第2実施の形態について説明する。第1実施の形態では、仮想円vに対する凹部42の径方向の深さが、周方向に亘って同一の場合について説明した。これに対し第2実施の形態では、仮想円vに対する凹部51の径方向の深さが異なる場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図4は第2実施の形態におけるスパークプラグ50の断面図である。図4では、図3と同様に、軸線Oと直交し縮径部13及び先端部40を通る切断面によって切断されたスパークプラグ50の断面が図示されている(図5から図7においても同じ)。   Next, a second embodiment will be described with reference to FIG. In 1st Embodiment, the case where the depth of the radial direction of the recessed part 42 with respect to the virtual circle v was the same over the circumferential direction was demonstrated. On the other hand, in the second embodiment, a case will be described in which the radial depth of the recess 51 with respect to the virtual circle v is different. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 4 is a cross-sectional view of the spark plug 50 in the second embodiment. 4, as in FIG. 3, a cross section of the spark plug 50 cut by a cut surface that is orthogonal to the axis O and passes through the reduced diameter portion 13 and the tip portion 40 is shown (the same applies to FIGS. 5 to 7). ).

図4に示すようにスパークプラグ50は、先端部40のうち第1空間44に臨む部分に凹部51が形成されている。凹部51の径方向の深さは、凹部51の周方向の両端から中央へ向かうにつれて、先端部40の内周の仮想円v(軸線Oを中心とする円)に対して次第に増している。これにより、凹部51によって第1空間44の体積を第2空間45の体積より大きくできると共に、凹部51がなめらかに連なるので、凹部51が切り欠きとなって先端部40の機械的強度を低下させないようにできる。   As shown in FIG. 4, the spark plug 50 has a recess 51 formed in a portion of the tip portion 40 facing the first space 44. The depth in the radial direction of the recess 51 gradually increases with respect to the virtual circle v (a circle centered on the axis O) on the inner periphery of the tip 40 as it goes from the circumferential ends of the recess 51 toward the center. As a result, the volume of the first space 44 can be made larger than the volume of the second space 45 by the concave portion 51 and the concave portion 51 is smoothly connected, so that the concave portion 51 is notched and the mechanical strength of the distal end portion 40 is not reduced. You can

次に図5を参照して第3実施の形態について説明する。第1実施の形態および第2実施の形態では、凹部42,51が先端部40の一か所に形成される場合について説明した。これに対し第3実施の形態では、先端部40の複数か所に凹部61が形成される場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5は第3実施の形態におけるスパークプラグ60の軸線Oに垂直な断面図である。   Next, a third embodiment will be described with reference to FIG. In 1st Embodiment and 2nd Embodiment, the case where the recessed parts 42 and 51 were formed in one place of the front-end | tip part 40 was demonstrated. On the other hand, 3rd Embodiment demonstrates the case where the recessed part 61 is formed in several places of the front-end | tip part 40. FIG. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 5 is a cross-sectional view perpendicular to the axis O of the spark plug 60 in the third embodiment.

図5に示すようにスパークプラグ60は、先端部40のうち第1空間44に臨む部分に凹部61が形成されている。凹部61は、軸線O方向(図5紙面に垂直な方向)に延びる溝状に各々が形成され、それらが周方向の複数か所(本実施の形態では5か所)に離れて形成されている。凹部61が形成された領域の周方向の両端に対して軸線Oから引かれた2つの直線48,49のなす角θは、60〜180°の所定角度に設定されている。第3実施の形態におけるスパークプラグ60においても、第1実施の形態と同様の作用効果を実現できる。さらに、先端部40の内面の表面積を拡大できるので、先端部40の内面の放熱効果を向上できる。   As shown in FIG. 5, the spark plug 60 has a recessed portion 61 formed in a portion of the tip portion 40 facing the first space 44. The recesses 61 are each formed in a groove shape extending in the direction of the axis O (the direction perpendicular to the paper surface of FIG. 5), and are formed separately at a plurality of locations in the circumferential direction (5 locations in the present embodiment). Yes. An angle θ formed by two straight lines 48 and 49 drawn from the axis O with respect to both ends in the circumferential direction of the region where the recess 61 is formed is set to a predetermined angle of 60 to 180 °. In the spark plug 60 according to the third embodiment, the same function and effect as the first embodiment can be realized. Furthermore, since the surface area of the inner surface of the tip portion 40 can be increased, the heat dissipation effect of the inner surface of the tip portion 40 can be improved.

次に図6を参照して第4実施の形態について説明する。第1実施の形態から第3実施の形態では、先端部40(主体金具30)に凹部42,51,61が形成される場合について説明した。これに対し第4実施の形態では、絶縁体11の外径を小さくする小径部71が形成される場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図6は第4実施の形態におけるスパークプラグ70の軸線Oに垂直な断面図である。   Next, a fourth embodiment will be described with reference to FIG. In the first to third embodiments, the case where the concave portions 42, 51, and 61 are formed in the distal end portion 40 (the metal shell 30) has been described. On the other hand, in the fourth embodiment, a case will be described in which the small diameter portion 71 that reduces the outer diameter of the insulator 11 is formed. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 6 is a cross-sectional view perpendicular to the axis O of the spark plug 70 in the fourth embodiment.

図6に示すようにスパークプラグ70は、絶縁体11のうち第1空間44に臨む部分に小径部71が形成されている。小径部71は、軸線Oと直交する断面(図6参照)において、小径部71と先端部40との径方向の距離が、絶縁体11のうち小径部71以外の他の部位と先端部40との径方向の距離に比べて大きい部分である。軸線Oから小径部71の周方向の両端に対して引かれた2つの直線72,73のなす角θは、60〜180°の所定角度に設定されている。   As shown in FIG. 6, the spark plug 70 has a small-diameter portion 71 formed in a portion of the insulator 11 that faces the first space 44. In the cross section perpendicular to the axis O (see FIG. 6), the small-diameter portion 71 has a radial distance between the small-diameter portion 71 and the distal end portion 40 that is other than the small-diameter portion 71 in the insulator 11 and the distal end portion 40. It is a part larger than the distance in the radial direction. An angle θ formed by two straight lines 72 and 73 drawn from the axis O to both ends in the circumferential direction of the small diameter portion 71 is set to a predetermined angle of 60 to 180 °.

本実施の形態では、小径部71は、第2直線部14(図2参照)から縮径部13にかけて軸線O方向に延びている。これにより、第1空間44の体積を拡大するために、絶縁体11のうち径方向の厚さ(肉厚)が最も薄い第1直線部12の厚さを薄くしなくて良いので、第1直線部12の機械的強度が低下しないようにできる。   In the present embodiment, the small diameter portion 71 extends in the axis O direction from the second straight portion 14 (see FIG. 2) to the reduced diameter portion 13. Thereby, in order to expand the volume of the first space 44, the thickness of the first linear portion 12 having the smallest radial thickness (thickness) in the insulator 11 does not have to be reduced. The mechanical strength of the straight line portion 12 can be prevented from decreasing.

なお、中心角が同じであれば絶縁体11の弧の長さは先端部40の弧の長さより短いので、先端部40に凹部42(図3参照)を形成する方が、小径部71を形成するよりも第1空間44の体積を拡大し易い。しかし、第4実施の形態によれば、それ以外は第1実施の形態と同様の作用効果を実現できる。   If the central angles are the same, the length of the arc of the insulator 11 is shorter than the length of the arc of the tip portion 40. Therefore, forming the concave portion 42 (see FIG. 3) in the tip portion 40 causes the small diameter portion 71 to be formed. It is easier to expand the volume of the first space 44 than to form it. However, according to the fourth embodiment, the same operational effects as those of the first embodiment can be realized otherwise.

図7及び図8を参照して、本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図7(a)は比較例におけるスパークプラグ80の断面図であり、図7(b)は実施例1におけるスパークプラグ90の断面図であり、図7(c)は実施例2におけるスパークプラグ100の断面図であり、図7(d)は実施例3におけるスパークプラグ110の断面図である。図7(a)から図7(d)では、図3と同様に、軸線Oと直交し縮径部13及び先端部40を通る切断面によって切断された断面が図示されている。   The present invention will be described in more detail with reference to FIG. 7 and FIG. 8, but the present invention is not limited to this example. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. 7A is a cross-sectional view of the spark plug 80 in the comparative example, FIG. 7B is a cross-sectional view of the spark plug 90 in the first embodiment, and FIG. 7C is a spark plug 100 in the second embodiment. FIG. 7D is a cross-sectional view of the spark plug 110 according to the third embodiment. 7A to 7D, a cross section cut by a cut surface that is orthogonal to the axis O and passes through the reduced diameter portion 13 and the distal end portion 40 is shown, as in FIG.

(比較例)
図7(a)に示す比較例におけるスパークプラグ80は、先端部40に凹部42(図1参照)が形成されていないことを除き、第1実施の形態で説明したスパークプラグ10と同一である。スパークプラグ80は、平面47で二分された第1空間44及び第2空間45の体積が同一である。
(Comparative example)
The spark plug 80 in the comparative example shown in FIG. 7A is the same as the spark plug 10 described in the first embodiment, except that the concave portion 42 (see FIG. 1) is not formed in the distal end portion 40. . In the spark plug 80, the volumes of the first space 44 and the second space 45 divided by the plane 47 are the same.

(実施例1)
図7(b)に示す実施例1におけるスパークプラグ90は、先端部40に凹部91が形成されている。凹部91は、棚部37から先端部40の先端まで軸線O方向(紙面に垂直な方向)に延びている。軸線O周りの凹部91の角度θ(直線48,49のなす角)は60°である。角度θの二等分線は平面47に垂直である。第1空間44の体積は、凹部91の分だけ第2空間45の体積より大きい。
Example 1
The spark plug 90 in the first embodiment shown in FIG. 7B has a concave portion 91 formed at the tip end portion 40. The recess 91 extends from the shelf 37 to the tip of the tip 40 in the direction of the axis O (direction perpendicular to the paper surface). The angle θ (angle formed by the straight lines 48 and 49) of the recess 91 around the axis O is 60 °. The bisector of the angle θ is perpendicular to the plane 47. The volume of the first space 44 is larger than the volume of the second space 45 by the amount of the recess 91.

(実施例2)
図7(c)に示す実施例2におけるスパークプラグ100は、先端部40に凹部101が形成されている。凹部101は、棚部37から先端部40の先端まで軸線O方向(紙面に垂直な方向)に延びている。軸線O周りの凹部101の角度θ(直線48,49のなす角)は90°である。角度θの二等分線は平面47に垂直である。第1空間44の体積は、凹部101の分だけ第2空間45の体積より大きい。
(Example 2)
The spark plug 100 according to the second embodiment shown in FIG. 7C has a concave portion 101 formed at the distal end portion 40. The recess 101 extends from the shelf 37 to the tip of the tip 40 in the direction of the axis O (direction perpendicular to the paper surface). The angle θ (angle formed by the straight lines 48 and 49) of the recess 101 around the axis O is 90 °. The bisector of the angle θ is perpendicular to the plane 47. The volume of the first space 44 is larger than the volume of the second space 45 by the amount of the recess 101.

(実施例3)
図7(d)に示す実施例3におけるスパークプラグ110は、先端部40に凹部111が形成されている。凹部111は、棚部37から先端部40の先端まで軸線O方向(紙面に垂直な方向)に延びている。軸線O周りの凹部111の角度θ(直線48,49のなす角)は90°である。凹部111の周方向の端の一方と軸線Oとを通る直線49は平面47に重なり、凹部111の他方の端と軸線Oとを通る直線48は平面47と垂直である。第1空間44の体積は、凹部111の分だけ第2空間45の体積より大きい。
(Example 3)
The spark plug 110 according to the third embodiment shown in FIG. 7D has a recess 111 at the tip 40. The recess 111 extends from the shelf 37 to the tip of the tip 40 in the direction of the axis O (direction perpendicular to the paper surface). The angle θ (angle formed by the straight lines 48 and 49) of the recess 111 around the axis O is 90 °. A straight line 49 passing through one of the circumferential ends of the recess 111 and the axis O overlaps the plane 47, and a straight line 48 passing through the other end of the recess 111 and the axis O is perpendicular to the plane 47. The volume of the first space 44 is larger than the volume of the second space 45 by the amount of the recess 111.

実施例1から3及び比較例におけるスパークプラグ80,90,100,110の平面47と内燃機関の吸気行程における気流F(タンブル流)とが直交するように、気流Fの上流側に第1空間44を配置した内燃機関について、燃焼シミュレーションを行った。各部の寸法などのシミュレーションの条件は以下のとおりであった。内燃機関のクランク軸の回転数2000rpm、内燃機関の吸気圧力200kPa、スパークプラグの第2直線部14の外径5.7mm、第1直線部12の外径3.4mm、第1直線部12の軸線O方向の長さ7.5mm、先端部40の内周面41と軸線Oとの距離3.6mm、凹部91,101,111と軸線Oとの距離3.9mm。   The first space on the upstream side of the airflow F so that the plane 47 of the spark plugs 80, 90, 100, 110 in the first to third embodiments and the comparative example and the airflow F (tumble flow) in the intake stroke of the internal combustion engine are orthogonal to each other. A combustion simulation was performed on the internal combustion engine in which 44 is disposed. The simulation conditions such as the dimensions of each part were as follows. The internal combustion engine crankshaft rotation speed is 2000 rpm, the internal combustion engine intake pressure is 200 kPa, the outer diameter of the second straight portion of the spark plug is 5.7 mm, the outer diameter of the first straight portion is 3.4 mm, the first straight portion is The length in the direction of the axis O is 7.5 mm, the distance between the inner peripheral surface 41 of the tip 40 and the axis O is 3.6 mm, and the distance between the recesses 91, 101, 111 and the axis O is 3.9 mm.

図8は実施例1から3及び比較例におけるスパークプラグ80,90,100,110のクランク角(°BTDC)と空間(第1空間44及び第2空間45)の平均温度(K)との関係を示す図である。図中、aは比較例におけるスパークプラグ80の平均温度の曲線であり、b,c,dはそれぞれ実施例1,2,3におけるスパークプラグ90,100,110の平均温度の曲線である。横軸は上死点前のクランク角であり、平均温度が急激に上昇する部分(各曲線が立ち上がる部分)のクランク角が小さいほどプレイグニッション(過早着火)が発生し難いことを示している。   FIG. 8 shows the relationship between the crank angle (° BTDC) of the spark plugs 80, 90, 100, and 110 and the average temperature (K) of the space (first space 44 and second space 45) in Examples 1 to 3 and the comparative example. FIG. In the figure, a is a curve of the average temperature of the spark plug 80 in the comparative example, and b, c, d are curves of the average temperature of the spark plugs 90, 100, 110 in Examples 1, 2, and 3, respectively. The horizontal axis is the crank angle before top dead center, and the smaller the crank angle of the part where the average temperature rises rapidly (the part where each curve rises), the less pre-ignition (pre-ignition) occurs. .

図8に示すように、aの立ち上がりのクランク角に比べてb,c,dの立ち上がりのクランク角が小さいことから、第1空間44の体積を第2空間45の体積よりも大きくすることにより、プレイグニッションを発生し難くできることがわかった。また、bの立ち上がりのクランク角に比べてcの立ち上がりのクランク角が小さいことから、凹部91,101の角度θが大きい方がプレイグニッションを発生し難くできることがわかった。第1空間44の体積と第2空間45の体積との差が大きい方が、第1空間44に混合気を滞留させ難くできるので、混合気の受熱に起因するプレイグニッションを抑制できると推察される。   As shown in FIG. 8, since the rising crank angle of b, c, d is smaller than the rising crank angle of a, the volume of the first space 44 is made larger than the volume of the second space 45. , It was found that it is difficult to generate pre-ignition. In addition, since the crank angle at which c rises is smaller than the crank angle at which b rises, it was found that preignition is less likely to occur when the angle θ of the recesses 91 and 101 is larger. It is presumed that the larger the difference between the volume of the first space 44 and the volume of the second space 45, the harder the air-fuel mixture stays in the first space 44, so that it is possible to suppress preignition caused by heat reception of the air-fuel mixture. The

さらに、図8に示すように、cの立ち上がりのクランク角に比べてdの立ち上がりのクランク角が小さいことから、凹部111と接地電極46とが離れている方がプレイグニッションを発生し難くできることがわかった。凹部111と接地電極46とが離れている方が、第1空間44の気流を接地電極46が妨げ難くできるので、混合気の受熱に起因するプレイグニッションを抑制できると推察される。   Furthermore, as shown in FIG. 8, since the rising crank angle of d is smaller than the rising crank angle of c, pre-ignition can be less likely to occur when the recess 111 and the ground electrode 46 are separated. all right. Since the ground electrode 46 can hardly prevent the airflow in the first space 44 when the concave portion 111 and the ground electrode 46 are separated from each other, it is presumed that preignition caused by heat reception of the air-fuel mixture can be suppressed.

図示はしていないが、図7(d)に示すスパークプラグ110において、凹部111の周方向の端の両端(直線48,49)が平面47に重なるようにすると、直線48,49のなす角θは180°となる。この場合は、第1空間44の体積と第2空間45の体積との差が最も大きくなるので、第1空間44の気流をさらに滞留させ難くできる。よって、混合気の受熱に起因するプレイグニッションをより抑制できる。   Although not shown, in the spark plug 110 shown in FIG. 7D, if both ends (straight lines 48, 49) of the circumferential end of the recess 111 overlap the plane 47, the angle formed by the straight lines 48, 49 θ is 180 °. In this case, since the difference between the volume of the first space 44 and the volume of the second space 45 is the largest, the airflow in the first space 44 can be further prevented from staying. Therefore, the pre-ignition resulting from the heat reception of the air-fuel mixture can be further suppressed.

また、この実施例によれば、凹部の両端に対して引かれた2つの直線48,49のなす角θは、60〜180°の所定角度に設定されるのが好ましいことがわかった。同様に、絶縁体11に形成される小径部71(図6参照)の両端に対して引かれた2つの直線72,73のなす角θも、60〜180°の所定角度に設定されるのが好ましいと推察される。   Further, according to this embodiment, it was found that the angle θ formed by the two straight lines 48 and 49 drawn with respect to both ends of the recess is preferably set to a predetermined angle of 60 to 180 °. Similarly, an angle θ formed by two straight lines 72 and 73 drawn with respect to both ends of the small diameter portion 71 (see FIG. 6) formed in the insulator 11 is also set to a predetermined angle of 60 to 180 °. Is presumed to be preferable.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施の形態では、絶縁体11と先端部40との間にできる空間を、接地電極46の対称面である平面47で二分して第1空間44と第2空間とを作ったが、必ずしもこれに限られるものではない。空間を第1空間44と第2空間とに二分する平面47は、凹部42,51,61,91,101,111や小径部71の周方向の中心と軸線Oとを含む平面以外の平面であれば、接地電極46と無関係に、任意に設定できる。第2空間45の体積よりも体積の大きい第1空間44を、内燃機関(図示せず)の吸気行程における気流Fの上流側に配置することより、第1空間44に混合気を滞留させ難くすることができ、混合気の受熱に起因するプレイグニッションを抑制できるからである。但し、気流Fに対する接地電極46の位置を考慮すれば、プレイグニッションの抑制効果をさらに高めることができる。   In each of the embodiments described above, the space formed between the insulator 11 and the tip portion 40 is divided into two by the plane 47 that is the plane of symmetry of the ground electrode 46 to form the first space 44 and the second space. It is not necessarily limited to this. The plane 47 that divides the space into the first space 44 and the second space is a plane other than the plane including the center in the circumferential direction of the concave portions 42, 51, 61, 91, 101, 111 and the small diameter portion 71 and the axis O. If there is, it can be arbitrarily set regardless of the ground electrode 46. By arranging the first space 44 having a volume larger than the volume of the second space 45 on the upstream side of the air flow F in the intake stroke of the internal combustion engine (not shown), it is difficult for the air-fuel mixture to stay in the first space 44. This is because it is possible to suppress preignition caused by heat reception of the air-fuel mixture. However, if the position of the ground electrode 46 with respect to the airflow F is taken into consideration, the effect of suppressing preignition can be further enhanced.

上記各実施の形態では、第1空間44の体積を第2空間45の体積より大きくするために、第1実施の形態から第3実施の形態では先端部40に凹部42,51,61を形成し、第4実施の形態では絶縁体11に小径部71を形成したが、これらを組み合わせることは当然可能である。先端部40に凹部42,51,61を形成すると共に、絶縁体11に小径部71を形成することにより、第1空間44の体積と第2空間45の体積との差をより大きくできる。   In each of the above embodiments, in order to make the volume of the first space 44 larger than the volume of the second space 45, the recesses 42, 51, 61 are formed in the tip 40 in the first to third embodiments. And although the small diameter part 71 was formed in the insulator 11 in 4th Embodiment, it is naturally possible to combine these. The difference between the volume of the first space 44 and the volume of the second space 45 can be further increased by forming the concave portions 42, 51, 61 in the tip portion 40 and forming the small diameter portion 71 in the insulator 11.

上記各実施の形態では、主体金具30の棚部37と絶縁体11の張出部15との間にパッキン38(他部材)が介在する場合について説明したが、必ずしもこれに限られるものではない。パッキン38を省略して、棚部37と張出部15とを密着させ、棚部37が張出部15を直接係止することは当然可能である。この場合、係止部39は、棚部37のうち張出部15が接触する部位である。   In each of the embodiments described above, the case where the packing 38 (other member) is interposed between the shelf portion 37 of the metal shell 30 and the overhanging portion 15 of the insulator 11 is not necessarily limited thereto. . Of course, it is possible that the packing portion 38 is omitted, the shelf portion 37 and the overhang portion 15 are brought into close contact with each other, and the shelf portion 37 directly locks the overhang portion 15. In this case, the locking portion 39 is a portion of the shelf portion 37 that contacts the overhang portion 15.

上記各実施の形態では、主体金具30の屈曲部31と絶縁体11の係合部16との間に充填材47を配置する場合について説明したが、必ずしもこれに限られるものではない。充填材47を省略することは当然可能である。   In each of the above embodiments, the case where the filler 47 is disposed between the bent portion 31 of the metal shell 30 and the engaging portion 16 of the insulator 11 has been described. However, the present invention is not necessarily limited thereto. Of course, the filler 47 can be omitted.

上記各実施の形態では、棚部37よりも先端側の先端部40の内周面41と軸線Oとの距離が、棚部37の内周面37bと軸線Oとの距離よりも長くなるように、先端部40の軸線O方向の一部に棚部37が設けられる場合について説明したが、必ずしもこれに限られるものではない。軸線Oを含む断面(図2参照)において、内周面41と棚部37の内周面37bとが同一直線上に位置するように、先端部40の軸線O方向の全長に亘って棚部37を設けることは当然可能である。この場合も、絶縁体11に第1直線部12及び縮径部13が設けられているので、第2空間45を確保できる。   In each of the above embodiments, the distance between the inner peripheral surface 41 of the tip 40 on the tip side of the shelf 37 and the axis O is longer than the distance between the inner periphery 37b of the shelf 37 and the axis O. In addition, although the case where the shelf 37 is provided in a part of the tip portion 40 in the axis O direction has been described, it is not necessarily limited thereto. In the cross section including the axis O (see FIG. 2), the shelf portion extends over the entire length of the tip portion 40 in the axis O direction so that the inner peripheral surface 41 and the inner peripheral surface 37b of the shelf portion 37 are located on the same straight line. It is naturally possible to provide 37. Also in this case, since the first linear portion 12 and the reduced diameter portion 13 are provided in the insulator 11, the second space 45 can be secured.

上記各実施の形態では、主体金具30に接合された接地電極46を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した接地電極46を用いる代わりに、直線状の接地電極46を用いることは当然可能である。この場合には、主体金具30の先端側を軸線O方向に延ばし、直線状の接地電極46を主体金具30に接合して、接地電極46の先端部を中心電極20と対向させる。   In each of the above embodiments, the case where the ground electrode 46 joined to the metal shell 30 is bent has been described. However, it is not necessarily limited to this. Instead of using the bent ground electrode 46, it is naturally possible to use a straight ground electrode 46. In this case, the front end side of the metal shell 30 is extended in the direction of the axis O, the linear ground electrode 46 is joined to the metal shell 30, and the front end portion of the ground electrode 46 is opposed to the center electrode 20.

上記各実施の形態では、接地電極46の先端部と中心電極20とを軸線O上で対向するように接地電極46を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極46と中心電極20との位置関係は適宜設定できる。接地電極46と中心電極20との他の位置関係としては、例えば、中心電極20の側面と接地電極46の先端部とが対向するように接地電極46を配置すること等が挙げられる。   In each of the above embodiments, the case where the ground electrode 46 is arranged so that the tip of the ground electrode 46 and the center electrode 20 face each other on the axis O has been described. However, the present invention is not necessarily limited to this, and the positional relationship between the ground electrode 46 and the center electrode 20 can be set as appropriate. Other positional relationships between the ground electrode 46 and the center electrode 20 include, for example, arranging the ground electrode 46 so that the side surface of the center electrode 20 and the tip of the ground electrode 46 face each other.

10,50,60,70,90,100,110 スパークプラグ
11 絶縁体
12 第1直線部
13 縮径部
13a 縮径部の後端
14 第2直線部
15 張出部
30 主体金具
37 棚部
38 パッキン(他部材)
39 係止部
40 先端部
42,51,61,91,101,111 凹部
44 第1空間
45 第2空間
46 接地電極
47 平面
48,49 平面(直線)
71 小径部
72,73 直線
O 軸線
10, 50, 60, 70, 90, 100, 110 Spark plug 11 Insulator 12 First straight portion 13 Reduced diameter portion 13a Rear end of reduced diameter portion 14 Second straight portion 15 Overhang portion 30 Metal shell 37 Shelf portion 38 Packing (other parts)
39 Locking portion 40 Tip portion 42, 51, 61, 91, 101, 111 Recess 44 First space 45 Second space 46 Ground electrode 47 Plane 48, 49 Plane (straight line)
71 Small-diameter portion 72, 73 Straight O-axis

Claims (7)

先端側から後端側へと軸線方向に延び、径方向外側に張り出す張出部を備える絶縁体と、
前記絶縁体の外周側に配置される筒状の主体金具と、を備え、
前記主体金具は、前記絶縁体の前記張出部が直接または他部材を介して係止される係止部を有する棚部を備えるスパークプラグであって、
前記主体金具のうち前記係止部よりも先端側の部位である先端部と前記絶縁体との間にできる空間を、前記軸線を含み前記軸線に沿う平面で二分したときに、その一方の第1空間の体積は、残りの第2空間の体積よりも大きいスパークプラグ。
An insulator having an overhang extending in the axial direction from the front end side to the rear end side and projecting radially outward;
A cylindrical metal shell disposed on the outer peripheral side of the insulator, and
The metal shell is a spark plug including a shelf portion having a locking portion to which the protruding portion of the insulator is locked directly or via another member,
When the space formed between the front end portion of the metal shell and the insulator, which is a portion closer to the front end than the locking portion, is bisected by a plane that includes the axis and extends along the axis, A spark plug in which the volume of one space is larger than the volume of the remaining second space.
前記軸線と直交し前記先端部を通る断面において、
前記先端部は、自身の内周に径方向外側に凹んだ凹部を備え、
前記軸線から前記凹部の両端に対して引かれた2つの直線のなす角は60〜180°の所定角度に設定される請求項1記載のスパークプラグ。
In a cross section perpendicular to the axis and passing through the tip,
The tip portion is provided with a concave portion that is recessed radially outward on its inner periphery,
The spark plug according to claim 1, wherein an angle formed by two straight lines drawn from the axis to both ends of the concave portion is set to a predetermined angle of 60 to 180 °.
前記主体金具に接合された接地電極を備え、
前記接地電極は、前記主体金具のうち、前記2つの直線および前記軸線を含み前記凹部を挟む2つの平面によって切り取られる部分以外の部分に接合されている請求項2記載のスパークプラグ。
A ground electrode joined to the metal shell,
The spark plug according to claim 2, wherein the ground electrode is joined to a portion of the metal shell other than a portion cut out by two planes including the two straight lines and the axis and sandwiching the concave portion.
前記絶縁体のうち前記先端部に取り囲まれる部分は、先端側へ向かうにつれて外径が縮径する縮径部と、前記縮径部の先端に連接されると共に外径が一定の第1直線部と、を備え、
前記凹部は、前記先端部のうち前記縮径部を取り囲む部分に少なくとも設けられている請求項2又は3に記載のスパークプラグ。
Of the insulator, the portion surrounded by the tip portion has a reduced diameter portion whose outer diameter decreases toward the tip side, and a first straight portion connected to the tip of the reduced diameter portion and having a constant outer diameter. And comprising
The spark plug according to claim 2 or 3, wherein the concave portion is provided at least in a portion surrounding the reduced diameter portion of the tip portion.
前記断面は、前記先端部の任意の断面である請求項2から4のいずれかに記載のスパークプラグ。   The spark plug according to any one of claims 2 to 4, wherein the cross section is an arbitrary cross section of the tip portion. 前記絶縁体のうち前記先端部に取り囲まれる部分は、外径が一定の第2直線部と、前記第2直線部の先端に連接されると共に先端側へ向かうにつれて外径が縮径する縮径部と、を備え、
前記断面は、前記先端部のうち前記絶縁体の前記縮径部の後端よりも先端側の部分の任意の断面である請求項2又は3に記載のスパークプラグ。
Of the insulator, the portion surrounded by the tip portion is connected to the tip of the second straight portion having a constant outer diameter and the outer diameter is reduced toward the tip side. And comprising
4. The spark plug according to claim 2, wherein the cross section is an arbitrary cross section of a portion of the front end portion that is closer to a front end side than a rear end of the reduced diameter portion of the insulator.
前記軸線と直交し前記先端部を通る断面において、
前記絶縁体のうち前記先端部に取り囲まれる部分は、前記先端部の内周との径方向の距離が、他の部位と比較して大きな小径部を備え、
前記軸線から前記小径部の両端に対して引かれた2つの直線のなす角は60〜180°の所定角度に設定される請求項1記載のスパークプラグ。
In a cross section perpendicular to the axis and passing through the tip,
The portion surrounded by the tip portion of the insulator includes a small-diameter portion whose radial distance from the inner periphery of the tip portion is larger than that of other portions.
The spark plug according to claim 1, wherein an angle formed by two straight lines drawn from the axis to both ends of the small diameter portion is set to a predetermined angle of 60 to 180 °.
JP2017130205A 2017-07-03 2017-07-03 Spark plug Active JP6767938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130205A JP6767938B2 (en) 2017-07-03 2017-07-03 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130205A JP6767938B2 (en) 2017-07-03 2017-07-03 Spark plug

Publications (2)

Publication Number Publication Date
JP2019012677A true JP2019012677A (en) 2019-01-24
JP6767938B2 JP6767938B2 (en) 2020-10-14

Family

ID=65226428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130205A Active JP6767938B2 (en) 2017-07-03 2017-07-03 Spark plug

Country Status (1)

Country Link
JP (1) JP6767938B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286612A (en) * 2005-03-08 2006-10-19 Ngk Spark Plug Co Ltd Spark plug
JP2013143267A (en) * 2012-01-11 2013-07-22 Toyota Motor Corp Spark plug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286612A (en) * 2005-03-08 2006-10-19 Ngk Spark Plug Co Ltd Spark plug
JP2013143267A (en) * 2012-01-11 2013-07-22 Toyota Motor Corp Spark plug

Also Published As

Publication number Publication date
JP6767938B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US10186844B2 (en) Spark plug
BRPI0713679A2 (en) spark plug for a spark ignition combustion event
JP2008123989A (en) Spark plug for internal combustion engine
WO2009116541A1 (en) Spark plug
JP2005183177A (en) Sparking plug
US10153618B2 (en) Spark plug
US11515690B2 (en) Spark plug
JP2009087923A (en) Spark plug and internal combustion engine mounted with the spark plug
JP6348546B2 (en) Spark plug and ignition device
JP2014007071A (en) Ignition plug
JP6741717B2 (en) Spark plug
JP6767938B2 (en) Spark plug
JP6340453B2 (en) Spark plug
US9889496B2 (en) Method for manufacturing metal fitting, method for manufacturing spark plug, and method for manufacturing sensor
JP7176450B2 (en) spark plug
JP6781141B2 (en) Spark plug
JP2021170475A (en) Spark plug
JP6349421B2 (en) Spark plug
JP7330002B2 (en) Spark plug
JP2021026873A (en) Spark plug
JP7233329B2 (en) Spark plug
JP6261537B2 (en) Spark plug
JP6344966B2 (en) Spark plug for internal combustion engine
US9917425B1 (en) Spark plug
JP2011034959A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6767938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250