JP2019011865A - Retainer for bearing - Google Patents

Retainer for bearing Download PDF

Info

Publication number
JP2019011865A
JP2019011865A JP2018189113A JP2018189113A JP2019011865A JP 2019011865 A JP2019011865 A JP 2019011865A JP 2018189113 A JP2018189113 A JP 2018189113A JP 2018189113 A JP2018189113 A JP 2018189113A JP 2019011865 A JP2019011865 A JP 2019011865A
Authority
JP
Japan
Prior art keywords
resin
regions
weld
sectional area
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018189113A
Other languages
Japanese (ja)
Other versions
JP6658839B2 (en
Inventor
吉和 倉本
Yoshikazu Kuramoto
吉和 倉本
相原 成明
Shigeaki Aihara
成明 相原
隆之 平本
Takayuki Hiramoto
隆之 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018189113A priority Critical patent/JP6658839B2/en
Publication of JP2019011865A publication Critical patent/JP2019011865A/en
Application granted granted Critical
Publication of JP6658839B2 publication Critical patent/JP6658839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

To provide a method for manufacturing a retainer for a bearing capable of restraining deterioration of strength.SOLUTION: Regions between resin injection gates 51 adjacent to each other are respectively designated as first to third regions S1-S3. Three resin injection gates 51 are respectively provided at positions displaced from a peripheral center of a pillar part 20 to one peripheral side, so that the numbers of pockets 30 in the first to third regions S1-S3 are equal to each other. Resin reservoirs 40 capable of storing molten resin are provided at the peripheral centers of the pillar parts 20 the most away from both ends of the first to third regions S1-S3. A cross sectional area of a communication part 42 of the resin reservoir 40 communicated with the pillar part 20 is not more than 1/4 of a cross sectional area of a resin injection gate 51.SELECTED DRAWING: Figure 1

Description

本発明は、軸受用保持器の製造方法に関する。   The present invention relates to a method for manufacturing a bearing cage.

一般的に、軸受用保持器は、射出成形により製造される。具体的には、図7に示すように、成形金型内に成形体である軸受用保持器に対応する環状のキャビティ140を形成し、このキャビティ140の周縁部に設けた樹脂射出ゲート150から溶解された樹脂材料(熱可塑性樹脂)を注入し、冷却固化することによって製造される。   Generally, the bearing cage is manufactured by injection molding. Specifically, as shown in FIG. 7, an annular cavity 140 corresponding to a bearing cage that is a molded body is formed in a molding die, and a resin injection gate 150 provided at the peripheral portion of the cavity 140 is used. It is manufactured by injecting a dissolved resin material (thermoplastic resin) and solidifying by cooling.

キャビティ140に注入された溶解樹脂は、キャビティ140内を周方向両側に二つの流れとなって流動し、樹脂射出ゲート150と径方向に対向する反対側の位置で再び合流し、相互に接合され、ウェルド100Wが形成される。一般に、この様に射出成形された軸受用樹脂製保持器は、溶解樹脂が融着一体化しただけのものであるため、溶解樹脂の均一な混合が起こらず、ウェルド100Wにおいて強度が低下することがよく知られている。   The molten resin injected into the cavity 140 flows into the cavity 140 as two flows on both sides in the circumferential direction, and merges again at a position opposite to the resin injection gate 150 in the radial direction and joined to each other. , A weld 100W is formed. Generally, since the resin cage for bearings thus molded by injection is only one in which the molten resin is fused and integrated, uniform mixing of the molten resin does not occur, and the strength decreases in the weld 100W. Is well known.

また、溶解樹脂に、強化材料としてガラス繊維、炭素繊維、金属繊維等の補強繊維材を添加したものでは、ウェルド100Wにおいて補強繊維材が溶解樹脂の流動方向に対し垂直に配向するため、補強効果が発現しない。さらに、ウェルド100W以外の部分では、補強繊維材が溶解樹脂の流動方向に対し平行に配向するため、当該部分とウェルドとの強度差が大きくなってしまう。   Further, when a reinforcing fiber material such as glass fiber, carbon fiber, or metal fiber is added as a reinforcing material to the molten resin, the reinforcing fiber material is oriented perpendicular to the flowing direction of the molten resin in the weld 100W. Does not develop. Furthermore, in portions other than the weld 100W, the reinforcing fiber material is oriented in parallel with the flow direction of the dissolved resin, so that the strength difference between the portion and the weld becomes large.

このように、射出成形により製造された軸受用樹脂製保持器は、強度が弱いウェルドから破損することが多い。特に、ウェルドが、最も応力集中し易い部位(例えば、ポケットにおいて最も軸方向の肉厚が薄いポケット底や、円環部と柱部とが交差する隅R部)に形成されると、当該部位に損傷が発生し易くなり、保持器の耐久性が損なわれてしまう。そこで、従来より、以下に示すような対策がなされてきた。   Thus, the resin cage for bearings manufactured by injection molding often breaks from weak welds. In particular, when the weld is formed at a portion where stress is most easily concentrated (for example, at the pocket bottom where the wall thickness is the thinnest in the pocket, or at the corner R portion where the annular portion and the column portion intersect), the portion. Damage tends to occur, and the durability of the cage is impaired. Therefore, conventionally, the following countermeasures have been taken.

特許文献1の合成樹脂製保持器の製造方法では、成型金型のキャビティの円周方向複数個所にそれぞれゲートが設けられる。また、これらゲート間の複数の領域のうち、一部の領域の円周方向距離が他の領域の円周方向距離より長く設定され、円周方向距離が長い領域内における注入樹脂材料の合流個所にのみ樹脂溜めが設けられる。これにより、合流した注入樹脂材料を、キャビティから樹脂溜めに流れ込ませ、ウェルド強度の低下を防止することを図っている。   In the method for manufacturing a synthetic resin cage of Patent Document 1, gates are provided at a plurality of locations in the circumferential direction of the cavity of the molding die. Further, among the plurality of regions between the gates, the circumferential distance of some regions is set to be longer than the circumferential distance of other regions, and the injection resin material merging point in the region having a long circumferential distance Only the resin reservoir is provided. Thus, the injected injected resin material is caused to flow from the cavity into the resin reservoir to prevent the weld strength from being lowered.

特許文献2の樹脂製保持器では、ポケット部の総数が奇数とされると共に、ゲート間ごとに配置されるポケット部の数が最も均等になる数とされている。湯溜まりは、ポケット部が奇数となるゲート間の周方向中央に位置するポケット部の両端部に形成される柱部のいずれか一方に位置づけられる。これにより、ポケット部が奇数となるゲート間の領域に形成されるウェルドを、ポケット部の底部から周方向に外れた位置に形成し、保持器の剛性を向上することを図っている。   In the resin cage of Patent Document 2, the total number of pocket portions is an odd number, and the number of pocket portions arranged between the gates is the most even. The hot water pool is positioned at one of the pillar portions formed at both ends of the pocket portion located at the center in the circumferential direction between the gates where the pocket portion is an odd number. Thereby, the weld formed in the region between the gates where the pocket portion is odd is formed at a position deviated in the circumferential direction from the bottom portion of the pocket portion, thereby improving the rigidity of the cage.

特許第3666536号公報Japanese Patent No. 3666536 特開2008−095770号公報JP 2008-095770 A

しかしながら、特許文献1記載の製造方法では、注入樹脂材料の合流箇所、すなわちウェルド形成位置と一致する位置に樹脂溜めを設けている。したがって、キャビティと連通する樹脂溜めの連通部(開口部)近傍で、補強繊維材が樹脂材料の流動方向に対して垂直に配向し易く、ウェルド補強効果が十分に得られないという問題がある。   However, in the manufacturing method described in Patent Document 1, a resin reservoir is provided at a joint location of the injected resin material, that is, a position that coincides with the weld formation position. Therefore, there is a problem that the reinforcing fiber material is easily oriented perpendicular to the flow direction of the resin material in the vicinity of the communication portion (opening) of the resin reservoir communicating with the cavity, and the weld reinforcement effect cannot be sufficiently obtained.

特許文献2記載の樹脂製保持器では、湯溜まりが設けられていない、ポケット部が偶数となるゲート間の領域では、柱部に溶解樹脂が溶着一体化しただけであるウェルドが形成されてしまうため、使用条件によってはウェルド強度が不十分になる可能性がある。   In the resin cage described in Patent Document 2, in the region between the gates where there is no hot water pool and the pocket portion is an even number, a weld is formed in which the molten resin is simply welded and integrated with the pillar portion. Therefore, the weld strength may be insufficient depending on the use conditions.

本発明は、上述した課題を鑑みてなされたものであり、その目的は、強度低下を抑制可能な軸受用保持器の製造方法を提供することにある。   This invention is made | formed in view of the subject mentioned above, The objective is to provide the manufacturing method of the cage for bearings which can suppress a strength fall.

本発明の上記目的は、下記の構成により達成される。
(1) 成形金型内に形成した略円環状のキャビティの周縁部に設けられた3個の樹脂射出ゲートから、溶解樹脂を前記キャビティ内に射出することによって成形される軸受用保持器の製造方法であって、
前記軸受用保持器は、
略円環状の基部と、
前記基部の軸方向一端側面から、周方向に所定の間隔で軸方向に突出する3の偶数倍個の柱部と、
隣り合う一対の前記柱部の互いに対向する面と前記基部の軸方向一端側面とによって形成された、前記柱部と同数のポケットと、を有し、
隣り合う前記樹脂射出ゲートの間の領域を、それぞれ第1〜第3領域とすると、
前記第1〜第3領域における前記ポケットの数が互いに等しくなるように、3個の前記樹脂射出ゲートはそれぞれ前記柱部の周方向中央から周方向一方側にずれた位置に設けられ、
前記第1〜第3領域の両端から最も離れた前記柱部の周方向中央には、それぞれ前記溶解樹脂を貯留可能な樹脂溜りが設けられ、
前記柱部と連通する前記樹脂溜りの連通部の断面積は、前記樹脂射出ゲートの断面積の1/4以下であることを特徴とする軸受用保持器の製造方法。
The above object of the present invention can be achieved by the following constitution.
(1) Manufacture of a bearing cage molded by injecting a molten resin into the cavity from three resin injection gates provided at the peripheral edge of a substantially annular cavity formed in the molding die. A method,
The bearing cage is
A substantially annular base;
An even number of 3 column portions protruding in the axial direction at a predetermined interval in the circumferential direction from the axial one end side surface of the base portion;
Formed by the mutually opposing surfaces of a pair of adjacent column portions and the axial one end side surface of the base portion, and the same number of pockets as the column portions,
When the regions between the resin injection gates adjacent to each other are first to third regions,
The three resin injection gates are respectively provided at positions shifted from the circumferential center of the column portion to the circumferential one side so that the number of the pockets in the first to third regions is equal to each other.
At the center in the circumferential direction of the column portion furthest away from both ends of the first to third regions, a resin reservoir capable of storing the dissolved resin is provided, respectively.
The bearing cage manufacturing method according to claim 1, wherein a cross-sectional area of the communication portion of the resin reservoir communicating with the column portion is ¼ or less of a cross-sectional area of the resin injection gate.

本発明の軸受用保持器の製造方法によれば、柱部は偶数倍個に設定され、第1〜第3領域におけるポケットの数が互いに等しくなるように、3個の樹脂射出ゲートはそれぞれ柱部の周方向中央から周方向一方側にずれた位置に設けられ、第1〜第3領域の両端から最も離れた柱部の周方向中央には、それぞれ溶解樹脂を貯留可能な樹脂溜りが設けられる。
したがって、各樹脂射出ゲートから供給された溶解樹脂は、第1〜第3領域の両端から最も離れた柱部の近傍、より具体的には当該柱部の周方向中央から周方向一方側にずれた位置で合流し、ウェルドが形成される。ここで、当該柱部の周方向中央には樹脂溜りが設けられるので、ウェルド形成位置と樹脂溜り配置位置とが周方向にずれ、ウェルドと樹脂溜りとの間に溶解樹脂の圧力勾配を生じ易くなる。したがって、当該圧力勾配に起因する強制的な樹脂の流動が起きることで、ウェルドにおいて補強繊維材が溶解樹脂の流動方向に対し垂直に配向することを抑制することができる。
特に、上記のように、ウェルドが柱部の周方向中央から周方向一方側にずれた位置で形成され、樹脂溜りが当該柱部の周方向中央に配置されているので、ウェルドから樹脂溜りに向かって流路断面積が拡大する方向に溶解樹脂の強制的な流動が発生する。したがって、ウェルドにおける繊維配向の乱れた領域が、断面積の広い部分に移動するため、ウェルド強度をより向上させる効果を有する。
また、樹脂溜りの連通部の断面積は、樹脂射出ゲートの断面積の1/4以下であるので、溶解樹脂が合流した後で樹脂溜りへの溶解樹脂の流入が始まり、ウェルドにおける強制的な樹脂の流動によって補強繊維材の配向を制御する効果をより確実に発現することができる。
According to the manufacturing method of the bearing cage of the present invention, the three resin injection gates are respectively provided with columns so that the number of columns is set to an even number and the number of pockets in the first to third regions is equal to each other. The resin pool is provided at a position shifted from the circumferential center of the portion to one side in the circumferential direction, and in the circumferential center of the column portion furthest away from both ends of the first to third regions. It is done.
Therefore, the melted resin supplied from each resin injection gate is displaced in the vicinity of the column part farthest from both ends of the first to third regions, more specifically, from the circumferential center of the column part to one side in the circumferential direction. The welds are formed at the different positions, and a weld is formed. Here, since the resin reservoir is provided at the center in the circumferential direction of the column portion, the weld formation position and the resin reservoir arrangement position are shifted in the circumferential direction, and a pressure gradient of the dissolved resin is easily generated between the weld and the resin reservoir. Become. Therefore, the forced resin flow caused by the pressure gradient can prevent the reinforcing fiber material from being oriented perpendicular to the flow direction of the dissolved resin in the weld.
In particular, as described above, the weld is formed at a position shifted from the circumferential center of the column part to one side in the circumferential direction, and the resin reservoir is disposed at the circumferential center of the column part. The forced flow of the dissolved resin occurs in the direction in which the cross-sectional area of the flow path increases. Therefore, since the region in which the fiber orientation is disturbed in the weld moves to a portion having a large cross-sectional area, the weld strength is further improved.
Further, since the cross-sectional area of the communication portion of the resin reservoir is ¼ or less of the cross-sectional area of the resin injection gate, the inflow of the molten resin into the resin reservoir starts after the molten resin merges, and the forced in the weld The effect of controlling the orientation of the reinforcing fiber material by the flow of the resin can be expressed more reliably.

第1実施形態に係る製造方法によって製造された冠形保持器の平面図である。It is a top view of the crown-shaped cage manufactured by the manufacturing method concerning a 1st embodiment. 第2実施形態に係る製造方法によって製造された冠形保持器の平面図である。It is a top view of the crown-shaped cage manufactured by the manufacturing method concerning a 2nd embodiment. 実施例1において、溶解樹脂が流動する様子を示す図である。In Example 1, it is a figure which shows a mode that melt | dissolution resin flows. 比較例1において、溶解樹脂が流動する様子を示す図である。In comparative example 1, it is a figure showing signs that melted resin flows. 比較例2において、溶解樹脂が流動する様子を示す図である。In Comparative example 2, it is a figure which shows a mode that melt | dissolution resin flows. 比較例3において、溶解樹脂が流動する様子を示す図である。In comparative example 3, it is a figure showing signs that dissolution resin flows. 従来の軸受用保持器の製造方法に使用する成形金型の断面図である。It is sectional drawing of the shaping die used for the manufacturing method of the conventional bearing retainer.

以下、本発明に係る軸受用保持器の製造方法の各実施形態を図面に基づいて詳細に説明する。   Hereinafter, each embodiment of the manufacturing method of the bearing retainer concerning the present invention is described in detail based on a drawing.

(第1実施形態)
図1には、本実施形態の軸受用保持器1(以後、単に保持器と呼ぶことがある。)が示されている。保持器1は、いわゆる冠形保持器であり、略円環状の基部10と、基部10の軸方向一端側面12から、周方向に所定間隔で軸方向に突出する複数且つ3の偶数倍個(本実施形態では12個)の柱部20と、隣り合う一対の柱部20、20の互いに対向する面22、22と基部10の軸方向一端側面12とによって形成され、軸受の転動体(不図示)を保持する複数且つ3の偶数倍個(本実施形態では12個)のポケット30と、を有している。すなわち、柱部20とポケット30は同数であると共に何れも3の偶数倍個形成されており、柱部20はそれぞれのポケット30の周方向両側に設けられる。
(First embodiment)
FIG. 1 shows a bearing cage 1 of the present embodiment (hereinafter, simply referred to as a cage). The cage 1 is a so-called crown-shaped cage, and has a substantially annular base portion 10 and a plurality of even-numbered multiples of 3 and 3 protruding in the axial direction at a predetermined interval in the circumferential direction from the axial end surface 12 of the base portion 10 ( 12 in the present embodiment), and a pair of adjacent pillars 20, 20, which are opposed to each other, 22 and 22, and one axial side surface 12 of the base 10, and is a rolling element (non-rotating member) of the bearing. And a plurality of even-numbered multiples 3 (12 in the present embodiment) of pockets 30. That is, the number of the column parts 20 and the pockets 30 is the same, and both are formed by an even multiple of 3. The column parts 20 are provided on both sides in the circumferential direction of the respective pockets 30.

このような保持器1の製造方法では、三点ゲート方式の射出成形を採用している。具体的には、保持器1は、成形金型内に形成した環状のキャビティ(不図示)の外周側周縁部に設けた3個の樹脂射出ゲート(以下、単にゲートと呼ぶ。)51から、補強繊維材を添加した溶解樹脂をキャビティ内に射出し、冷却固化することによって成形される。樹脂材料としては、例えば、46ナイロンや66ナイロンなどのポリアミド系樹脂、ポリブチレンテレフタレート、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルニトリル(PEN)等の樹脂に、10〜50wt%の補強繊維材(例えば、ガラス繊維や炭素繊維。)を添加した樹脂組成物が用いられる。なお、図1中、キャビティは不図示であるが、その内部構造は保持器1の構造と略同一とされている。   In such a manufacturing method of the cage 1, a three-point gate type injection molding is adopted. Specifically, the cage 1 includes three resin injection gates (hereinafter simply referred to as gates) 51 provided on the outer peripheral side peripheral portion of an annular cavity (not shown) formed in the molding die. The molten resin to which the reinforcing fiber material is added is injected into the cavity and molded by cooling and solidifying. Examples of resin materials include polyamide resins such as 46 nylon and 66 nylon, resins such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and polyether nitrile (PEN). % Of a reinforcing fiber material (for example, glass fiber or carbon fiber) is used. In FIG. 1, the cavity is not shown, but its internal structure is substantially the same as the structure of the cage 1.

各ゲート51には、それぞれ径方向に延びる略円筒状のランナー53を介して、略円筒状のスプルー55から溶解樹脂が供給される。スプルー55は、保持器1(キャビティ)の略中心において軸方向に延びており、ランナー53と接続される。したがって、スプルー55から供給された溶解樹脂は、各ランナー53を介して各ゲート51に到達し、各ゲート51から同時にキャビティ内に流入する。   Dissolved resin is supplied to each gate 51 from a substantially cylindrical sprue 55 via a substantially cylindrical runner 53 extending in the radial direction. The sprue 55 extends in the axial direction at the approximate center of the cage 1 (cavity) and is connected to the runner 53. Therefore, the molten resin supplied from the sprue 55 reaches each gate 51 via each runner 53 and flows into the cavity from each gate 51 simultaneously.

隣り合うゲート51の間の領域を第1〜第3領域S1〜S3とすると、第1〜第3領域S1〜S3におけるポケット30の数が互いに等しくなるように、3個のゲート51は配置される。本実施形態において、第1〜第3領域S1〜S3におけるポケット30の数は、それぞれ4個である。また、3個のゲート51は、それぞれ柱部20の周方向中央から周方向一方側(図中、反時計回り)にずれた位置に設けられている。   Assuming that the region between the adjacent gates 51 is the first to third regions S1 to S3, the three gates 51 are arranged so that the number of pockets 30 in the first to third regions S1 to S3 is equal to each other. The In the present embodiment, the number of pockets 30 in each of the first to third regions S1 to S3 is four. The three gates 51 are provided at positions shifted from the center in the circumferential direction of the column part 20 to one side in the circumferential direction (counterclockwise in the figure).

第1〜第3領域S1〜S3の両端(ゲート51が設けられる位置)から最も離れた柱部20には、溶解樹脂を貯留可能な樹脂溜り40が設けられる。樹脂溜り40は、当該柱部20の周方向中央の外周面に連通する。   A column 20 that is farthest from both ends (positions where the gate 51 is provided) of the first to third regions S1 to S3 is provided with a resin reservoir 40 capable of storing a dissolved resin. The resin reservoir 40 communicates with the outer peripheral surface at the center in the circumferential direction of the column part 20.

このような構成において、ゲート51からキャビティ内に射出され隣り合うゲート51の間の第1〜第3領域S1〜S3の両端から最も離れた柱部20の近傍、より具体的には当該柱部20の周方向中央から周方向一方側にずれた位置で合流し、ウェルドWが形成される。ここで、当該柱部20の周方向中央には樹脂溜り40が設けられるので、ウェルドW形成位置と樹脂溜り40配置位置とが周方向にずれ、ウェルドWと樹脂溜り40との間に溶解樹脂の圧力勾配を生じ易くなる。したがって、当該圧力勾配に起因する強制的な樹脂の流動が起きることで、ウェルドWにおいて補強繊維材が溶解樹脂の流動方向に対し垂直に配向することを抑制することができる。特に、上記のように、ウェルドWが柱部20の周方向中央から周方向一方側にずれた位置で形成され、樹脂溜り40が当該柱部20の周方向中央に配置されているので、ウェルドWから樹脂溜り40に向かって流路断面積が拡大する方向に溶解樹脂の強制的な流動が発生する。したがって、ウェルドWにおける繊維配向の乱れた領域が、断面積の広い部分に移動するため、ウェルドW強度をより向上させる効果を有する。以上のように、ウェルドWの補強繊維材の配向が制御され、ウェルドW強度が向上し、ひいては保持器1の強度低下を抑制できる。   In such a configuration, the vicinity of the column portion 20 farthest from both ends of the first to third regions S1 to S3 between the adjacent gates 51 that are injected from the gate 51 into the cavity, more specifically, the column portion. The weld W is formed at a position shifted from the circumferential center of 20 toward one side in the circumferential direction. Here, since the resin reservoir 40 is provided at the center in the circumferential direction of the column portion 20, the weld W forming position and the resin reservoir 40 disposition position are shifted in the circumferential direction, and the molten resin is interposed between the weld W and the resin reservoir 40. The pressure gradient is likely to occur. Therefore, the forced flow of the resin due to the pressure gradient can prevent the reinforcing fiber material from being oriented perpendicular to the flow direction of the dissolved resin in the weld W. In particular, as described above, the weld W is formed at a position shifted from the circumferential center of the column portion 20 to one side in the circumferential direction, and the resin reservoir 40 is disposed at the circumferential center of the column portion 20. The forced flow of the dissolved resin occurs in the direction in which the cross-sectional area of the flow path increases from W toward the resin reservoir 40. Therefore, since the region in which the fiber orientation is disturbed in the weld W moves to a portion having a large cross-sectional area, it has an effect of further improving the weld W strength. As described above, the orientation of the reinforcing fiber material of the weld W is controlled, the weld W strength is improved, and consequently the strength reduction of the cage 1 can be suppressed.

ここで、柱部20と連通し、キャビティへの開口部である樹脂溜り40の連通部42の断面積は、ゲート51の断面積の1/4以下に設定される。これによれば、溶解樹脂が合流してウェルドWが形成された後で樹脂溜り40への溶解樹脂の流入が始まるので、ウェルドWにおける強制的な樹脂の流動によって補強繊維材の配向を制御する効果をより確実に発現することができる。   Here, the cross-sectional area of the communication portion 42 of the resin reservoir 40 that communicates with the column portion 20 and is an opening to the cavity is set to ¼ or less of the cross-sectional area of the gate 51. According to this, since the melted resin merges and the weld W is formed after the weld W is formed, the orientation of the reinforcing fiber material is controlled by the forced resin flow in the weld W. An effect can be expressed more reliably.

(第2実施形態)
次に、本発明に係る第2実施形態の軸受用保持器の製造方法について図面を参照して説明する。
(Second Embodiment)
Next, the manufacturing method of the bearing retainer according to the second embodiment of the present invention will be described with reference to the drawings.

図2に示すように、本実施形態では、柱部20の内周面に樹脂溜り40が設けられる点で、上記実施形態と相違する。その他の構成は、上記実施形態と同様であり、上記実施形態と同様の効果を奏することが可能である。   As shown in FIG. 2, the present embodiment is different from the above-described embodiment in that a resin reservoir 40 is provided on the inner peripheral surface of the column portion 20. Other configurations are the same as those in the above embodiment, and the same effects as those in the above embodiment can be obtained.

(実施例)
次に、樹脂溜り40の連通部42の断面積と、樹脂射出ゲート51の断面積と、の関係についての解析結果について述べる。
(Example)
Next, the analysis result about the relationship between the cross-sectional area of the communication part 42 of the resin reservoir 40 and the cross-sectional area of the resin injection gate 51 will be described.

図3〜6及び表1に示すように実施例1及び比較例1〜3において、キャビティ60を簡単な単純円環モデルとし、樹脂射出ゲート51の径(断面積)を一定とし、樹脂溜り40の連通部42の径(断面積)を変化させたときの、溶解樹脂Gが流動する様子を、東レエンジニアリング(株)製の樹脂流動解析ソフトウェア「3D TIMON」にて解析した。   As shown in FIGS. 3 to 6 and Table 1, in Example 1 and Comparative Examples 1 to 3, the cavity 60 is a simple simple ring model, the diameter (cross-sectional area) of the resin injection gate 51 is constant, and the resin reservoir 40 The state in which the dissolved resin G flows when the diameter (cross-sectional area) of the communication portion 42 of the resin was changed was analyzed by a resin flow analysis software “3D TIMON” manufactured by Toray Engineering Co., Ltd.

Figure 2019011865
Figure 2019011865

図4〜6の比較例1〜3に示すように、樹脂射出ゲート51の断面積に対する連通部42の断面積の比率が0.44〜1.00のときは、溶解樹脂G同士が合流する前に樹脂溜り40への溶解樹脂Gの流入が始まる。これらの場合、溶解樹脂Gが合流した後でウェルドWに強制的な樹脂の流動を起こす効果が小さく、ウェルドWにおける補強繊維材の配向を制御する効果が発現しにくい。   As shown in Comparative Examples 1 to 3 in FIGS. 4 to 6, when the ratio of the cross-sectional area of the communication portion 42 to the cross-sectional area of the resin injection gate 51 is 0.44 to 1.00, the dissolved resins G merge. Before, the inflow of the dissolved resin G into the resin reservoir 40 starts. In these cases, the effect of forcibly causing the resin to flow in the weld W after the molten resin G merges is small, and the effect of controlling the orientation of the reinforcing fiber material in the weld W is difficult to be exhibited.

一方、図3の実施例1に示すように、樹脂射出ゲート51の断面積に対する連通部42の断面積の比率が0.25のときは、溶解樹脂Gが合流する前には、樹脂溜り40に溶解樹脂Gが流入しない。このため、溶解樹脂Gが合流してウェルドWが形成された後で、ウェルドWに強制的な樹脂の流動を起こす効果が大きく、ウェルドWにおける補強繊維材の配向を制御する効果を発現する。   On the other hand, when the ratio of the cross-sectional area of the communication portion 42 to the cross-sectional area of the resin injection gate 51 is 0.25, as shown in the first embodiment of FIG. The dissolved resin G does not flow into. For this reason, after melt | dissolution resin G merges and the weld W is formed, the effect which raise | generates forced resin flow to the weld W is large, and the effect which controls the orientation of the reinforcing fiber material in the weld W is expressed.

このように、樹脂溜り40の連通部42の断面積が、樹脂射出ゲート51の断面積の1/4以下である場合、溶解樹脂Gが合流する前には樹脂溜り40に溶解樹脂Gが流入せず、ウェルドWにおける補強繊維材の配向を制御する効果を発現することが明らかとなった。   Thus, when the cross-sectional area of the communication portion 42 of the resin reservoir 40 is ¼ or less of the cross-sectional area of the resin injection gate 51, the molten resin G flows into the resin reservoir 40 before the molten resin G merges. It became clear that the effect which controls the orientation of the reinforcing fiber material in the weld W was expressed.

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。   In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.

このように、本発明の軸受用保持器の製造方法は、上記した冠形保持器1に限定されず、くし形保持器等、様々な種類の保持器に適用可能である。   Thus, the manufacturing method of the bearing cage of the present invention is not limited to the above-described crown-shaped cage 1 and can be applied to various types of cages such as a comb-shaped cage.

また、本発明の軸受用保持器は、強度低下が少なく耐久性に優れるため、転がり軸受に適用することが好適である。すなわち、このような転がり軸受は、内輪と、外輪と、内輪及び外輪との間に設けられた複数の転動体と、転動体をポケットに転動自在に保持し、耐久性に優れる軸受用保持器と、を備えるので、高速回転や高負荷等の要求を満たすことが可能である。   In addition, the bearing cage of the present invention is suitable for rolling bearings because it is less durable and excellent in durability. That is, such a rolling bearing has an inner ring, an outer ring, a plurality of rolling elements provided between the inner ring and the outer ring, and the rolling element is held in a pocket so that the rolling element can roll freely, and has excellent durability. Can satisfy the requirements such as high-speed rotation and high load.

1 軸受用保持器
10 基部
12 軸方向一端側面
20 柱部
22 対向する面
30 ポケット
40 樹脂溜り
42 連通部
51 樹脂射出ゲート
53 ランナー
55 スプルー
60 キャビティ
G 溶解樹脂
S1〜S3 領域
W ウェルド
DESCRIPTION OF SYMBOLS 1 Bearing cage 10 Base 12 One axial side surface 20 Column 22 Opposite surface 30 Pocket 40 Resin reservoir 42 Communication part 51 Resin injection gate 53 Runner 55 Sprue 60 Cavity G Dissolved resin S1-S3 Area W Weld

本発明は、軸受用保持器に関する。 The present invention relates to a bearing cage .

本発明は、上述した課題を鑑みてなされたものであり、その目的は、強度低下を抑制可能な軸受用保持器を提供することにある。 This invention is made | formed in view of the subject mentioned above, The objective is to provide the holder for bearings which can suppress a strength fall.

本発明の上記目的は、下記の構成により達成される。
略円環状の基部と、
前記基部の軸方向一端側面から、周方向に所定の間隔で軸方向に突出する3の偶数倍個の柱部と、
隣り合う一対の前記柱部の互いに対向する面と前記基部の軸方向一端側面とによって形成された、前記柱部と同数のポケットと、
を有する軸受用保持器であって、
前記軸受用保持器は、3個の第1の切断跡と3個の第2の切断跡を有し、
隣り合う前記第1の切断跡の間の領域を、それぞれ第1〜第3領域とすると、
前記第1〜第3領域における前記ポケットの数が互いに等しくなるように、3個の前記第1の切断跡はそれぞれ前記柱部の周方向中央から周方向一方側にずれた位置に設けられ、
前記第1〜第3領域の両端から最も離れた前記柱部の周方向中央には、それぞれ前記第2の切断跡が設けられ、
前記第2の切断跡の断面積は、前記第1の切断跡の断面積の1/4以下であることを特徴とする軸受用保持器
The above object of the present invention can be achieved by the following constitution.
A substantially annular base;
An even number of 3 column portions protruding in the axial direction at a predetermined interval in the circumferential direction from the axial one end side surface of the base portion;
The same number of pockets as the pillars formed by the mutually opposing surfaces of a pair of adjacent pillars and the axial one end side surface of the base;
A bearing retainer for have a,
The bearing retainer has three first cut marks and three second cut marks,
When the areas between the adjacent first cut traces are first to third areas, respectively.
The three first cut traces are provided at positions shifted from the circumferential center of the column part to the circumferential one side so that the number of the pockets in the first to third regions is equal to each other,
In the center in the circumferential direction of the column portion furthest away from both ends of the first to third regions, the second cut marks are provided, respectively.
The bearing retainer characterized in that a cross-sectional area of the second cut trace is ¼ or less of a cross-sectional area of the first cut trace .

本発明の軸受用保持器によれば、柱部は偶数倍個に設定され、第1〜第3領域におけるポケットの数が互いに等しくなるように、3個の第1の切断跡はそれぞれ柱部の周方向中央から周方向一方側にずれた位置に設けられ、第1〜第3領域の両端から最も離れた柱部の周方向中央には、それぞれ第2の切断跡が設けられる。したがって、各第1の切断跡(樹脂射出ゲートの切断跡)から供給された溶解樹脂は、第1〜第3領域の両端から最も離れた柱部の近傍、より具体的には当該柱部の周方向中央から周方向一方側にずれた位置で合流し、ウェルドが形成される。ここで、当該柱部の周方向中央には第2の切断跡(樹脂溜りの切断跡)が設けられるので、ウェルド形成位置と樹脂溜り配置位置とが周方向にずれ、ウェルドと樹脂溜りとの間に溶解樹脂の圧力勾配を生じ易くなる。したがって、当該圧力勾配に起因する強制的な樹脂の流動が起きることで、ウェルドにおいて補強繊維材が溶解樹脂の流動方向に対し垂直に配向することを抑制することができる。
特に、上記のように、ウェルドが柱部の周方向中央から周方向一方側にずれた位置で形成され、第2の切断跡が当該柱部の周方向中央に配置されているので、ウェルドから樹脂溜りに向かって流路断面積が拡大する方向に溶解樹脂の強制的な流動が発生する。したがって、ウェルドにおける繊維配向の乱れた領域が、断面積の広い部分に移動するため、ウェルド強度をより向上させる効果を有する。
また、第2の切断跡の断面積は、第1の切断跡の断面積の1/4以下であるので、溶解樹脂が合流した後で樹脂溜りへの溶解樹脂の流入が始まり、ウェルドにおける強制的な樹脂の流動によって補強繊維材の配向を制御する効果をより確実に発現することができる。
According to the bearing cage of the present invention, the three first cut traces are respectively column parts so that the column part is set to an even multiple and the number of pockets in the first to third regions is equal to each other. A second cut mark is provided at each of the circumferential centers of the column portions that are provided at positions shifted from the circumferential center to one side in the circumferential direction and are farthest from both ends of the first to third regions. Therefore, the molten resin supplied from each first cutting trace (cutting trace of the resin injection gate) is in the vicinity of the column portion farthest from both ends of the first to third regions, more specifically, the column portion. The welds are formed at a position shifted from the circumferential center to one side in the circumferential direction to form a weld. Here, since the second cut trace (resin pool cut trace) is provided at the center in the circumferential direction of the column portion, the weld formation position and the resin pool arrangement position are shifted in the circumferential direction, and the weld and the resin pool A pressure gradient of the dissolved resin is likely to occur between them. Therefore, the forced resin flow caused by the pressure gradient can prevent the reinforcing fiber material from being oriented perpendicular to the flow direction of the dissolved resin in the weld.
In particular, as described above, the weld is formed at a position shifted from the circumferential center of the column part to one side in the circumferential direction, and the second cutting trace is arranged at the circumferential center of the column part. A forced flow of the dissolved resin occurs in a direction in which the cross-sectional area of the flow path increases toward the resin reservoir. Therefore, since the region in which the fiber orientation is disturbed in the weld moves to a portion having a large cross-sectional area, the weld strength is further improved.
In addition, since the cross-sectional area of the second cut trace is ¼ or less of the cross-sectional area of the first cut trace , the inflow of the molten resin into the resin reservoir starts after the molten resin merges, and the forced in the weld The effect of controlling the orientation of the reinforcing fiber material can be more reliably expressed by the flow of the resin.

以下、本発明に係る軸受用保持器の各実施形態を図面に基づいて詳細に説明する。 Hereinafter, each embodiment of the bearing cage according to the present invention will be described in detail with reference to the drawings.

ここで、柱部20と連通し、キャビティへの開口部である樹脂溜り40の連通部42の断面積(保持器1に残る第2の切断跡の断面積)は、ゲート51の断面積(保持器1に残る第1の切断跡の断面積)の1/4以下に設定される。これによれば、溶解樹脂が合流してウェルドWが形成された後で樹脂溜り40への溶解樹脂の流入が始まるので、ウェルドWにおける強制的な樹脂の流動によって補強繊維材の配向を制御する効果をより確実に発現することができる。 Here, the cross-sectional area of the communication portion 42 of the resin reservoir 40 that is in communication with the column portion 20 and is an opening to the cavity ( the cross-sectional area of the second cut trace remaining on the cage 1) is the cross-sectional area of the gate 51 ( The cross-sectional area of the first cutting trace remaining in the cage 1 is set to ¼ or less. According to this, since the melted resin merges and the weld W is formed after the weld W is formed, the orientation of the reinforcing fiber material is controlled by the forced resin flow in the weld W. An effect can be expressed more reliably.

(第2実施形態)
次に、本発明に係る第2実施形態の軸受用保持器について図面を参照して説明する。
(Second Embodiment)
Next, a bearing cage according to a second embodiment of the present invention will be described with reference to the drawings.

このように、本発明の軸受用保持器は、上記した冠形保持器1に限定されず、くし形保持器等、様々な種類の保持器であってもよい。 As described above, the bearing cage of the present invention is not limited to the above-described crown-shaped cage 1, and may be various types of cages such as a comb-shaped cage .

Claims (1)

成形金型内に形成した略円環状のキャビティの周縁部に設けられた3個の樹脂射出ゲートから、溶解樹脂を前記キャビティ内に射出することによって成形される軸受用保持器の製造方法であって、
前記軸受用保持器は、
略円環状の基部と、
前記基部の軸方向一端側面から、周方向に所定の間隔で軸方向に突出する3の偶数倍個の柱部と、
隣り合う一対の前記柱部の互いに対向する面と前記基部の軸方向一端側面とによって形成された、前記柱部と同数のポケットと、を有し、
隣り合う前記樹脂射出ゲートの間の領域を、それぞれ第1〜第3領域とすると、
前記第1〜第3領域における前記ポケットの数が互いに等しくなるように、3個の前記樹脂射出ゲートはそれぞれ前記柱部の周方向中央から周方向一方側にずれた位置に設けられ、
前記第1〜第3領域の両端から最も離れた前記柱部の周方向中央には、それぞれ前記溶解樹脂を貯留可能な樹脂溜りが設けられ、
前記柱部と連通する前記樹脂溜りの連通部の断面積は、前記樹脂射出ゲートの断面積の1/4以下であることを特徴とする軸受用保持器の製造方法。
A method of manufacturing a bearing retainer that is molded by injecting a molten resin into the cavity from three resin injection gates provided at the peripheral edge of a substantially annular cavity formed in a molding die. And
The bearing cage is
A substantially annular base;
An even number of 3 column portions protruding in the axial direction at a predetermined interval in the circumferential direction from the axial one end side surface of the base portion;
Formed by the mutually opposing surfaces of a pair of adjacent column portions and the axial one end side surface of the base portion, and the same number of pockets as the column portions,
When the regions between the resin injection gates adjacent to each other are first to third regions,
The three resin injection gates are respectively provided at positions shifted from the circumferential center of the column portion to the circumferential one side so that the number of the pockets in the first to third regions is equal to each other.
At the center in the circumferential direction of the column portion furthest away from both ends of the first to third regions, a resin reservoir capable of storing the dissolved resin is provided, respectively.
The bearing cage manufacturing method according to claim 1, wherein a cross-sectional area of the communication portion of the resin reservoir communicating with the column portion is ¼ or less of a cross-sectional area of the resin injection gate.
JP2018189113A 2018-10-04 2018-10-04 Bearing cage Active JP6658839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189113A JP6658839B2 (en) 2018-10-04 2018-10-04 Bearing cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189113A JP6658839B2 (en) 2018-10-04 2018-10-04 Bearing cage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014251169A Division JP6413728B2 (en) 2014-12-11 2014-12-11 Manufacturing method of bearing cage

Publications (2)

Publication Number Publication Date
JP2019011865A true JP2019011865A (en) 2019-01-24
JP6658839B2 JP6658839B2 (en) 2020-03-04

Family

ID=65226822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189113A Active JP6658839B2 (en) 2018-10-04 2018-10-04 Bearing cage

Country Status (1)

Country Link
JP (1) JP6658839B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083406A (en) * 2003-09-04 2005-03-31 Nsk Ltd Retainer and its manufacturing method
JP2012219917A (en) * 2011-04-08 2012-11-12 Nsk Ltd Resin member, bearing retainer, and method for manufacturing the same
JP2012236363A (en) * 2011-05-12 2012-12-06 Nsk Ltd Resin-made cage for bearing and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083406A (en) * 2003-09-04 2005-03-31 Nsk Ltd Retainer and its manufacturing method
JP2012219917A (en) * 2011-04-08 2012-11-12 Nsk Ltd Resin member, bearing retainer, and method for manufacturing the same
JP2012236363A (en) * 2011-05-12 2012-12-06 Nsk Ltd Resin-made cage for bearing and method of manufacturing the same

Also Published As

Publication number Publication date
JP6658839B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP5768486B2 (en) Resin cage for bearing and method for manufacturing the same
JP6222146B2 (en) Manufacturing method of bearing cage
JP6405973B2 (en) Manufacturing method of bearing cage
JP6772587B2 (en) Manufacturing method of synthetic resin cage and synthetic resin cage
JP6413728B2 (en) Manufacturing method of bearing cage
JP6413729B2 (en) Manufacturing method of bearing cage
JP6299529B2 (en) Bearing cage and manufacturing method thereof
JP6575672B2 (en) Manufacturing method of bearing cage and bearing cage
JP6413730B2 (en) Manufacturing method of bearing cage
JP6405974B2 (en) Manufacturing method of bearing cage
JP6578827B2 (en) Manufacturing method of bearing cage
JP6471813B2 (en) Bearing cage
JP2019011865A (en) Retainer for bearing
JP6451190B2 (en) Manufacturing method of bearing cage
JP2019011866A (en) Retainer for bearing
JP2019002571A (en) Holder for bearing
JP6699698B2 (en) Bearing cage
JP6988509B2 (en) Manufacturing method of bearing cage
JP6702384B2 (en) Bearing cage
JP2016080050A (en) Resin holder for bearing and manufacturing method thereof
JP6658053B2 (en) Synthetic resin cage for rolling bearings
JP2015075201A (en) Resin-made cage for bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6658839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150