JP2019008720A - Heat sensor - Google Patents

Heat sensor Download PDF

Info

Publication number
JP2019008720A
JP2019008720A JP2017126440A JP2017126440A JP2019008720A JP 2019008720 A JP2019008720 A JP 2019008720A JP 2017126440 A JP2017126440 A JP 2017126440A JP 2017126440 A JP2017126440 A JP 2017126440A JP 2019008720 A JP2019008720 A JP 2019008720A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric element
sensor
heat medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017126440A
Other languages
Japanese (ja)
Other versions
JP6896524B2 (en
Inventor
弘道 江幡
Hiromichi Ehata
弘道 江幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2017126440A priority Critical patent/JP6896524B2/en
Publication of JP2019008720A publication Critical patent/JP2019008720A/en
Application granted granted Critical
Publication of JP6896524B2 publication Critical patent/JP6896524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a heat sensor capable of adjusting a suitable sensing sensibility as a differential sensor without requiring a power by using a thermoelement.SOLUTION: In a heat sensor 10, a heat medium 16 is arranged so as to be contacted to a cooling surface of a thermoelement 14 arranged so as to exposure a heat receiving surface of a sensor housing 12, a heat exchange amount is adjusted by changing a contact area of the heat medium 16 for the thermoelement 14 by the movement of the heat medium 16 with an adjustment screw 20, a fire detection part detects fire on the basis of a generated voltage corresponding to a temperature difference of the heat receiving surface of the thermoelement 14 and the cooling surface. When performing an operation test and a non-operation test in a manufacturing step, the heat exchange amount is adjusted by changing the contact region of the heat medium 16 for the thermoelement 14 by the adjustment screw 20, and an electric power generation amount is controlled by adjusting the time-variant change of the temperature difference of the thermoelement 14, and a sensing sensibility is optimally adjusted so as to satisfy a differential test and the non-operation test.SELECTED DRAWING: Figure 1

Description

本発明は、熱電素子を用いることで電源を必要とすることなく火災を検出する熱感知器に関する。   The present invention relates to a heat detector that detects a fire without using a power source by using a thermoelectric element.

従来、電源を必要とすることなく火災を検出する熱感知器としては、ダイヤフラムを用いた差動式熱感知器が知られている。   Conventionally, a differential heat sensor using a diaphragm is known as a heat sensor for detecting a fire without requiring a power source.

ダイヤフラムを用いた差動式熱感知器は、所定容量の内部空間を有する容器として感圧室が設けられ、感圧室の一部には弾力性のある薄い金属板で作られたダイヤフラムが取り付けられると共にリーク孔が設けられ、リーク孔を通して感圧室と外部との間で空気の出入りが出来るようになっている。火災が発生した場合には、感知器の周囲の急激な温度上昇に伴って、感圧室内の空気がリーク孔から漏れる以上に急激に膨脹し、ダイヤフラムを押し上げて接点が閉じられ、発報信号として受信機に伝えられる(特許文献1,2)。   A differential heat sensor using a diaphragm is provided with a pressure-sensitive chamber as a container having an internal space of a predetermined capacity, and a diaphragm made of a thin elastic metal plate is attached to a part of the pressure-sensitive chamber. In addition, a leak hole is provided so that air can enter and exit between the pressure sensitive chamber and the outside through the leak hole. In the event of a fire, as the temperature around the sensor suddenly rises, the air in the pressure-sensitive chamber expands more rapidly than it leaks from the leak hole, and the contact is closed by pushing up the diaphragm. To the receiver (Patent Documents 1 and 2).

しかしながら、差動式熱感知器は、機械的な動作を伴うため、生産時に細かい調整が必要であり、また、ダイヤフラムを用いた感圧室を設けることから筐体内に大きな配置スペースが必要となって大型化し、熱感知器を薄型化してデザイン性を向上させることが困難であった。   However, since the differential heat sensor involves mechanical operation, fine adjustment is required during production, and since a pressure-sensitive chamber using a diaphragm is provided, a large arrangement space is required in the housing. Therefore, it has been difficult to improve the design by making the heat sensor thinner.

一方、電源を必要とすることなく火災を検出して警報する火災警報器としてペルチェ素子として知られた熱電素子を用いた火災警報器が知られている(特許文献3〜5)。   On the other hand, fire alarms using thermoelectric elements known as Peltier elements are known as fire alarms that detect and alarm fires without requiring a power source (Patent Documents 3 to 5).

この火災警報器は、例えば,熱電素子の受熱面を外部に露出させると共に熱電素子の反対側の冷却面に金属基板を接触させ、火災による熱気流を受けたときの熱電素子の受熱面と冷却面との温度差により起電力が生じることから、この起電力によりブザーやLEDを作動して火災警報を出力させるようにしている。   This fire alarm, for example, exposes the heat receiving surface of the thermoelectric element to the outside and makes the metal substrate contact the cooling surface on the opposite side of the thermoelectric element so that the heat receiving surface of the thermoelectric element and the cooling when receiving a hot air current from a fire. Since an electromotive force is generated due to a temperature difference from the surface, the buzzer and the LED are operated by this electromotive force to output a fire alarm.

特開2000−194967号公報JP 2000-194967 A 特開2001−134862号公報JP 2001-134862 A 特開2007−310795号公報JP 2007-310795 A 特開平7−44784号公報Japanese Unexamined Patent Publication No. 7-44784 実開昭59−15194号公報Japanese Utility Model Publication No.59-15194

ところで、従来の差動式熱感知器にあっては、火災を精度よく検出する感知感度とするため、法的に定められた作動試験及び不作動試験を満たす必要がある。   By the way, in the conventional differential heat sensor, it is necessary to satisfy a legally defined operation test and non-operation test in order to obtain a sensitivity for detecting a fire with high accuracy.

差動式熱感知器の作動試験は、例えば1種の場合、室温より20度高い風速70センチメートル毎秒の垂直気流に投入したとき、30秒以内に火災信号を発信すること、及び、室温から10度毎分の割合で直線的に上昇する水平気流を加えたとき、4.5分以内に火災信号を発信すること、を満たす必要がある。   For example, in the case of one type, the differential heat sensor is tested to emit a fire signal within 30 seconds when it is put into a vertical airflow of 70 centimeters per second, which is 20 degrees higher than room temperature. When a horizontal air flow rising linearly at a rate of 10 degrees per minute is added, it is necessary to satisfy that a fire signal is transmitted within 4.5 minutes.

また、差動式熱感知器の不作動試験は、室温より10度高い風速50センチメートル毎秒の垂直気流に投入したとき、1分以内で作動しないこと、及び、室温から2度毎分の割合で直線的に上昇する水平気流を加えたとき、15分以内に作動しないこと、を満たす必要がある。   In addition, the differential heat sensor inoperability test shows that when it is put into a vertical airflow of 50 centimeters per second, which is 10 degrees higher than room temperature, it does not operate within 1 minute, and the rate is 2 degrees per minute from room temperature. It is necessary to satisfy that it does not operate within 15 minutes when a horizontal air flow rising linearly is applied.

しかしながら、熱電素子を用いた従来の火災警報器にあっては、起電力を確保するため、火災による熱を受けた場合に熱電素子の冷却側をより低温に保つ構造は示されているが、熱電素子の起電力(発電量)を制御し、差動式熱感知器に要求される作動試験及び不作動試験を満たす適正な感度とするものはない。そのため、夏場等の周囲温度が上昇するような場合に誤報を出してしまう恐れがあった。   However, in the conventional fire alarm using a thermoelectric element, in order to secure an electromotive force, a structure for keeping the cooling side of the thermoelectric element at a lower temperature when receiving heat from a fire is shown. There is no one that controls the electromotive force (power generation amount) of the thermoelectric element and has an appropriate sensitivity to satisfy the operation test and the non-operation test required for the differential heat detector. For this reason, there has been a risk of misreporting when the ambient temperature rises, such as in summer.

また、設計段階で前述した作動試験及び不作動試験を満たす金属基板が冷却側に配置されていたとしても、熱電素子の温度差に対する起電力特性のばらつきや組立時の寸法的誤差から所定の作動試験及び不作動試験を満たさなくなる場合があり、この点も解決課題として残されている。   In addition, even if a metal substrate that satisfies the above-described operation test and non-operation test at the design stage is arranged on the cooling side, a predetermined operation may occur due to variations in electromotive force characteristics with respect to temperature differences of thermoelectric elements and dimensional errors during assembly. The test and the malfunction test may not be satisfied, and this point is also left as a solution problem.

本発明は、熱電素子を用いることにより電源を必要とせず、差動式感知器としての適切な感知感度に調整可能な熱感知器を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal sensor that can be adjusted to an appropriate sensitivity as a differential sensor without using a power source by using a thermoelectric element.

(熱感知器)
本発明は、熱感知器に於いて、
感知器筐体の受熱面を露出して配置された熱電素子と、
熱電素子の冷却面に接触して配置された熱媒体と、
熱電素子の受熱面と冷却面との温度差に応じた起電力に基づき火災を検出する火災検出部と、
が設けられ、
差動式熱感知器として動作する感度を有したことを特徴とする。
(Heat sensor)
The present invention relates to a heat sensor,
A thermoelectric element arranged to expose the heat receiving surface of the sensor housing;
A heating medium disposed in contact with the cooling surface of the thermoelectric element;
A fire detection unit for detecting a fire based on an electromotive force according to a temperature difference between a heat receiving surface and a cooling surface of the thermoelectric element;
Is provided,
It has a sensitivity to operate as a differential heat sensor.

(熱交換量調整機構)
熱感知器は、熱電素子と前記熱媒体との熱交換量を調整する熱交換量調整機構が設けられる。
(Heat exchange adjustment mechanism)
The heat sensor is provided with a heat exchange amount adjusting mechanism for adjusting the heat exchange amount between the thermoelectric element and the heat medium.

(接触面積の選択)
熱交換量調整機構は、熱電素子と熱媒体との接触面積を選択更して熱交換量を調整する。
(Selection of contact area)
The heat exchange amount adjusting mechanism selects and changes the contact area between the thermoelectric element and the heat medium to adjust the heat exchange amount.

(熱伝導層の熱伝導率による熱交換量調整)
熱容量調整機構は、熱電素子と熱媒体の間に熱伝導層を形成し、熱伝導層の熱伝導率を選択して熱交換量を調整する。
(Adjustment of heat exchange amount by thermal conductivity of thermal conductive layer)
The heat capacity adjusting mechanism forms a heat conductive layer between the thermoelectric element and the heat medium, and selects the heat conductivity of the heat conductive layer to adjust the heat exchange amount.

(熱容量調整機構)
熱媒体の熱容量を調整する熱容量調整機構により差動式熱感知器として動作する感度を有する。
(Heat capacity adjustment mechanism)
It has sensitivity to operate as a differential heat detector by a heat capacity adjusting mechanism that adjusts the heat capacity of the heat medium.

(熱媒体の質量選択)
熱容量調整機構は、感度に応じた熱媒体の質量の選択により熱容量を調整する。
(Mass selection of heat medium)
The heat capacity adjusting mechanism adjusts the heat capacity by selecting the mass of the heat medium according to the sensitivity.

(熱媒体ブロックの組み合わせによる質量選択)
熱容量調整機構は、1又は複数の熱媒体ブロックの組み合わせによる前記熱媒体の質量の選択により熱容量を調整する。
(Mass selection by combination of heat medium blocks)
The heat capacity adjusting mechanism adjusts the heat capacity by selecting the mass of the heat medium by combining one or a plurality of heat medium blocks.

(熱媒体液による質量選択)
熱感知器は、熱媒体として熱媒体液を充填する容器を備え、
熱容量調整機構は、容器の中に充填する熱媒体液の量による質量の選択により熱媒体の熱容量を調整する。
(Mass selection by heat transfer fluid)
The heat sensor includes a container filled with a heat medium liquid as a heat medium,
The heat capacity adjusting mechanism adjusts the heat capacity of the heat medium by selecting the mass according to the amount of the heat medium liquid filled in the container.

(熱媒体の比熱選択)
熱容量調整機構は、感度に応じた熱媒体の比熱の選択により熱容量を調整する。
(Specific heat selection of heat medium)
The heat capacity adjusting mechanism adjusts the heat capacity by selecting the specific heat of the heat medium according to the sensitivity.

(火災発報信号の出力)
火災検出部は火災を検出した場合に火災発報信号を外部に出力する。
(Fire alarm signal output)
The fire detection unit outputs a fire alarm signal to the outside when a fire is detected.

(熱感知器自身の火災警報)
火災検出部は火災を検出した場合に火災警報を出力する。
(Thermal detector's own fire alarm)
The fire detector outputs a fire alarm when a fire is detected.

(基本的な効果)
本発明は、熱感知器に於いて、感知器筐体の受熱面を露出して配置された熱電素子と、熱電素子の冷却面に接触して配置された熱媒体と、熱電素子の受熱面と冷却面との温度差に応じた起電力に基づき火災を検出する火災検出部とが設けられ、差動式熱感知器として動作する感度を有するようにしたため、作動試験及び不作動試験を満たし、電源を必要としないメリットを生かした適切な感知感度を有する差動式の熱感知器を実現可能とする。
(Basic effect)
The present invention relates to a heat sensor, wherein a thermoelectric element is disposed so as to expose a heat receiving surface of the sensor housing, a heat medium disposed in contact with a cooling surface of the thermoelectric element, and a heat receiving surface of the thermoelectric element. And a fire detection unit that detects fire based on the electromotive force according to the temperature difference between the cooling surface and the cooling surface. This makes it possible to realize a differential heat detector having an appropriate sensitivity that takes advantage of the fact that no power supply is required.

(熱交換量調整機構の効果)
また、熱感知器は、熱電素子と前記熱媒体との熱交換量を調整する熱交換量調整機構が設けられため、差動式熱感知器に要求される所定の作動試験及び不作動試験を満たすことができなかった場合に、熱交換量調整機構により熱電素子と熱媒体との熱交換量を調整することで、熱電素子の温度差の時間的な変化を調整することによる発電量の制御で、作動試験及び不作動試験を満たす適切な感知感度に調整することができ、電源を必要としないメリットを生かした適切な感知感度を有する差動式の熱感知器を実現可能とする。
(Effect of heat exchange amount adjustment mechanism)
In addition, since the heat detector is provided with a heat exchange amount adjusting mechanism for adjusting the heat exchange amount between the thermoelectric element and the heat medium, the predetermined heat test and non-operation test required for the differential heat sensor are performed. Control of the amount of power generation by adjusting the temporal change of the temperature difference of the thermoelectric element by adjusting the heat exchange amount between the thermoelectric element and the heat medium by the heat exchange amount adjusting mechanism when it cannot be satisfied. Therefore, it is possible to realize a differential thermal sensor having an appropriate sensing sensitivity that can be adjusted to an appropriate sensing sensitivity that satisfies the operation test and the inoperative test, and that takes advantage of the advantage that a power source is not required.

(接触面積変更による熱交換量調整の効果)
また、調整機構は、熱電素子と熱媒体との接触面積を変更して熱交換量を調整するようにしたため、作動試験または不作動試験による熱気流を受けた場合、熱電素子に対する熱媒体の接触面積を増やすことにより、熱電素子の高温側温度と低温側温度との温度差を大きくし、これにより発電量を大きくして感知感度を高める調整が可能となり、また、熱電素子に対する熱媒体の接触面積を減らすことにより熱電素子の高温側温度と低温側温度との温度差を小さくし、これにより発電量を小さくして感知感度を低くする調整が可能となり、作動試験及び不作動試験を満たす適切な感知感度をもつ動作精度の高い熱感知器が得られる。
(Effect of heat exchange adjustment by changing contact area)
In addition, since the adjustment mechanism adjusts the heat exchange amount by changing the contact area between the thermoelectric element and the heat medium, the contact of the heat medium with the thermoelectric element when receiving a hot air flow from an operation test or a non-operation test. By increasing the area, the temperature difference between the high temperature side temperature and the low temperature side temperature of the thermoelectric element is increased, thereby making it possible to adjust the power generation amount to increase the sensing sensitivity, and the contact of the heat medium with the thermoelectric element By reducing the area, the temperature difference between the high temperature side temperature and the low temperature side temperature of the thermoelectric element can be reduced, thereby making it possible to adjust the power generation amount to be low and the sensitivity to be lowered, and to satisfy the operation test and non-operation test. It is possible to obtain a thermal sensor with high detection accuracy and high sensitivity.

(熱伝導層の熱伝導率による熱交換量調整の効果)
また、熱容量調整機構は、熱電素子と熱媒体の間に熱伝導層を形成し、熱伝導層の熱伝導率を選択して熱交換量を調整するようにしたため、熱媒体の質量や材質を変更することなく、熱伝導層の熱伝導率を変えることにより、簡単且つ容易に熱媒体の熱交換量を調整できる。
(Effects of adjusting the amount of heat exchange by the thermal conductivity of the heat conduction layer)
In addition, the heat capacity adjustment mechanism forms a heat conduction layer between the thermoelectric element and the heat medium, and selects the heat conductivity of the heat conduction layer to adjust the amount of heat exchange. By changing the thermal conductivity of the heat conductive layer without changing, the heat exchange amount of the heat medium can be adjusted easily and easily.

(熱容量調整機構の効果)
また、熱媒体の熱容量を調整する熱容量調整機構により差動式熱感知器として動作する感度を有するようにしたため、差動式熱感知器に要求される所定の作動試験及び不作動試験を満たすことができなかった場合に、熱容量調整機構により熱媒体の熱容量を調整することで、熱電素子の温度差の時間的な変化を調整することによる発電量の制御で、作動試験及び不作動試験を満たす適切な感知感度に調整することができ、電源を必要としないメリットを生かした適切な感知感度を有する差動式の熱感知器を実現可能とする。
(Effect of heat capacity adjustment mechanism)
In addition, since the heat capacity adjustment mechanism that adjusts the heat capacity of the heat medium has a sensitivity to operate as a differential heat sensor, it satisfies the predetermined operation test and non-operation test required for the differential heat sensor. If this is not possible, the heat capacity adjustment mechanism adjusts the heat capacity of the heat medium to control the amount of power generated by adjusting the temporal change in the temperature difference of the thermoelectric element, thereby satisfying the operation test and the non-operation test. It is possible to realize a differential thermal sensor that can be adjusted to an appropriate sensitivity and has an appropriate sensitivity that takes advantage of the fact that a power supply is not required.

熱容量の調整機構については熱媒体の素材によって調整するため、特に1種・2種の感度の違う感知器を製造する際において、熱媒体の交換だけで感度の異なる感知器を製造可能となり部品の共通化を図ることができる。これに加えて熱交換量調整機構により適正な感度となるよう細かい調整を行うことが製造上好適である。   Since the heat capacity adjustment mechanism is adjusted according to the material of the heat medium, especially when manufacturing one or two types of sensors with different sensitivities, it is possible to manufacture sensors with different sensitivities by simply replacing the heat medium. Can be shared. In addition to this, it is preferable in manufacturing that fine adjustment is performed by the heat exchange amount adjusting mechanism so as to obtain appropriate sensitivity.

(熱媒体の質量選択による効果)
また、熱容量調整機構は、感度に応じた熱媒体の質量の選択により熱容量を調整するようにしたため、熱容量は熱媒体の質量と比熱の積で決まることから、熱媒体の質量の選択により熱容量を調整可能とする。
(Effects of heat medium mass selection)
In addition, since the heat capacity adjustment mechanism adjusts the heat capacity by selecting the mass of the heat medium according to the sensitivity, the heat capacity is determined by the product of the mass of the heat medium and the specific heat, so the heat capacity is selected by selecting the mass of the heat medium. Adjustable.

(熱媒体ブロックの組み合わせによる質量選択の効果)
また、
熱容量調整機構は、1又は複数の熱媒体ブロックの組み合わせによる前記熱媒体の質量の選択により熱容量を調整するようにしたため、単位質量となる熱媒体ブロックの組み合わせ数の選択により熱媒体の質量を簡単且つ容易に決めて、熱媒体の熱容量を調整できる。
(Effect of mass selection by combination of heat medium blocks)
Also,
The heat capacity adjustment mechanism adjusts the heat capacity by selecting the mass of the heat medium by combining one or a plurality of heat medium blocks, so the mass of the heat medium can be simplified by selecting the number of heat medium block combinations to be a unit mass. And it can be determined easily and the heat capacity of the heat medium can be adjusted.

(熱媒体液による質量選択の効果)
また、熱感知器は、熱媒体として熱媒体液を充填する容器を備え、熱容量調整機構は、容器の中に充填する熱媒体液の量による質量の選択により熱媒体の熱容量を調整するようにしたため、容器に充填する熱媒体液により質量が決まり、熱媒体の熱容量を簡単且つ高精度に調整可能とする。
(Effect of mass selection by heat medium liquid)
The heat detector includes a container filled with a heat medium liquid as a heat medium, and the heat capacity adjustment mechanism adjusts the heat capacity of the heat medium by selecting a mass according to the amount of the heat medium liquid filled in the container. Therefore, the mass is determined by the heat medium liquid filled in the container, and the heat capacity of the heat medium can be adjusted easily and with high accuracy.

(熱媒体の比熱選択による効果)
熱容量調整機構は、感度に応じた熱媒体の比熱の選択により熱容量を調整するようにしたため、熱容量は熱媒体の質量と比熱の積で決まることから、熱媒体の比熱の選択(材料選択)により熱容量を調整可能とする。
(Effect by selecting specific heat of heat medium)
Since the heat capacity adjustment mechanism adjusts the heat capacity by selecting the specific heat of the heat medium according to the sensitivity, the heat capacity is determined by the product of the mass of the heat medium and the specific heat, so by selecting the specific heat of the heat medium (material selection) The heat capacity can be adjusted.

(火災発報信号の出力による効果)
また、火災検出部は火災を検出した場合に火災発報信号を外部に出力するようにしたため、受信機からの感知器回線に接続した場合に、受信機から感知器回線を介して熱感知器に電源を供給する必要がなく、熱感知器から火災発報信号を受信機に送って火災警報を出力させることができる。
(Effects of fire alarm signal output)
In addition, since the fire detection unit outputs a fire alarm signal to the outside when a fire is detected, when connected to the sensor line from the receiver, the heat detector from the receiver via the sensor line There is no need to supply power to the heater, and a fire alarm signal can be sent from the heat detector to the receiver to output a fire alarm.

(熱感知器自身の火災警報による効果)
また、火災検出部は火災を検出した場合に火災警報を出力するようにしたため、熱感知器自身で火災を検出して警報音の出力と警報表示を行う住宅用火災警報器としての使用を可能とし、電池電源を必要としないことから電池切れを管理することなく、長期間に亘る住宅での火災監視を可能とする。
(Effect of fire alarm of fire detector itself)
In addition, since the fire detection unit outputs a fire alarm when a fire is detected, it can be used as a residential fire alarm that detects the fire with the heat detector itself and outputs an alarm sound and an alarm display. Since a battery power source is not required, it is possible to monitor a fire in a house for a long period of time without managing battery exhaustion.

接触面積により熱交換量を調整する熱感知器の第1実施形態を最大の感知感度とした調整状態で示した説明図Explanatory drawing which showed in the adjustment state which made 1st Embodiment of the heat sensor which adjusts the heat exchange amount with a contact area the maximum detection sensitivity. 図1の熱感知器の感知感度を最小とした調整状態を示した説明図Explanatory drawing which showed the adjustment state which made the detection sensitivity of the heat sensor of FIG. 1 the minimum. 図1の熱感知器に設けられる感知器回路を示したブロック図The block diagram which showed the sensor circuit provided in the heat sensor of FIG. 図1の実施形態で熱気流を受けた場合の熱電素子の動作特性を示したタイムチャートFIG. 1 is a time chart showing operating characteristics of a thermoelectric element when receiving a hot air flow in the embodiment of FIG. 図1の熱感知器に設けられる感知回路の他の例を示したブロック図The block diagram which showed the other example of the sensing circuit provided in the thermal sensor of FIG. 熱媒体の放熱量により熱交換量を調整する熱感知器の第2実施形態を示した説明図Explanatory drawing which showed 2nd Embodiment of the heat sensor which adjusts the amount of heat exchange with the thermal radiation amount of a heat medium. 熱電素子と熱媒体の間に形成された熱伝導層の熱伝導率により熱交換量を 調整する熱感知器の第3実施形態を示した説明図Explanatory drawing which showed 3rd Embodiment of the heat sensor which adjusts the amount of heat exchange with the heat conductivity of the heat conductive layer formed between the thermoelectric element and the heat medium. 熱媒体の質量により熱容量を調整する熱感知器の第4実施形態を示した説明図Explanatory drawing which showed 4th Embodiment of the heat sensor which adjusts a heat capacity with the mass of a heat carrier. 熱媒体ブロックの数により熱容量を調整する熱感知器の第5実施形態を示した説明図Explanatory drawing which showed 5th Embodiment of the heat sensor which adjusts a heat capacity with the number of heat-medium blocks. 熱媒体液の量により熱容量を調整する熱感知器の第6実施形態を示した説明図Explanatory drawing which showed 6th Embodiment of the heat sensor which adjusts a heat capacity with the quantity of a heat-medium liquid. 熱媒体の比熱により熱容量を調整する熱感知器の第7実施形態を示した説明図Explanatory drawing which showed 7th Embodiment of the heat sensor which adjusts a heat capacity with the specific heat of a heat medium.

[熱感知器の第1実施形態]
図1は接触面積により熱交換量を調整する熱感知器の第1実施形態を最大の感知感度とした調整状態で示した説明図であり、図1(A)は横から見た断面を示し、図1(B)は回路収納部を外した状態の平面を示す。
[First Embodiment of Heat Sensor]
FIG. 1 is an explanatory view showing an adjustment state in which the first embodiment of the heat detector that adjusts the heat exchange amount according to the contact area is set to the maximum detection sensitivity, and FIG. 1 (A) shows a cross section seen from the side. FIG. 1B shows a plan view with the circuit housing part removed.

(熱感知器の構造)
図1に示すように、本実施形態の熱感知器10は、合成樹脂製の感知器筐体12の下面にペルチェ素子を用いた熱電素子14が受熱面を外部に露出して固定配置され、熱電素子14は平面から見ると例えば長方形の薄型板形状となっている。熱電素子14の冷却面となる裏側の面には、熱媒体16が接触配置されている。熱電素子14は外部に露出した受熱面と熱媒体16が接触配置された冷却面との温度差に応じた起電力を発生する。
(Structure of heat sensor)
As shown in FIG. 1, in the heat sensor 10 of the present embodiment, a thermoelectric element 14 using a Peltier element is fixedly disposed on the lower surface of a sensor housing 12 made of synthetic resin with a heat receiving surface exposed to the outside, The thermoelectric element 14 has, for example, a rectangular thin plate shape when viewed from the plane. A heat medium 16 is disposed in contact with the back surface, which is the cooling surface of the thermoelectric element 14. The thermoelectric element 14 generates an electromotive force according to the temperature difference between the heat receiving surface exposed to the outside and the cooling surface on which the heat medium 16 is disposed in contact.

熱媒体16は熱伝導率の高い例えばアルミニウムで作られた矩形のブロック部材であり、縦・横・高さとして(W×L1×H)のサイズとし、感知器筐体12の内部に形成された箱型の熱媒体収納部18の中に長手方向に摺動自在に配置されている。   The heat medium 16 is a rectangular block member made of, for example, aluminum having high thermal conductivity, and has a size of (W × L1 × H) in length, width, and height, and is formed inside the sensor housing 12. The box-shaped heat medium storage unit 18 is slidably disposed in the longitudinal direction.

熱媒体16は熱交換量調整機構により熱電素子14との接触面積を変更して熱交換量を調整可能に設けられている。熱媒体16の熱交換量調整機構は、右端から左方向に所定長さのねじ穴22が形成され、ねじ穴22に対し熱媒体収納部18の右側の立壁に形成された通し穴21を介して調整ねじ20をねじ込んでおり、調整ねじ20の頭部20aに相対した感知器筐体12の部分には治具通し穴24が形成され、通常は着脱自在なゴムキャップ25により閉鎖されている。   The heat medium 16 is provided so that the heat exchange amount can be adjusted by changing the contact area with the thermoelectric element 14 by a heat exchange amount adjusting mechanism. The heat exchange amount adjusting mechanism of the heat medium 16 is formed with a screw hole 22 having a predetermined length in the left direction from the right end, and through a through hole 21 formed in the standing wall on the right side of the heat medium storage unit 18 with respect to the screw hole 22. The adjustment screw 20 is screwed in, and a jig through hole 24 is formed in the portion of the sensor housing 12 facing the head 20a of the adjustment screw 20 and is normally closed by a removable rubber cap 25. .

また感知器筐体12内には回路収納部26が設けられ、回路収納部26には熱電素子14の発電電力の供給を受けて火災を検出する感知器回路が実装されている。   In addition, a circuit housing portion 26 is provided in the sensor housing 12, and a sensor circuit that receives a supply of power generated by the thermoelectric element 14 and detects a fire is mounted on the circuit housing portion 26.

(感知感度の調整)
図1に示す熱媒体16は、熱電素子14の裏側の冷却面の全面に接触する面積が最大接触面積(W×L1)に調整されており、熱電素子14と熱媒体16の冷却面に対する熱交換量が最大となる状態に調整されている。
(Adjustment of sensitivity)
In the heat medium 16 shown in FIG. 1, the area in contact with the entire cooling surface on the back side of the thermoelectric element 14 is adjusted to the maximum contact area (W × L1), and the heat to the cooling surface of the thermoelectric element 14 and the heat medium 16 is adjusted. The amount of exchange is adjusted to the maximum.

熱媒体16と熱電素子14との接触が最大接触面積(W×L1)となる調整状態で火災による熱気流又は試験による熱気流を熱電素子14が受熱面で受けると、受熱面は熱気流による温度に加熱されて高温側となるが、熱電素子14の冷却面は熱媒体16と最大面積で接触していることから、そのときの室温状態に対する温度上昇の時間変化が大きく抑制され、この結果、熱電素子14の受熱面と冷却面との温度差が大きくなり、温度差に起因した起電力による電圧も大きくなり、火災を検出するための感知感度が高い状態に調整されることになる。これにより熱電素子14の発電量を大きくして感知感度を高める調整が可能となる。   When the thermoelectric element 14 receives a thermal airflow from a fire or a test hot airflow at the heat receiving surface in an adjusted state where the contact between the heat medium 16 and the thermoelectric element 14 is the maximum contact area (W × L1), the heat receiving surface is caused by the hot air current. Although it is heated to a high temperature side, the cooling surface of the thermoelectric element 14 is in contact with the heat medium 16 in the maximum area, so that the time change of the temperature rise with respect to the room temperature at that time is greatly suppressed, and as a result The temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 is increased, the voltage due to the electromotive force resulting from the temperature difference is increased, and the sensing sensitivity for detecting a fire is adjusted to a high state. As a result, it is possible to adjust to increase the sensitivity of the thermoelectric element 14 by increasing the amount of power generation.

図2は図1の熱感知器の感知感度を最小とした調整状態を示した説明図であり、図2(A)は横から見た断面を示し、図2(B)は回路収納部を外した状態の平面を示す。   FIG. 2 is an explanatory view showing an adjustment state in which the sensitivity of the heat detector of FIG. 1 is minimized, FIG. 2 (A) shows a cross section seen from the side, and FIG. 2 (B) shows the circuit housing portion. The removed plane is shown.

図2に示すように、ゴムキャップ25は外し、治具通し穴24からドライバーを差し込んで調整ねじ20を緩める方向に回すことにより、熱媒体16を左方向に摺動させ、図示のように熱媒体収納部18の左側の立壁に当接した位置で、熱媒体16の熱電素子14の裏側の冷却面に接触する接触面積が最小接触面積(W×L2)に調整されており、熱電素子14と熱媒体16の冷却面に対する熱交換量が最小となる状態に調整されている。これにより熱電素子14の発電量を小さくして感知感度を低くする調整が可能となる。   As shown in FIG. 2, the rubber cap 25 is removed, a screwdriver is inserted through the jig through hole 24, and the adjusting screw 20 is turned in a loosening direction, whereby the heat medium 16 is slid to the left, The contact area of the heat medium 16 that contacts the cooling surface on the back side of the thermoelectric element 14 is adjusted to the minimum contact area (W × L2) at the position in contact with the left standing wall of the medium storage unit 18. And the heat exchange amount with respect to the cooling surface of the heat medium 16 is adjusted to a minimum. As a result, it is possible to adjust the power generation amount of the thermoelectric element 14 to be small and the sensitivity to be lowered.

熱媒体16と熱電素子14との接触が最小接触面積(W×L2)となる調整状態で火災による熱気流又は試験による熱気流を熱電素子14が受熱面で受けると、受熱面は熱気流による温度に加熱されて高温側となるが、熱電素子14の冷却面は熱媒体16と最小面積で接触していることから、そのときの室温状態に対する温度上昇の時間変化の抑制作用が低減され、この結果、熱電素子14の受熱面と冷却面との温度差は最大接触面積の場合に比べると小さくなり、温度差に起因した起電力による電圧も小さくなり、火災を検出するための感知感度が低い状態に調整されることになる。   When the thermoelectric element 14 receives a thermal airflow due to a fire or a hot airflow from a test in an adjusted state where the contact between the heat medium 16 and the thermoelectric element 14 is the minimum contact area (W × L2), the heat-receiving surface is caused by the hot airflow. Although it is heated to a high temperature side, since the cooling surface of the thermoelectric element 14 is in contact with the heat medium 16 with a minimum area, the action of suppressing the temperature change with respect to the room temperature at that time is reduced, As a result, the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 is smaller than in the case of the maximum contact area, the voltage due to the electromotive force due to the temperature difference is also reduced, and the sensitivity for detecting a fire is increased. It will be adjusted to a low state.

このため本実施形態の熱感知器10を、例えば1種の差動式熱感知器としての感知感度に調整する場合には、作動試験として、室温より20度高い風速70センチメートル毎秒の垂直気流に投入したとき、30秒以内に火災信号を発信し、且つ、室温から10度毎分の割合で直線的に上昇する水平気流を加えたとき、4.5分以内に火災信号を発信するように、熱電素子14に対する熱媒体16の接触面積を調整し、また、不作動試験として、室温より10度高い風速50センチメートル毎秒の垂直気流に投入したとき、1分以内で作動せず、且つ、室温から2度毎分の割合で直線的に上昇する水平気流を加えたとき、15分以内に作動しないように熱電素子14に対する熱媒体16の接触面積を調整する。   For this reason, when adjusting the heat sensor 10 of this embodiment to the sensitivity of a differential heat sensor, for example, as an operation test, a vertical airflow of 70 centimeters per second higher than the room temperature is used as an operation test. When fired, the fire signal is sent within 30 seconds, and when a horizontal air flow rising linearly at a rate of 10 degrees per minute from room temperature is added, the fire signal is sent within 4.5 minutes. In addition, the contact area of the heat medium 16 with respect to the thermoelectric element 14 is adjusted, and as a non-operation test, when it is put into a vertical airflow of 50 centimeters per second higher than room temperature, it does not operate within 1 minute, and The contact area of the heat medium 16 with respect to the thermoelectric element 14 is adjusted so that it does not operate within 15 minutes when a horizontal air flow rising linearly at a rate of 2 degrees per minute from room temperature is applied.

また、熱交換量調整機構は、熱電素子14と熱媒体16との接触面積を変更して熱交換量を調整するようにしたため、作動試験または不作動試験による熱気流を受けた場合、熱電素子14に対する熱媒体16の接触面積を増やすことにより、熱電素子14の高温側温度と低温側温度との温度差を大きくし、これにより発電量を大きくして感知感度を高める調整が可能となり、また、熱電素子14に対する熱媒体16の接触面積を減らすことにより熱電素子16の高温側温度と低温側温度との温度差を小さくし、これにより発電量を小さくして感知感度を低くする調整が可能となり、作動試験及び不作動試験を満たす適切な感知感度をもつ動作精度の高い熱感知器10が得られる。   In addition, since the heat exchange amount adjusting mechanism adjusts the heat exchange amount by changing the contact area between the thermoelectric element 14 and the heat medium 16, the thermoelectric element By increasing the contact area of the heat medium 16 with respect to 14, the temperature difference between the high temperature side temperature and the low temperature side temperature of the thermoelectric element 14 can be increased, thereby making it possible to adjust the power generation amount to increase the sensing sensitivity. By reducing the contact area of the heat medium 16 with the thermoelectric element 14, the temperature difference between the high temperature side temperature and the low temperature side temperature of the thermoelectric element 16 can be reduced, thereby making it possible to adjust the power generation amount to be low and the sensing sensitivity to be low. Thus, the thermal sensor 10 with high operation accuracy having appropriate detection sensitivity satisfying the operation test and the non-operation test can be obtained.

なお、本実施形態の熱交換量調整機構は、熱電素子14に接触している熱媒体16の接触面積を変更させるものであれば、上記の実施形態に限定されず、適宜の機構構造が含まれる。   Note that the heat exchange amount adjusting mechanism of the present embodiment is not limited to the above-described embodiment as long as the contact area of the heat medium 16 in contact with the thermoelectric element 14 is changed, and includes an appropriate mechanism structure. It is.

(感知器回路)
図3は図1の熱感知器に設けられる感知器回路を示したブロック図であり、図3(A)は回路構成を示し、図3(B)は熱電素子の構造を示す。
(Sensor circuit)
3 is a block diagram showing a sensor circuit provided in the heat sensor of FIG. 1, FIG. 3 (A) shows a circuit configuration, and FIG. 3 (B) shows a structure of a thermoelectric element.

図3(A)に示すように、本実施形態の感知器回路は、火災又は試験による熱気流を受けた場合に熱電素子14の発電電力を電源として火災検出部32が動作し、所定の発電電圧に達した場合にリレー34を作動してリレー接点35を閉じ、感知器端子36a,36bから外部に無電圧接点信号として火災発報信号を出力するようにしている。熱電素子14は多数のPN接合素子30を直列接続した等価回路で表現される。   As shown in FIG. 3A, in the detector circuit of this embodiment, the fire detection unit 32 operates using the generated power of the thermoelectric element 14 as a power source when receiving a hot air current due to a fire or a test, and a predetermined power generation is performed. When the voltage is reached, the relay 34 is actuated to close the relay contact 35, and a fire alarm signal is output as a non-voltage contact signal from the sensor terminals 36a and 36b. The thermoelectric element 14 is expressed by an equivalent circuit in which a large number of PN junction elements 30 are connected in series.

感知器端子36a,36bには受信機から引き出された感知器回線が接続されており、リレー接点35の閉成により感知器回線間を低インピーダンスに短絡して回線電流を流すことで、発報信号を受信機に送信して火災警報を出力させることができる。この場合、通常の火災感知器のように受信機から感知回線を介して熱感知器10に電源電圧を供給して動作させる必要がなく、受信機の電源容量を小さくすることができる。   A sensor line drawn from the receiver is connected to the sensor terminals 36a and 36b. By closing the relay contact 35, the sensor line is short-circuited to a low impedance to flow a line current. A fire alarm can be output by sending a signal to the receiver. In this case, it is not necessary to operate the thermal detector 10 by supplying a power supply voltage from the receiver to the heat detector 10 via a sensing line as in a normal fire detector, and the power capacity of the receiver can be reduced.

(熱電素子の構造)
ペルチェ素子は、ペルチェ素子に電圧を印加するとその表裏に温度差を生じる素子であり、電子部品の冷却に用いられている。また、ペルチェ素子に温度差を付与するとゼーベック効果として知られた作用により起電力を生じ、本実施形態の熱電素子14として用いることができる。
(The structure of thermoelectric element)
The Peltier element is an element that generates a temperature difference between the front and back when a voltage is applied to the Peltier element, and is used for cooling electronic components. Further, when a temperature difference is applied to the Peltier element, an electromotive force is generated by an action known as the Seebeck effect, and the Peltier element can be used as the thermoelectric element 14 of the present embodiment.

熱電素子14として機能するペルチェ素子は、図3(B)に示すように、受熱側絶縁基板38と冷却側絶縁基板40のそれぞれの内側に、複数の電極42,44が所定の間隔をあけて交互にずらして相対するように配置され、電極42,44との間に交互にP型半導体46とN型半導体48が配置されている。   As shown in FIG. 3B, the Peltier element functioning as the thermoelectric element 14 has a plurality of electrodes 42 and 44 at predetermined intervals on the inner sides of the heat receiving side insulating substrate 38 and the cooling side insulating substrate 40, respectively. The P-type semiconductor 46 and the N-type semiconductor 48 are alternately arranged between the electrodes 42 and 44.

受熱側絶縁基板38側に火災や試験による熱気流の熱が加わることによって、受熱側絶縁基板38と冷却側絶縁基板40との間に温度差が生じると発電作用により起電力が発生する。この発電作用は、マイナス端子52が接続された電極42からP型半導体46に電子が流れ、P型半導体46から電極44に電子が流れる。   When a heat difference is applied between the heat-receiving-side insulating substrate 38 and the cooling-side insulating substrate 40 due to the heat from the fire or a test being applied to the heat-receiving-side insulating substrate 38 side, an electromotive force is generated due to power generation. In this power generation action, electrons flow from the electrode 42 connected to the negative terminal 52 to the P-type semiconductor 46, and electrons flow from the P-type semiconductor 46 to the electrode 44.

また、電極44からN型半導体48、N型半導体48から電極42に電子が流れる。このようにマイナス端子52側からプラス端子50側に向けて電極42、P型半導体46、電極44、N型半導体48の順番に電子が流れていくと、プラス端子50とマイナス端子52の間に起電力が発生し、プラス端子50とマイナス端子52の間に接続した図3(A)に示す火災検出部32に発電電圧を供給して動作させることができる。ペルチェ素子の発電電力は、加熱面と冷却面の温度差の二乗に比例する関係にある。  Electrons flow from the electrode 44 to the N-type semiconductor 48 and from the N-type semiconductor 48 to the electrode 42. As described above, when electrons flow in the order of the electrode 42, the P-type semiconductor 46, the electrode 44, and the N-type semiconductor 48 from the minus terminal 52 side toward the plus terminal 50 side, between the plus terminal 50 and the minus terminal 52. An electromotive force is generated, and the generated voltage can be supplied to the fire detection unit 32 shown in FIG. 3A connected between the plus terminal 50 and the minus terminal 52 to operate. The power generated by the Peltier element has a relationship proportional to the square of the temperature difference between the heating surface and the cooling surface.

(熱電素子の温度差と発電電圧の調整)
図4は図1の実施形態で熱気流を受けた場合の熱電素子の動作特性を示したタイムチャートであり、図4(A)に受熱面と冷却面の温度を示し、図4(B)に熱電素子の発電電圧を示す。
(Adjustment of thermoelectric element temperature difference and generated voltage)
FIG. 4 is a time chart showing the operating characteristics of the thermoelectric element when it receives a hot air flow in the embodiment of FIG. 1, FIG. 4 (A) shows the temperatures of the heat receiving surface and the cooling surface, and FIG. Shows the generated voltage of the thermoelectric element.

図4(A)に示すように、時刻t0で熱感知器10に熱気流を当とすると、熱電素子14の受熱面の温度は直線70ように上昇し、図1に示したように、熱媒体16を最大面積で熱電素子14に接触させた場合の冷却面の温度は、熱移動量が多いことから直線72−1のように緩やかに上昇し、熱電素子14の温度差となる直線70と直線72−1の温度差が早く大きくなり、所定の閾値温度ΔTに達した時刻t1で火災が検出される。   As shown in FIG. 4A, when a thermal air current is applied to the heat detector 10 at time t0, the temperature of the heat receiving surface of the thermoelectric element 14 rises as a straight line 70, and as shown in FIG. When the medium 16 is brought into contact with the thermoelectric element 14 in the maximum area, the temperature of the cooling surface rises gently like a straight line 72-1 due to a large amount of heat transfer, and a straight line 70 that becomes a temperature difference of the thermoelectric element 14 is obtained. And the temperature difference between the straight line 72-1 quickly increases, and a fire is detected at time t1 when the temperature reaches a predetermined threshold temperature ΔT.

これに対し図2に示したように、熱媒体16を最小面積で熱電素子14に接触させた場合の冷却面の温度は、熱移動量が少ないことから点線で示す直線72−2のように早く上昇し、熱電素子14の温度差となる直線70と直線72−2の温度差は時間的に遅れて大きくなり、時刻t1より遅い時刻t2で所定の閾値温度ΔTに達して火災が検出される。   On the other hand, as shown in FIG. 2, the temperature of the cooling surface when the heat medium 16 is brought into contact with the thermoelectric element 14 with the minimum area is as shown by a straight line 72-2 indicated by a dotted line because the heat transfer amount is small. The temperature difference between the straight line 70 and the straight line 72-2, which rises quickly and becomes the temperature difference of the thermoelectric element 14, increases with time delay, reaches a predetermined threshold temperature ΔT at time t2 later than time t1, and fire is detected. The

図4(B)は図1(A)の温度差の二乗に比例して熱電素子14が発電する発電電圧を示しており、図4(A)の直線70と直線72−1の温度差による発電電圧は直線74に示すように上昇し、時刻t1で所定の閾値電圧Vthに達したときに火災が検出される。   FIG. 4B shows a power generation voltage generated by the thermoelectric element 14 in proportion to the square of the temperature difference in FIG. 1A, and depends on the temperature difference between the straight line 70 and the straight line 72-1 in FIG. The power generation voltage rises as indicated by a straight line 74, and a fire is detected when a predetermined threshold voltage Vth is reached at time t1.

また、図4(A)の直線70と直線72−2の温度差による電圧は直線76に示すように、直線74に比べて緩やかに上昇し、時刻t2で所定の閾値電圧Vthに達したときに火災が検出される。   Also, the voltage due to the temperature difference between the straight line 70 and the straight line 72-2 in FIG. 4A rises more slowly than the straight line 74 as shown by the straight line 76, and reaches a predetermined threshold voltage Vth at time t2. A fire is detected.

図1の実施形態にあっては、熱交換量調整機構により発電素子14に対する熱媒体14の接触面積を図1の最大面積接触状態と図2の最小面積接触状態の範囲で調整することにより、図4(A)に示す熱気流を受けた場合の熱電素子14の冷却面の温度特性を直線72−1と直線72−2の傾きの範囲で調整することができ、この結果、図4(B)に示すように、熱電素子14の温度差に応じた電圧を、直線74と直線76の傾きの範囲で調整することができ、これにより差動式熱感知器に要求される作動試験及び不作動試験を満たす適切な感知感度をもつ動作精度の高い熱感知器10が得られる。   In the embodiment of FIG. 1, by adjusting the contact area of the heat medium 14 with respect to the power generation element 14 by the heat exchange amount adjustment mechanism in the range of the maximum area contact state of FIG. 1 and the minimum area contact state of FIG. The temperature characteristics of the cooling surface of the thermoelectric element 14 when receiving the hot air flow shown in FIG. 4A can be adjusted within the range of the slopes of the straight line 72-1 and the straight line 72-2. As a result, FIG. As shown in B), the voltage corresponding to the temperature difference of the thermoelectric element 14 can be adjusted within the range of the slope of the straight line 74 and the straight line 76, thereby enabling the operation test required for the differential heat sensor and As a result, it is possible to obtain a thermal sensor 10 with high operational accuracy and having an appropriate sensing sensitivity that satisfies the inoperative test.

(感知器回路の他の例)
図5は図1の熱感知器に設けられる感知回路の他の例を示したブロック図である。図5に示すように、本実施形態の感知器回路は、火災又は試験による熱気流を受けた場合に熱電素子14の発電電力を電源として火災検出部32が動作し、所定の発電電圧に達した場合にブザー54を駆動して火災警報音を出力させ、また、LED56を点灯、点滅又は明滅させることで火災警報表示を行うようにしている。
(Another example of sensor circuit)
FIG. 5 is a block diagram showing another example of a sensing circuit provided in the thermal sensor of FIG. As shown in FIG. 5, in the detector circuit of this embodiment, the fire detection unit 32 operates by using the generated power of the thermoelectric element 14 as a power source when a fire or a hot air current due to a test is received, and reaches a predetermined generated voltage. In this case, the buzzer 54 is driven to output a fire alarm sound, and the fire alarm display is performed by turning on, flashing, or blinking the LED 56.

このように火災警報音と火災警報表示により火災警報を出力する本実施形態の熱感知器10は、設置が義務付けられている住宅用火災警報器としての使用を可能とし、電池電源を必要としないことから電池切れを管理することなく、ほぼ永久的に住宅での火災監視を可能とする。   Thus, the heat sensor 10 of this embodiment which outputs a fire alarm by a fire alarm sound and a fire alarm display can be used as a residential fire alarm that is required to be installed, and does not require a battery power source. Therefore, it is possible to monitor the fire almost permanently without managing the battery exhaustion.

[熱感知器の第2実施形態]
図6は熱媒体の放熱により熱交換量を調整する熱感知器の第2実施形態を示した説明図であり、図6(A)に熱交換量を小さくした場合を示し、図6(B)に熱交換量を大きくした場合を示す。
[Second Embodiment of Heat Sensor]
FIG. 6 is an explanatory view showing a second embodiment of the heat detector for adjusting the heat exchange amount by heat radiation of the heat medium. FIG. 6 (A) shows a case where the heat exchange amount is reduced, and FIG. ) Shows the case where the heat exchange amount is increased.

図6(A)に示す熱感知器10−1は、感知器筐体12の下面にペルチェ素子を用いた熱電素子14が受熱面を外部に露出して固定配置され、熱電素子14の冷却面となる裏側の面には、フラット熱媒体80−1が接触配置され、熱電素子14は外部に露出した受熱面とフラット熱媒体80−1が接触配置された冷却面との温度差に応じた起電力を発生する。   6A, a thermoelectric element 14 using a Peltier element is fixedly disposed on the lower surface of the sensor housing 12 with the heat receiving surface exposed to the outside, and a cooling surface of the thermoelectric element 14 A flat heat medium 80-1 is arranged in contact with the back side surface, and the thermoelectric element 14 corresponds to the temperature difference between the heat receiving surface exposed to the outside and the cooling surface in which the flat heat medium 80-1 is arranged in contact. Generate electromotive force.

フラット熱媒体80−1は熱伝導率の高い例えばアルミニウムで作られた矩形のブロック部材であり、質量を小さくすることにより、熱電素子14の冷却面との熱交換量を小さくしており、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を大きくし、これにより熱電素子14の受熱面と冷却面の温度差を小さくし、差動式熱感知器として動作する場合の感度を低くしている。   The flat heat medium 80-1 is a rectangular block member made of, for example, aluminum having a high thermal conductivity, and by reducing the mass, the amount of heat exchange with the cooling surface of the thermoelectric element 14 is reduced. When the temperature change of the cooling surface of the thermoelectric element 14 is increased when receiving a hot air flow due to this, the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 is reduced, thereby operating as a differential heat sensor. The sensitivity is lowered.

一方、図6(B)に示す熱感知器10−2は、熱電素子14の冷却面となる裏側の面に放熱フィン付き熱媒体80−2が接触配置され、放熱フィン付き熱媒体80−2は図6(A)のフラット熱媒体80−1に比べ質量が大きく、且つ背面側に放熱フィン82が一体に形成されている。   On the other hand, in the heat sensor 10-2 shown in FIG. 6B, a heat medium 80-2 with a radiation fin is disposed in contact with the back surface, which is a cooling surface of the thermoelectric element 14, and the heat medium 80-2 with a heat radiation fin. Is larger in mass than the flat heat medium 80-1 in FIG. 6A, and the radiation fins 82 are integrally formed on the back side.

このように放熱フィン付き熱媒体80−2は、放熱効率がよく且つ質量を大きくしたことで、熱電素子14の冷却面との熱交換量を大きくしており、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を小さくし、これにより熱電素子14の受熱面と冷却面の温度差を大きくし、差動式熱感知器として動作する場合の感度を高くしている。   As described above, the heat medium 80-2 with the heat radiation fins has a high heat radiation efficiency and has a large mass, thereby increasing the amount of heat exchange with the cooling surface of the thermoelectric element 14 and receiving a hot air current due to a fire. The temperature change of the cooling surface of the thermoelectric element 14 is reduced, thereby increasing the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 and increasing the sensitivity when operating as a differential heat sensor.

このように本実施形態の熱感知器に設けられた熱交換量調整機構は、熱媒体の放熱により熱電素子との熱交換量を選択して作動式熱感知器としての感度を調整することができる。   As described above, the heat exchange amount adjustment mechanism provided in the heat detector of the present embodiment can select the heat exchange amount with the thermoelectric element by the heat radiation of the heat medium and adjust the sensitivity as the operation type heat detector. it can.

[熱感知器の第3実施形態]
図7は熱電素子と熱媒体の間に形成された熱伝導層の熱伝導率により熱交換量を調整する熱感知器の第3実施形態を示した説明図である。
[Third embodiment of heat sensor]
FIG. 7 is an explanatory view showing a third embodiment of a heat sensor that adjusts the amount of heat exchange based on the heat conductivity of the heat conductive layer formed between the thermoelectric element and the heat medium.

図7に示すように、本実施形態の熱感知器10は、感知器筐体12の下面に受熱面を外部に露出して固定配置された熱電素子14の冷却面となる裏側の面に、熱伝導層96を介して熱媒体16を接触配置しており、熱伝導層96の熱伝導率を選択することで、熱媒体16の熱交換量を調整している選択した場合には、熱電素子14の冷却面と熱媒体16の熱交換量が大きくなり、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を小さくし、これにより熱電素子14の受熱面と冷却面の温度差を大きくし、差動式熱感知器として動作する場合の感度を高くしている。   As shown in FIG. 7, the heat sensor 10 of the present embodiment has a back surface serving as a cooling surface of the thermoelectric element 14 that is fixedly disposed with the heat receiving surface exposed to the outside on the lower surface of the sensor housing 12. When the heat medium 16 is arranged in contact with the heat conductive layer 96 and the heat exchange rate of the heat medium 16 is adjusted by selecting the heat conductivity of the heat conductive layer 96, The amount of heat exchange between the cooling surface of the element 14 and the heat medium 16 is increased, and the temperature change of the cooling surface of the thermoelectric element 14 when subjected to a thermal air current due to a fire is reduced, whereby the heat receiving surface and the cooling surface of the thermoelectric element 14 are reduced. The sensitivity when operating as a differential heat sensor is increased.

これに対し熱伝導層96に熱伝導率の低い材料を選択した場合には、熱電素子14の冷却面と熱媒体16の熱交換量が小さくなり、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を大きくし、これにより熱電素子14の受熱面と冷却面の温度差を小さくし、差動式熱感知器として動作する場合の感度を低くしている。   On the other hand, when a material having a low thermal conductivity is selected for the heat conductive layer 96, the heat exchange amount between the cooling surface of the thermoelectric element 14 and the heat medium 16 becomes small, and the thermoelectric element in the case of receiving a hot air current due to a fire. The temperature change of the cooling surface 14 is increased, thereby reducing the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 and reducing the sensitivity when operating as a differential heat detector.

また、本実施形態にあっては、熱伝導層96の熱伝導率を変えることで、熱媒体16の質量を変えることなく熱交換量を調整できる。   In the present embodiment, the heat exchange amount can be adjusted without changing the mass of the heat medium 16 by changing the heat conductivity of the heat conductive layer 96.

[熱感知器の第4実施形態]
図8は熱媒体の質量により熱容量を調整する熱感知器の第4実施形態を示した説明図であり、図8(A)は熱媒体の質量を大きくした場合を示し、図8(B)は熱媒体質量を小さくした場合を示す。
[Fourth Embodiment of Heat Sensor]
FIG. 8 is an explanatory view showing a fourth embodiment of a heat sensor that adjusts the heat capacity by the mass of the heat medium. FIG. 8A shows the case where the mass of the heat medium is increased, and FIG. Indicates a case where the mass of the heat medium is reduced.

本実施形態の熱感知器は、熱媒体の熱容量を調整する熱容量調整機構により差動式熱感知器として動作する感度を設定している。ここで、熱媒体の熱容量Cは、質量をm、比熱をcとすると、
C=m×c
となり、本実施形態は、熱媒体の質量mを変えることで熱容量Cを調整する。
The heat sensor of this embodiment sets the sensitivity to operate as a differential heat sensor by a heat capacity adjustment mechanism that adjusts the heat capacity of the heat medium. Here, the heat capacity C of the heat medium is represented by m as mass and c as specific heat.
C = m × c
Thus, in the present embodiment, the heat capacity C is adjusted by changing the mass m of the heat medium.

図8(A)に示す熱感知器10−1の熱容量調整機構は、感知器筐体12の下面に受熱面を外部に露出して固定配置された熱電素子14の冷却面となる裏側の面に、大質量熱媒体84−1が接触配置され、熱電素子14は外部に露出した受熱面と大質量熱媒体84−1が接触配置された冷却面との温度差に応じた起電力を発生する。   The heat capacity adjusting mechanism of the heat detector 10-1 shown in FIG. 8A is a back side surface serving as a cooling surface of the thermoelectric element 14 fixedly arranged with the heat receiving surface exposed to the outside on the lower surface of the sensor housing 12. And the thermoelectric element 14 generates an electromotive force according to a temperature difference between the heat receiving surface exposed to the outside and the cooling surface on which the large mass heat medium 84-1 is contacted. To do.

大質量熱媒体84−1は例えばアルミニウムで作られた矩形のブロック部材であり、質量を大きくすることにより熱容量を大きくしており、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を小さくし、これにより熱電素子14の受熱面と冷却面の温度差を大きくし、差動式熱感知器として動作する場合の感度を高くている。   The large-mass heat medium 84-1 is a rectangular block member made of, for example, aluminum, and has a large heat capacity by increasing the mass, and the cooling surface of the thermoelectric element 14 when receiving a hot air current due to a fire. The temperature change is reduced, thereby increasing the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 and increasing the sensitivity when operating as a differential heat detector.

一方、図8(B)に示す熱感知器10−2の熱容量調整機構は、熱電素子14の冷却面となる裏側の面に、小質量熱媒体84−2が接触配置されている。小質量熱媒体84−2は、質量を小さくすることにより熱容量を小さくしており、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を大きくし、これにより熱電素子14の受熱面と冷却面の温度差を小さくし、差動式熱感知器として動作する場合の感度を低くしている。   On the other hand, in the heat capacity adjustment mechanism of the heat detector 10-2 shown in FIG. 8B, a small-mass heat medium 84-2 is disposed in contact with the back surface that is the cooling surface of the thermoelectric element 14. The small-mass heat medium 84-2 has a small heat capacity by reducing the mass, and increases the temperature change of the cooling surface of the thermoelectric element 14 when receiving a hot air current due to a fire. The temperature difference between the heat receiving surface and the cooling surface is reduced to reduce the sensitivity when operating as a differential heat sensor.

[熱感知器の第5実施形態]
図9は熱媒体ブロックの数により熱容量を調整する熱感知器の第5実施形態を示した説明図であり、図9(A)に熱媒体ブロックを5枚重ねた場合を示し、図9(B)に熱媒体ブロックを2枚重ねた場合を示す。
[Fifth Embodiment of Heat Sensor]
FIG. 9 is an explanatory diagram showing a fifth embodiment of a heat sensor that adjusts the heat capacity according to the number of heat medium blocks. FIG. 9A shows a case where five heat medium blocks are stacked, and FIG. B) shows a case where two heat medium blocks are stacked.

図9(A)の熱感知器10−1の熱容量調整機構は、熱電素子14の冷却面となる裏側の面に、所定の単位質量をもつ熱媒体ブロック86を5枚重ねて接触配置している。このように小熱媒体ブロック86を5枚重ねて接触配置することで熱媒体としての質量を大きくしており、質量を大きくすることにより熱容量を大きくし、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を小さくし、これにより熱電素子14の受熱面と冷却面の温度差を大きくし、差動式熱感知器として動作する場合の感度を高くしている。   The heat capacity adjustment mechanism of the heat detector 10-1 in FIG. 9A is configured such that five heat medium blocks 86 each having a predetermined unit mass are placed in contact with each other on the back surface serving as the cooling surface of the thermoelectric element 14. Yes. In this way, the mass of the heat medium is increased by placing five small heat medium blocks 86 in contact with each other, the heat capacity is increased by increasing the mass, and the thermoelectric power in the case of receiving a hot air current from a fire. The temperature change of the cooling surface of the element 14 is reduced, thereby increasing the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 and increasing the sensitivity when operating as a differential heat detector.

一方、図9(B)の熱感知器10−2の熱容量調整機構は、熱電素子14の冷却面となる裏側の面に、所定の単位質量をもつ熱媒体ブロック86を2枚重ねて接触配置することで熱媒体としての質量を小さくしており、質量を小さくすることにより熱容量を小さくし、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を大きくし、これにより熱電素子14の受熱面と冷却面の温度差を小さくし、差動式熱感知器として動作する場合の感度を低くしている。   On the other hand, in the heat capacity adjustment mechanism of the heat detector 10-2 in FIG. 9B, two heat medium blocks 86 each having a predetermined unit mass are placed in contact with each other on the back surface serving as the cooling surface of the thermoelectric element 14. Thus, the mass as the heat medium is reduced, the heat capacity is reduced by reducing the mass, and the temperature change of the cooling surface of the thermoelectric element 14 when subjected to a thermal air current due to a fire is increased. The temperature difference between the heat receiving surface and the cooling surface of the element 14 is reduced to reduce the sensitivity when operating as a differential heat detector.

このように本実施形態にあっては、熱電素子14の冷却面に対し積層配置する熱媒体ブロック86の数を任意に決めることにより、簡単且つ容易に熱媒体の質量を選択して熱容量を調整し、差動式熱感知器として動作する場合の感度を設定することができる。   As described above, in the present embodiment, by arbitrarily determining the number of heat medium blocks 86 to be stacked on the cooling surface of the thermoelectric element 14, the mass of the heat medium can be selected easily and easily to adjust the heat capacity. In addition, the sensitivity when operating as a differential heat sensor can be set.

[熱感知器の第6実施形態]
図10は熱媒体液の量により熱容量を調整する熱感知器の第6実施形態を示した説明図であり、図10(A)に熱媒体液の量を多くした場合を示し、図10(B)に熱媒体液の量を少なくした場合を示す。
[Sixth Embodiment of Heat Sensor]
FIG. 10 is an explanatory view showing a sixth embodiment of a heat sensor that adjusts the heat capacity according to the amount of the heat medium liquid. FIG. 10 (A) shows a case where the amount of the heat medium liquid is increased, and FIG. B) shows a case where the amount of the heat medium liquid is reduced.

図10(A)の熱感知器10−1の熱容量調整機構は、熱電素子14の冷却面となる裏側の面に、タンク88が接触配置され、タンク88の中に水や保冷剤等の熱媒体液90を充填しており、図10(A)では熱媒体液90を略満杯となるように充填している。   In the heat capacity adjustment mechanism of the heat detector 10-1 in FIG. 10A, a tank 88 is disposed in contact with the back surface that is the cooling surface of the thermoelectric element 14, and heat such as water or a cold insulation agent is placed in the tank 88. The medium liquid 90 is filled, and in FIG. 10A, the heat medium liquid 90 is filled so as to be almost full.

このようにタンク88に熱媒体液90を略満杯としたことで、熱媒体としての質量を大きくしており、質量を大きくすることにより熱容量を大きくし、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を小さくし、これにより熱電素子14の受熱面と冷却面の温度差を大きくし、差動式熱感知器として動作する場合の感度を高くしている。   In this way, the heating medium liquid 90 is almost full in the tank 88, so that the mass as the heating medium is increased. By increasing the mass, the heat capacity is increased, and the thermoelectric power in the case of receiving a hot air current due to a fire. The temperature change of the cooling surface of the element 14 is reduced, thereby increasing the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 and increasing the sensitivity when operating as a differential heat detector.

一方、図10(B)の熱感知器10−2の熱容量調整機構は、熱電素子14の冷却面となる裏側の面に接触配置したタンク88に少量の熱媒体液90を充填しており、熱媒体液90の質量を小さくすることにより熱容量を小さくし、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を大きくし、これにより熱電素子14の受熱面と冷却面の温度差を小さくし、差動式熱感知器として動作する場合の感度を低くしている。   On the other hand, in the heat capacity adjustment mechanism of the heat detector 10-2 in FIG. By reducing the mass of the heat transfer medium 90, the heat capacity is reduced, and the temperature change of the cooling surface of the thermoelectric element 14 when subjected to a hot air current due to a fire is increased, whereby the heat receiving surface and the cooling surface of the thermoelectric element 14 are increased. The temperature difference is reduced to reduce the sensitivity when operating as a differential heat sensor.

このように本実施形態にあっては、熱電素子14の冷却面に接触配置されたタンク88に充填する熱媒体液90の量を選択ことにより、簡単且つ容易に熱媒体の熱容量を調整して動式熱感知器として動作する場合の感度を任意に設定することができる。また、図8に示した熱媒体ブロック86はその枚数により熱容量を段階的に設定するが、本実施形態は熱媒体液90はその量により熱容量を連続的に変化させることができ、差動式熱感知器として動作する場合の感度の設定をより細かく且つ正確に行うことが可能となる。   As described above, in the present embodiment, the heat capacity of the heat medium can be easily and easily adjusted by selecting the amount of the heat medium liquid 90 filled in the tank 88 disposed in contact with the cooling surface of the thermoelectric element 14. Sensitivity when operating as a dynamic heat sensor can be arbitrarily set. Further, the heat capacity of the heat medium block 86 shown in FIG. 8 is set stepwise depending on the number of the heat medium blocks 86, but in the present embodiment, the heat medium liquid 90 can continuously change the heat capacity depending on the amount, and the differential type The sensitivity can be set more finely and accurately when operating as a heat sensor.

[熱感知器の第7実施形態]
図11は熱媒体の比熱により熱容量を調整する熱感知器の第7実施形態を示した説明図であり、図11(A)に比熱の大きな熱媒体を設けた場合を示し、図11(B)に比熱の小さな熱媒体を設けた場合を示す。
[Seventh Embodiment of Heat Sensor]
FIG. 11 is an explanatory view showing a seventh embodiment of the heat sensor for adjusting the heat capacity by the specific heat of the heat medium. FIG. 11A shows a case where a heat medium having a large specific heat is provided, and FIG. ) Shows a case where a heat medium having a small specific heat is provided.

本実施形態の熱容量調整機構は、前述したように、熱媒体の熱容量Cが質量mと比熱cの積で与えられることから、熱媒体の比熱を選択することで熱容量Cを調整するようにしたことを特徴とする。   Since the heat capacity C of the heat medium is given by the product of the mass m and the specific heat c as described above, the heat capacity adjustment mechanism of the present embodiment adjusts the heat capacity C by selecting the specific heat of the heat medium. It is characterized by that.

このため図11(A)の熱感知器10−1には、比熱が0.913と大きなアルミニウム製熱媒体92を熱電素子14の冷却面となる裏側の面に接触配置し、一方、図11(B)の熱感知器10−2には、比熱が0.13と小さい鉛製熱媒体94を熱電素子14の冷却面となる裏側の面に接触配置している。   For this reason, in the heat sensor 10-1 in FIG. 11A, an aluminum heat medium 92 having a large specific heat of 0.913 is placed in contact with the back surface serving as the cooling surface of the thermoelectric element 14, while FIG. In the heat sensor 10-2 in (B), a lead heat medium 94 having a specific heat as small as 0.13 is placed in contact with the back surface serving as the cooling surface of the thermoelectric element 14.

このため図11(A)の熱感知器10−1は、比熱の大きなアルミニウム製熱媒体92を配置したことで熱容量を大きくし、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を小さくし、これにより熱電素子14の受熱面と冷却面の温度差を大きくし、差動式熱感知器として動作する場合の感度を高くしている。   For this reason, the heat detector 10-1 in FIG. 11A has a large heat capacity by disposing an aluminum heat medium 92 having a large specific heat, and the cooling surface of the thermoelectric element 14 in the case of receiving a hot air current due to a fire. The temperature change is reduced, thereby increasing the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 and increasing the sensitivity when operating as a differential heat detector.

これに対し図11(B)の熱感知器10−2は、比熱の小さな鉛製熱媒体94を配置したことで熱容量を小さくし、火災による熱気流を受けた場合の熱電素子14の冷却面の温度変化を大きくし、これにより熱電素子14の受熱面と冷却面の温度差を小さくし、差動式熱感知器として動作する場合の感度を低くしている。   On the other hand, the heat detector 10-2 of FIG. 11 (B) is a cooling surface of the thermoelectric element 14 in the case where the heat capacity is reduced by arranging the lead heat medium 94 having a small specific heat and a thermal air current due to a fire is received. Thus, the temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element 14 is reduced, and the sensitivity when operating as a differential heat sensor is lowered.

[本発明の変形例]
上記の実施形態に示した熱感知器の熱交換量調整機構及び熱容量調整機構は、これに限定されず、熱媒体の熱交換量又は熱容量を選択(変更)できるものであれば、適宜の機構構造が含まれる。
[Modification of the present invention]
The heat exchange amount adjustment mechanism and the heat capacity adjustment mechanism of the heat sensor shown in the above embodiment are not limited thereto, and any appropriate mechanism can be used as long as the heat exchange amount or heat capacity of the heat medium can be selected (changed). Includes structure.

上記の実施形態は、天井面に設置される構造の熱感知器を例にとっているが、これに限定されず、例えば、壁掛け型なとの適宜の構造としても良い。   In the above embodiment, the heat detector having a structure installed on the ceiling surface is taken as an example, but the present invention is not limited to this, and may be an appropriate structure such as a wall-mounted type.

また、感知器回路としては、ブザーとLEDによる火災警報機能に加え、火災発報信号を外部に出力するようにしても良い。   Moreover, as a detector circuit, in addition to a fire alarm function using a buzzer and an LED, a fire alarm signal may be output to the outside.

また、上記の実施形態は、リレーの作動により火災発報信号を外部に出力するようにしているが、熱電素子の発電電力で動作する無線通信部を設け、火災発報信号を無線送信するようにしても良い。   In the above-described embodiment, the fire alarm signal is output to the outside by the operation of the relay. However, a wireless communication unit that operates with the power generated by the thermoelectric element is provided to transmit the fire alarm signal wirelessly. Anyway.

また、熱媒体の接触面積や体積を変更する調整機構は、例えば外部から熱媒体の移動量が分かるようにして、調整状態が確認できるようにしても良い。また、ドライバー等の治具を使用せずに、操作ノブなどを回すなどして直接操作により調整できるようにしても良い。   Further, the adjustment mechanism that changes the contact area and volume of the heat medium may be configured such that, for example, the amount of movement of the heat medium can be recognized from the outside so that the adjustment state can be confirmed. Further, adjustment may be made by direct operation by turning an operation knob or the like without using a jig such as a screwdriver.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。   The present invention includes appropriate modifications without impairing the object and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

10,10−1,10−2:熱感知器
12:感知器筐体
14:熱電素子
16:熱媒体
16−1,16−11:第1熱媒体
16−2,16−12:第2熱媒体
18:熱媒体収納部
20:調整ねじ
22:ねじ穴
24:治具通し穴
25:ゴムキャップ
26:回路収納部
28:回路基板
30:PN接合素子
32:火災検出部
34:リレー
36:リレー接点
38:受熱側絶縁基板
40:冷却側絶縁基板
42,44:導体
46:P型半導体
48:N型半導体
50:プラス端子
52:マイナス端子
54:ブザー
56:LED
80−1:フラット熱媒体
80−2:放熱フィン付き熱媒体
82:放熱フィン
84−1:大質量熱媒体
84−2:小質量熱媒体
86:熱媒体ブロック
88:タンク
90:熱媒体液
92:アルミニウム製熱媒体
94:鉛製熱媒体
96:熱伝導層
10, 10-1, 10-2: Heat sensor 12: Sensor housing 14: Thermoelectric element 16: Heat medium 16-1, 16-11: First heat medium 16-2, 16-12: Second heat Medium 18: Heat medium storage unit 20: Adjustment screw 22: Screw hole 24: Jig through hole 25: Rubber cap 26: Circuit storage unit 28: Circuit board 30: PN junction element 32: Fire detection unit 34: Relay 36: Relay Contact point 38: Heat receiving side insulating substrate 40: Cooling side insulating substrate 42, 44: Conductor 46: P-type semiconductor 48: N-type semiconductor 50: Plus terminal 52: Negative terminal 54: Buzzer 56: LED
80-1: Flat heat medium 80-2: Heat medium 82 with heat radiation fins: Heat radiation fin 84-1: Large mass heat medium 84-2: Small mass heat medium 86: Heat medium block 88: Tank 90: Heat medium liquid 92 : Aluminum heat medium 94: Lead heat medium 96: Heat conduction layer

Claims (11)

感知器筐体に受熱面を露出して配置された熱電素子と、
前記熱電素子の冷却面に接触して配置された熱媒体と、
前記熱電素子の前記受熱面と前記冷却面との温度差に応じた起電力に基づき火災を検出する火災検出部と、
が設けられ、
差動式熱感知器として動作する感度を有したことを特徴とする熱感知器。
A thermoelectric element disposed with the heat receiving surface exposed to the sensor housing;
A heating medium disposed in contact with the cooling surface of the thermoelectric element;
A fire detection unit for detecting a fire based on an electromotive force according to a temperature difference between the heat receiving surface and the cooling surface of the thermoelectric element;
Is provided,
A heat sensor characterized by having a sensitivity to operate as a differential heat sensor.
請求項1記載の熱感知器に於いて、
前記熱感知器は、
前記熱電素子と前記熱媒体との熱交換量を調整する熱交換量調整機構が設けられたことを特徴とする熱感知器。
The heat sensor according to claim 1,
The heat sensor is
A heat sensor comprising a heat exchange amount adjustment mechanism for adjusting a heat exchange amount between the thermoelectric element and the heat medium.
請求項2記載の熱感知器に於いて、
前記熱交換量調整機構は、前記熱電素子と前記熱媒体との接触面積を選択して前記熱交換量を調整することを特徴とする熱感知器。
The heat sensor according to claim 2,
The heat detector adjusts the amount of heat exchange by selecting a contact area between the thermoelectric element and the heat medium.
請求項2記載の熱感知器に於いて、
前記熱容量調整機構は、前記熱電素子と前記熱媒体の間に熱伝導層を形成し、前記熱伝導層の熱伝導率を選択して前記熱交換量を調整することを特徴とする熱感知器。
The heat sensor according to claim 2,
The heat capacity adjusting mechanism forms a heat conductive layer between the thermoelectric element and the heat medium, and selects the heat conductivity of the heat conductive layer to adjust the heat exchange amount. .
請求項1記載の熱感知器に於いて、
前記熱媒体の熱容量を調整する熱容量調整機構により前記差動式熱感知器として動作する感度を有することを特徴とする熱感知器。
The heat sensor according to claim 1,
A heat sensor having a sensitivity to operate as the differential heat sensor by a heat capacity adjusting mechanism for adjusting a heat capacity of the heat medium.
請求項5記載の熱感知器に於いて、
前記熱容量調整機構は、前記感度に応じた前記熱媒体の質量の選択により前記熱容量を調整することを特徴とする熱感知器。
The heat sensor according to claim 5, wherein
The heat capacity adjusting mechanism adjusts the heat capacity by selecting a mass of the heat medium according to the sensitivity.
請求項5記載の熱感知器に於いて、
前記熱容量調整機構は、1又は複数の熱媒体ブロックの組み合わせによる前記熱媒体の質量の選択により前記熱容量を調整することを特徴とする熱感知器。
The heat sensor according to claim 5, wherein
The heat capacity adjusting mechanism adjusts the heat capacity by selecting the mass of the heat medium by a combination of one or a plurality of heat medium blocks.
請求項4記載の熱感知器に於いて、
前記熱感知器は、前記熱媒体として熱媒体液を充填する容器を備え、
前記熱容量調整機構は、前記容器の中に充填する熱媒体液の量による前記質量の選択により前記熱媒体の熱容量を調整することを特徴とする熱感知器。
The heat sensor according to claim 4, wherein
The heat sensor includes a container filled with a heat medium liquid as the heat medium,
The heat capacity adjusting mechanism adjusts the heat capacity of the heat medium by selecting the mass according to the amount of the heat medium liquid filled in the container.
請求項5記載の熱感知器に於いて、
前記熱容量調整機構は、前記感度に応じた前記熱媒体の比熱の選択により前記熱容量を調整することを特徴とする熱感知器。
The heat sensor according to claim 5, wherein
The heat capacity adjusting mechanism adjusts the heat capacity by selecting a specific heat of the heat medium according to the sensitivity.
請求項1記載の熱感知器に於いて、前記火災検出部は火災を検出した場合に火災発報信号を外部に出力することを特徴とする熱感知器。
2. The heat sensor according to claim 1, wherein the fire detector outputs a fire alarm signal to the outside when a fire is detected.
請求項1記載の熱感知器に於いて、前記火災検出部は火災を検出した場合に火災警報を出力することを特徴とする熱感知器。   The heat sensor according to claim 1, wherein the fire detection unit outputs a fire alarm when a fire is detected.
JP2017126440A 2017-06-28 2017-06-28 Heat detector Active JP6896524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017126440A JP6896524B2 (en) 2017-06-28 2017-06-28 Heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017126440A JP6896524B2 (en) 2017-06-28 2017-06-28 Heat detector

Publications (2)

Publication Number Publication Date
JP2019008720A true JP2019008720A (en) 2019-01-17
JP6896524B2 JP6896524B2 (en) 2021-06-30

Family

ID=65026937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017126440A Active JP6896524B2 (en) 2017-06-28 2017-06-28 Heat detector

Country Status (1)

Country Link
JP (1) JP6896524B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134724A (en) * 2019-05-23 2020-12-02 임재형 Fire Detector Inspection Equipment Using Peltier Module
KR102599859B1 (en) * 2022-10-27 2023-11-08 주식회사 광운기술 A Fire Detection System for Fire Hazardous Facilities Adopting Self Generation by Fire Heat
KR102599854B1 (en) * 2022-10-27 2023-11-08 주식회사 광운기술 A Fire Detection System for Anti-Firing Filling Structure Adopting Self Generation by Fire Heat
JP7384497B2 (en) 2020-02-03 2023-11-21 エムピア カンパニー リミテッド Self-generated non-power supply constant temperature sensing transmitter/receiver system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121816A (en) * 1997-10-21 1999-04-30 Morikkusu Kk Thermoelectric module unit
JP2000194967A (en) * 1998-12-28 2000-07-14 Hochiki Corp Differential heat sensor
JP2007310795A (en) * 2006-05-22 2007-11-29 Kohoku Thermo:Kk Fire alarm unit
JP2011060922A (en) * 2009-09-09 2011-03-24 Jfe Steel Corp Thermoelectric power generator
JP2016149494A (en) * 2015-02-13 2016-08-18 スズキ株式会社 Thermoelectric generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121816A (en) * 1997-10-21 1999-04-30 Morikkusu Kk Thermoelectric module unit
JP2000194967A (en) * 1998-12-28 2000-07-14 Hochiki Corp Differential heat sensor
JP2007310795A (en) * 2006-05-22 2007-11-29 Kohoku Thermo:Kk Fire alarm unit
JP2011060922A (en) * 2009-09-09 2011-03-24 Jfe Steel Corp Thermoelectric power generator
JP2016149494A (en) * 2015-02-13 2016-08-18 スズキ株式会社 Thermoelectric generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134724A (en) * 2019-05-23 2020-12-02 임재형 Fire Detector Inspection Equipment Using Peltier Module
KR102255293B1 (en) * 2019-05-23 2021-05-24 임재형 Fire Detector Inspection Equipment Using Peltier Module
JP7384497B2 (en) 2020-02-03 2023-11-21 エムピア カンパニー リミテッド Self-generated non-power supply constant temperature sensing transmitter/receiver system
KR102599859B1 (en) * 2022-10-27 2023-11-08 주식회사 광운기술 A Fire Detection System for Fire Hazardous Facilities Adopting Self Generation by Fire Heat
KR102599854B1 (en) * 2022-10-27 2023-11-08 주식회사 광운기술 A Fire Detection System for Anti-Firing Filling Structure Adopting Self Generation by Fire Heat

Also Published As

Publication number Publication date
JP6896524B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP2019008720A (en) Heat sensor
JP2017513011A (en) Fiber Bragg grating demodulator and temperature control method thereof
KR101605828B1 (en) Non-electric Temperature Sensor using Thermoelectric Element and Fire Preventive System using the Same
US20120143540A1 (en) Self-powered power consumption detecting device and power consumption detecting method thereof
EP2482000A1 (en) Fluid heating apparatus
KR101684327B1 (en) Complex Specifics Testing Apparatus for Thermoelectric Element
CN106370268B (en) Temperature sensing type liquid level switch utilizing self-heating effect of thermal resistor
JP2004047635A (en) Thermoelectric conversion module for flow tube
JP2019003439A (en) Heat detector
JP2014187101A (en) Heat generation device and alert device
CN203454825U (en) Temperature-sensitive probe of high pressure solid electric heating energy storage furnace
JP4252585B2 (en) Fire alarm
KR101082358B1 (en) Apparatus with no power for monitoring fire using a thermoelectric element
JP2014138103A (en) Thermoelectric power generation unit
CN110215100A (en) A kind of Intelligent water cup and its heat energy utilization system and method
JP2015175816A (en) sensor terminal equipment
TWI604640B (en) Thermoelectric sensing device
CN219612426U (en) Heat radiation structure of laser processing detection device
JP3732770B2 (en) Fire heat detector
CN111541399B (en) Self-power-generation type monitoring device
TWM536419U (en) Thermoelectric sensing device
CN213904165U (en) Intelligent constant-temperature dehumidification electrical cabinet
KR101822116B1 (en) Self generation sensor device and self generation sensor system using the same
CN106404109B (en) Heat conduction temperature induction type liquid level switch
JP2019159459A (en) Fire detector and fire-extinguishing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6896524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150