JP2019003439A - Heat detector - Google Patents

Heat detector Download PDF

Info

Publication number
JP2019003439A
JP2019003439A JP2017117925A JP2017117925A JP2019003439A JP 2019003439 A JP2019003439 A JP 2019003439A JP 2017117925 A JP2017117925 A JP 2017117925A JP 2017117925 A JP2017117925 A JP 2017117925A JP 2019003439 A JP2019003439 A JP 2019003439A
Authority
JP
Japan
Prior art keywords
thermoelectric element
temperature
power generation
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017117925A
Other languages
Japanese (ja)
Other versions
JP6846088B2 (en
Inventor
弘道 江幡
Hiromichi Ehata
弘道 江幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2017117925A priority Critical patent/JP6846088B2/en
Publication of JP2019003439A publication Critical patent/JP2019003439A/en
Application granted granted Critical
Publication of JP6846088B2 publication Critical patent/JP6846088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

To provide a high precision heat detector for surely detecting fire at nominal operation temperature as a constant temperature heat detector in need of no power source by using a thermoelectric element.SOLUTION: In a heat detector 10, a heat generation element 16 for cooling is arranged whose endothermic surface 16a is made to contact with a cooling surface 14b of a thermoelectric element 14 for power generation arranged with a heat receiving surface 14a of a detector housing being exposed via a heat medium 15. A constant temperature controller 24 operates when a power generation voltage from the thermoelectric element 14 for power generation reaches a prescribed voltage to perform control such that the heat generation element 16 for cooling is energized so as to maintain temperature of the cooling surface 14b of a thermoelectric element 14 for power generation detected by a temperature sensor 30 at a prescribed cooling target temperature via the heat medium 15 for cooling.SELECTED DRAWING: Figure 2

Description

本発明は、熱電素子を用いることで電源を必要とすることなく火災を検出する熱感知器に関する。   The present invention relates to a heat detector that detects a fire without using a power source by using a thermoelectric element.

従来、電源を必要とすることなく火災を検出する熱感知器としては、バイメタルを用いた定温式熱感知器が知られている(特許文献1)。   Conventionally, a constant temperature heat sensor using a bimetal is known as a heat sensor that detects a fire without requiring a power source (Patent Document 1).

定温式熱感知器は、内部の感熱部が、火災の熱により一定の温度以上になると作動する。感熱部は、バイメタルという2種類の熱膨張率の異なる金属板を貼り合わせたもので、熱を受けるとよく膨張する金属が外側に、あまり膨張しない金属が内側になって曲がり、一定温度での曲がり具合によって、電気的な接点が閉じる。定温式熱感知器が作動する公称作動温度が75℃や65℃に設定されたものが多い。   The constant temperature type heat sensor is activated when the temperature of the internal heat sensitive part rises above a certain level due to the heat of the fire. The heat sensitive part is a combination of two types of metal plates called bimetal, which have different coefficients of thermal expansion. The metal that expands well when receiving heat is bent to the outside, and the metal that does not expand much is bent to the inside. The electrical contact closes depending on the bending condition. In many cases, the nominal operating temperature at which the constant temperature type heat sensor operates is set to 75 ° C. or 65 ° C.

しかしながら、定温式熱感知器は、感熱部としてバイメタルを設けることから筐体内に大きな配置スペースが必要となって大型化し、熱感知器を薄型化してデザイン性を向上させることが困難であった。また、感熱部にサーミスタを使用した定温式熱感知器もあり、薄型化が可能であるが、電源を必要とする。   However, the constant temperature type heat detector is provided with a bimetal as a heat sensitive portion, so that a large arrangement space is required in the housing and the size is increased, and it is difficult to reduce the thickness of the heat detector and improve the design. There is also a constant temperature type heat detector using a thermistor in the heat sensitive part, which can be reduced in thickness, but requires a power source.

一方、電源を必要とすることなく火災を検出して警報する火災警報器としてペルチェ素子として知られた熱電素子を用いた火災警報器が知られている(特許文献2〜4)。   On the other hand, fire alarms using thermoelectric elements known as Peltier elements are known as fire alarms that detect and alert fire without requiring a power source (Patent Documents 2 to 4).

この火災警報器は、例えば,熱電素子の受熱面を外部に露出させると共に熱電素子の反対側の冷却面に金属基板を接触させ、火災による熱気流を受けたときの熱電素子の受熱面と冷却面との温度差により起電力が生じることから、この起電力によりブザーやLEDを作動して火災警報を出力させるようにしている。   This fire alarm, for example, exposes the heat receiving surface of the thermoelectric element to the outside and makes the metal substrate contact the cooling surface on the opposite side of the thermoelectric element so that the heat receiving surface of the thermoelectric element and the cooling when receiving a hot air current from a fire. Since an electromotive force is generated due to a temperature difference from the surface, the buzzer and the LED are operated by this electromotive force to output a fire alarm.

特開平9−147258号公報JP-A-9-147258 特開2007−310795号公報JP 2007-310795 A 特開平7−44784号公報Japanese Unexamined Patent Publication No. 7-44784 実開昭59−15194号公報Japanese Utility Model Publication No.59-15194

ところで、従来の定温式熱感知器にあっては、火災を精度よく検出する感知感度とするため、法的に定められた作動試験を満たす必要がある。   By the way, in the conventional constant temperature type heat sensor, it is necessary to satisfy a legally defined operation test in order to obtain a sensitivity for detecting a fire with high accuracy.

定温式熱感知器の作動試験は、作動試験公称作動試験温度の125パーセントの温度の風速1メートル毎秒の垂直気流に投入したとき、例えば1種では120秒以内、2種では300秒以内で火災信号を発信すること、を満たす必要がある。   The operation test of the constant temperature type heat sensor is a fire within a period of 120 seconds for one type and within 300 seconds for a second type when it is put into a vertical air flow of 1 meter per second at a temperature of 125% of the nominal operation test temperature. Sending a signal needs to be met.

しかしながら、熱電素子を用いた従来の火災警報器にあっては、火災による熱を受けた場合に熱電素子の冷却側をより低温に保つ構造は示されているが、時間の経過に伴って緩やかではあるが冷却側の温度も上昇し、冷却側を一定温度に保った場合に比べ、冷却側の温度が上昇した分、公称作動温度に達してから火災信号が発信されるまでの遅れ時間が大きくなり、定温式熱感知器に要求される作動試験を満たさなくなる場合があり、この点が解決課題として残されている。   However, a conventional fire alarm using a thermoelectric element shows a structure that keeps the cooling side of the thermoelectric element at a lower temperature when it receives heat from a fire, but it gradually relaxes over time. However, the temperature on the cooling side also rises, and compared with the case where the cooling side is kept at a constant temperature, the delay time from when the nominal operating temperature is reached to when the fire signal is emitted is the amount by which the temperature on the cooling side has increased. In some cases, the operation test required for the constant temperature type heat sensor may not be satisfied, and this point remains as a problem to be solved.

本発明は、熱電素子を用いることにより電源を必要とせず、定温式熱感知器として公称作動温度で確実に火災を検出する精度の高い熱感知器を提供することを目的とする。   An object of the present invention is to provide a highly accurate heat sensor that reliably detects a fire at a nominal operating temperature as a constant temperature type heat sensor without using a power source by using a thermoelectric element.

(定温式熱感知器)
本発明は、熱感知器に於いて、
感知器筐体に受熱面を露出して配置され、受熱面と冷却面との温度差に応じた発電電圧を出力する発電用熱電素子と、
発電用熱電素子の冷却面に吸熱面を直接又は熱媒体を介して間接的に接触して配置された冷却用熱電素子と、
発電用熱電素子から発電電圧が得られた場合に冷却用熱電素子に通電して発電用熱電素子の冷却面の温度を所定温度を保つように制御する定温制御部と、
発電用熱電素子からの発電電圧に基づいて火災を検出する火災検出部と、
が設けられたことを特徴とする。
(Constant temperature sensor)
The present invention relates to a heat sensor,
A thermoelectric element for power generation that is disposed with the heat receiving surface exposed to the sensor housing and outputs a power generation voltage according to a temperature difference between the heat receiving surface and the cooling surface;
A cooling thermoelectric element disposed in direct contact with the cooling surface of the power generation thermoelectric element directly or indirectly through a heat medium; and
A constant temperature control unit for controlling the temperature of the cooling surface of the thermoelectric element for power generation to maintain a predetermined temperature by energizing the thermoelectric element for cooling when the generated voltage is obtained from the thermoelectric element for power generation;
A fire detection unit for detecting a fire based on a power generation voltage from a thermoelectric element for power generation;
Is provided.

(定温フィードバック制御)
定温制御部は、
発電用熱電素子の冷却面側の温度を検出する温度センサと、
発電用熱電素子からの発電電圧が所定電圧に達した場合に所定の電源電圧を出力する電源部と、
電源部からの電源電圧の供給を受けて動作し、温度センサにより検出した発電用熱電素子の冷却面の温度を所定の冷却目標温度に保つように冷却用熱電素子を制御するフィードバック制御部と、
が設けられる。
(Constant temperature feedback control)
The constant temperature controller
A temperature sensor for detecting the temperature on the cooling surface side of the thermoelectric element for power generation;
A power supply unit that outputs a predetermined power supply voltage when the generated voltage from the thermoelectric element for power generation reaches a predetermined voltage;
A feedback control unit that operates in response to the supply of the power supply voltage from the power supply unit and controls the cooling thermoelectric element so as to maintain the temperature of the cooling surface of the power generation thermoelectric element detected by the temperature sensor at a predetermined cooling target temperature;
Is provided.

(温度抵抗素子による定温制御)
定温制御部は、
発電用熱電素子の冷却面側に配置された温度により抵抗値が変化する温度抵抗素子と、
発電用熱電素子からの発電電圧が所定電圧に達した場合に所定の電源電圧を温度抵抗素子を経由して冷却用熱電素子に供給して発電用熱電素子の冷却面を冷却させる電源部と、
が設けられる。
(Constant temperature control by temperature resistance element)
The constant temperature controller
A temperature resistance element whose resistance value changes depending on the temperature disposed on the cooling surface side of the thermoelectric element for power generation; and
A power supply unit configured to supply a predetermined power supply voltage to the cooling thermoelectric element via the temperature resistance element to cool the cooling surface of the power generation thermoelectric element when the generated voltage from the power generation thermoelectric element reaches a predetermined voltage;
Is provided.

(火災発報信号の出力)
火災検出部は火災を検出した場合に火災発報信号を外部に出力する。
(Fire alarm signal output)
The fire detection unit outputs a fire alarm signal to the outside when a fire is detected.

(熱感知器自身の火災警報)
火災検出部は火災を検出した場合に火災警報を出力する。
(Thermal detector's own fire alarm)
The fire detector outputs a fire alarm when a fire is detected.

(基本的な効果)
本発明は、熱感知器に於いて、感知器筐体の受熱面を露出して配置され、受熱面と冷却面との温度差に応じた発電電圧を出力する発電用熱電素子と、発電用熱電素子の冷却面に吸熱面を直接又は熱媒体を介して間接的に接触して配置された冷却用熱電素子と、発電用熱電素子から発電電圧が得られた場合に冷却用熱電素子に通電して冷却面の温度を所定温度を保つように制御する定温制御部と、発電用熱電素子からの発電電圧に基づいて火災を検出する火災検出部とが設けられたため、火災又は試験による熱気流を受けた場合、発電用熱電素子の冷却面側は、定温制御部による冷却用熱電素子の通電による冷却を受けて、所定の一定温度に保たれて変化せず、冷却面の一定温度と受熱面の公称作動温度との温度差に対応した発電電圧が得られたときに火災を検出することができ、公称作動温度による火災検出を高精度で行うことができる。
(Basic effect)
The present invention relates to a heat detector, wherein a heat receiving surface of a sensor housing is exposed to be disposed, and a thermoelectric element for power generation that outputs a power generation voltage according to a temperature difference between the heat receiving surface and a cooling surface, A thermoelectric element for cooling arranged with the endothermic surface in direct contact with the cooling surface of the thermoelectric element directly or indirectly through a heat medium, and when the generated voltage is obtained from the thermoelectric element for power generation, the cooling thermoelectric element is energized Therefore, a constant temperature control unit that controls the temperature of the cooling surface to maintain a predetermined temperature and a fire detection unit that detects a fire based on the generated voltage from the thermoelectric element for power generation are provided. The cooling surface side of the thermoelectric element for power generation is cooled by energization of the cooling thermoelectric element by the constant temperature control unit, and is kept at a predetermined constant temperature and does not change. The generated voltage corresponding to the temperature difference from the nominal operating temperature of the surface is obtained. Fire can be detected, it is possible to perform fire detection by nominal operating temperature with high accuracy when.

(定温フィードバック制御)
また、定温制御部は、発電用熱電素子の冷却面側の温度を検出する温度検出器と、発電用熱電素子からの発電電圧が所定電圧に達した場合に所定の電源電圧を出力する電源部と、電源部からの電源電圧の供給を受けて動作し、温度検出器により検出した発電用熱電素子の冷却面の温度を所定の冷却目標温度に保つように冷却用熱電素子を制御するフィードバック制御部とが設けられたため、発電用熱電素子の冷却面側を冷却用熱電素子の作動により一定温度に保つ制御が正確に行われて安定し、公称作動温度による火災検出を高精度で行うことができる。
(Constant temperature feedback control)
The constant temperature control unit includes a temperature detector that detects the temperature on the cooling surface side of the thermoelectric element for power generation, and a power supply unit that outputs a predetermined power supply voltage when the generated voltage from the thermoelectric element for power generation reaches a predetermined voltage And feedback control for controlling the cooling thermoelectric element so that the temperature of the cooling surface of the thermoelectric element for power generation detected by the temperature detector is maintained at a predetermined cooling target temperature. Therefore, the control to keep the cooling surface of the thermoelectric element for power generation at a constant temperature by the operation of the thermoelectric element for cooling is accurately performed and stabilized, and the fire detection at the nominal operating temperature can be performed with high accuracy. it can.

(温度抵抗素子による定温制御)
また、定温制御部は、発電用熱電素子の冷却面側に配置された温度により抵抗値が変化する温度抵抗素子と、発電用熱電素子からの発電電圧が所定電圧に達した場合に所定の電源電圧を温度抵抗素子を経由して冷却用熱電素子に供給して発電用熱電素子の冷却面を冷却させる電源部とが設けられたため、温度抵抗素子として例えばサーミスタを用いた場合、サーミスタは温度上昇に応じて抵抗値が低下することから、熱気流を受けて発電用熱電素子の冷却面側の温度が上昇するとサーミスタの値が低下し、抵抗値が低下した分、冷却用熱電素子に流れる駆動電流が増加して吸熱面の温度が低下して発電用熱電素子の冷却面側の温度が下がり、温度が下がるとサーミスタの抵抗値が増加して冷却用熱電素子の駆動電流が低下して吸熱面の温度が増加し、この繰り返しにより発電用熱電素子の冷却面側の温度を簡単な構成により安定化させることができる。
(Constant temperature control by temperature resistance element)
Further, the constant temperature control unit includes a temperature resistance element whose resistance value changes depending on the temperature disposed on the cooling surface side of the power generation thermoelectric element, and a predetermined power source when the power generation voltage from the power generation thermoelectric element reaches a predetermined voltage. For example, when a thermistor is used as the temperature resistance element, the thermistor rises in temperature because a voltage is supplied to the cooling thermoelectric element via the temperature resistance element to cool the cooling surface of the power generation thermoelectric element. Therefore, if the temperature on the cooling surface side of the thermoelectric element for power generation rises due to the hot air flow, the value of the thermistor decreases, and the resistance value decreases, and the drive that flows to the cooling thermoelectric element As the current increases, the temperature on the heat absorption surface decreases, the temperature on the cooling surface side of the thermoelectric element for power generation decreases, and when the temperature decreases, the resistance value of the thermistor increases and the drive current of the cooling thermoelectric element decreases to absorb heat. Surface temperature is Pressurized, and can be stabilized by a simple configuration the temperature of the cooling surface of the power generating thermoelectric element by the repetition.

(火災発報信号の出力による効果)
また、火災検出部は火災を検出した場合に火災発報信号を外部に出力するようにしたため、受信機からの感知器回線に接続した場合に、受信機から感知器回線を介して熱感知器に電源を供給する必要がなく、熱感知器から火災発報信号を受信機に送って火災警報を出力させることができる。
(Effects of fire alarm signal output)
In addition, since the fire detection unit outputs a fire alarm signal to the outside when a fire is detected, when connected to the sensor line from the receiver, the heat detector from the receiver via the sensor line There is no need to supply power to the heater, and a fire alarm signal can be sent from the heat detector to the receiver to output a fire alarm.

(熱感知器自身の火災警報による効果)
また、火災検出部は火災を検出した場合に火災警報を出力するようにしたため、熱感知器自身で火災を検出して警報音の出力と警報表示を行う住宅用火災警報器としての使用を可能とし、電池電源を必要としないことから電池切れを管理することなく、長期間に亘る住宅での火災監視を可能とする。
(Effect of fire alarm of fire detector itself)
In addition, since the fire detection unit outputs a fire alarm when a fire is detected, it can be used as a residential fire alarm that detects the fire with the heat detector itself and outputs an alarm sound and an alarm display. Since a battery power source is not required, it is possible to monitor a fire in a house for a long period of time without managing battery exhaustion.

熱感知器の第1実施形態を示した説明図Explanatory drawing which showed 1st Embodiment of the heat sensor. 図1の熱感知器に設けられた感知器回路の実施形態を示したブロック図1 is a block diagram showing an embodiment of a sensor circuit provided in the thermal sensor of FIG. 図1の熱感知器に設けられた発電用熱電素子と冷却用熱電素子の概略構造示した説明図Explanatory drawing which showed schematic structure of the thermoelectric element for electric power generation provided in the heat sensor of FIG. 1, and the thermoelectric element for cooling 熱気流を受けたときの図2の感知器回路の動作を示したタイムチャートTime chart showing the operation of the sensor circuit in FIG. 図1の熱感知器に設けられた感知器回路の他の実施形態を示したブロック図The block diagram which showed other embodiment of the sensor circuit provided in the heat sensor of FIG.

[熱感知器の第1実施形態]
図1は熱感知器の第1実施形態を示した説明図であり、図1(A)は横から見た断面を示し、図1(B)は回路収納部を外した状態の平面を示す。
[First Embodiment of Heat Sensor]
FIG. 1 is an explanatory view showing a first embodiment of a heat sensor, FIG. 1 (A) shows a cross section seen from the side, and FIG. 1 (B) shows a plan view with a circuit housing part removed. .

(熱感知器の構造)
図1に示すように、本実施形態の熱感知器10は、合成樹脂製の感知器筐体12の下面にペルチェ素子を用いた薄型矩形の発電用熱電素子14が受熱面14aを外部に露出して固定配置されている。発電用熱電素子14の裏側の冷却面14bには熱媒体15が接触配置されている。
(Structure of heat sensor)
As shown in FIG. 1, in the heat sensor 10 of this embodiment, a thin rectangular thermoelectric generator 14 using a Peltier element is exposed on the lower surface of a sensor housing 12 made of synthetic resin, and the heat receiving surface 14a is exposed to the outside. And fixedly arranged. A heat medium 15 is disposed in contact with the cooling surface 14 b on the back side of the thermoelectric element 14 for power generation.

熱媒体15は熱伝導率の高い例えばアルミニウムで作られた矩形のブロック部材であり、感知器筐体12内の収納枠22の中に配置されている。発電用熱電素子14は外部に露出した受熱面14aと熱媒体15に接触配置された冷却面14bとの温度差に応じた発電電圧を発生する。   The heat medium 15 is a rectangular block member made of, for example, aluminum having high thermal conductivity, and is disposed in the storage frame 22 in the sensor housing 12. The thermoelectric element 14 for power generation generates a power generation voltage corresponding to the temperature difference between the heat receiving surface 14a exposed to the outside and the cooling surface 14b disposed in contact with the heat medium 15.

熱媒体15の裏面には冷却用熱電素子16が配置される。冷却用熱電素子16は駆動電流を流した場合に、熱媒体15に接触している吸熱面16aから裏面露出している放熱面16bに熱を移動させ、熱媒体15を介して発電用熱電素子15の冷却面14bを冷却させる。   A cooling thermoelectric element 16 is disposed on the back surface of the heat medium 15. When a driving current flows, the cooling thermoelectric element 16 moves heat from the heat absorption surface 16a in contact with the heat medium 15 to the heat radiation surface 16b exposed on the back surface, and the thermoelectric element for power generation through the heat medium 15 The 15 cooling surfaces 14b are cooled.

また感知器筐体12内には回路収納部18が設けられ、回路収納部18には発電用熱電素子14の発電電圧の供給を受けて火災を検出すると共に冷却用熱電素子16により発電用熱電素子14の冷却面14bを一定温度に制御するための感知器回路が実装されている。   In addition, a circuit housing portion 18 is provided in the sensor housing 12. The circuit housing portion 18 is supplied with the power generation voltage of the power generation thermoelectric element 14 to detect a fire, and the cooling thermoelectric element 16 generates a thermoelectric power for generation. A sensor circuit for controlling the cooling surface 14b of the element 14 to a constant temperature is mounted.

[感知器回路]
図2は図1の熱感知器に設けられた感知器回路の実施形態を示したブロック図である。
[Sensor circuit]
FIG. 2 is a block diagram illustrating an embodiment of a sensor circuit provided in the thermal sensor of FIG.

(火災検出部)
図2に示すように、熱感知器10の感知器回路には火災検出部32が設けられ、発電用熱電素子14で発電された発電電圧Vgenが供給されており、発電電圧Vgenが予め定めた定温式熱感知器として予め設定された公称作動温度に対応した火災閾値Vfに達した場合に火災を検出する。
(Fire detection part)
As shown in FIG. 2, the detector circuit of the heat detector 10 is provided with a fire detection unit 32, to which the power generation voltage Vgen generated by the power generation thermoelectric element 14 is supplied, and the power generation voltage Vgen is predetermined. A fire is detected when a fire threshold value Vf corresponding to a nominal operating temperature set in advance as a constant temperature heat sensor is reached.

火災検出部32にはブザー34、LED36及びリレー38が接続されている。火災検出部32は発電用熱電素子14の発電電圧Vgenから火災を検出すると、ブザー34を鳴動して火災警報音を出力させ、LED36を点灯、点滅又は明滅させて火災警報表示を行い、また、リレー38を作動してリレー接点40を閉じ、感知器端子42a,42bから外部に無電圧接点信号として火災発報信号を出力するようにしている。   A buzzer 34, an LED 36 and a relay 38 are connected to the fire detection unit 32. When the fire detector 32 detects a fire from the power generation voltage Vgen of the thermoelectric element 14 for power generation, the buzzer 34 is sounded to output a fire alarm sound, the LED 36 is turned on, blinks or flickers to display a fire alarm, The relay 38 is operated to close the relay contact 40, and a fire alarm signal is output as a non-voltage contact signal from the sensor terminals 42a and 42b.

感知器端子42a,42bには受信機から引き出された感知器回線が接続されており、リレー接点40の閉止により感知器回線間を低インピーダンスに短絡して回線電流を流すことで、発報信号を受信機に送信して火災警報を出力させることができる。この場合、通常の火災感知器のように受信機から感知回線を介して熱感知器10に電源電圧を供給して動作させる必要がなく、受信機の電源容量を小さくすることができる。   A sensor line drawn from the receiver is connected to the sensor terminals 42a and 42b. When the relay contact 40 is closed, the sensor line is short-circuited to a low impedance to cause a line current to flow. Can be sent to the receiver to output a fire alarm. In this case, it is not necessary to operate the thermal detector 10 by supplying a power supply voltage from the receiver to the heat detector 10 via a sensing line as in a normal fire detector, and the power capacity of the receiver can be reduced.

(定温制御部)
図2に示すように、熱感知器10の感知器回路には定温制御部24が設けられる。定温制御部24は電源部として機能するDC/DCコンバータ26、フィードバック制御部28及び熱媒体15に設けられた温度センサ30で構成される。温度センサ30としては、サーミスタ、PN接合素子、白金測温素子などが使用される。
(Constant temperature controller)
As shown in FIG. 2, a constant temperature control unit 24 is provided in the sensor circuit of the heat sensor 10. The constant temperature control unit 24 includes a DC / DC converter 26 that functions as a power supply unit, a feedback control unit 28, and a temperature sensor 30 provided in the heat medium 15. As the temperature sensor 30, a thermistor, a PN junction element, a platinum temperature measuring element, or the like is used.

DC/DCコンバータ26は、火災又は試験による熱気流を受けた場合に発電用熱電素子14から出力される発電電圧Vgenが所定の起動電圧Vstに達した場合に動作し、電源電圧Vcをフィードバック制御部28に供給して動作させる。   The DC / DC converter 26 operates when the power generation voltage Vgen output from the thermoelectric element 14 for power generation reaches a predetermined start-up voltage Vst when receiving a thermal airflow due to a fire or a test, and feedback-controls the power supply voltage Vc. The unit 28 is supplied to operate.

フィードバック制御部28には熱媒体15に設けられた温度センサ30による検出温度信号が入力されており、DC/DCコンバータ26から電源電圧Vcの供給を受けて動作した場合に、温度センサ30により検出した熱媒体15の温度、実質的には熱媒体15が接触している発電用熱電素子14の冷却面14bの温度を、所定の冷却目標温度Toに保つように冷却用熱電素子16に駆動電流を流して熱媒体15を介し発電用熱電素子14の冷却面14bを冷却させる温度制御を行う。   A temperature signal detected by the temperature sensor 30 provided in the heat medium 15 is input to the feedback control unit 28, and is detected by the temperature sensor 30 when operated with the supply of the power supply voltage Vc from the DC / DC converter 26. The driving current is supplied to the cooling thermoelectric element 16 so as to keep the temperature of the heat generating medium 15 and the temperature of the cooling surface 14b of the thermoelectric generating element 14 in contact with the heating medium 15 at the predetermined cooling target temperature To. To control the cooling surface 14b of the thermoelectric element 14 for power generation through the heat medium 15.

フィードバック制御部28は例えば誤差アンプと冷却目標温度Toに対応した基準電圧Vrefを設定する基準電圧源が設けられ、温度センサ30による温度検出電圧Vtと基準電圧Vrefとの誤差に応じたフィードバック信号電圧Vfを出力し、Vt>Vrefの場合はフィードバック信号電圧Vfを大きくして冷却用熱電素子16に流す駆動電流を増加させ、Vt<Vrefの場合はフィードバック信号電圧Vfを小さくまたは停止して冷却用熱電素子16に流す駆動電流を減少させ、これにより熱媒体15を介して発電用熱電素子14の冷却面14aの温度を所定の冷却目標温度Toに保つ制御が行われる。   The feedback control unit 28 is provided with, for example, an error amplifier and a reference voltage source for setting a reference voltage Vref corresponding to the cooling target temperature To, and a feedback signal voltage corresponding to an error between the temperature detection voltage Vt by the temperature sensor 30 and the reference voltage Vref. When Vt> Vref, the feedback signal voltage Vf is increased to increase the drive current flowing through the cooling thermoelectric element 16, and when Vt <Vref, the feedback signal voltage Vf is decreased or stopped for cooling. The drive current that flows through the thermoelectric element 16 is reduced, whereby control is performed to maintain the temperature of the cooling surface 14a of the power generation thermoelectric element 14 at a predetermined cooling target temperature To via the heat medium 15.

[熱電素子の構造]
図3は図1の熱感知器に設けられた発電用熱電素子と冷却用熱電素子の概略構造示した説明図である。
[Structure of thermoelectric element]
FIG. 3 is an explanatory diagram showing a schematic structure of a power generation thermoelectric element and a cooling thermoelectric element provided in the heat detector of FIG.

ペルチェ素子は、電圧を印加するとその表裏に温度差を生じる素子であり、本実施形態の冷却用熱電素子16として用いられる。また、ペルチェ素子に温度差を付与するとゼーベック効果として知られた作用により起電力を生じ、本実施形態の発電用熱電素子14として用いられる。   The Peltier element is an element that generates a temperature difference between the front and back when a voltage is applied, and is used as the cooling thermoelectric element 16 of the present embodiment. Further, when a temperature difference is applied to the Peltier element, an electromotive force is generated by an action known as the Seebeck effect, and the Peltier element is used as the thermoelectric element 14 for power generation of this embodiment.

(発電用熱電素子の構造)
発電用熱電素子14として機能するペルチェ素子は、図3に示すように、受熱側絶縁基板42と冷却側絶縁基板44のそれぞれの内側に、複数の電極46,48が所定の間隔をあけて交互にずらして相対するように配置され、電極46,48との間に交互にP型半導体50とN型半導体52が配置されている。
(Structure of thermoelectric element for power generation)
As shown in FIG. 3, in the Peltier element functioning as the thermoelectric element 14 for power generation, a plurality of electrodes 46 and 48 are alternately arranged at predetermined intervals on the inner sides of the heat receiving side insulating substrate 42 and the cooling side insulating substrate 44, respectively. The P-type semiconductor 50 and the N-type semiconductor 52 are alternately arranged between the electrodes 46 and 48.

受熱側絶縁基板42側に火災や試験による熱気流の熱が加わることによって、受熱側絶縁基板42と冷却側絶縁基板44との間に温度差が生じると発電作用により電圧が発生する。   A voltage is generated by a power generation action when a temperature difference occurs between the heat-receiving side insulating substrate 42 and the cooling-side insulating substrate 44 due to the heat of a hot air flow from a fire or test applied to the heat-receiving side insulating substrate 42 side.

この発電作用は、マイナス端子66aが接続された電極46からP型半導体50に電子が流れ、P型半導体50から電極48に電子が流れる。また、電極48からN型半導体52、N型半導体52から電極46に電子が流れ、プラス端子50とマイナス端子52の間に発電電圧Vgenが発生する。   In this power generation action, electrons flow from the electrode 46 connected to the negative terminal 66 a to the P-type semiconductor 50, and electrons flow from the P-type semiconductor 50 to the electrode 48. Electrons flow from the electrode 48 to the N-type semiconductor 52 and from the N-type semiconductor 52 to the electrode 46, and a generated voltage Vgen is generated between the plus terminal 50 and the minus terminal 52.

発電用熱電素子14のプラス端子50とマイナス端子52の間に発生した発電電圧Vgenは、図3(A)に示した感知器回路に供給され、動作させることができる。発電用熱電素子14として機能するペルチェ素子の発電電圧Vgenは、受熱面14aと冷却面14bの温度差の二乗に比例する関係にある。   The generated voltage Vgen generated between the plus terminal 50 and the minus terminal 52 of the power generation thermoelectric element 14 is supplied to the sensor circuit shown in FIG. 3A and can be operated. The power generation voltage Vgen of the Peltier element that functions as the power generation thermoelectric element 14 is proportional to the square of the temperature difference between the heat receiving surface 14a and the cooling surface 14b.

(冷却用熱電素子の構造)
冷却用熱電素子16として機能するペルチェ素子は、図3に示すように、吸熱側絶縁基板54と放熱側絶縁基板56のそれぞれの内側に、複数の電極58,60が所定の間隔をあけて交互にずらして相対するように配置され、電極58,60との間に交互にP型半導体62とN型半導体64が配置されており、発電用熱電素子14と同じ構造である。
(Structure of thermoelectric element for cooling)
As shown in FIG. 3, in the Peltier element functioning as the cooling thermoelectric element 16, a plurality of electrodes 58, 60 are alternately arranged at predetermined intervals on the inner side of the heat absorption side insulating substrate 54 and the heat radiation side insulating substrate 56, respectively. The P-type semiconductor 62 and the N-type semiconductor 64 are alternately arranged between the electrodes 58 and 60 and have the same structure as the thermoelectric element 14 for power generation.

冷却用熱電素子16から引き出されたプラス端子68aとマイナス端子68bの間に駆動電圧を印加すると、プラス端子68s側からマイナス端子68b側に向けて電極58、P型半導体62、電極60、N型半導体64の順番に電流が流れ、吸熱側絶縁基板54から放熱側絶縁基板56に熱が移動し、吸熱側絶縁基板54側に配置された熱媒体15が冷却され、更に、熱媒体15を介して発電用熱電素子14の冷却面となる冷却側絶縁基板42が冷却される。   When a driving voltage is applied between the plus terminal 68a and the minus terminal 68b drawn from the cooling thermoelectric element 16, the electrode 58, the P-type semiconductor 62, the electrode 60, and the N-type are directed from the plus terminal 68s side to the minus terminal 68b side. A current flows in the order of the semiconductor 64, heat is transferred from the heat absorption side insulating substrate 54 to the heat dissipation side insulating substrate 56, the heat medium 15 disposed on the heat absorption side insulating substrate 54 side is cooled, and further, via the heat medium 15. Thus, the cooling-side insulating substrate 42 that becomes the cooling surface of the power generation thermoelectric element 14 is cooled.

[熱感知器の動作]
図4は熱気流を受けたときの図2の感知器回路の動作を示したタイムチャートであり、図4(A)に発電用熱電素子14における熱受面14aと冷却面14bの温度変化を示し、図4(B)にDC/DCコンバータ26による冷却用熱電素子の冷却タイミングを示し、図4(C)に火災検出部32による火災検出のタイミングを示す。
[Thermal sensor operation]
FIG. 4 is a time chart showing the operation of the sensor circuit of FIG. 2 when receiving a hot air current. FIG. 4A shows the temperature change of the heat receiving surface 14a and the cooling surface 14b in the thermoelectric element 14 for power generation. 4B shows the cooling timing of the cooling thermoelectric element by the DC / DC converter 26, and FIG. 4C shows the timing of fire detection by the fire detection unit 32.

図4に示すように、本実施形態の熱感知器10が時刻t0で火災又は試験よる気流を受けたとすると、図4(A)に示すように、発電用熱電素子14の受熱面温度T1は時間の経過に伴って直線的に増加し、冷却面温度T2は感知器筐体12内にあることから緩やかに上昇し、発電用熱電素子14は受熱面温度T1と冷却面温度T2との温度差(T1−T2)の二乗に比例した発電電圧Vgを出力する。   As shown in FIG. 4, if the heat sensor 10 of the present embodiment receives a fire or an airflow due to a test at time t 0, as shown in FIG. 4A, the heat receiving surface temperature T 1 of the power generation thermoelectric element 14 is As the time elapses, the cooling surface temperature T2 rises gently because it is in the sensor housing 12, and the thermoelectric element 14 for power generation has a temperature between the heat receiving surface temperature T1 and the cooling surface temperature T2. A power generation voltage Vg proportional to the square of the difference (T1-T2) is output.

図2に示したDC/DCコンバータ26は発電用熱電素子14からの発電電圧Vgenが所定の起動電圧Vstに達すると動作し、フィードバック制御部28に電源電圧Vcを供給して動作させ、図4(A)の時刻t2で発電用熱電素子14の冷却面14bの温度が所定の冷却目標温度Toに制御され、緩やかに上昇を始めていた冷却面温度T2は冷却目標温度Toを保つように定温制御が行われる。   The DC / DC converter 26 shown in FIG. 2 operates when the power generation voltage Vgen from the power generation thermoelectric element 14 reaches a predetermined activation voltage Vst, and operates by supplying the power supply voltage Vc to the feedback control unit 28. At time t2 of (A), the temperature of the cooling surface 14b of the thermoelectric element 14 for power generation is controlled to a predetermined cooling target temperature To, and the cooling surface temperature T2 that has started to rise gradually is controlled to maintain the cooling target temperature To. Is done.

このため発電用熱電素子14は受熱面14aの温度T1と冷却目標温度Toに定温制御されている冷却面14bの温度T2との温度差(T1−T2)の二乗に比例した発電電圧Vgenを出力し、時刻t2で火災検出部32により公称作動温度Tθと冷却目標温度Toとの温度差(Tθ−To)の二乗に比例した発電電圧Vgenに相当する火災閾値電圧Vfに達したとき、図4(C)に示すように、火災検出動作が行われ、火災警報の出力や火災発報信号の出力が行われる。   For this reason, the thermoelectric element 14 for power generation outputs a power generation voltage Vgen proportional to the square of the temperature difference (T1-T2) between the temperature T1 of the heat receiving surface 14a and the temperature T2 of the cooling surface 14b that is controlled at the cooling target temperature To. When the fire detection unit 32 reaches the fire threshold voltage Vf corresponding to the power generation voltage Vgen proportional to the square of the temperature difference (Tθ−To) between the nominal operating temperature Tθ and the cooling target temperature To at time t2, FIG. As shown in (C), a fire detection operation is performed, and a fire alarm and a fire alarm signal are output.

なお、冷却用熱電素子16の定温制御における冷却目標温度Toは、例えば年間の平均的な室温等に対応して例えばTo=20℃に設定されており、図4(A)は時刻t0から熱気流を受ける前の室温が冷却目標温度Toと同じになっていた場合を例にとっている。   Note that the cooling target temperature To in the constant temperature control of the cooling thermoelectric element 16 is set to, for example, To = 20 ° C. corresponding to, for example, the average room temperature of the year, and FIG. 4A shows hot air from time t0. The case where the room temperature before receiving the flow is the same as the cooling target temperature To is taken as an example.

[感知器回路の他の実施形態]
図5は図1の熱感知器に設けられた感知器回路の実施形態を示したブロック図である。
[Other Embodiments of Sensor Circuit]
FIG. 5 is a block diagram illustrating an embodiment of a sensor circuit provided in the thermal sensor of FIG.

(火災検出部)
図5に示すように、本実施形態の熱感知器10の感知器回路に設けられた火災検出部32は、図2の実施形態と同じであり、発電用熱電素子14で発電された発電電圧Vgenが定温式熱感知器としての公称作動温度に対応した火災閾値Tfに達した場合に火災を検出し、ブザー34を鳴動して火災警報音を出力させ、LED36を点灯、点滅又は明滅させて火災警報表示を行い、また、リレー38を作動してリレー接点40を閉じ、感知器端子42a,42bから外部に無電圧接点信号として火災発報信号を出力させる。
(Fire detection part)
As shown in FIG. 5, the fire detection unit 32 provided in the sensor circuit of the heat sensor 10 of the present embodiment is the same as that of the embodiment of FIG. 2, and the generated voltage generated by the power generation thermoelectric element 14. When Vgen reaches the fire threshold value Tf corresponding to the nominal operating temperature as a constant temperature type heat detector, a fire is detected, the buzzer 34 is sounded and a fire alarm sound is output, and the LED 36 is turned on, blinks or blinks. A fire alarm is displayed, the relay 38 is operated to close the relay contact 40, and a fire alarm signal is output as a non-voltage contact signal from the sensor terminals 42a and 42b.

(定温制御部)
図5に示すように、熱感知器10の感知器回路に設けられた定温制御部24は、発電用熱電素子14の冷却面14a側に配置された熱媒体15に設けられたサーミスタ70と、発電用熱電素子14からの発電電圧Vgenが所定の起動電圧Vstに達した場合に所定の電源電圧Vcをサーミスタ70を経由して冷却用熱電素子16に供給して冷却させる電源部として機能するDC/DCコンバータ24で構成される。サーミスタ70は温度上昇に応じて抵抗値が低下する温度抵抗素子として機能する。また、サーミスタ30は発電用熱電素子14の冷却面14bに直接配置しても良い。
(Constant temperature controller)
As shown in FIG. 5, the constant temperature control unit 24 provided in the sensor circuit of the heat sensor 10 includes a thermistor 70 provided in the heat medium 15 arranged on the cooling surface 14 a side of the thermoelectric element 14 for power generation, DC that functions as a power supply unit that supplies a predetermined power supply voltage Vc to the cooling thermoelectric element 16 via the thermistor 70 and cools it when the generated voltage Vgen from the thermoelectric element 14 for generation reaches a predetermined starting voltage Vst. / DC converter 24. The thermistor 70 functions as a temperature resistance element whose resistance value decreases as the temperature rises. Further, the thermistor 30 may be disposed directly on the cooling surface 14b of the thermoelectric element 14 for power generation.

本実施形態による定温制御部24の動作は次のようになる。発電用熱電素子14が火災又は試験よる気流を受けた場合、発電用熱電素子14は受熱面14aの温度T1と冷却面14bの温度T2との温度差(T1−T2)の二乗に比例した発電電圧Vgを出力する。   The operation of the constant temperature control unit 24 according to the present embodiment is as follows. When the thermoelectric element 14 for power generation receives a fire or an air flow from a test, the thermoelectric element 14 for power generation generates power in proportion to the square of the temperature difference (T1-T2) between the temperature T1 of the heat receiving surface 14a and the temperature T2 of the cooling surface 14b. The voltage Vg is output.

DC/DCコンバータ26は発電用熱電素子14からの発電電圧Vgenが所定の起動電圧Vstに達すると動作し、サーミスタ70を介して冷却用熱電素子16に所定の電源電圧Vcを供給し、冷却用熱電素子16に駆動電流が流れ、熱媒体70を介して発電用熱電素子14の冷却面14aが冷却される。   The DC / DC converter 26 operates when the power generation voltage Vgen from the power generation thermoelectric element 14 reaches a predetermined start-up voltage Vst, supplies a predetermined power supply voltage Vc to the cooling thermoelectric element 16 via the thermistor 70, and performs cooling. A driving current flows through the thermoelectric element 16, and the cooling surface 14 a of the power generation thermoelectric element 14 is cooled via the heat medium 70.

このとき熱媒体15に配置されたサーミスタ70は、熱気流を受けている発電用熱電素子14の冷却面14bの温度上昇を受けて緩やかに温度が上昇しており、温度の上昇により抵抗値が低下し、抵抗値の低下により冷却用熱電素子16に流れる駆動電流が増加し、吸熱する熱が増加し、その結果、熱媒体15の温度が低下する。   At this time, the thermistor 70 disposed in the heat medium 15 gradually increases in temperature due to the temperature rise of the cooling surface 14b of the power generation thermoelectric element 14 receiving the hot air flow, and the resistance value increases due to the temperature rise. The drive current flowing through the cooling thermoelectric element 16 is increased due to the decrease in resistance value, and the heat absorbed is increased. As a result, the temperature of the heat medium 15 is decreased.

熱媒体15の温度が低下するとサーミスタ70の抵抗値が増加し、冷却用熱電素子16に流れる駆動電流が低下し、吸熱する熱が減少し、その結果、熱媒体15の温度が増加する。この繰り返しにより発電用熱電素子14の冷却面14a側の温度がある温度に安定化される。   When the temperature of the heat medium 15 is lowered, the resistance value of the thermistor 70 is increased, the drive current flowing through the cooling thermoelectric element 16 is lowered, the heat absorbed is decreased, and as a result, the temperature of the heat medium 15 is increased. By repeating this, the temperature on the cooling surface 14a side of the thermoelectric element 14 for power generation is stabilized at a certain temperature.

発電用熱電素子14の冷却面14a側の温度が、サーミスタ70を利用した簡単な構成の定温制御部24により安定化されると、発電用熱電素子14は高温となっている受熱面14bの温度と安定化された冷却面14bの温度との温度差の二乗の比例した発電電圧Vgenを出力し、火災検出部32により公称作動温度Tθと冷却目標温度Toとの温度差(Tθ−To)の二乗の比例した発電電圧Vgenに相当する火災閾値電圧Vfに達したとき、火災が検出され、火災警報の出力や火災発報信号の出力が行われる。   When the temperature on the cooling surface 14 a side of the thermoelectric element 14 for power generation is stabilized by the constant temperature control unit 24 having a simple configuration using the thermistor 70, the temperature of the heat receiving surface 14 b at which the thermoelectric element 14 for power generation is at a high temperature. And a power generation voltage Vgen proportional to the square of the temperature difference between the temperature of the cooled cooling surface 14b and the stabilized temperature of the cooling surface 14b, and the fire detection unit 32 generates a temperature difference (Tθ−To) between the nominal operating temperature Tθ and the cooling target temperature To. When the fire threshold voltage Vf corresponding to the squarely proportional power generation voltage Vgen is reached, a fire is detected and a fire alarm is output or a fire alarm signal is output.

[本発明の変形例]
上記の実施形態は、発電用熱電素子の冷却面に熱媒体を介して冷却用熱電素子を配置しているが、これに限定されず、発電用熱電素子の冷却面に冷却用熱電素子を直接配置しても良い。
[Modification of the present invention]
In the above embodiment, the cooling thermoelectric element is disposed on the cooling surface of the power generation thermoelectric element via the heat medium. However, the present invention is not limited to this, and the cooling thermoelectric element is directly disposed on the cooling surface of the power generation thermoelectric element. It may be arranged.

また、上記の実施形態は、天井面に設置される構造の熱感知器を例にとっているが、これに限定されず、例えば、壁掛け型なとの適宜の構造としても良い。   Moreover, although said embodiment has taken the heat sensor of the structure installed in a ceiling surface as an example, it is not limited to this, For example, it is good also as appropriate structures, such as a wall hanging type.

また、上記の実施形態は、リレーの作動により火災発報信号を外部に出力するようにしているが、発電用熱電素子の発電電圧で動作する無線通信部を設け、火災発報信号を無線送信するようにしても良い。   In the above embodiment, the fire alarm signal is output to the outside by the operation of the relay. However, a wireless communication unit that operates with the generated voltage of the thermoelectric element for power generation is provided, and the fire alarm signal is transmitted wirelessly. You may make it do.

また、ブザーとLEDを設けて火災警報音と火災警報表示により火災警報を出力する熱感知器とした場合には、設置が義務付けられている住宅用火災警報器としての使用を可能とし、電池電源を必要としないことから電池切れを管理することなく、ほぼ永久的に住宅での火災監視を可能とする。   In addition, if a buzzer and LED are provided to provide a fire alarm that outputs a fire alarm with a fire alarm sound and a fire alarm display, it can be used as a residential fire alarm that is obligated to be installed. This makes it possible to monitor fires almost permanently without managing battery exhaustion.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。   The present invention includes appropriate modifications without impairing the object and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

10:熱感知器
12:感知器筐体
14:発電用熱電素子
14a:受熱面
14b:冷却面
16:熱媒体
16:冷却用熱電素子
16a:吸熱面
16b:放熱面
18:熱媒体収納部
20:回路基盤
22:収納枠
24:定温制御部
26:DC/DCコンバータ
28:フィードバック制御部
30:温度センサ
32:火災検出部
34:ブザー
36:LED
38:リレー
40:リレー接点
42:受熱側絶縁基板
44:冷却側絶縁基板
46,48,58,60:導体
50,62:P型半導体
52,64:N型半導体
54:吸熱側絶縁基板
56:放熱側絶縁基板
66a,68a:プラス端子
66b,68b:マイナス端子
70:サーミスタ
10: Heat sensor 12: Sensor housing 14: Thermoelectric element 14a for power generation: Heat receiving surface 14b: Cooling surface 16: Heat medium 16: Thermoelectric element 16a for cooling: Heat absorption surface 16b: Heat radiation surface 18: Heat medium storage unit 20 : Circuit board 22: Storage frame 24: Constant temperature control unit 26: DC / DC converter 28: Feedback control unit 30: Temperature sensor 32: Fire detection unit 34: Buzzer 36: LED
38: Relay 40: Relay contact 42: Heat receiving side insulating substrate 44: Cooling side insulating substrate 46, 48, 58, 60: Conductor 50, 62: P type semiconductor 52, 64: N type semiconductor 54: Heat absorbing side insulating substrate 56: Heat dissipation side insulating substrates 66a, 68a: plus terminals 66b, 68b: minus terminals 70: thermistors

Claims (5)

感知器筐体に受熱面を露出して配置され、前記受熱面と冷却面との温度差に応じた発電電圧を出力する発電用熱電素子と、
前記発電用熱電素子の冷却面に吸熱面を直接又は熱媒体を介して間接的に接触して配置された冷却用熱電素子と、
前記発電用熱電素子から発電電圧が得られた場合に前記冷却用熱電素子に通電して前記冷却面の温度を所定温度を保つように制御する定温制御部と、
前記発電用熱電素子からの発電電圧に基づいて火災を検出する火災検出部と、
が設けられたことを特徴とする熱感知器。
A thermoelectric element for power generation that is disposed with the heat receiving surface exposed to the sensor housing and outputs a power generation voltage corresponding to a temperature difference between the heat receiving surface and the cooling surface;
A cooling thermoelectric element disposed in direct contact with the cooling surface of the power generation thermoelectric element directly or indirectly through a heat medium; and
A constant temperature controller that controls the temperature of the cooling surface to maintain a predetermined temperature by energizing the thermoelectric element for cooling when a generated voltage is obtained from the thermoelectric element for power generation;
A fire detection unit for detecting a fire based on a power generation voltage from the thermoelectric element for power generation;
A heat sensor characterized in that is provided.
請求項1記載の熱感知器に於いて、
前記定温制御部は、
前記発電用熱電素子の前記冷却面側の温度を検出する温度センサと、
前記発電用熱電素子からの発電電圧が所定電圧に達した場合に所定の電源電圧を出力する電源部と、
前記電源部からの電源電圧の供給を受けて動作し、前記温度センサにより検出した前記冷却面の温度を所定の閾値温度に保つように前記冷却用熱電素子を制御するフィードバック制御部と、
が設けられたことを特徴とする熱感知器。
The heat sensor according to claim 1,
The constant temperature controller is
A temperature sensor for detecting the temperature on the cooling surface side of the thermoelectric element for power generation;
A power supply unit that outputs a predetermined power supply voltage when the generated voltage from the thermoelectric element for power generation reaches a predetermined voltage;
A feedback control unit that operates in response to supply of a power supply voltage from the power supply unit and controls the cooling thermoelectric element so as to keep the temperature of the cooling surface detected by the temperature sensor at a predetermined threshold temperature;
A heat sensor characterized in that is provided.
請求項1記載の熱感知器に於いて、
前記定温制御部は、
前記発電用熱電素子の前記冷却面側に配置された温度により抵抗値が変化する温度抵抗素子と、
前記発電用熱電素子からの発電電圧が所定電圧に達した場合に所定の電源電圧を前記温度抵抗素子を経由して前記冷却用熱電素子に供給して前記発電用熱電素子の前記冷却面を冷却させる電源部と、
が設けられたことを特徴とする熱感知器。
The heat sensor according to claim 1,
The constant temperature controller is
A temperature resistance element whose resistance value changes depending on the temperature disposed on the cooling surface side of the thermoelectric element for power generation;
When the power generation voltage from the power generation thermoelectric element reaches a predetermined voltage, a predetermined power supply voltage is supplied to the cooling thermoelectric element via the temperature resistance element to cool the cooling surface of the power generation thermoelectric element. A power supply unit,
A heat sensor characterized in that is provided.
請求項1記載の熱感知器に於いて、前記火災検出部は火災を検出した場合に火災発報信号を外部に出力することを特徴とする熱感知器。
2. The heat sensor according to claim 1, wherein the fire detector outputs a fire alarm signal to the outside when a fire is detected.
請求項1記載の熱感知器に於いて、前記火災検出部は火災を検出した場合に火災警報を出力することを特徴とする熱感知器。   The heat sensor according to claim 1, wherein the fire detection unit outputs a fire alarm when a fire is detected.
JP2017117925A 2017-06-15 2017-06-15 Heat detector Active JP6846088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117925A JP6846088B2 (en) 2017-06-15 2017-06-15 Heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117925A JP6846088B2 (en) 2017-06-15 2017-06-15 Heat detector

Publications (2)

Publication Number Publication Date
JP2019003439A true JP2019003439A (en) 2019-01-10
JP6846088B2 JP6846088B2 (en) 2021-03-24

Family

ID=65007908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117925A Active JP6846088B2 (en) 2017-06-15 2017-06-15 Heat detector

Country Status (1)

Country Link
JP (1) JP6846088B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111968333A (en) * 2020-09-16 2020-11-20 中北大学 Self-powered fire alarm device and system
JP2021077240A (en) * 2019-11-13 2021-05-20 能美防災株式会社 Fire alarm system, contact type sensor, and adapter
JP2023512353A (en) * 2020-02-03 2023-03-24 エムピア カンパニー リミテッド Self-powered, non-powered, constant-temperature sensing and transmitting/receiving system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101626A (en) * 1992-09-17 1994-04-12 Noritake Co Ltd Actuator having heat control mechanism
JP2000194967A (en) * 1998-12-28 2000-07-14 Hochiki Corp Differential heat sensor
US6164076A (en) * 1999-08-05 2000-12-26 International Business Machines Corporation Thermoelectric cooling assembly with thermal space transformer interposed between cascaded thermoelectric stages for improved thermal performance
JP2002329264A (en) * 2001-05-02 2002-11-15 Inax Corp Fire warning device
JP2007310795A (en) * 2006-05-22 2007-11-29 Kohoku Thermo:Kk Fire alarm unit
JP2008202885A (en) * 2007-02-21 2008-09-04 Okano Electric Wire Co Ltd High-low temperature testing device
JP2013047647A (en) * 2011-08-29 2013-03-07 Kohoku Thermo:Kk Electronic circuit, temperature measurement method, program, fire alarm, and fire alarm receiving and outputting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101626A (en) * 1992-09-17 1994-04-12 Noritake Co Ltd Actuator having heat control mechanism
JP2000194967A (en) * 1998-12-28 2000-07-14 Hochiki Corp Differential heat sensor
US6164076A (en) * 1999-08-05 2000-12-26 International Business Machines Corporation Thermoelectric cooling assembly with thermal space transformer interposed between cascaded thermoelectric stages for improved thermal performance
JP2002329264A (en) * 2001-05-02 2002-11-15 Inax Corp Fire warning device
JP2007310795A (en) * 2006-05-22 2007-11-29 Kohoku Thermo:Kk Fire alarm unit
JP2008202885A (en) * 2007-02-21 2008-09-04 Okano Electric Wire Co Ltd High-low temperature testing device
JP2013047647A (en) * 2011-08-29 2013-03-07 Kohoku Thermo:Kk Electronic circuit, temperature measurement method, program, fire alarm, and fire alarm receiving and outputting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077240A (en) * 2019-11-13 2021-05-20 能美防災株式会社 Fire alarm system, contact type sensor, and adapter
JP7479822B2 (en) 2019-11-13 2024-05-09 能美防災株式会社 Fire alarm systems, contact detectors and adapters
JP2023512353A (en) * 2020-02-03 2023-03-24 エムピア カンパニー リミテッド Self-powered, non-powered, constant-temperature sensing and transmitting/receiving system
JP7384497B2 (en) 2020-02-03 2023-11-21 エムピア カンパニー リミテッド Self-generated non-power supply constant temperature sensing transmitter/receiver system
CN111968333A (en) * 2020-09-16 2020-11-20 中北大学 Self-powered fire alarm device and system

Also Published As

Publication number Publication date
JP6846088B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
US11454996B2 (en) Electronic cigarette temperature control system and method, and electronic cigarette with the same
JP2019008720A (en) Heat sensor
JP2019003439A (en) Heat detector
JP6340089B2 (en) Fiber Bragg grating demodulator and temperature control method thereof
US6443003B1 (en) Thermoelectric air flow sensor
KR20150125462A (en) Fire perception device
JP5854498B2 (en) Electronic circuit, temperature measurement method, program, fire alarm, and fire alarm reception output device
JP2003315131A (en) Fluid flow measuring instrument
JP6897104B2 (en) Thermocouple temperature measuring device
JP5599486B1 (en) Capacitor deterioration diagnosis device, inverter device, and home appliance
JP6677311B2 (en) Wind speed measurement device and air volume measurement device
JPS60133329A (en) Non-contact temperature detection control apparatus
KR20200044555A (en) Fire detector using thermoelectric semiconductor
CN106370268B (en) Temperature sensing type liquid level switch utilizing self-heating effect of thermal resistor
JP5615338B2 (en) Capacitor deterioration diagnosis device, inverter device, and home appliance
KR101066956B1 (en) Test Apparatus for Rate of Rise Sport Type Heat Detector
JP2019129598A5 (en)
KR100824094B1 (en) Electric-power-energied heat glass apparatus
CN111033585B (en) Thermal alarm unit
JP2020159889A (en) Temperature Controller
JP4358403B2 (en) Photodetector
JP6549450B2 (en) Heat sensor and control method of heat sensor
JP6396757B2 (en) Combustible gas detector
JP2011027644A (en) Measuring method of external atmospheric temperature of electrical apparatus
KR200495993Y1 (en) Solar Junction System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210226

R150 Certificate of patent or registration of utility model

Ref document number: 6846088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150