JP2019006037A - Fiber reinforced composite material layer - Google Patents
Fiber reinforced composite material layer Download PDFInfo
- Publication number
- JP2019006037A JP2019006037A JP2017124897A JP2017124897A JP2019006037A JP 2019006037 A JP2019006037 A JP 2019006037A JP 2017124897 A JP2017124897 A JP 2017124897A JP 2017124897 A JP2017124897 A JP 2017124897A JP 2019006037 A JP2019006037 A JP 2019006037A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- surface layer
- precursor
- core
- reinforced composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、繊維強化複合材料積層体に関する。 The present invention relates to a fiber reinforced composite material laminate.
表皮材と発泡樹脂からなる繊維強化複合材料積層体は、一般的に軽量性、剛性、断熱性に優れている。そのため、従来より、フロアパネル、ルーフパネル、ドアパネル等の車両用外板パネルに使用されている。このような積層体としては、例えば、内部が中空に形成されたパネル本体に発泡樹脂を充填した複合パネルや、表皮と発泡樹脂を個別に成形し、接合する複合パネルが知られている。 A fiber-reinforced composite material laminate composed of a skin material and a foamed resin is generally excellent in lightness, rigidity, and heat insulation. Therefore, it has been conventionally used for vehicle outer panel such as floor panel, roof panel, door panel and the like. As such a laminated body, for example, a composite panel in which a panel main body formed with a hollow inside is filled with foamed resin, or a composite panel in which the skin and the foamed resin are individually molded and joined is known.
特許文献1では、内部が中空に形成されたパネル本体と、該パネル本体の内面に接合された不織布と、該パネル本体の内部に充填された樹脂製の発泡体とを具備するパネルが開示されている。そして、当該パネルでは、パネル本体の内面に接合された不織布のアンカー効果によって、発泡体がパネル本体の内面に強固に接合されている。このパネルでは、パネル本体が繊維によって強化された樹脂よりなるため、パネル本体の剛性と強度が高められている。 Patent Document 1 discloses a panel including a panel main body having a hollow interior, a non-woven fabric bonded to the inner surface of the panel main body, and a resin foam filled in the panel main body. ing. And in the said panel, the foam is firmly joined to the inner surface of the panel main body by the anchor effect of the nonwoven fabric joined to the inner surface of the panel main body. In this panel, since the panel body is made of resin reinforced with fibers, the rigidity and strength of the panel body are increased.
しかしながら、特許文献1のパネルは、まず、中空形状のパネル本体を成形した後、パネル本体の内部に液状の発泡体原料を注入して発泡させることにより、発泡体を充填している。そのため、パネル本体を成形する工程と、発泡体原料を注入して発泡させる工程が必要となることから、製造工程が複雑になるという問題があった。 However, the panel of Patent Document 1 is filled with a foam by first forming a hollow panel body and then injecting and foaming a liquid foam material into the panel body. Therefore, since the process of shape | molding a panel main body and the process of inject | pouring and foaming a foam raw material are needed, there existed a problem that a manufacturing process became complicated.
本発明は、上記課題に鑑みて成されたものであり、その目的は、製造工程を簡略化することができ、さらに表面性状も良好な繊維強化複合材料積層体を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a fiber-reinforced composite material laminate that can simplify the production process and also has good surface properties.
本発明の一態様に係る繊維強化複合材料積層体は、発泡樹脂を含有する芯部と、炭素繊維を含有する熱硬化性樹脂を有する表層部とを備え、発泡樹脂は、算術平均粗さRa及び表面のセルサイズが所定値を満たす。 A fiber-reinforced composite material laminate according to one embodiment of the present invention includes a core portion containing a foamed resin and a surface layer portion having a thermosetting resin containing a carbon fiber, and the foamed resin has an arithmetic average roughness Ra. And the cell size of the surface satisfies a predetermined value.
本発明によれば、製造工程を簡略化することができ、さらに表面性状も良好な繊維強化複合材料積層体を得ることができる。 According to the present invention, a manufacturing process can be simplified, and a fiber reinforced composite material laminate having good surface properties can be obtained.
以下、本発明の実施形態に係る繊維強化複合材料積層体について図面を参照しながら詳細に説明する。なお、以下の実施形態で引用する図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, a fiber reinforced composite material laminate according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, the dimension ratio of drawing quoted by the following embodiment is exaggerated on account of description, and may differ from an actual ratio.
本実施形態に係る繊維強化複合材料積層体10は、発泡樹脂を含有する芯部1と、炭素繊維を含有する熱硬化性樹脂を有し、さらに芯部1の表面に密着される表層部2とを備えている。図1に示すように、表層部2は芯部1の上面及び下面に接合されており、2枚の表層部2で芯部1を挟み込むように積層されている。 The fiber reinforced composite material laminate 10 according to the present embodiment includes a core portion 1 containing a foamed resin and a thermosetting resin containing carbon fibers, and a surface layer portion 2 that is in close contact with the surface of the core portion 1. And. As shown in FIG. 1, the surface layer portion 2 is joined to the upper surface and the lower surface of the core portion 1, and is laminated so that the core portion 1 is sandwiched between the two surface layer portions 2.
図1に示すように、芯部1は、発泡樹脂を含有する平板からなることが好ましい。ただ、繊維強化複合材料積層体10の軽量化のために、芯部1は発泡樹脂からなる平板であることが好ましい。 As shown in FIG. 1, it is preferable that the core part 1 consists of a flat plate containing a foamed resin. However, in order to reduce the weight of the fiber-reinforced composite material laminate 10, the core portion 1 is preferably a flat plate made of foamed resin.
芯部1を構成する発泡樹脂は、複数のセル(気泡)を有する多孔質体であれば特に限定されない。発泡樹脂は、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体(EVA)、フェノール樹脂、シリコーン樹脂、ユリア樹脂、アクリル樹脂、エチレン−プロピレン−ジエンゴム(EPDM)、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマーからなる群より選ばれる少なくとも一つの樹脂からなる発泡体を用いることができる。 The foamed resin constituting the core part 1 is not particularly limited as long as it is a porous body having a plurality of cells (bubbles). Examples of the foamed resin include polybutylene terephthalate, polyethylene terephthalate, polyurethane, polystyrene, polyethylene, polypropylene, ethylene-vinyl acetate copolymer (EVA), phenol resin, silicone resin, urea resin, acrylic resin, ethylene-propylene-diene rubber ( EPDM), polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, and at least one resin selected from the group consisting of liquid crystal polymers Can be used.
表層部2は、炭素繊維を含有する熱硬化性樹脂を備える平板からなる。具体的には、表層部2は、炭素繊維の束により構成される繊維層と、繊維層に含まれ、熱硬化性樹脂よりなるマトリックス樹脂とを有する炭素繊維強化プラスチックからなる。 The surface layer part 2 consists of a flat plate provided with the thermosetting resin containing carbon fiber. Specifically, the surface layer portion 2 is made of a carbon fiber reinforced plastic having a fiber layer constituted by a bundle of carbon fibers and a matrix resin that is included in the fiber layer and made of a thermosetting resin.
表層部2を構成する炭素繊維は特に限定されず、例えば、PAN系炭素繊維、ピッチ系炭素繊維及びレーヨン系炭素繊維からなる群より選ばれる少なくとも一種を用いることができる。また、マトリックス樹脂である熱硬化性樹脂も特に限定されず、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂からなる群より選ばれる少なくとも一種を用いることができる。 The carbon fiber which comprises the surface layer part 2 is not specifically limited, For example, at least 1 type chosen from the group which consists of a PAN-type carbon fiber, a pitch-type carbon fiber, and a rayon-type carbon fiber can be used. Further, the thermosetting resin that is a matrix resin is not particularly limited, and includes, for example, an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a polyurethane, a silicone resin, a maleimide resin, a vinyl ester resin, and a cyanate ester resin. At least one selected from the group can be used.
炭素繊維の束により構成される繊維層の形態は特に限定されず、織物や一方向シートなどを採用することが可能である。また、表層部2では、繊維層を複数積層してもよい。この際、炭素繊維の繊維方向が同じである一方向積層であってもよく、炭素繊維の繊維方向が異なるクロスプライ積層であってもよい。繊維層を複数積層することにより、繊維層に保持されるマトリックス樹脂を増加させることが可能となる。 The form of the fiber layer constituted by a bundle of carbon fibers is not particularly limited, and a woven fabric, a unidirectional sheet, or the like can be employed. In the surface layer portion 2, a plurality of fiber layers may be laminated. At this time, a unidirectional lamination in which the fiber directions of the carbon fibers are the same or a cross-ply lamination in which the fiber directions of the carbon fibers are different may be used. By laminating a plurality of fiber layers, it is possible to increase the matrix resin retained in the fiber layers.
後述するように、繊維強化複合材料積層体10は、重合反応により表層部2を形成する表層部前駆体2Aと芯部1とを、図2に示すように積層した後、表層部前駆体2Aと芯部1の積層方向に沿って加圧しながら加熱することにより得ることができる。また、表層部前駆体2Aとしては、予め炭素繊維に熱硬化性樹脂の前駆体を含浸し、半硬化状態に留めたプリプレグを用いることができる。そのため、繊維強化複合材料積層体10は、簡易な方法で製造することができる。 As will be described later, the fiber-reinforced composite laminate 10 is formed by laminating a surface layer part precursor 2A and a core part 1 that form the surface layer part 2 by a polymerization reaction as shown in FIG. And heating while applying pressure along the stacking direction of the core portion 1. Moreover, as the surface layer portion precursor 2A, a prepreg in which carbon fiber is impregnated with a thermosetting resin precursor in advance and kept in a semi-cured state can be used. Therefore, the fiber reinforced composite material laminate 10 can be manufactured by a simple method.
ここで、図3に示すように、芯部1と表層部2と密着していない状態において、表層部前駆体2Aと接触する芯部1の表面1aには、複数のセル(気泡)1bが存在している。そして、表層部前駆体2Aの内部に保持されている熱硬化性樹脂前駆体3は、重合する前は流動性を有している。つまり、熱硬化性樹脂前駆体3は加熱により一旦溶融するため流動性が生じ、その後に重合反応が進行することにより、硬化する。そのため、表層部前駆体2Aと芯部1の表面1aとを接触させて積層方向Lに沿って加圧しながら加熱した場合、表層部前駆体2Aの内部の熱硬化性樹脂前駆体3が流動し、表層部前駆体2Aからセル1bの内部に浸入してしまう。 Here, as shown in FIG. 3, a plurality of cells (bubbles) 1b are formed on the surface 1a of the core 1 in contact with the surface layer precursor 2A when the core 1 and the surface layer 2 are not in close contact with each other. Existing. And the thermosetting resin precursor 3 currently hold | maintained inside 2 A of surface layer part precursors has fluidity | liquidity before superposing | polymerizing. That is, since the thermosetting resin precursor 3 is once melted by heating, fluidity is generated, and then the polymerization reaction proceeds to be cured. Therefore, when the surface layer part precursor 2A and the surface 1a of the core part 1 are brought into contact with each other and heated while being pressed along the laminating direction L, the thermosetting resin precursor 3 inside the surface layer part precursor 2A flows. Intrusion into the inside of the cell 1b from the surface layer precursor 2A.
この際、表面1aのセル1bの深さが大きい場合、表層部前駆体2Aからセル1bに多量の熱硬化性樹脂前駆体3が浸入してしまい、表層部前駆体2Aのセル1bに対向する部位2aにおいて、熱硬化性樹脂前駆体3の含有量が過少となってしまう。この状態で熱硬化性樹脂前駆体3を加熱して硬化させた場合、表層部前駆体2Aの部位2aは他の部位と比較して熱硬化性樹脂が欠損しているため、表層部2の表面2bに斑点状の模様が発生し、樹脂枯れと呼ばれる外観不良を引き起こしてしまう。また、表層部2において樹脂枯れが発生した部位は、マトリックス樹脂である熱硬化性樹脂が欠損しているため強度が低下し、当該部位を起点として繊維強化複合材料積層体の破損が発生する可能性がある。 At this time, when the depth of the cell 1b on the surface 1a is large, a large amount of the thermosetting resin precursor 3 enters the cell 1b from the surface layer portion precursor 2A, and faces the cell 1b of the surface layer precursor 2A. In the part 2a, the content of the thermosetting resin precursor 3 is too small. When the thermosetting resin precursor 3 is heated and cured in this state, the portion 2a of the surface layer portion precursor 2A is deficient in the thermosetting resin as compared with other portions. A spot-like pattern is generated on the surface 2b, causing an appearance defect called resin withering. Further, in the surface layer portion 2 where the resin withering occurs, the strength is reduced because the thermosetting resin that is the matrix resin is deficient, and the fiber reinforced composite material laminate may be damaged starting from the portion. There is sex.
そのため、本実施形態の繊維強化複合材料積層体10において、芯部1と表層部2とが密着していない状態における芯部1の発泡樹脂は、算術平均粗さRaが59μm以下であることが好ましい。芯部1の表面1aの算術平均粗さRaが59μm以下であることにより、表面1aの表面に存在するセル1bの深さが減少する。そのため、表層部前駆体2Aの内部に保持されている熱硬化性樹脂前駆体3は、セル1bの内部に浸入し難くなることから、熱硬化性樹脂前駆体3の含有量が過少となる部位2aを少なくすることができる。その結果、表層部2の表面2bにおける樹脂枯れを抑制し、繊維強化複合材料積層体10の外観を良好にすることが可能となる。なお、本明細書において、芯部1の算術平均粗さRaは、日本工業規格JIS B0601−2013(製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語,定義及び表面性状パラメータ)に基づき測定することができる。 Therefore, in the fiber reinforced composite laminate 10 of the present embodiment, the foamed resin of the core 1 in a state where the core 1 and the surface layer 2 are not in close contact each other has an arithmetic average roughness Ra of 59 μm or less. preferable. When the arithmetic average roughness Ra of the surface 1a of the core part 1 is 59 μm or less, the depth of the cell 1b existing on the surface 1a is reduced. Therefore, since the thermosetting resin precursor 3 held inside the surface layer portion precursor 2A is difficult to enter the cell 1b, the content of the thermosetting resin precursor 3 is too small. 2a can be reduced. As a result, resin withering on the surface 2b of the surface layer portion 2 can be suppressed, and the appearance of the fiber reinforced composite material laminate 10 can be improved. In addition, in this specification, arithmetic mean roughness Ra of the core part 1 is Japanese Industrial Standard JIS B0601-2013 (product geometric characteristic specification (GPS) -surface property: contour curve system-terminology, definition and surface property parameter). Can be measured.
さらに、芯部1と表層部2とが密着していない状態における芯部1の発泡樹脂は、表面1aのセルの最大径が0.6mm以下であることが好ましい。具体的には、芯部1の表面1aを、芯部1と表層部2(表層部前駆体2A)との積層方向Lから観察した場合、芯部1の表面1aに存在する複数のセル1bの最大径が0.6mm以下であることが好ましい。セル1bの最大径が0.6mm以下であることにより、熱硬化性樹脂前駆体3はセル1bの内部に浸入し難くなるため、熱硬化性樹脂前駆体3の含有量が過少となる部位2aが減少し、樹脂枯れを抑制することが可能となる。なお、芯部1の表面1aにおけるセル1bの最大径は、芯部1の表面1aを顕微鏡観察することにより測定することができる。 Furthermore, the foamed resin of the core part 1 in a state where the core part 1 and the surface layer part 2 are not in close contact with each other preferably has a maximum cell diameter of 0.6 mm or less on the surface 1a. Specifically, when the surface 1a of the core part 1 is observed from the stacking direction L of the core part 1 and the surface layer part 2 (surface layer precursor 2A), a plurality of cells 1b present on the surface 1a of the core part 1 The maximum diameter is preferably 0.6 mm or less. When the maximum diameter of the cell 1b is 0.6 mm or less, the thermosetting resin precursor 3 is difficult to enter the cell 1b, and therefore the portion 2a where the content of the thermosetting resin precursor 3 is too small. Is reduced, and it becomes possible to suppress the resin withering. Note that the maximum diameter of the cell 1b on the surface 1a of the core 1 can be measured by observing the surface 1a of the core 1 with a microscope.
上述のように、芯部1の表面1aに存在する複数のセル1bの最大径が0.6mm以下であることにより、熱硬化性樹脂前駆体3がセル1bの内部に浸入し難くなるため、表層部2の樹脂枯れを抑制することが可能となる。そのため、芯部1における表層部2と密着する表面1a以外のセルの最大径は0.6mm以下である必要はない。つまり、芯部1は、表面1a以外のセルを大きくして軽量化を図ってもよく、さらに表面1a以外のセルを小さくして強度を高めてもよい。 As described above, since the maximum diameter of the plurality of cells 1b existing on the surface 1a of the core portion 1 is 0.6 mm or less, the thermosetting resin precursor 3 is difficult to enter the cell 1b. It becomes possible to suppress the resin withering of the surface layer part 2. Therefore, the maximum diameter of the cells other than the surface 1a in close contact with the surface layer portion 2 in the core portion 1 does not need to be 0.6 mm or less. That is, the core portion 1 may be lightened by increasing the cells other than the surface 1a, and may further increase the strength by reducing the cells other than the surface 1a.
ここで、芯部1と表層部2とが密着していない状態において、表層部前駆体2Aに含まれている樹脂量Wresinと芯部1の算術平均粗さRaとの関係が、Wresin≧6.10Raを満たすことが好ましい。「表層部前駆体2Aに含まれている樹脂量Wresin」とは、表層部前駆体2Aに含まれている熱硬化性樹脂前駆体と、当該熱硬化性樹脂前駆体が部分的に重合してなる樹脂との合計量をいう。また、「樹脂量Wresin」は、表層部前駆体2Aにおいて、表面2bの単位面積当たりの樹脂量(g/m2)をいう。表層部前駆体2Aに含まれている樹脂量Wresinと、芯部1の表面1aにおける算術平均粗さRaとが上記関係を満たすことにより、表層部前駆体2Aからセル1bに熱硬化性樹脂前駆体3が浸入したとしても、部位2aの樹脂枯れが抑制される。つまり、セル1bに熱硬化性樹脂前駆体3が浸入した場合でも、表層部前駆体2Aに熱硬化性樹脂前駆体3が十分に残存するため、樹脂枯れを抑制し、繊維強化複合材料積層体10の外観を良好にすることが可能となる。 Here, in a state where the core part 1 and the surface layer part 2 are not in close contact with each other, the relationship between the resin amount W resin contained in the surface layer part precursor 2A and the arithmetic average roughness Ra of the core part 1 is expressed as W resin. It is preferable to satisfy ≧ 6.10Ra. “The amount of resin W resin contained in the surface layer precursor 2A” means that the thermosetting resin precursor contained in the surface layer precursor 2A and the thermosetting resin precursor are partially polymerized. The total amount with the resin. The “resin amount W resin ” refers to the resin amount (g / m 2 ) per unit area of the surface 2b in the surface layer portion precursor 2A. When the resin amount W resin contained in the surface layer portion precursor 2A and the arithmetic average roughness Ra on the surface 1a of the core portion 1 satisfy the above relationship, the thermosetting resin is transferred from the surface layer portion precursor 2A to the cell 1b. Even if the precursor 3 enters, the resin withering of the part 2a is suppressed. That is, even when the thermosetting resin precursor 3 enters the cell 1b, the thermosetting resin precursor 3 remains sufficiently in the surface layer portion precursor 2A. The appearance of 10 can be improved.
芯部1と表層部2とが密着していない状態における、芯部1の発泡樹脂の算術平均粗さRaの下限は特に限定されないが、当該発泡樹脂の算術平均粗さRaは4μm以上であることが好ましい。芯部1の発泡樹脂の算術平均粗さRaが4μm以上であることにより、芯部1の表面1aにおいて、熱硬化性樹脂前駆体3が浸入するセルが減少するため、表層部前駆体2Aの樹脂枯れを抑制することができる。ただ、芯部1のセル1bに熱硬化性樹脂前駆体3が浸入した状態で硬化した場合、熱硬化性樹脂がセル1bの内面に係合する。このような熱硬化性樹脂によるアンカー効果により、芯部1と表層部2は強固に接合することから、芯部1の表面1aには適度なセル1bが存在することが好ましい。そのため、芯部1の算術平均粗さRaは4μm以上であることが好ましい。 The lower limit of the arithmetic average roughness Ra of the foamed resin of the core 1 in a state where the core 1 and the surface layer 2 are not in close contact is not particularly limited, but the arithmetic average roughness Ra of the foamed resin is 4 μm or more. It is preferable. Since the arithmetic average roughness Ra of the foamed resin of the core part 1 is 4 μm or more, the number of cells into which the thermosetting resin precursor 3 permeates on the surface 1a of the core part 1 is reduced. Resin withering can be suppressed. However, when it hardens | cures in the state which the thermosetting resin precursor 3 infiltrated into the cell 1b of the core part 1, a thermosetting resin engages with the inner surface of the cell 1b. Due to the anchor effect of such a thermosetting resin, the core portion 1 and the surface layer portion 2 are firmly bonded, and therefore it is preferable that an appropriate cell 1b exists on the surface 1a of the core portion 1. Therefore, it is preferable that arithmetic mean roughness Ra of the core part 1 is 4 μm or more.
繊維強化複合材料積層体10において、芯部1の発泡樹脂の結晶性は特に限定されず、発泡樹脂は非晶性高分子及び結晶性高分子の少なくとも一方を用いることができる。 In the fiber reinforced composite material laminate 10, the crystallinity of the foamed resin of the core 1 is not particularly limited, and at least one of an amorphous polymer and a crystalline polymer can be used as the foamed resin.
芯部1の発泡樹脂が非晶性高分子からなる場合、芯部1の発泡樹脂のガラス転移温度Tgが、芯部1と表層部2とを密着させるための成形温度よりも18度以上高いことが好ましい。芯部1の発泡樹脂のガラス転移温度Tgが成形温度よりも18度以上高いことにより、成形温度で発泡樹脂が溶融することを抑制できるため、外観が良好な繊維強化複合材料積層体10を得ることが可能となる。なお、発泡樹脂のガラス転移温度Tgは、示差熱分析(DTA)又は示差走査熱量測定(DSC)により測定することができる。 When the foamed resin of the core part 1 is made of an amorphous polymer, the glass transition temperature Tg of the foamed resin of the core part 1 is 18 degrees or more higher than the molding temperature for bringing the core part 1 and the surface layer part 2 into close contact with each other. It is preferable. Since the glass transition temperature Tg of the foamed resin of the core part 1 is 18 degrees or more higher than the molding temperature, the foamed resin can be prevented from melting at the molding temperature, so that the fiber-reinforced composite material laminate 10 having a good appearance is obtained. It becomes possible. The glass transition temperature Tg of the foamed resin can be measured by differential thermal analysis (DTA) or differential scanning calorimetry (DSC).
芯部1の発泡樹脂が結晶性高分子からなる場合、芯部1の発泡樹脂の融点Tmが、芯部1と表層部2とを密着させるための成形温度よりも65度以上高いことが好ましい。芯部1の発泡樹脂の融点Tmが成形温度よりも65度以上高いことにより、成形温度で発泡樹脂が溶融することを抑制できるため、外観が良好な繊維強化複合材料積層体10を得ることが可能となる。 When the foamed resin of the core part 1 is made of a crystalline polymer, the melting point Tm of the foamed resin of the core part 1 is preferably 65 degrees or more higher than the molding temperature for bringing the core part 1 and the surface layer part 2 into close contact with each other. . Since the melting point Tm of the foamed resin of the core 1 is 65 degrees or more higher than the molding temperature, the foamed resin can be prevented from melting at the molding temperature, so that a fiber-reinforced composite material laminate 10 having a good appearance can be obtained. It becomes possible.
繊維強化複合材料積層体10は、図1に示すように、芯部1と表層部2とが直接接触して密着している。しかしながら、芯部1と表層部2は直接接触している必要はなく、芯部1と表層部2との間に他の層が介在してもよい。具体的には、図4に示すように、繊維強化複合材料積層体100は、芯部1と表層部2との間に存在する浸透防止層4をさらに備えていてもよい。 As shown in FIG. 1, the fiber reinforced composite laminate 10 has the core portion 1 and the surface layer portion 2 in direct contact and in close contact with each other. However, the core portion 1 and the surface layer portion 2 do not need to be in direct contact, and another layer may be interposed between the core portion 1 and the surface layer portion 2. Specifically, as shown in FIG. 4, the fiber reinforced composite material laminate 100 may further include a penetration preventing layer 4 that exists between the core portion 1 and the surface layer portion 2.
上述のように、繊維強化複合材料積層体10の製造段階において、表層部前駆体2Aと芯部1の表面1aとを接触させて加圧した場合、表層部前駆体2Aの熱硬化性樹脂前駆体3は、表層部前駆体2Aから移動してセル1bの内部に浸入してしまう。そのため、熱硬化性樹脂前駆体3が表層部前駆体2Aからセル1bの内部に浸入することを抑制するために、芯部1と表層部前駆体2Aとの間に浸透防止層4を介在させてもよい。芯部1と表層部前駆体2Aとの間に浸透防止層4を介在させた状態で加圧しながら加熱することにより、浸透防止層4によって熱硬化性樹脂前駆体3がセル1bの内部に浸入することを抑制しつつ、熱硬化性樹脂前駆体3を硬化させることができる。その結果、表層部前駆体2Aの厚みを薄くして熱硬化性樹脂前駆体3の含有量を低下させた場合でも、得られる表層部2の樹脂枯れを防止し、表層部2の表面性状を良好に保つことが可能となる。 As described above, when the surface layer portion precursor 2A is brought into contact with the surface 1a of the core portion 1 and pressed in the manufacturing stage of the fiber reinforced composite material laminate 10, the thermosetting resin precursor of the surface layer portion precursor 2A is pressed. The body 3 moves from the surface layer precursor 2A and enters the cell 1b. Therefore, in order to prevent the thermosetting resin precursor 3 from entering the inside of the cell 1b from the surface layer portion precursor 2A, the penetration preventing layer 4 is interposed between the core portion 1 and the surface layer portion precursor 2A. May be. The thermosetting resin precursor 3 enters the inside of the cell 1b by the permeation preventive layer 4 by heating while applying pressure while the permeation preventive layer 4 is interposed between the core portion 1 and the surface layer precursor 2A. While suppressing this, the thermosetting resin precursor 3 can be cured. As a result, even when the thickness of the surface layer portion precursor 2A is reduced to reduce the content of the thermosetting resin precursor 3, the resulting surface layer portion 2 is prevented from withering and the surface properties of the surface layer portion 2 are reduced. It becomes possible to keep it good.
浸透防止層4の形状は、板状又はフィルム状であることが好ましい。また、浸透防止層4の材料は熱硬化性樹脂及び熱可塑性樹脂の少なくとも一方を用いることができる。浸透防止層4を構成する樹脂が熱硬化性樹脂からなる場合、熱硬化性樹脂は上述の表層部2を構成する熱硬化性樹脂と同様のものを用いることができる。浸透防止層4を構成する樹脂が熱可塑性樹脂からなる場合、熱可塑性樹脂は特に限定されず、例えばポリオレフィン系樹脂、ポリアミド系樹脂、エラストマー系(スチレン系、オレフィン系、ポリ塩化ビニル(PVC)系、ウレタン系、エステル系、アミド系)樹脂、ポリエステル系樹脂、エンジニアリングプラスチック、ポリエチレン、ポリプロピレン、ナイロン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリル樹脂、エチレンアクリレート樹脂、エチレン−酢酸ビニル共重合体、ポリスチレン、ポリフェニレンサルファイド、ポリカーボネート、ポリエステルエラストマー、ポリアミドエラストマー、液晶ポリマー、ポリブチレンテレフタレートからなる群より選ばれる少なくとも一種を用いることができる。この中でも、浸透防止層4を構成する樹脂としては、エポキシ樹脂及びポリエチレンテレフタレート(PET)の少なくとも一方を用いることが好ましく、エポキシ樹脂を用いることがより好ましい。 The shape of the permeation preventing layer 4 is preferably a plate shape or a film shape. Moreover, at least one of a thermosetting resin and a thermoplastic resin can be used for the material of the penetration preventing layer 4. When the resin constituting the permeation prevention layer 4 is made of a thermosetting resin, the same thermosetting resin as the thermosetting resin constituting the surface layer portion 2 can be used. When the resin constituting the permeation preventing layer 4 is made of a thermoplastic resin, the thermoplastic resin is not particularly limited. For example, a polyolefin resin, a polyamide resin, an elastomer (styrene, olefin, polyvinyl chloride (PVC)) , Urethane, ester, amide) resin, polyester resin, engineering plastic, polyethylene, polypropylene, nylon resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylic resin, ethylene acrylate resin, ethylene-vinyl acetate copolymer At least one selected from the group consisting of polystyrene, polyphenylene sulfide, polycarbonate, polyester elastomer, polyamide elastomer, liquid crystal polymer, and polybutylene terephthalate can be used. Among these, as resin which comprises the permeation prevention layer 4, it is preferable to use at least one of an epoxy resin and a polyethylene terephthalate (PET), and it is more preferable to use an epoxy resin.
後述するように、浸透防止層4を備える繊維強化複合材料積層体100は、芯部1、浸透防止層4及び表層部前駆体2Aをこの順で積層した後、加圧しながら加熱することにより得ることができる。また、浸透防止層4の代わりに、重合反応により浸透防止層4を形成する浸透防止層前駆体を用いてもよい。つまり、例えば、芯部1、浸透防止層前駆体及び表層部前駆体2Aをこの順で積層した後、加圧しながら加熱することにより、表層部前駆体2A及び浸透防止層前駆体が硬化し、繊維強化複合材料積層体100を形成することができる。なお、浸透防止層前駆体としては、熱硬化性樹脂前駆体及び重合開始剤を混合した後、半硬化状態に留めたプレポリマーを用いることができる。 As will be described later, the fiber-reinforced composite material laminate 100 including the permeation prevention layer 4 is obtained by laminating the core part 1, the permeation prevention layer 4 and the surface layer part precursor 2A in this order, and then heating while applying pressure. be able to. Instead of the penetration preventing layer 4, a penetration preventing layer precursor that forms the penetration preventing layer 4 by a polymerization reaction may be used. That is, for example, after laminating the core part 1, the permeation prevention layer precursor and the surface layer part precursor 2A in this order, the surface layer part precursor 2A and the permeation prevention layer precursor are cured by heating while applying pressure, A fiber reinforced composite laminate 100 can be formed. In addition, as a penetration prevention layer precursor, after mixing a thermosetting resin precursor and a polymerization initiator, a prepolymer kept in a semi-cured state can be used.
浸透防止層4は熱硬化性樹脂を含み、浸透防止層4を構成する熱硬化性樹脂の前駆体は、芯部1と表層部2とを密着させるための成形温度における、表層部2を構成する熱硬化性樹脂の前駆体の硬化時間よりも短時間で硬化することが好ましい。つまり、浸透防止層4が熱硬化性樹脂よりなる場合、成形温度において、浸透防止層前駆体に含まれる熱硬化性樹脂前駆体の硬化時間は、表層部前駆体2Aに含まれる熱硬化性樹脂前駆体の硬化時間よりも短いことが好ましい。成形温度において、浸透防止層4を構成する熱硬化性樹脂前駆体が素早く硬化して浸透防止層4が形成された場合には、浸透防止層4によってセル1bに熱硬化性樹脂前駆体3が浸入することを抑制することが可能となる。 The penetration preventing layer 4 contains a thermosetting resin, and the precursor of the thermosetting resin constituting the penetration preventing layer 4 constitutes the surface layer portion 2 at a molding temperature for bringing the core portion 1 and the surface layer portion 2 into close contact with each other. It is preferable to cure in a shorter time than the curing time of the thermosetting resin precursor. That is, when the penetration preventing layer 4 is made of a thermosetting resin, the curing time of the thermosetting resin precursor contained in the penetration preventing layer precursor at the molding temperature is the thermosetting resin contained in the surface layer portion precursor 2A. It is preferably shorter than the curing time of the precursor. When the thermosetting resin precursor constituting the penetration preventing layer 4 is quickly cured at the molding temperature to form the penetration preventing layer 4, the penetration preventing layer 4 causes the thermosetting resin precursor 3 to be formed in the cell 1b. It becomes possible to suppress intrusion.
また、浸透防止層4は熱可塑性樹脂を含み、浸透防止層4の融点が、芯部1と表層部2とを密着させるための成形温度よりも65度以上高いことが好ましい。浸透防止層4の融点が成形温度よりも65度以上高い場合には、浸透防止層4は成形温度で十分な貯蔵弾性率を有することから、浸透防止層4によってセル1bに熱硬化性樹脂前駆体3が浸入することを抑制することが可能となる。 Further, the penetration preventing layer 4 includes a thermoplastic resin, and the melting point of the penetration preventing layer 4 is preferably 65 degrees or more higher than the molding temperature for bringing the core portion 1 and the surface layer portion 2 into close contact with each other. When the melting point of the permeation preventive layer 4 is 65 degrees or more higher than the molding temperature, the permeation preventive layer 4 has a sufficient storage elastic modulus at the molding temperature. It is possible to suppress the body 3 from entering.
次に、本実施形態の繊維強化複合材料積層体の製造方法について説明する。まず、炭素繊維に熱硬化性樹脂前駆体を含浸し、半硬化状態に留めた表層部前駆体2Aを調製する。表層部前駆体2Aの調製方法は特に限定されず、公知の知見により調製することができる。なお、表層部前駆体2Aには重合開始剤を含有することが好ましく、必要に応じて着色剤や重合禁止剤などの添加剤を添加してもよい。 Next, the manufacturing method of the fiber reinforced composite material laminated body of this embodiment is demonstrated. First, a surface layer portion precursor 2A in which carbon fibers are impregnated with a thermosetting resin precursor and kept in a semi-cured state is prepared. The method for preparing the surface layer precursor 2A is not particularly limited, and can be prepared by known knowledge. The surface layer precursor 2A preferably contains a polymerization initiator, and additives such as a colorant and a polymerization inhibitor may be added as necessary.
繊維強化複合材料積層体10を作製する場合には、芯部1を挟み込むように表層部前駆体2Aを積層することにより、積層体を作製する。そして、芯部1と表層部前駆体2Aと積層体を上金型及び下金型の間に挿入し、加圧しながら加熱する。これにより、熱硬化性樹脂前駆体中の重合開始剤よりフリーラジカル又はイオンが発生し、連鎖反応による重合が進行することにより、熱硬化性樹脂前駆体が硬化する。このような工程により、芯部1と表層部2が強固に接合した繊維強化複合材料積層体10を得ることができる。 When producing the fiber reinforced composite material laminated body 10, the laminated body is produced by laminating | stacking surface layer part precursor 2A so that the core part 1 may be inserted | pinched. Then, the core 1, the surface layer precursor 2 </ b> A, and the laminate are inserted between the upper mold and the lower mold and heated while being pressurized. Thereby, free radicals or ions are generated from the polymerization initiator in the thermosetting resin precursor, and the thermosetting resin precursor is cured by the progress of polymerization by a chain reaction. By such a process, the fiber reinforced composite material laminate 10 in which the core portion 1 and the surface layer portion 2 are firmly bonded can be obtained.
図4に示す繊維強化複合材料積層体100を作製する場合には、まず、芯部1、浸透防止層4及び表層部前駆体2Aを積層することにより、積層体を作製する。そして、上述と同様に、積層体を上金型及び下金型の間に挿入し、加圧しながら加熱する。このような工程により熱硬化性樹脂前駆体が硬化し、芯部1、表層部2及び浸透防止層4が強固に接合した繊維強化複合材料積層体100を得ることができる。 When the fiber-reinforced composite material laminate 100 shown in FIG. 4 is produced, first, the laminate is produced by laminating the core portion 1, the permeation prevention layer 4 and the surface layer precursor 2A. Then, similarly to the above, the laminate is inserted between the upper mold and the lower mold and heated while being pressurized. By such a process, the thermosetting resin precursor is cured, and the fiber reinforced composite material laminate 100 in which the core portion 1, the surface layer portion 2, and the permeation prevention layer 4 are firmly bonded can be obtained.
また、重合反応により浸透防止層4を形成する浸透防止層前駆体を用いる場合には、まず、芯部1、浸透防止層前駆体及び表層部前駆体2Aを積層することにより、積層体を作製する。そして、上述と同様に、積層体を上金型及び下金型の間に挿入し、加圧しながら加熱する。このような工程により、表層部前駆体2A及び浸透防止層前駆体が硬化し、芯部1、表層部2及び浸透防止層4が強固に接合した繊維強化複合材料積層体100を得ることができる。 Further, when using a penetration preventing layer precursor that forms the penetration preventing layer 4 by a polymerization reaction, first, the core part 1, the penetration preventing layer precursor, and the surface layer part precursor 2A are laminated to produce a laminate. To do. Then, similarly to the above, the laminate is inserted between the upper mold and the lower mold and heated while being pressurized. By such a process, the surface layer portion precursor 2A and the penetration preventing layer precursor are cured, and the fiber reinforced composite material laminate 100 in which the core portion 1, the surface layer portion 2, and the penetration preventing layer 4 are firmly bonded can be obtained. .
なお、芯部1と表層部前駆体2Aとを備える積層体、及び芯部1と表層部前駆体2Aと浸透防止層4又は浸透防止層前駆体とを備える積層体を加熱加圧成形する方法は、上述の上金型及び下金型を用いた方法に限定されない。また、加熱加圧成形の条件も特に限定されないが、例えば温度を100〜180℃とし、圧力を0.5〜10MPaで行うことができる。また、上記の温度範囲内で上金型と下金型に温度差を設けて加熱してもよい。 In addition, the method of heat-press-molding the laminated body provided with the core part 1 and the surface layer part precursor 2A, and the laminated body provided with the core part 1, the surface layer part precursor 2A, the penetration prevention layer 4, or the penetration prevention layer precursor. Is not limited to the method using the upper mold and the lower mold described above. Moreover, although the conditions of heat-and-pressure molding are not specifically limited, For example, temperature can be 100-180 degreeC and a pressure can be performed at 0.5-10 MPa. Further, the upper mold and the lower mold may be heated with a temperature difference within the above temperature range.
このように、本実施形態に係る繊維強化複合材料積層体10,100は、発泡樹脂を含有する芯部1と、炭素繊維を含有する熱硬化性樹脂を有し、芯部1の表面1aに密着される表層部2とを備える。そして、芯部1と表層部2とが密着していない状態における芯部1の発泡樹脂は、算術平均粗さRaが59μm以下であり、かつ、表面1aのセル1bの最大径が0.6mm以下である。芯部1の表面1aの算術平均粗さRaが59μm以下であり、かつ、表面1aに存在する複数のセル1bの最大径が0.6mm以下であることにより、表層部前駆体2Aの内部に保持されている熱硬化性樹脂前駆体3は、セル1bの内部に浸入し難くなる。そのため、表層部前駆体2Aにおいて熱硬化性樹脂前駆体3の含有量が過少となる部位2aを少なくすることができる。その結果、表層部2の表面2bにおける樹脂枯れを抑制し、繊維強化複合材料積層体10,100の表面性状を良好にすることが可能となる。また、表層部2の樹脂枯れを抑制することで、繊維強化複合材料積層体10,100の破損が発生し難くなることから、繊維強化複合材料積層体10,100の強度を高めることが可能となる。 As described above, the fiber reinforced composite material laminates 10 and 100 according to the present embodiment have the core portion 1 containing the foamed resin and the thermosetting resin containing the carbon fiber, and the surface 1a of the core portion 1 has the surface 1a. And a surface layer portion 2 to be adhered. The foamed resin of the core part 1 in a state where the core part 1 and the surface layer part 2 are not in close contact has an arithmetic average roughness Ra of 59 μm or less, and the maximum diameter of the cell 1b on the surface 1a is 0.6 mm. It is as follows. The arithmetic mean roughness Ra of the surface 1a of the core 1 is 59 μm or less, and the maximum diameter of the plurality of cells 1b existing on the surface 1a is 0.6 mm or less, so that the inside of the surface layer precursor 2A The retained thermosetting resin precursor 3 is difficult to enter the cell 1b. Therefore, the part 2a in which the content of the thermosetting resin precursor 3 is excessive in the surface layer portion precursor 2A can be reduced. As a result, it is possible to suppress resin withering on the surface 2b of the surface layer portion 2 and to improve the surface properties of the fiber-reinforced composite material laminates 10 and 100. Moreover, since it becomes difficult to generate | occur | produce the damage of the fiber reinforced composite material laminated body 10 and 100 by suppressing the resin withering of the surface layer part 2, it becomes possible to raise the intensity | strength of the fiber reinforced composite material laminated body 10 and 100. Become.
また、上述のように、繊維強化複合材料積層体10,100は、芯部1と表層部前駆体2Aとを積層した後、加圧しながら加熱することにより、製造することができる。そのため、特許文献1のように中空体の内部で発泡させるような複雑な工程を経なくても、加熱加圧処理の一工程で製造することができるため、製造工程を簡略化することが可能となる。 Further, as described above, the fiber reinforced composite material laminates 10 and 100 can be manufactured by laminating the core portion 1 and the surface layer portion precursor 2A and then heating them while applying pressure. Therefore, the manufacturing process can be simplified because it can be manufactured in one process of heating and pressurizing without passing through a complicated process of foaming inside the hollow body as in Patent Document 1. It becomes.
さらに、繊維強化複合材料積層体10は、加圧により芯部1のセル1bに熱硬化性樹脂前駆体3が浸入し、その状態で熱硬化性樹脂前駆体3が硬化するため、熱硬化性樹脂がセル1bの内面に係合することができる。つまり、繊維強化複合材料積層体10は、熱硬化性樹脂のアンカー効果により、芯部1と表層部2が強固に接合することができるため、接着剤を用いる必要がない。このように接着剤の塗布工程が不要となることから、製造工程を簡略化することが可能となる。 Furthermore, since the thermosetting resin precursor 3 infiltrates into the cell 1b of the core part 1 by pressurization and the thermosetting resin precursor 3 is cured in this state, the fiber reinforced composite material laminate 10 is thermosetting. The resin can engage the inner surface of the cell 1b. That is, in the fiber reinforced composite material laminate 10, the core portion 1 and the surface layer portion 2 can be firmly joined by the anchor effect of the thermosetting resin, and thus it is not necessary to use an adhesive. In this way, since the adhesive application step is not necessary, the manufacturing process can be simplified.
本実施形態の繊維強化複合材料積層体10,100は、発泡樹脂を含有する芯部1と、炭素繊維を含有する表層部2とを密着してなるため、高い強度を有しつつも、軽量性及び断熱性に優れている。さらに、繊維強化複合材料積層体10,100は、樹脂枯れが抑制されているため、外観も良好である。そのため、繊維強化複合材料積層体10,100は、フロアパネル、ルーフパネル、ドアパネル、インストルメントパネル等の車両用外板パネルや内装材に好適に用いることができる。 Since the fiber reinforced composite material laminates 10 and 100 of the present embodiment are formed by closely adhering the core portion 1 containing the foamed resin and the surface layer portion 2 containing the carbon fiber, the fiber reinforced composite material laminates 10 and 100 are lightweight while having high strength. Excellent in heat resistance and heat insulation. Furthermore, the fiber reinforced composite material laminates 10 and 100 have good appearance because the resin withering is suppressed. Therefore, the fiber reinforced composite material laminates 10 and 100 can be suitably used for vehicle exterior panels and interior materials such as floor panels, roof panels, door panels, and instrument panels.
なお、本実施形態の繊維強化複合材料積層体では、図1、図2及び図4に示すように、芯部1の上面及び下面の両方に表層部2を密着する必要はなく、芯部1の少なくとも一面に密着していればよい。また、本実施形態の繊維強化複合材料積層体では、芯部1の表面1aの全面に表層部2が密着している必要はなく、表面1aの少なくとも一部に表層部2が密着していてもよい。 In the fiber reinforced composite material laminate of the present embodiment, as shown in FIGS. 1, 2, and 4, it is not necessary to closely attach the surface layer portion 2 to both the upper surface and the lower surface of the core portion 1. It is sufficient that it is in close contact with at least one of the surfaces. Moreover, in the fiber reinforced composite material laminated body of this embodiment, the surface layer part 2 does not need to adhere | attach on the whole surface 1a of the core part 1, and the surface layer part 2 has adhered to at least one part of the surface 1a. Also good.
以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to examples and comparative examples, but the present embodiment is not limited to these examples.
[実施例1]
まず、芯部を構成する発泡樹脂として、次のものを準備した。なお、発泡樹脂の算術平均粗さRaは、測定装置として株式会社ミツトヨ製 コントレーサ(登録商標)CV−3200を用い、表1に示す条件で測定した。
・変性ポリフェニレンエーテル樹脂発泡体、サンフォース(登録商標)(旭化成ケミカルズ株式会社製)、算術平均粗さRa:3.9μm
・ポリエチレンテレフタレート樹脂発泡体、セルペット(登録商標)(積水化成品工業株式会社製)、算術平均粗さRa:18.5μm
・ポリメタクリルイミド硬質発泡体、ROHACELL(登録商標)71SL(ダイセル・エボニック株式会社製)、算術平均粗さRa:57.2μm
・硬質アクリル発泡体、フォーマック(登録商標)#1000(積水化成品工業株式会社製)、算術平均粗さRa:59.0μm
・ポリメタクリルイミド硬質発泡体、ROHACELL 51IG(ダイセル・エボニック株式会社製)、算術平均粗さRa:73.6μm
[Example 1]
First, the following were prepared as the foamed resin constituting the core. In addition, arithmetic mean roughness Ra of foamed resin was measured on the conditions shown in Table 1 using Mitsutoyo Corporation Contracer (trademark) CV-3200 as a measuring apparatus.
-Modified polyphenylene ether resin foam, Sunforce (registered trademark) (manufactured by Asahi Kasei Chemicals Corporation), arithmetic average roughness Ra: 3.9 μm
Polyethylene terephthalate resin foam, Selpet (registered trademark) (manufactured by Sekisui Plastics Co., Ltd.), arithmetic average roughness Ra: 18.5 μm
・ Polymethacrylimide rigid foam, ROHACELL (registered trademark) 71SL (manufactured by Daicel-Evonik Co., Ltd.), arithmetic average roughness Ra: 57.2 μm
Hard acrylic foam, Formac (registered trademark) # 1000 (manufactured by Sekisui Plastics Co., Ltd.), arithmetic average roughness Ra: 59.0 μm
・ Polymethacrylimide rigid foam, ROHACELL 51IG (manufactured by Daicel-Evonik Co., Ltd.), arithmetic average roughness Ra: 73.6 μm
次に、表層部前駆体として、炭素繊維の束を平織してなる繊維層を三層重ねた積層体に、エポキシ樹脂の前駆体を含浸して半硬化状態にしたプリプレグを準備した。なお、表層部前駆体は、樹脂量Wresinが120g/m2、240g/m2、360g/m2の三種類を準備した。エポキシ樹脂の前駆体としては、三菱レイヨン株式会社製TR3110を用いた。 Next, as a surface layer portion precursor, a prepreg prepared by impregnating an epoxy resin precursor into a semi-cured state in a laminate in which three fiber layers formed by plain weaving of carbon fiber bundles were stacked was prepared. Incidentally, the surface layer portion precursor resin weight W Resin was prepared three kinds of 120g / m 2, 240g / m 2, 360g / m 2. As a precursor of epoxy resin, TR3110 manufactured by Mitsubishi Rayon Co., Ltd. was used.
そして、上記発泡樹脂と表層部前駆体とを直接接触させた状態で、成形温度140℃、圧力5MPaで押圧することにより、本例の繊維強化複合材料積層体を得た。なお、本例では、発泡樹脂及び表層部前駆体の組み合わせを変えて、複数種の繊維強化複合材料積層体を作製した。図5では、繊維強化複合材料積層体を成形する前における、芯部を構成する発泡樹脂の算術平均粗さRaと表層部前駆体の樹脂量Wresinとの関係を示している。また、図5は、得られた繊維強化複合材料積層体における表層部を目視で観察した際の樹脂枯れ部位の有無も合わせて示している。 And the fiber reinforced composite material laminated body of this example was obtained by pressing at the molding temperature of 140 degreeC and the pressure of 5 MPa in the state which made the said foamed resin and surface layer part precursor contact directly. In this example, a plurality of types of fiber reinforced composite material laminates were produced by changing the combination of the foam resin and the surface layer precursor. FIG. 5 shows a relationship between the arithmetic average roughness Ra of the foamed resin constituting the core and the resin amount W resin of the surface layer precursor before molding the fiber-reinforced composite material laminate. FIG. 5 also shows the presence / absence of a resin withering site when the surface layer portion of the obtained fiber-reinforced composite laminate is visually observed.
図5に示すように、芯部の算術平均粗さRaが73.6μmの場合には、表層部前駆体の樹脂量が360g/m2であっても樹脂枯れが発生し、外観不良を引き起こしている。そして、繊維強化複合材料積層体は、表層部前駆体における繊維層の積層数を三層に抑え、樹脂量を360g/m2程度までにすることが好ましいことから、芯部の算術平均粗さRaの上限は59μmであることが好ましい。 As shown in FIG. 5, when the arithmetic average roughness Ra of the core is 73.6 μm, even if the resin amount of the surface layer precursor is 360 g / m 2 , resin withering occurs, resulting in poor appearance. ing. And since it is preferable that the fiber reinforced composite material laminated body suppresses the lamination | stacking number of the fiber layer in a surface layer part precursor to three layers, and makes the resin amount to about 360 g / m < 2 >, arithmetic mean roughness of a core part. The upper limit of Ra is preferably 59 μm.
また、図5に示すように、表層部前駆体に含まれている樹脂量Wresinと芯部の算術平均粗さRaとの関係が、Wresin≧6.10Raを満たす場合には、樹脂量が120g/m2及び240g/m2の場合でも樹脂枯れが発生していない。そのため、この関係を満たす場合には、繊維強化複合材料積層体の表面性状が良好となることが分かる。 Also, when as shown in FIG. 5, the relationship between arithmetic mean roughness Ra of the resin amount W Resin a core portion contained in the surface layer part precursor satisfies W resin ≧ 6.10Ra the resin amount Even in the case of 120 g / m 2 and 240 g / m 2, no resin withering occurred. Therefore, when satisfy | filling this relationship, it turns out that the surface property of a fiber reinforced composite material laminated body becomes favorable.
図6Aは、表層部前駆体に含まれている樹脂量Wresinが360g/m2であり、芯部の算術平均粗さRaが59.0μmの場合に得られた繊維強化複合材料積層体の表面を示している。図6Aに示すように、この繊維強化複合材料積層体では、表面に樹脂枯れが発生しておらず、表面性状が良好であることが分かる。これに対して、図6Bは、表層部前駆体に含まれている樹脂量Wresinが120g/m2であり、芯部の算術平均粗さRaが59.0μmの場合に得られた繊維強化複合材料積層体の表面を示している。図6Bに示すように、この繊維強化複合材料積層体では、表面に樹脂枯れDが発生しており、外観不良が発生していることが分かる。 FIG. 6A shows a fiber reinforced composite laminate obtained when the resin amount W resin contained in the surface layer precursor is 360 g / m 2 and the arithmetic average roughness Ra of the core is 59.0 μm. Shows the surface. As shown in FIG. 6A, it can be seen that in this fiber-reinforced composite material laminate, no resin withering occurs on the surface, and the surface properties are good. On the other hand, FIG. 6B shows the fiber reinforcement obtained when the resin amount W resin contained in the surface layer precursor is 120 g / m 2 and the arithmetic average roughness Ra of the core is 59.0 μm. The surface of the composite material laminate is shown. As shown in FIG. 6B, in this fiber reinforced composite material laminate, it can be seen that the resin withering D occurs on the surface and the appearance defect occurs.
[実施例2]
まず、芯部を構成する発泡樹脂として、次のものを準備した。なお、発泡樹脂の算術平均粗さRaは、実施例1と同様に測定した。
・ポリエチレンテレフタレート樹脂発泡体、セルペット(積水化成品工業株式会社製)、算術平均粗さRa:18.5μm
・ポリメタクリルイミド硬質発泡体、ROHACELL 71SL(ダイセル・エボニック株式会社製)、算術平均粗さRa:57.2μm
・硬質アクリル発泡体、フォーマック#1000(積水化成品工業株式会社製)、算術平均粗さRa:59.0μm
[Example 2]
First, the following were prepared as the foamed resin constituting the core. The arithmetic average roughness Ra of the foamed resin was measured in the same manner as in Example 1.
-Polyethylene terephthalate resin foam, Selpet (manufactured by Sekisui Plastics Co., Ltd.), arithmetic average roughness Ra: 18.5 μm
・ Polymethacrylimide rigid foam, ROHACELL 71SL (manufactured by Daicel-Evonik), arithmetic average roughness Ra: 57.2 μm
Hard acrylic foam, Formac # 1000 (manufactured by Sekisui Plastics Co., Ltd.), arithmetic average roughness Ra: 59.0 μm
次に、表層部前駆体として、炭素繊維の束を一方向にのみ揃えた繊維層を三層重ねた積層体に、実施例1と同じエポキシ樹脂の前駆体を含浸して半硬化状態にしたプリプレグを準備した。なお、表層部前駆体は、樹脂量Wresinが200g/m2、220g/m2、260g/m2、330g/m2の四種類を準備した。 Next, as a surface layer precursor, a laminate in which three fiber layers in which carbon fiber bundles were aligned in only one direction were stacked, and the same epoxy resin precursor as that in Example 1 was impregnated into a semi-cured state. A prepreg was prepared. Incidentally, the surface layer portion precursor resin weight W Resin was prepared four types of 200g / m 2, 220g / m 2, 260g / m 2, 330g / m 2.
そして、上記発泡樹脂と表層部前駆体とを直接接触させた状態で、実施例1と同様に押圧することにより、本例の繊維強化複合材料積層体を得た。なお、本例では、発泡樹脂及び表層部前駆体の組み合わせを変えて、複数種の繊維強化複合材料積層体を作製した。図7では、繊維強化複合材料積層体を成形する前における、芯部を構成する発泡樹脂の算術平均粗さRaと表層部前駆体の樹脂量Wresinとの関係を示している。また、図7は、得られた繊維強化複合材料積層体における表層部を目視で観察した際の樹脂枯れ部位の有無も合わせて示している。 And the fiber reinforced composite material laminated body of this example was obtained by pressing similarly to Example 1 in the state which made the said foamed resin and surface layer part precursor contact directly. In this example, a plurality of types of fiber reinforced composite material laminates were produced by changing the combination of the foam resin and the surface layer precursor. FIG. 7 shows the relationship between the arithmetic average roughness Ra of the foamed resin constituting the core and the resin amount W resin of the surface layer precursor before molding the fiber-reinforced composite material laminate. Moreover, FIG. 7 also shows the presence or absence of a resin withering site when the surface layer portion of the obtained fiber reinforced composite material laminate is visually observed.
図7に示すように、芯部の算術平均粗さRaが59.0μm以下の場合には、樹脂枯れの発生が抑制されていることが分かる。つまり、上述のように、繊維強化複合材料積層体は、表層部前駆体における繊維層の積層数を三層に抑え、樹脂量を360g/m2程度までにすることが好ましい。そのため、芯部の算術平均粗さRaの上限は59μmであることが好ましい。 As shown in FIG. 7, it can be seen that when the arithmetic average roughness Ra of the core is 59.0 μm or less, the occurrence of resin withering is suppressed. That is, as described above, in the fiber reinforced composite material laminate, it is preferable to suppress the number of fiber layers in the surface layer precursor to three, and to reduce the resin amount to about 360 g / m 2 . For this reason, the upper limit of the arithmetic average roughness Ra of the core is preferably 59 μm.
また、表層部前駆体に含まれている樹脂量Wresinと芯部の算術平均粗さRaとの関係が、Wresin≧4.41Raを満たす場合には、樹脂枯れが発生せず、表面性状が良好となっていることが分かる。 The relationship between arithmetic mean roughness Ra of the resin amount W Resin a core portion which is included in a surface portion precursors, when satisfying W resin ≧ 4.41Ra the resin wither does not occur, the surface properties It turns out that is good.
[実施例3]
まず、芯部を構成する発泡樹脂として、次のものを準備した。なお、発泡樹脂の算術平均粗さRaは、実施例1と同様に測定した。さらに、発泡樹脂の表面に存在するセルの最大径を、光学顕微鏡を用いて測定した。
・ポリメタクリルイミド硬質発泡体、ROHACELL 71SL(ダイセル・エボニック株式会社製)、算術平均粗さRa:57.2μm、セル最大径:0.6mm
・硬質アクリル発泡体、フォーマック#1000(積水化成品工業株式会社製)、算術平均粗さRa:59.0μm、セル最大径1.5mmの欠陥が見られるもの
[Example 3]
First, the following were prepared as the foamed resin constituting the core. The arithmetic average roughness Ra of the foamed resin was measured in the same manner as in Example 1. Furthermore, the maximum diameter of the cell existing on the surface of the foamed resin was measured using an optical microscope.
・ Polymethacrylimide rigid foam, ROHACELL 71SL (manufactured by Daicel-Evonik Co., Ltd.), arithmetic average roughness Ra: 57.2 μm, maximum cell diameter: 0.6 mm
Hard acrylic foam, Formac # 1000 (manufactured by Sekisui Plastics Co., Ltd.), arithmetic average roughness Ra: 59.0 μm, cell with a maximum cell diameter of 1.5 mm
次に、表層部前駆体として、炭素繊維の束を平織してなる繊維層を三層重ねた積層体に、実施例1と同じエポキシ樹脂の前駆体を含浸して半硬化状態にしたプリプレグを準備した。なお、表層部前駆体の樹脂量Wresinは、360g/m2とした。 Next, a prepreg impregnated with the same epoxy resin precursor as in Example 1 in a laminate obtained by laminating three layers of fiber layers obtained by plain weaving of carbon fiber bundles as a surface layer precursor is made into a semi-cured state. Got ready. The resin amount W resin of the surface layer portion precursor was 360 g / m 2 .
そして、上記発泡樹脂と表層部前駆体とを直接接触させた状態で、実施例1と同様に押圧することにより、本例の繊維強化複合材料積層体を得た。なお、発泡樹脂であるフォーマック#1000の表面を光学顕微鏡で観察した結果、セルの最大径が1.5mmのものが見られた。そして、図8では、得られた繊維強化複合材料積層体における表層部を観察した結果を示している。 And the fiber reinforced composite material laminated body of this example was obtained by pressing similarly to Example 1 in the state which made the said foamed resin and surface layer part precursor contact directly. As a result of observing the surface of Fomac # 1000, which is a foamed resin, with an optical microscope, a cell having a maximum diameter of 1.5 mm was observed. And in FIG. 8, the result of having observed the surface layer part in the obtained fiber reinforced composite material laminated body is shown.
図8に示すように、発泡樹脂のセルHに対応する部位では樹脂枯れDが発生しており、外観不良が生じていることが分かる。つまり、たとえ発泡樹脂の算術平均粗さRaが59μm以下であったとしても、セルHの最大径が1.5mmの場合には、表面性状が悪化することが分かる。 As shown in FIG. 8, it is understood that the resin withering D occurs in the portion corresponding to the cell H of the foamed resin, and the appearance defect is generated. That is, even if the arithmetic average roughness Ra of the foamed resin is 59 μm or less, the surface properties are deteriorated when the maximum diameter of the cell H is 1.5 mm.
これに対し、表面に存在するセルの最大径が0.6mmである発泡樹脂を用いた繊維強化複合材料積層体の表面を目視で観察した結果、樹脂枯れが確認できず、表面性状が良好となっていた。このことから、芯部の発泡樹脂は、表面のセルの最大径が0.6mm以下であることが好ましいことが分かる。 On the other hand, as a result of visually observing the surface of the fiber reinforced composite material laminate using the foamed resin having a maximum cell diameter of 0.6 mm existing on the surface, resin withering could not be confirmed and the surface property was good. It was. From this, it can be seen that the foamed resin in the core part preferably has a maximum cell diameter of 0.6 mm or less.
[実施例4]
まず、芯部を構成する発泡樹脂として次のものを準備し、縦30cm横30cmの板状に切断した。なお、発泡樹脂の算術平均粗さRaは、実施例1と同様に測定した。
・硬質アクリル発泡体、フォーマック#1000(積水化成品工業株式会社製)、算術平均粗さRa:59.0μm
[Example 4]
First, the following was prepared as the foamed resin constituting the core, and was cut into a plate shape of 30 cm in length and 30 cm in width. The arithmetic average roughness Ra of the foamed resin was measured in the same manner as in Example 1.
Hard acrylic foam, Formac # 1000 (manufactured by Sekisui Plastics Co., Ltd.), arithmetic average roughness Ra: 59.0 μm
次に、表層部前駆体として、炭素繊維の束を平織してなる繊維層を二層重ねた積層体に、実施例1と同じエポキシ樹脂の前駆体を含浸して半硬化状態にしたプリプレグを準備した。なお、表層部前駆体の樹脂量Wresinは、240g/m2とした。そして、表層部前駆体を縦30cm横30cmの板状に切断した。この表層部前駆体の硬化特性は、成形温度140℃で5分間加熱することにより硬化することが可能である。 Next, a prepreg impregnated with the same epoxy resin precursor as in Example 1 in a laminate obtained by laminating two layers of fiber layers obtained by plain weaving of carbon fiber bundles as a surface layer precursor is used. Got ready. The resin amount W resin of the surface layer portion precursor was 240 g / m 2 . And the surface layer part precursor was cut | disconnected in plate shape of length 30cm and width 30cm. The curing characteristics of the surface layer precursor can be cured by heating at a molding temperature of 140 ° C. for 5 minutes.
さらに、浸透防止層前駆体及び浸透防止層として次のものを準備し、縦30cm横30cmのフィルム状に切断した。
・浸透防止層前駆体1:エポキシ樹脂(速硬化性)、樹脂量120g、特性:140℃、3〜5分で硬化
・浸透防止層前駆体2:エポキシ樹脂(遅硬化性)、樹脂量80g、特性:140℃、10〜15分で硬化
・浸透防止層:東レ株式会社製PET樹脂、樹脂量78g、特性:融点が240℃
Furthermore, the following were prepared as a permeation prevention layer precursor and a permeation prevention layer, and cut into a film having a length of 30 cm and a width of 30 cm.
Penetration prevention layer precursor 1: epoxy resin (fast curing), resin amount 120 g, characteristics: cure at 140 ° C. for 3 to 5 minutes, penetration prevention layer precursor 2: epoxy resin (slow curing), resin amount 80 g , Properties: 140 ° C., 10-15 minutes in curing / penetration prevention layer: PET resin manufactured by Toray Industries, Inc., resin amount 78 g, properties: melting point 240 ° C.
(実施例4−1)
上記表層部前駆体、浸透防止層前駆体1、及び発泡樹脂をこの順で積層した後、加圧しながら成形温度140℃で押圧することにより、本例の繊維強化複合材料積層体を得た。
(Example 4-1)
After laminating | stacking the said surface layer part precursor, the penetration prevention layer precursor 1, and foaming resin in this order, the fiber reinforced composite material laminated body of this example was obtained by pressing at the molding temperature 140 degreeC, pressing.
(実施例4−2)
上記表層部前駆体、浸透防止層、及び発泡樹脂をこの順で積層した後、加圧しながら成形温度140℃で押圧することにより、本例の繊維強化複合材料積層体を得た。
(Example 4-2)
After laminating the surface layer part precursor, the permeation preventive layer, and the foamed resin in this order, the fiber reinforced composite material laminate of this example was obtained by pressing at a molding temperature of 140 ° C. while pressing.
(比較例4−1)
上記表層部前駆体及び発泡樹脂をこの順で積層した後、加圧しながら成形温度140℃で押圧することにより、本例の繊維強化複合材料積層体を得た。
(Comparative Example 4-1)
After laminating | stacking the said surface layer part precursor and foamed resin in this order, the fiber reinforced composite material laminated body of this example was obtained by pressing at the molding temperature of 140 degreeC, pressurizing.
(比較例4−2)
上記表層部前駆体、浸透防止層前駆体2、及び発泡樹脂をこの順で積層した後、加圧しながら成形温度140℃で押圧することにより、本例の繊維強化複合材料積層体を得た。
(Comparative Example 4-2)
After laminating | stacking the said surface layer part precursor, the penetration prevention layer precursor 2, and foaming resin in this order, the fiber reinforced composite material laminated body of this example was obtained by pressing at the molding temperature of 140 degreeC, pressurizing.
実施例4−1、実施例4−2及び比較例4−1、比較例4−2の繊維強化複合材料積層体の表面を目視で観察し、樹脂枯れした部位の数を求めた。各例の樹脂枯れ部位の数を表2に示す。なお、表2では、浸透防止層の種類、浸透防止層の樹脂量、浸透防止層の特性も合わせて示す。 The surfaces of the fiber reinforced composite material laminates of Example 4-1, Example 4-2, Comparative Example 4-1, and Comparative Example 4-2 were visually observed, and the number of portions withered by the resin was determined. Table 2 shows the number of resin withering sites in each example. In Table 2, the type of the penetration preventing layer, the resin amount of the penetration preventing layer, and the characteristics of the penetration preventing layer are also shown.
表2に示すように、浸透防止層を設けた実施例4−1及び4−2は、樹脂枯れが発生しておらず、表面性状が良好となっていることが分かる。これに対し、浸透防止層を設けなかった比較例4−1は樹脂枯れが数多く発生しており、外観不良が生じていることが分かる。 As shown in Table 2, it can be seen that in Examples 4-1 and 4-2 provided with the permeation preventive layer, no resin withering occurred and the surface properties were good. On the other hand, in Comparative Example 4-1, which did not provide the permeation prevention layer, it was found that a lot of resin withering occurred and an appearance defect occurred.
また、実施例4−1で使用した浸透防止層前駆体は、成形温度140℃で3〜5分で硬化する。これに対して、表層部前駆体の硬化特性は、成形温度140℃で5分間加熱することにより硬化する。そのため、成形温度において、浸透防止層前駆体に含まれる熱硬化性樹脂前駆体の硬化時間が、表層部前駆体に含まれる熱硬化性樹脂前駆体の硬化時間よりも短い場合には、浸透防止層4が素早く形成され、樹脂枯れを抑制できることが分かる。 Moreover, the penetration preventing layer precursor used in Example 4-1 is cured in a molding temperature of 140 ° C. in 3 to 5 minutes. On the other hand, the curing characteristic of the surface layer precursor is cured by heating at a molding temperature of 140 ° C. for 5 minutes. Therefore, when the curing time of the thermosetting resin precursor contained in the penetration preventing layer precursor is shorter than the curing time of the thermosetting resin precursor contained in the surface layer precursor at the molding temperature, penetration prevention is performed. It can be seen that the layer 4 is formed quickly, and resin withering can be suppressed.
実施例4−2で使用した浸透防止層は、融点が成形温度140℃よりも100度高いことから、浸透防止層は成形温度で十分な貯蔵弾性率を有する。そのため、浸透防止層によってセルに熱硬化性樹脂前駆体が浸入することを効果的に抑制できることが分かる。 Since the penetration preventing layer used in Example 4-2 has a melting point that is 100 degrees higher than the molding temperature of 140 ° C., the penetration preventing layer has a sufficient storage elastic modulus at the molding temperature. Therefore, it turns out that it can suppress effectively that a thermosetting resin precursor penetrate | invades into a cell by a penetration prevention layer.
これに対して、比較例4−2で使用した浸透防止層前駆体は、成形温度140℃で10〜15分で硬化する。上述のように、表層部前駆体の硬化特性は、140℃で5分間加熱することにより硬化するため、浸透防止層前駆体に含まれる熱硬化性樹脂前駆体の硬化時間が、表層部前駆体に含まれる熱硬化性樹脂前駆体の硬化時間よりも遅い。この場合には、浸透防止層4が形成されず、熱硬化性樹脂前駆体がセルに浸入することを抑制できないため、樹脂枯れが発生することが分かる。 On the other hand, the penetration preventing layer precursor used in Comparative Example 4-2 is cured at a molding temperature of 140 ° C. for 10 to 15 minutes. As described above, since the curing property of the surface layer precursor is cured by heating at 140 ° C. for 5 minutes, the curing time of the thermosetting resin precursor contained in the penetration preventing layer precursor is the surface layer precursor. It is later than the curing time of the thermosetting resin precursor contained in. In this case, since the penetration preventing layer 4 is not formed and the thermosetting resin precursor cannot be prevented from entering the cell, it can be seen that resin withering occurs.
以上、本実施形態を実施例によって説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 As mentioned above, although this embodiment was described by the Example, this embodiment is not limited to these, A various deformation | transformation is possible within the range of the summary of this embodiment.
1 芯部
1a 表面
1b セル(気泡)
2 表層部
2A 表層部前駆体
4 浸透防止層
10,100 繊維強化複合材料積層体
1 Core 1a Surface 1b Cell (bubble)
2 Surface layer part 2A Surface layer part precursor 4 Penetration prevention layer 10,100 Fiber reinforced composite material laminate
Claims (8)
炭素繊維を含有する熱硬化性樹脂を有し、前記芯部の表面に密着される表層部と、
を備え、
前記芯部と前記表層部とが密着していない状態における前記芯部の発泡樹脂は、算術平均粗さRaが59μm以下であり、かつ、表面のセルの最大径が0.6mm以下である、繊維強化複合材料積層体。 A core containing a foamed resin;
Having a thermosetting resin containing carbon fiber, and a surface layer part closely adhered to the surface of the core part;
With
The foamed resin of the core part in a state where the core part and the surface layer part are not in close contact each other has an arithmetic average roughness Ra of 59 μm or less, and the maximum cell diameter on the surface is 0.6 mm or less. Fiber reinforced composite laminate.
前記芯部の発泡樹脂のガラス転移温度が、前記芯部と前記表層部とを密着させるための成形温度よりも18度以上高い、請求項1乃至3のいずれか一項に記載の繊維強化複合材料積層体。 The core foamed resin is made of an amorphous polymer,
The fiber reinforced composite according to any one of claims 1 to 3, wherein a glass transition temperature of the foamed resin of the core portion is 18 degrees or more higher than a molding temperature for bringing the core portion and the surface layer portion into close contact with each other. Material laminate.
前記芯部の発泡樹脂の融点が、前記芯部と前記表層部とを密着させるための成形温度よりも65度以上高い、請求項1乃至3のいずれか一項に記載の繊維強化複合材料積層体。 The core foam resin is made of a crystalline polymer,
The fiber-reinforced composite material laminate according to any one of claims 1 to 3, wherein a melting point of the foamed resin of the core part is 65 degrees or more higher than a molding temperature for bringing the core part and the surface layer part into close contact with each other. body.
前記浸透防止層を構成する熱硬化性樹脂の前駆体は、前記芯部と前記表層部とを密着させるための成形温度における、前記表層部を構成する熱硬化性樹脂の前駆体の硬化時間よりも短時間で硬化する、請求項6に記載の繊維強化複合材料積層体。 The penetration preventing layer includes a thermosetting resin,
The thermosetting resin precursor constituting the permeation preventive layer is based on the curing time of the thermosetting resin precursor constituting the surface layer portion at a molding temperature for bringing the core portion and the surface layer portion into close contact with each other. The fiber-reinforced composite material laminate according to claim 6, which is cured in a short time.
前記浸透防止層の融点が、前記芯部と前記表層部とを密着させるための成形温度よりも65度以上高い、請求項6に記載の繊維強化複合材料積層体。 The penetration preventing layer includes a thermoplastic resin,
The fiber-reinforced composite material laminate according to claim 6, wherein a melting point of the permeation preventive layer is 65 degrees or more higher than a molding temperature for bringing the core portion and the surface layer portion into close contact with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017124897A JP6877264B2 (en) | 2017-06-27 | 2017-06-27 | Fiber reinforced composite material laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017124897A JP6877264B2 (en) | 2017-06-27 | 2017-06-27 | Fiber reinforced composite material laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019006037A true JP2019006037A (en) | 2019-01-17 |
JP6877264B2 JP6877264B2 (en) | 2021-05-26 |
Family
ID=65026744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017124897A Active JP6877264B2 (en) | 2017-06-27 | 2017-06-27 | Fiber reinforced composite material laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6877264B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080340A1 (en) | 2020-10-15 | 2022-04-21 | 米島フエルト産業株式会社 | Method for manufacturing long foam sheet, method for manufacturing composite material, and long foam sheet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623763A (en) * | 1992-07-07 | 1994-02-01 | Teijin Ltd | Manufacture of composite molded product having porous core part |
JP2000158547A (en) * | 1998-12-01 | 2000-06-13 | Jsp Corp | Lightweight molded body |
JP2007144919A (en) * | 2005-11-30 | 2007-06-14 | Toray Ind Inc | Frp sandwich structure |
JP2016069477A (en) * | 2014-09-29 | 2016-05-09 | 積水化成品工業株式会社 | Polyester resin foam sheet and method for producing the same |
WO2016159147A1 (en) * | 2015-03-31 | 2016-10-06 | 東邦テナックス株式会社 | Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor |
-
2017
- 2017-06-27 JP JP2017124897A patent/JP6877264B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623763A (en) * | 1992-07-07 | 1994-02-01 | Teijin Ltd | Manufacture of composite molded product having porous core part |
JP2000158547A (en) * | 1998-12-01 | 2000-06-13 | Jsp Corp | Lightweight molded body |
JP2007144919A (en) * | 2005-11-30 | 2007-06-14 | Toray Ind Inc | Frp sandwich structure |
JP2016069477A (en) * | 2014-09-29 | 2016-05-09 | 積水化成品工業株式会社 | Polyester resin foam sheet and method for producing the same |
WO2016159147A1 (en) * | 2015-03-31 | 2016-10-06 | 東邦テナックス株式会社 | Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080340A1 (en) | 2020-10-15 | 2022-04-21 | 米島フエルト産業株式会社 | Method for manufacturing long foam sheet, method for manufacturing composite material, and long foam sheet |
KR20230015442A (en) | 2020-10-15 | 2023-01-31 | 요네시마펠트 씨오., 엘티디. | Manufacturing method of long foam sheet, manufacturing method of composite material, and long foam sheet |
Also Published As
Publication number | Publication date |
---|---|
JP6877264B2 (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4803028B2 (en) | Preform, FRP, and production method thereof | |
CN109996658B (en) | Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article | |
EP2495099A1 (en) | Fiber-reinforced molded product and method for producing same | |
EP2612754A1 (en) | Fiber reinforced molded article and manufacturing method therefor | |
US20070259135A1 (en) | Textile Core Sandwich Structures | |
US20100248573A1 (en) | Flexible 3-d textile structure and method of producing thereof | |
KR20140113017A (en) | Back cover for supporting display panel and method for producing the same | |
JP6826982B2 (en) | Reinforced with fibers of foam manufactured from segments joined together | |
JP2012125948A (en) | Fiber-reinforced thermoplastic resin molding and method for producing the same | |
JP2015083365A (en) | Sandwich structure, production method thereof and structure formed by processing sandwich structure | |
JP2015178241A (en) | Method of producing fiber-reinforced resin material | |
JP2006192745A (en) | Reinforcing fiber base material, preform, fiber reinforced resin molded product and its manufacturing method | |
US10611328B2 (en) | Composite material structural member and method of manufacturing the composite material structural member | |
TW201819163A (en) | Sheet and rod-shaped member | |
JP2019006037A (en) | Fiber reinforced composite material layer | |
JP5785889B2 (en) | Method for producing fiber reinforced composite | |
JP5864324B2 (en) | Method for producing fiber reinforced composite | |
TW201618962A (en) | Sandwich components composed of poly(meth)acrylate-based foam bodies and reversibly crosslinkable composites | |
AU2011264449B2 (en) | Method of making automotive body parts | |
US12030291B2 (en) | Fiber-reinforced composite material and sandwich structure | |
JP6731875B2 (en) | Fiber reinforced composite | |
KR101205812B1 (en) | Sandwich panel and method for manufacturing the same | |
KR20210143158A (en) | Fiber-reinforced resin composite and method for manufacturing fiber-reinforced resin composite | |
JP2006138031A (en) | Reinforcing fiber substrate, preform and method for producing them | |
JP6871040B2 (en) | Reinforcement members for ships, reinforcement structures for ships and reinforcement methods for ships |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6877264 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |