JP2019003079A - Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method - Google Patents

Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method Download PDF

Info

Publication number
JP2019003079A
JP2019003079A JP2017118250A JP2017118250A JP2019003079A JP 2019003079 A JP2019003079 A JP 2019003079A JP 2017118250 A JP2017118250 A JP 2017118250A JP 2017118250 A JP2017118250 A JP 2017118250A JP 2019003079 A JP2019003079 A JP 2019003079A
Authority
JP
Japan
Prior art keywords
light
deflection
optical deflector
regions
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017118250A
Other languages
Japanese (ja)
Inventor
雅英 岡▲崎▼
Masahide Okazaki
雅英 岡▲崎▼
山本 和久
Kazuhisa Yamamoto
和久 山本
村田 博司
Hiroshi Murata
博司 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Osaka University NUC
Original Assignee
Screen Holdings Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Osaka University NUC filed Critical Screen Holdings Co Ltd
Priority to JP2017118250A priority Critical patent/JP2019003079A/en
Priority to PCT/JP2018/017780 priority patent/WO2018230193A1/en
Publication of JP2019003079A publication Critical patent/JP2019003079A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Abstract

To make it possible to realize a light deflection technique using a periodically polarization-reversed structure.SOLUTION: A diffraction grating generated in a polarization-reversed region Sa, to which light is made incident first among polarization-reversed regions Sa, Sa, Sa, deflects light L incident from an X direction by Bragg diffraction. Further, a diffraction grating generated in a polarization-reversed region Sa, to which the light L is made incident at the Ma-th time, deflects by Bragg diffraction the light L that was deflected by Bragg diffraction by a diffraction grating generated in a polarization-reversed region Sa, to which the light L is made incidence at the (Ma-1)-th time. Thus, the deflection angle of the light L to one side can be adjusted by changing the number of polarization-reversed regions Sa, Sa, Sa, where a diffraction grating is generated, counted from the first region in the order in which the light L passes.SELECTED DRAWING: Figure 3

Description

この発明は、周期分極反転構造を有する電気光学結晶基板を利用して光を偏向する光偏向技術に関する。   The present invention relates to an optical deflection technique for deflecting light using an electro-optic crystal substrate having a periodically poled structure.

非特許文献1には、MEMS(Micro Electro Mechanical Systems)技術を用いて微小ミラーを振動させ、微小ミラーに入射するレーザー光を偏向する光偏向器が記載されている。このような光偏向器は、メカニカルに振動する振動ミラーにより偏向するため偏向速度が遅く、また微小ミラーによる反射を利用するためレーザーパワー耐性が低い。そのため、高出力のレーザー光を高速偏向する用途には、MEMS技術により微小ミラーを振動させる光偏向器には限界があった。したがって、かかる用途に利用可能な光偏向器が望まれていた。   Non-Patent Document 1 describes an optical deflector that vibrates a micromirror using MEMS (Micro Electro Mechanical Systems) technology and deflects laser light incident on the micromirror. Such an optical deflector is deflected by a vibrating mirror that vibrates mechanically, so that the deflection speed is slow, and since it uses reflection by a micromirror, the laser power resistance is low. For this reason, there is a limit to an optical deflector that vibrates a micromirror by MEMS technology for use in deflecting high-power laser light at high speed. Therefore, an optical deflector that can be used for such applications has been desired.

これに対して、非特許文献2には、電気光学効果を利用した電気光学偏向器が開示されている。電気光学偏向器は、電気光学結晶の内部にプリズム形状の分極反転部を作製し、電圧を印加することで生じる分極反転部と非反転部との屈折率の差により光を屈折させて光を偏向する。そのため、偏向速度が速く、光透過型の構成を採用しているため、レーザーパワー耐性が高いという特徴を有する。しかしながら、光を偏向できる角度が小さいという課題があった。   On the other hand, Non-Patent Document 2 discloses an electro-optic deflector using an electro-optic effect. The electro-optic deflector creates a prism-shaped domain-inverted part inside the electro-optic crystal and refracts the light by refracting light by the difference in refractive index between the domain-inverted part and the non-inverted part generated by applying a voltage. To deflect. Therefore, since the deflection speed is high and the light transmission type configuration is adopted, the laser power resistance is high. However, there is a problem that the angle at which light can be deflected is small.

また、非特許文献3には、リチウムナイオベート(LiNbO)で構成された周期分極反転構造を有する電気光学結晶基板を利用したブラッグ偏向器が開示されている。このブラッグ偏向器は、電気光学結晶基板と、電気光学結晶基板の一方主面に設けられた信号電極と、電気光学結晶基板の他方主面に設けられた共通電極とを備える。信号電極は光の進行方向に平行に形成され、信号電極に電圧が印加されると、信号電極と共通電極との間の電気光学結晶基板に周期的な屈折率分布が生じ、回折格子が生成される。このようなブラッグ偏向器は、偏向速度が速く、レーザーパワー耐性が高いという特徴を有する。しかしながら、光を偏向するか偏向しないかを選択的に実行するに過ぎず、光を偏向できる角度が小さいという課題があった。 Non-Patent Document 3 discloses a Bragg deflector using an electro-optic crystal substrate having a periodically poled structure composed of lithium niobate (LiNbO 3 ). The Bragg deflector includes an electro-optic crystal substrate, a signal electrode provided on one main surface of the electro-optic crystal substrate, and a common electrode provided on the other main surface of the electro-optic crystal substrate. The signal electrode is formed parallel to the light traveling direction, and when a voltage is applied to the signal electrode, a periodic refractive index distribution is generated in the electro-optic crystal substrate between the signal electrode and the common electrode, and a diffraction grating is generated. Is done. Such a Bragg deflector is characterized by high deflection speed and high laser power resistance. However, there is a problem that the angle at which the light can be deflected is small, only selectively performing whether the light is deflected or not.

Ulrich Hofmann , etc , “High-Q MEMS Resonators for Laser Beam Scanning Displays”, Micromachines 2012, 3, 509-528; doi:10.3390/mi3020509Ulrich Hofmann, etc, “High-Q MEMS Resonators for Laser Beam Scanning Displays”, Micromachines 2012, 3, 509-528; doi: 10.3390 / mi3020509 Y. Zuo, etc , “Bulk electro-optic deflector-based switches”,APPLIED OPTICS, Vol. 46, No. 16, pp 3323-3331, 1 June 2007Y. Zuo, etc, “Bulk electro-optic deflector-based switches”, APPLIED OPTICS, Vol. 46, No. 16, pp 3323-3331, 1 June 2007 Harald Gnewuch, etc , “Nanosecond Response of Bragg Deflectors in Periodically Poled LiNbO3”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 12, DECEMBER 1998Harald Gnewuch, etc, “Nanosecond Response of Bragg Deflectors in Periodically Poled LiNbO3”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 12, DECEMBER 1998

このように、周期分極反転構造を用いた技術は、高出力のレーザー光を高速偏向する用途に利用できる可能性を有するものの、偏向角度を確保するのが困難であった。   As described above, although the technique using the periodically poled structure has the possibility of being used for the purpose of deflecting high-power laser light at high speed, it is difficult to ensure the deflection angle.

この発明は上記課題に鑑みなされたものであり、周期分極反転構造を利用することで高出力のレーザー光の高速偏向を可能としつつ、偏向角度の確保も併せて実現可能とする技術の提供を目的とする。   The present invention has been made in view of the above problems, and provides a technique that enables high-definition laser light to be deflected at a high speed by using a periodically poled structure while ensuring a deflection angle. Objective.

本発明に係る光偏向器は、進行方向から入射してきた光を偏向する光偏向器であって、 互いに分極の向きが反転した区域が周期的に並ぶ周期分極反転構造をそれぞれ有し、光が順番に通過するNa(Naは2以上の整数)個の一方偏向用領域を有する多段偏向素子と、Na個の一方偏向用領域に対応して設けられたNa個の一方偏向用電極を有する電極部とを備え、各一方偏向用領域は、対応する一方偏向用電極に電圧が印加されると、進行方向に対して一方側へ傾斜した方向へ光を回折する回折格子を周期分極反転構造内に生成し、Na個の一方偏向用領域のうち、1番目に光が入射する一方偏向用領域に生成される回折格子は、進行方向から入射してきた光をブラッグ回折により偏向し、Ma(Maは2以上でNa以下の整数)番目に光が入射する一方偏向用領域に生成される回折格子は、(Ma−1)番目に光が入射する一方偏向用領域に生成される回折格子がブラッグ回折により偏向した光をブラッグ回折により偏向する。   The optical deflector according to the present invention is an optical deflector that deflects light incident from the traveling direction, and each has a periodic polarization reversal structure in which areas in which the directions of polarization are reversed are periodically arranged. A multistage deflecting element having one deflection region of Na (Na is an integer of 2 or more) passing in order, and an electrode having Na one deflection electrode provided corresponding to the Na one deflection region Each of the one deflection regions includes a diffraction grating that diffracts light in a direction inclined to one side with respect to the traveling direction when a voltage is applied to the corresponding one deflection electrode. The diffraction grating generated in the first deflection region where light enters first among the Na one deflection regions is deflected by Bragg diffraction, and Ma (Ma Is an integer greater than 2 and less than Na) There diffraction grating produced in one deflecting region the incident is deflected by Bragg diffraction of light diffraction grating is deflected by a Bragg diffraction generated on one deflecting region for incident light to (Ma-1) -th.

本発明に係る光偏向方法は、進行方向から入射してきた光を偏向する光偏向方法であって、互いに分極の向きが反転した区域が周期的に並ぶ周期分極反転構造をそれぞれ有し、光が順番に通過するNa(Naは2以上の整数)個の一方偏向用領域に対して、進行方向から光を入射させる工程と、Na個の一方偏向用領域に対応して設けられたNa個の一方偏向用電極へ印加する電圧を制御する工程とを備え、各一方偏向用領域は、対応する一方偏向用電極に電圧が印加されると、進行方向に対して一方側へ傾斜した方向へ光を回折する回折格子を周期分極反転構造内に生成し、Na個の一方偏向用領域のうち、1番目に光が入射する一方偏向用領域に生成される回折格子は、進行方向から入射してきた光をブラッグ回折により偏向し、Ma(Maは2以上でNa以下の整数)番目に光が入射する一方偏向用領域に生成される回折格子は、(Ma−1)番目に光が入射する一方偏向用領域に生成される回折格子がブラッグ回折により偏向した光をブラッグ回折により偏向する。   The light deflection method according to the present invention is a light deflection method for deflecting light incident from the traveling direction, and each has a periodic polarization reversal structure in which areas in which the directions of polarization are reversed are periodically arranged. The step of causing light to enter from the traveling direction with respect to one Na deflection area (Na is an integer of 2 or more) that passes through in sequence, and Na pieces of Na provided corresponding to the Na one deflection area And a step of controlling a voltage applied to the deflection electrode, and each of the deflection areas emits light in a direction inclined to one side with respect to the traveling direction when a voltage is applied to the corresponding one deflection electrode. Is generated in the periodic polarization reversal structure, and the diffraction grating generated in the first deflection region where light enters first among the Na one deflection regions is incident from the traveling direction. The light is deflected by Bragg diffraction, and Ma ( (a is an integer greater than or equal to 2 and less than or equal to Na) The diffraction grating generated in the first deflection area where the light is incident is the (Ma-1) diffraction grating generated in the first deflection area where the light is incident. Light deflected by Bragg diffraction is deflected by Bragg diffraction.

このように構成された本発明(光偏向器、光偏向方法)では、互いに分極の向きが反転した区域が周期的に並ぶ周期分極反転構造をそれぞれ有するNa個の一方偏向用領域が設けられ、光がNa個の一方偏向用領域を順番に通過する。また、Na個の一方偏向用領域に対応してNa個の一方偏向用電極が設けられている。そして、各一方偏向用領域は、対応する一方偏向用電極に電圧が印加されると、進行方向に対して一方側へ傾斜した方向へ光を回折する回折格子を周期分極反転構造内に生成する。   In the present invention thus configured (optical deflector, optical deflection method), Na one deflection regions each having a periodically poled structure in which areas in which the directions of polarization are reversed are periodically arranged are provided, Light sequentially passes through the Na one deflection region. Further, Na one deflection electrodes are provided corresponding to Na one deflection regions. Each one deflection region generates a diffraction grating in the periodically poled structure that diffracts light in a direction inclined to one side with respect to the traveling direction when a voltage is applied to the corresponding one deflection electrode. .

特に、Na個の一方偏向用領域が順番にブラッグ回折により光を偏向できるように構成されている。つまり、Na個の一方偏向用領域のうち、1番目に光が入射する一方偏向用領域に生成される回折格子は、進行方向から入射してきた光をブラッグ回折により偏向する。さらに、Ma(Maは2以上でNa以下の整数)番目に光が入射する一方偏向用領域に生成される回折格子は、(Ma−1)番目に光が入射する一方偏向用領域に生成される回折格子がブラッグ回折により偏向した光をブラッグ回折により偏向する。したがって、光の通過順序の最初から数えた、回折格子を生成させる一方偏向用領域の個数を増加させることで、一方側への光の偏向角度を大きくすることができる。   In particular, the Na one deflection region is configured to be able to deflect light by Bragg diffraction in order. That is, the diffraction grating generated in the first deflection region where light enters first among the Na one deflection regions deflects the light incident from the traveling direction by Bragg diffraction. Further, the diffraction grating generated in the first deflection area where light enters Ma (Ma is an integer of 2 or more and Na or less) is generated in the first deflection area where light enters (Ma-1) th. The light deflected by Bragg diffraction is deflected by Bragg diffraction. Therefore, by increasing the number of the deflection regions for generating the diffraction grating, counted from the beginning of the light passing sequence, the deflection angle of the light toward one side can be increased.

このように本発明によれば、周期分極反転構造の電気光学効果を利用するため高速偏向が可能となるとともに、周期分極反転構造を用いた光透過型の構成を採用するため高い光パワー耐性も実現できる。しかも、一方偏向用領域を多段に配列することで、偏向角度も確保できる。こうして、周期分極反転構造を利用することで高出力のレーザー光の高速偏向を可能としつつ、偏向角度の確保も併せて実現することが可能となっている。   As described above, according to the present invention, since the electro-optic effect of the periodically poled structure is used, high-speed deflection is possible, and since a light transmission type structure using the periodically poled structure is adopted, high optical power resistance is also achieved. realizable. In addition, the deflection angle can be secured by arranging the deflection regions in multiple stages. In this way, by using the periodically poled structure, it is possible to secure a deflection angle while enabling high-speed deflection of high-power laser light.

また、多段偏向素子は、周期分極反転構造をそれぞれ有するNb(Nbは2以上の整数)個の他方偏向用領域をさらに有し、電極部は、Nb個の他方偏向用領域に対応して設けられたNb個の他方偏向用電極をさらに有し、各他方偏向用領域は、対応する他方偏向用電極に電圧が印加されると、進行方向に対して他方側へ傾斜した方向へ光を回折する回折格子を周期分極反転構造内に生成し、Nb個の他方偏向用領域のうち、1番目に光が入射する他方偏向用領域に生成される回折格子は、進行方向から入射してきた光をブラッグ回折により偏向し、Mb(Mbは2以上でNb以下の整数)番目に光が入射する他方偏向用領域に生成される回折格子は、(Mb−1)番目に光が入射する他方偏向用領域に生成される回折格子がブラッグ回折により偏向した光をブラッグ回折により偏向するように、光偏向器を構成しても良い。   The multistage deflection element further includes Nb (Nb is an integer of 2 or more) other deflection regions each having a periodically poled structure, and the electrode portion is provided corresponding to the Nb other deflection regions. Nb number of other deflection electrodes, and each of the other deflection regions diffracts light in a direction inclined to the other side when a voltage is applied to the corresponding other deflection electrode. The diffraction grating is generated in the periodically poled structure, and the diffraction grating generated in the other deflection region where the light is incident first among the Nb other deflection regions is configured to receive the light incident from the traveling direction. The diffraction grating which is deflected by Bragg diffraction and is generated in the other deflection region where light enters Mb (Mb is an integer of 2 or more and Nb or less) is used for the other deflection where light enters (Mb-1). Diffraction grating generated in the region is used for Bragg diffraction Ri deflected light to deflect by Bragg diffraction, it may constitute an optical deflector.

かかる構成では、各他方偏向用領域は、対応する他方偏向用電極に電圧が印加されると、進行方向に対して他方側へ傾斜した方向へ光を回折する回折格子を周期分極反転構造内に生成する。特に、Nb個の他方偏向用領域が順番にブラッグ回折により光を偏向できるように構成されている。つまり、Nb個の他方偏向用領域のうち、1番目に光が入射する他方偏向用領域に生成される回折格子は、進行方向から入射してきた光をブラッグ回折により偏向する。さらに、Mb(Mbは2以上でNb以下の整数)番目に光が入射する他方偏向用領域に生成される回折格子は、(Mb−1)番目に光が入射する他方偏向用領域に生成される回折格子がブラッグ回折により偏向した光をブラッグ回折により偏向する。したがって、光の通過順序の最初から数えた、回折格子を生成させる他方偏向用領域の個数を増加させることで、他方側への光の偏向角度を大きくすることができる。こうして、周期分極反転構造を利用することで高出力のレーザー光の高速偏向を可能としつつ、一方側および他方側への両方へ偏向角度を確保可能な光偏向技術が実現可能となっている。   In this configuration, each of the other deflection regions has a diffraction grating that diffracts light in a direction inclined to the other side with respect to the traveling direction in the periodic polarization inversion structure when a voltage is applied to the corresponding other deflection electrode. Generate. In particular, the Nb other deflection regions are configured so as to be able to deflect light by Bragg diffraction in order. That is, among the Nb other deflection regions, the diffraction grating generated in the other deflection region where light enters firstly deflects light incident from the traveling direction by Bragg diffraction. Furthermore, the diffraction grating generated in the other deflection region where light enters Mb (Mb is an integer of 2 or more and Nb or less) th is generated in the other deflection region where light enters (Mb-1) th. The light deflected by Bragg diffraction is deflected by Bragg diffraction. Therefore, by increasing the number of the other deflection regions for generating the diffraction grating, counted from the beginning of the light passing sequence, the deflection angle of the light toward the other side can be increased. Thus, it is possible to realize an optical deflection technique that can secure a deflection angle to both one side and the other side while enabling high-speed deflection of high-power laser light by using the periodic polarization inversion structure.

さらに、一方偏向用領域の個数Naと、他方偏向用領域の個数Nbとが等しいように、光偏向器を構成しても良い。かかる構成では、一方側および他方側の両方へバランス良く均等に光を偏向することができ、偏向角度をさらに大きくすることが可能となる。   Furthermore, the optical deflector may be configured such that the number Na of one deflection area is equal to the number Nb of the other deflection area. In such a configuration, light can be deflected equally in a balanced manner on both the one side and the other side, and the deflection angle can be further increased.

この際、一方偏向用領域と他方偏向用領域との配置には、種々のバリエーションが考えられる。例えば、光が通過する順序において、Na個の一方偏向用領域の後にNb個の他方偏向用領域が配置されるように、光偏向器を構成しても良い。あるいは、光が通過する順序において、一方偏向用領域と他方偏向用領域とが交互に配置されるように、光偏向器を構成しても良い。   At this time, various variations are conceivable for the arrangement of the one deflection region and the other deflection region. For example, the optical deflector may be configured such that Nb other deflection regions are arranged after Na one deflection regions in the order in which light passes. Alternatively, the optical deflector may be configured such that one deflection region and the other deflection region are alternately arranged in the order in which light passes.

また、電極部へ印加される電圧を制御することで、進行方向に交差する第1走査方向へ多段偏向素子により光を走査する走査制御部をさらに備えるように、光偏向器を構成しても良い。かかる構成では、周期分極反転構造を利用して光を走査することが可能となっている。   Further, the optical deflector may be configured to further include a scanning control unit that controls the voltage applied to the electrode unit to scan the light with the multistage deflection element in the first scanning direction that intersects the traveling direction. good. In such a configuration, it is possible to scan light using a periodically poled structure.

また、多段偏向素子を通過した光を、第1走査方向へ連続的に偏向する連続偏向部をさらに備え、走査制御部は、連続偏向部による光の偏向角度を調整して、多段偏向素子により光を照射可能な複数の離散的な位置の間に光を照射することで、光を第1方向へ連続的に走査するように、光偏向器を構成しても良い。かかる構成では、多段偏向素子による離散的な光走査を連続偏向部により補って、連続的な光走査を実現することができる。   In addition, it further includes a continuous deflection unit that continuously deflects the light that has passed through the multistage deflection element in the first scanning direction, and the scanning control unit adjusts the deflection angle of the light by the continuous deflection unit, The light deflector may be configured to continuously scan light in the first direction by irradiating light between a plurality of discrete positions where light can be irradiated. In such a configuration, it is possible to realize continuous light scanning by supplementing the discrete light scanning by the multistage deflecting element with the continuous deflection unit.

具体的には、連続偏向部は、光が順に通過する複数のプリズムと、複数のプリズムに共通に設けられた共通電極とを有し、光が通過する順序において複数のプリズムの分極の向きが交互に反転し、走査制御部は、共通電極へ印加される電圧を制御することで、多段偏向素子を通過した光を連続偏向部により第1走査方向へ連続的に偏向させるように、光偏向器を構成しても良い。   Specifically, the continuous deflection unit includes a plurality of prisms through which light sequentially passes and a common electrode provided in common to the plurality of prisms, and the polarization directions of the plurality of prisms are in the order in which the light passes through. Inverted alternately, and the scanning control unit controls the voltage applied to the common electrode, so that the light that has passed through the multistage deflection element is deflected continuously in the first scanning direction by the continuous deflection unit. A vessel may be configured.

また、プリズムの光の通過面は、進行方向へ凸に湾曲した形状を有するように、光偏向器を構成しても良い。これによって、プリズムの光の通過面(プリズム面)でのケラレを抑制できる。   Further, the light deflector may be configured so that the light passage surface of the prism has a shape that is convexly curved in the traveling direction. Thus, vignetting on the light passage surface (prism surface) of the prism can be suppressed.

さらに、各プリズムの偏角が最小偏角となる形状を通過面が有するように、光偏向器を構成しても良い。これによって、プリズム面でのケラレをより確実に抑制できる。   Further, the optical deflector may be configured so that the passing surface has a shape in which the deflection angle of each prism is the minimum deflection angle. Thereby, vignetting on the prism surface can be more reliably suppressed.

また、連続偏向部では、光が通過する順序において分極の向きが交互に反転する複数のプリズムにより構成されるプリズム群が、進行方向に直交する方向に複数配列されているように、光偏向器を構成しても良い。かかる構成では、微小なプリズムをマトリックス状に多数配列することができるため、光偏向器の大型化を伴わずに、屈折面を増やすことができる。したがって、個々の屈折面の屈折角を小さくできるため、プリズム(分極反転構造)に印加する電圧を低く設定でき、より高速な光偏向が可能となる。   Further, in the continuous deflection unit, the optical deflector is arranged such that a plurality of prism groups composed of a plurality of prisms whose polarization directions are alternately reversed in the order in which the light passes are arranged in a direction orthogonal to the traveling direction. May be configured. In such a configuration, since a large number of minute prisms can be arranged in a matrix, the number of refractive surfaces can be increased without increasing the size of the optical deflector. Therefore, since the refraction angle of each refracting surface can be reduced, the voltage applied to the prism (polarization inversion structure) can be set low, and higher-speed light deflection can be achieved.

また、多段偏向素子を通過した光を、第1走査方向に直交する第2走査方向へ偏向する走査偏向部をさらに備えるように、光偏向器を構成しても良い。これによって、二次元的に光を走査することが可能となる。   In addition, the optical deflector may be configured to further include a scanning deflection unit that deflects light that has passed through the multistage deflection element in a second scanning direction orthogonal to the first scanning direction. This makes it possible to scan light two-dimensionally.

また、Na個の一方偏向用領域のうち、I(Iは1以上の整数)番目に光が入射する一方偏向用領域の周期分極反転構造では、区域が周期Λiで周期的に並ぶとともに互いに隣接する区域の境界が進行方向に対して角度φi傾斜し、次の関係式
φi=θi−1+arcsin(λ/2nΛi
n:周期分極反転構造を構成する結晶の屈折率
θi−1:I番目の一方偏向用領域に入射する光と進行方向との間の角度
λ:光の波長
が満たされるように、光偏向器を構成しても良い。かかる構成では、一方偏向用領域に入射する光を、ブラッグ回折により確実に偏向することが可能となる。
In addition, in the periodic polarization reversal structure of the one deflection region where light enters the I (I is an integer of 1 or more) -th among the Na one deflection regions, the sections are periodically arranged with the period Λ i and The boundary of the adjacent area is inclined by the angle φ i with respect to the traveling direction, and the following relational expression φ i = θ i−1 + arcsin (λ / 2nΛ i )
n: Refractive index of the crystal constituting the periodically poled structure θ i-1 : Angle between the light incident on the I-th one deflection region and the traveling direction λ: Light deflection so that the wavelength of the light is satisfied A vessel may be configured. In such a configuration, it is possible to reliably deflect the light incident on the one deflection region by Bragg diffraction.

なお、上記の光偏向器の用途は種々考えられる。例えば、光源部と、光源部からの光を偏向する上記の光偏向器と、光偏向器を通過した光が描画対象に照射される位置を、光偏向器による光の偏向を制御することで調整して、描画対象にパターンを描画する制御部とを備える描画装置を構成しても良い。   Various uses of the above optical deflector are conceivable. For example, by controlling the deflection of the light by the light deflector, the light deflector that deflects the light from the light source, and the position where the light that has passed through the light deflector is irradiated onto the drawing object. A drawing apparatus may be configured that includes a control unit that adjusts and draws a pattern on a drawing target.

光源部と、光源部からの光を偏向する上記の光偏向器と、光偏向器による光の偏向を制御することで、照射対象に光を照射する制御部とを備える照明装置を構成しても良い。   A lighting device comprising a light source unit, the above-described optical deflector that deflects light from the light source unit, and a control unit that irradiates light to an irradiation target by controlling light deflection by the optical deflector is configured. Also good.

あるいは、光源部と、光源部からの光を走査する上記の光偏向器と、走査された光の障害物による反射を検出する検出部と、検出部の検出結果に基づき障害物の有無を判断する制御部とを備える障害物検出装置を構成しても良い。   Alternatively, a light source unit, the above-described optical deflector that scans light from the light source unit, a detection unit that detects reflection of the scanned light by an obstacle, and the presence or absence of an obstacle are determined based on the detection result of the detection unit You may comprise an obstacle detection apparatus provided with the control part to perform.

以上のように、本発明によれば、周期分極反転構造を利用することで高出力のレーザー光の高速偏向を可能としつつ、偏向角度の確保も併せて実現することが可能となっている。   As described above, according to the present invention, it is possible to secure a deflection angle while enabling high-speed deflection of high-power laser light by using a periodically poled structure.

本発明の第1実施形態に係る光偏向器を模式的に示す斜視図。The perspective view which shows typically the optical deflector which concerns on 1st Embodiment of this invention. 図1の光偏向器が備える複数の分極反転領域の配置を模式的に示す分解斜視図。The disassembled perspective view which shows typically arrangement | positioning of the several polarization inversion area | region with which the optical deflector of FIG. 1 is provided. 図1の光偏向器の動作の一例を模式的に示す平面図。The top view which shows typically an example of operation | movement of the optical deflector of FIG. 図3に示す動作の一例を表形式で表した図。FIG. 4 is a diagram illustrating an example of the operation illustrated in FIG. 3 in a table format. 本発明の第2実施形態に係る光偏向器を模式的に示す平面図。The top view which shows typically the optical deflector which concerns on 2nd Embodiment of this invention. 図5の光偏向器が備える連続偏向部の一例を模式的に示す斜視図。The perspective view which shows typically an example of the continuous deflection | deviation part with which the optical deflector of FIG. 5 is provided. 本発明の第3実施形態に係る光偏向器を模式的に示す平面図。The top view which shows typically the optical deflector which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る光偏向器を模式的に示す平面図。The top view which shows typically the optical deflector which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る光偏向器を模式的に示す平面図。The top view which shows typically the optical deflector which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る光偏向器を模式的に示す図。The figure which shows typically the optical deflector which concerns on 6th Embodiment of this invention. 本発明に係る光偏向器を備えた描画装置の一実施形態の概略構成を模式的に示す正面図。The front view which shows typically schematic structure of one Embodiment of the drawing apparatus provided with the optical deflector which concerns on this invention. 本発明に係る光偏向器を備えた照明装置の一実施形態の概略構成を模式的に示す図。The figure which shows typically schematic structure of one Embodiment of the illuminating device provided with the optical deflector which concerns on this invention. 本発明に係る光偏向器を備えた障害物検出装置の一実施形態を模式的に示す図。The figure which shows typically one Embodiment of the obstruction detection apparatus provided with the optical deflector which concerns on this invention. 第2実施形態で示した光偏向器の変形例を模式的に示す図。The figure which shows typically the modification of the optical deflector shown in 2nd Embodiment. 第3実施形態で示した偏向器の変形例を模式的に示す図。The figure which shows typically the modification of the deflector shown in 3rd Embodiment. 本発明の具体的なシミュレーション結果の一例を示す光強度分布の等高線図。The contour map of the light intensity distribution which shows an example of the concrete simulation result of this invention.

図1は本発明の第1実施形態に係る光偏向器を模式的に示す斜視図である。図2は図1の光偏向器が備える複数の分極反転領域の配置を模式的に示す分解斜視図である。図3は図1の光偏向器の動作の一例を模式的に示す平面図である。図4は図3に示す動作の一例を表形式で表した図である。図1〜図3および以下の図では、光偏向器1へ入射する光Lの進行方向をX方向とするXYZ直交座標系を適宜示す。特にX方向の一方側(光Lの進行側)を+X側と、X方向の他方側を−X側と、Y方向の一方側を+Y側と、Y方向の他方側を−Y側と、Z方向の一方側を+Z側と、Z方向の他方側を−Z側と適宜称する。   FIG. 1 is a perspective view schematically showing an optical deflector according to the first embodiment of the present invention. FIG. 2 is an exploded perspective view schematically showing the arrangement of a plurality of polarization inversion regions provided in the optical deflector of FIG. FIG. 3 is a plan view schematically showing an example of the operation of the optical deflector of FIG. FIG. 4 is a diagram showing an example of the operation shown in FIG. 3 in a table format. 1 to 3 and the following drawings appropriately show an XYZ orthogonal coordinate system in which the traveling direction of the light L incident on the optical deflector 1 is the X direction. In particular, one side in the X direction (traveling side of the light L) is the + X side, the other side in the X direction is the -X side, one side in the Y direction is the + Y side, and the other side in the Y direction is the -Y side. One side in the Z direction is referred to as + Z side, and the other side in the Z direction is referred to as -Z side as appropriate.

この光偏向器1は、多段偏向素子2、多段偏向素子2に取り付けられた電極部3、電極部3に信号に対応した電圧を印加する駆動部41および駆動部41を制御する駆動制御部5を備え、X方向の−X側から+X側へ進行しつつ入射してきた光LをX方向に直交するY方向に偏向する。   The optical deflector 1 includes a multistage deflection element 2, an electrode section 3 attached to the multistage deflection element 2, a drive section 41 that applies a voltage corresponding to a signal to the electrode section 3, and a drive control section 5 that controls the drive section 41. The light L that has entered while traveling from the −X side to the + X side in the X direction is deflected in the Y direction orthogonal to the X direction.

多段偏向素子2は、例えばリチウムナイオベート(LiNbO)の単結晶で形成された電気光学結晶基板であり、この電気光学結晶基板中には3個の分極反転領域Sa、Sa、Saが形成されている。分極反転領域Sa、Sa、SaはX方向に直列に配列され、光偏向器1に入射した光Lはこれらを順番に通過する。なお、分極反転領域Sa、Sa、Saを区別しない場合には、これらを分極反転領域Saと適宜総称する。また、分極反転領域Sa、Sa、Saそれぞれの構成を特徴付ける後述の周期Λa、Λa、Λaおよび傾斜角φa、φa、φa等も、それぞれを区別しない場合には、周期Λaおよび傾斜角φaと適宜総称する。 The multistage deflection element 2 is an electro-optic crystal substrate formed of, for example, lithium niobate (LiNbO 3 ) single crystal, and in the electro-optic crystal substrate, there are three polarization inversion regions Sa 1 , Sa 2 , Sa 3. Is formed. The polarization inversion regions Sa 1 , Sa 2 , Sa 3 are arranged in series in the X direction, and the light L incident on the optical deflector 1 passes through these in order. Incidentally, when there is no need to distinguish between the polarization inversion region Sa 1, Sa 2, Sa 3 is collectively referred them appropriately and polarization inversion region Sa. In addition, the periods Λa 1 , Λa 2 , Λa 3 and the inclination angles φa 1 , φa 2 , φa 3, etc., which characterize the configurations of the domain-inverted regions Sa 1 , Sa 2 , Sa 3, which are described later, These are collectively referred to as a period Λa and an inclination angle φa as appropriate.

分極反転領域Saは直方体形状を有し、分極反転領域Saの光の入射面22および射出面23はYZ平面に平行であり、分極反転領域Saの一方主面24および他方主面25はXY平面に平行である。この分極反転領域Saは、互いに分極の向きが反転した区域が周期Λaで周期的に並ぶ周期分極反転構造を有する。つまり、分極反転領域Saでは、Z方向の−Z側(図2下側)を向いて分極した分極区域26と、Z方向の+Z側(図2上側)を向いて分極した分極区域27とが交互に配列され、分極区域26、27のそれぞれは周期Λaの半分の幅の帯状の四角柱形状を有する。この際、分極区域26、27の配列方向、換言すれば分極反転が周期的に表れる方向はY方向に対して傾斜しており、その結果、隣接する分極区域26、27の境界平面28はX方向に対してY方向の+Y側に傾斜角φaで傾斜している(換言すれば、境界平面28は、光Lの進行方向であるX方向の+X側に進むほどY方向の+Y側に進むように、X方向に対して傾斜角φaで傾斜している)。   The domain-inverted region Sa has a rectangular parallelepiped shape, the light incident surface 22 and the exit surface 23 of the domain-inverted region Sa are parallel to the YZ plane, and one main surface 24 and the other main surface 25 of the domain-inverted region Sa are XY planes. Parallel to The domain-inverted region Sa has a periodically domain-inverted structure in which areas where the directions of polarization are inverted are periodically arranged with a period Λa. That is, in the polarization inversion region Sa, there are a polarization area 26 polarized toward the −Z side (lower side in FIG. 2) in the Z direction and a polarization area 27 polarized toward the + Z side (upper side in FIG. 2) in the Z direction. Alternatingly arranged, each of the polarization sections 26, 27 has a strip-like quadrangular prism shape that is half the width of the period Λa. At this time, the arrangement direction of the polarization sections 26 and 27, in other words, the direction in which the polarization inversion appears periodically is inclined with respect to the Y direction. As a result, the boundary plane 28 between the adjacent polarization sections 26 and 27 is X (In other words, the boundary plane 28 advances toward the + X side in the Y direction as it advances toward the + X side in the X direction, which is the traveling direction of the light L). Thus, it is inclined at an inclination angle φa with respect to the X direction).

電極部3は、3個の分極反転領域Sa、Sa、Saに対応してそれぞれ個別に設けられた3個の信号電極Ea、Ea、Eaを有する。信号電極Ea、Ea、Eaのそれぞれは、Y方向に平行に延設された平板形状を有し、対応する分極反転領域Sa、Sa、Saの一方主面24に取り付けられている。また、電極部3は、3個の分極反転領域Sa、Sa、Saそれぞれの他方主面25に共通に設けられた接地電極Egを有する。こうして、3個の分極反転領域Sa、Sa、Saのそれぞれは、対応する信号電極Ea、Ea、Eaと接地電極Egとにより挟まれている。 The electrode unit 3 includes three signal electrodes Ea 1 , Ea 2 , and Ea 3 that are individually provided corresponding to the three polarization inversion regions Sa 1 , Sa 2 , and Sa 3 . Each of the signal electrodes Ea 1 , Ea 2 , Ea 3 has a flat plate shape extending in parallel with the Y direction, and is attached to one main surface 24 of the corresponding domain-inverted regions Sa 1 , Sa 2 , Sa 3. ing. The electrode unit 3 has a ground electrode Eg provided in common on the other main surface 25 of each of the three polarization inversion regions Sa 1 , Sa 2 , Sa 3 . Thus, each of the three polarization inversion regions Sa 1 , Sa 2 , Sa 3 is sandwiched between the corresponding signal electrodes Ea 1 , Ea 2 , Ea 3 and the ground electrode Eg.

駆動部41は、信号電極Ea、Ea、Eaのそれぞれに個別に信号に対応した電圧を印加することができる。これに対して、駆動制御部5は駆動部41を制御する機能を担当するプロセッサーであり、CPU(Central Processing Unit)やRAM(Random Access Memory)で構成されている。特に駆動制御部5は、駆動部41による信号電極Ea、Ea、Eaへの信号に対応した電圧の印加を制御することで、分極反転領域Sa、Sa、Sa内に回折格子を生成し、光Lの偏向方向を調整する。 The drive unit 41 can individually apply a voltage corresponding to a signal to each of the signal electrodes Ea 1 , Ea 2 , and Ea 3 . On the other hand, the drive control unit 5 is a processor in charge of the function of controlling the drive unit 41, and includes a CPU (Central Processing Unit) and a RAM (Random Access Memory). In particular, the drive control unit 5 controls the application of voltages corresponding to the signals to the signal electrodes Ea 1 , Ea 2 , and Ea 3 by the drive unit 41, thereby diffracting the polarization inversion regions Sa 1 , Sa 2 , and Sa 3 . A grating is generated and the deflection direction of the light L is adjusted.

つまり、分極反転領域Sa、Sa、Saは、対応する信号電極Ea、Ea、Eaへの信号に対応した電圧の印加を受けて、それぞれの周期分極反転構造内にブラッグ型の回折格子を生成する。そして、この回折格子が、X方向に対してY方向の+Y側へ傾斜した方向へ光Lを回折する。図3を参照しつつ詳述すると、1段目の分極反転領域Saに生成される回折格子は、X方向に平行に入射してきた光Lを、当該光Lに対して回折角αだけY方向の+Y側へ傾斜した方向へブラッグ回折により回折する。2段目の分極反転領域Saに生成される回折格子は、前段の分極反転領域Saにより回折された光Lを、当該光Lに対して回折角αだけY方向の+Y側へ傾斜した方向へブラッグ回折により回折する。3段目の分極反転領域Saに生成される回折格子は、前段の分極反転領域Saにより回折された光Lを、当該光Lに対して回折角αだけY方向の+Y側へ傾斜した方向へブラッグ回折により回折する。 That is, the polarization inversion regions Sa 1 , Sa 2 , Sa 3 receive a voltage corresponding to the signal applied to the corresponding signal electrodes Ea 1 , Ea 2 , Ea 3 , and are Bragg type in each periodic polarization inversion structure. The diffraction grating is generated. The diffraction grating diffracts the light L in a direction inclined to the + Y side in the Y direction with respect to the X direction. Referring to FIG. 3 in detail, the diffraction grating generated in the first-stage polarization inversion region Sa 1 causes the light L incident parallel to the X direction to be incident on the light L only at a diffraction angle α 1. Diffracted by Bragg diffraction in a direction inclined to the + Y side in the Y direction. The diffraction grating generated in the second-stage polarization inversion region Sa 2 tilts the light L diffracted by the previous-stage polarization inversion region Sa 1 toward the + Y side in the Y direction by the diffraction angle α 2 with respect to the light L. Diffracted by Bragg diffraction in the specified direction. The diffraction grating generated in the third-stage polarization inversion region Sa 3 tilts the light L diffracted by the previous-stage polarization inversion region Sa 2 with respect to the light L by the diffraction angle α 3 toward the + Y side in the Y direction. Diffracted by Bragg diffraction in the specified direction.

したがって、図4に示すように、信号電極Ea、Ea、Eaのいずれにも信号に対応した電圧を印加しない場合には、X方向に平行に多段偏向素子2に入射してきた光Lは、回折されることなく分極反転領域Sa、Sa、Saを通過して、X方向に平行な方向Daへ射出される。1段目の信号電極Eaにのみ信号に対応した電圧を印加した場合には、X方向に平行に多段偏向素子2に入射してきた光Lは、分極反転領域Saにより回折されて、X方向に対してY方向の+Y側に傾斜した方向Daへ偏向される。1〜2段目の信号電極Ea、Eaにのみ信号に対応した電圧を印加した場合には、X方向に平行に多段偏向素子2に入射してきた光Lは、分極反転領域Sa、Saにより回折されて、方向DaよりもさらにX方向に対してY方向の+Y側に傾斜した方向Daへ偏向される。1〜3段目の信号電極Ea、Ea、Eaのいずれにも信号に対応した電圧を印加した場合には、X方向に平行に多段偏向素子2に入射してきた光Lは、分極反転領域Sa、Sa、Saにより回折されて、方向DaよりもさらにX方向に対してY方向の+Y側に傾斜した方向Daへ偏向される。したがって、駆動制御部5は、信号電極Ea、Ea、Eaへの信号に対応した電圧の印加を制御することで、光Lの偏向方向を変更して、光LをY方向の+Y側および−Y側の両側に走査することができる。 Accordingly, as shown in FIG. 4, the signal electrodes Ea 1, Ea 2, when no voltage is applied which corresponds to one to signal also the Ea 3, the light has been incident on the parallel multistage deflecting element 2 in the X direction L Passes through the polarization inversion regions Sa 1 , Sa 2 , Sa 3 without being diffracted, and is emitted in a direction Da 0 parallel to the X direction. When a voltage corresponding to a signal is applied only to the first-stage signal electrode Ea 1 , the light L incident on the multistage deflection element 2 in parallel to the X direction is diffracted by the polarization inversion region Sa 1 , It is deflected in a direction Da 1 inclined to the + Y side of the Y direction with respect to the direction. When a voltage corresponding to a signal is applied only to the first and second stage signal electrodes Ea 1 and Ea 2 , the light L incident on the multistage deflection element 2 parallel to the X direction is converted into the polarization inversion regions Sa 1 , It is diffracted by Sa 2 and deflected in a direction Da 2 that is inclined further to the + Y side in the Y direction with respect to the X direction than the direction Da 1 . When a voltage corresponding to a signal is applied to any of the first to third stage signal electrodes Ea 1 , Ea 2 , Ea 3 , the light L incident on the multistage deflection element 2 in parallel to the X direction is polarized. is diffracted by the inversion region Sa 1, Sa 2, Sa 3 , is deflected in a direction Da 3 inclined to the + Y side of Y-direction relative to the further X-direction than in the direction Da 2. Therefore, the drive controller 5 changes the deflection direction of the light L by controlling the application of voltages corresponding to the signals to the signal electrodes Ea 1 , Ea 2 , and Ea 3 , and changes the light L to + Y in the Y direction. Can be scanned on both the side and the -Y side.

このように第1実施形態に係る光偏向器1では、互いに分極の向きが反転した分極区域26、27が周期的に並ぶ周期分極反転構造をそれぞれ有するNa個の分極反転領域Sa、Sa、Saが設けられ、光LがNa個の分極反転領域Sa、Sa、Saを順番に通過する。ここで、Naは2以上の整数であり、第1実施形態では「3」である。また、Na個の分極反転領域Sa、Sa、Saに対応してNa個の信号電極Ea、Ea、Eaが設けられている。そして、各分極反転領域Sa、Sa、Saは、対応する信号電極Ea、Ea、Eaに信号に対応した電圧が印加されると、X方向に対して+Y側へ傾斜した方向へ光Lを回折する回折格子を周期分極反転構造内に生成する。 As described above, in the optical deflector 1 according to the first embodiment, Na polarization inversion regions Sa 1 and Sa 2 each having a periodically poled structure in which the polarization areas 26 and 27 in which the polarization directions are inverted are periodically arranged. , Sa 3 are provided, and the light L sequentially passes through the Na polarization inversion regions Sa 1 , Sa 2 , Sa 3 . Here, Na is an integer of 2 or more, and is “3” in the first embodiment. Further, Na signal electrodes Ea 1 , Ea 2 , Ea 3 are provided corresponding to the Na polarization inversion regions Sa 1 , Sa 2 , Sa 3 . Each domain-inverted regions Sa 1, Sa 2, Sa 3 is the voltage corresponding to the signal to the corresponding signal electrodes Ea 1, Ea 2, Ea 3 is applied, it is inclined to the X-direction + Y side A diffraction grating that diffracts the light L in the direction is generated in the periodically poled structure.

特に、Na個の分極反転領域Sa、Sa、Saが順番にブラッグ回折により光Lを偏向できるように構成されている。つまり、Na個の分極反転領域Sa、Sa、Saのうち、1番目に光が入射する分極反転領域Saに生成される回折格子は、X方向から入射してきた光Lをブラッグ回折により偏向する。さらに、Ma番目に光Lが入射する分極反転領域SaMaに生成される回折格子は、(Ma−1)番目に光Lが入射する分極反転領域SaMa−1に生成される回折格子がブラッグ回折により偏向した光Lをブラッグ回折により偏向する。ここで、Maは2以上でNa以下の整数であり、第1実施形態では「2」または「3」である。したがって、光Lの通過順序の最初から数えた、回折格子を生成させる分極反転領域Sa、Sa、Saの個数を増加させることで、+Y側への光Lの偏向角度を大きくすることができる。 In particular, the Na polarization inversion regions Sa 1 , Sa 2 , Sa 3 are configured so that the light L can be deflected by Bragg diffraction in order. That is, among the Na polarization inversion regions Sa 1 , Sa 2 , Sa 3 , the diffraction grating generated in the polarization inversion region Sa 1 where light is incident first is Bragg diffraction of the light L incident from the X direction. To deflect. Furthermore, the diffraction grating generated in the polarization inversion region Sa Ma where the light L is incident on the Math is Bragg is the diffraction grating generated in the polarization inversion region Sa Ma-1 where the light L is incident on the (Ma-1) th. Light L deflected by diffraction is deflected by Bragg diffraction. Here, Ma is an integer of 2 or more and Na or less, and is “2” or “3” in the first embodiment. Therefore, the deflection angle of the light L toward the + Y side is increased by increasing the number of polarization inversion regions Sa 1 , Sa 2 , Sa 3 for generating the diffraction grating, counted from the beginning of the light L passing sequence. Can do.

このように第1実施形態によれば、周期分極反転構造の電気光学効果を利用するため高速偏向が可能となるとともに、周期分極反転構造を用いた光透過型の構成を採用するため高い光パワー耐性も実現できる。しかも、分極反転領域Sa、Sa、Saを多段に配列することで、偏向角度も確保できる。こうして、周期分極反転構造を利用することで高出力のレーザー光の高速偏向を可能としつつ、偏向角度の確保も併せて実現することが可能となっている。 As described above, according to the first embodiment, high-speed deflection is possible because the electro-optic effect of the periodically poled structure is used, and high light power is achieved because the light transmission type structure using the periodically poled structure is employed. Resistance can also be realized. In addition, by arranging the polarization inversion regions Sa 1 , Sa 2 , Sa 3 in multiple stages, a deflection angle can be secured. In this way, by using the periodically poled structure, it is possible to secure a deflection angle while enabling high-speed deflection of high-power laser light.

また、駆動制御部5は、信号電極Ea、Ea、Eaへ印加される信号に対応した電圧を制御することで、X方向に直交するY方向へ多段偏向素子2により光Lを走査する。こうして、周期分極反転構造を利用して光Lを走査することが可能となっている。 Further, the drive control unit 5 controls the voltages corresponding to the signals applied to the signal electrodes Ea 1 , Ea 2 , and Ea 3 , thereby scanning the light L by the multistage deflection element 2 in the Y direction orthogonal to the X direction. To do. In this way, it is possible to scan the light L using the periodically poled structure.

続いて、上記実施形態と異なる実施形態について説明する。この際、上記実施形態との差異部分を中心に説明することとし、共通部分については相当符号を付して適宜説明を省略する。ただし、上記実施形態と共通する構成を備えることで、同様の効果を奏する点は言うまでもない。   Subsequently, an embodiment different from the above embodiment will be described. At this time, differences from the above-described embodiment will be mainly described, and common portions will be denoted by corresponding reference numerals, and description thereof will be omitted as appropriate. However, it goes without saying that the same effect can be obtained by providing the configuration common to the above embodiment.

図5は本発明の第2実施形態に係る光偏向器を模式的に示す平面図である。図6は図5の光偏向器が備える連続偏向部の一例を模式的に示す斜視図である。第2実施形態が第1実施形態と異なるのは、光偏向器1が、多段偏向素子2の後段に設けられた連続偏向部6と、連続偏向部6を駆動する駆動部42とを備える点である。つまり、多段偏向素子2を通過した光Lは、さらに連続偏向部6を通過した後に照射対象物Jに照射される。この際、連続偏向部6は、多段偏向素子2から入射してきた光LをY方向側に偏向することができる。   FIG. 5 is a plan view schematically showing an optical deflector according to the second embodiment of the present invention. FIG. 6 is a perspective view schematically showing an example of a continuous deflection unit provided in the optical deflector of FIG. The second embodiment is different from the first embodiment in that the optical deflector 1 includes a continuous deflection unit 6 provided in a subsequent stage of the multistage deflection element 2 and a drive unit 42 that drives the continuous deflection unit 6. It is. That is, the light L that has passed through the multistage deflection element 2 is further irradiated through the continuous deflection unit 6 and then irradiated onto the irradiation object J. At this time, the continuous deflection unit 6 can deflect the light L incident from the multistage deflection element 2 in the Y direction.

つまり、連続偏向部6は、例えばリチウムナイオベートの単結晶で形成された電気光学結晶基板である連続偏向素子61を有する。この連続偏向素子61は直方体形状を有し、連続偏向素子61の光の入射面62および射出面63はYZ平面に平行であり、連続偏向素子61の一方主面64および他方主面65はXY平面に平行である。この連続偏向素子61では、互いに分極の向きが反転したプリズム66、67(ここの例では三角プリズム)がX方向(換言すれば光Lの通過順序)に交互に直列に配列されている。プリズム66の分極はZ方向の+Z側(図6上側)を向き、プリズム67の分極はZ方向の−Z側(図6下側)を向き、隣接するプリズム66、67のそれぞれのプリズム面68は互いに接触している。   That is, the continuous deflection unit 6 includes a continuous deflection element 61 that is an electro-optic crystal substrate formed of, for example, a lithium niobate single crystal. The continuous deflection element 61 has a rectangular parallelepiped shape, the light incident surface 62 and the emission surface 63 of the continuous deflection element 61 are parallel to the YZ plane, and the one main surface 64 and the other main surface 65 of the continuous deflection element 61 are XY. Parallel to the plane. In this continuous deflection element 61, prisms 66 and 67 (triangular prisms in this example) whose polarization directions are reversed are alternately arranged in series in the X direction (in other words, the light L passing sequence). The polarization of the prism 66 faces the + Z side (upper side in FIG. 6) in the Z direction, the polarization of the prism 67 faces the -Z side (lower side in FIG. 6) in the Z direction, and the prism surfaces 68 of the adjacent prisms 66 and 67 respectively. Are in contact with each other.

さらに、連続偏向部6は、連続偏向素子61に取り付けられた電極部69を有する。この電極部69は、連続偏向素子61の一方主面64に取り付けられた共通信号電極691と、連続偏向素子61の他方主面65に取り付けられた接地電極692とを有する。共通信号電極691および接地電極692のそれぞれは、複数のプリズム66、67に共通に設けられており、各プリズム66、67は共通信号電極691と接地電極692とにより挟まれている。   Further, the continuous deflection unit 6 has an electrode unit 69 attached to the continuous deflection element 61. The electrode portion 69 includes a common signal electrode 691 attached to one main surface 64 of the continuous deflection element 61 and a ground electrode 692 attached to the other main surface 65 of the continuous deflection element 61. Each of the common signal electrode 691 and the ground electrode 692 is provided in common to the plurality of prisms 66 and 67, and each prism 66 and 67 is sandwiched between the common signal electrode 691 and the ground electrode 692.

そして、駆動部42は共通信号電極691に対して信号に対応した電圧を印加することができる。駆動部42から共通信号電極691への信号に対応した電圧の印加が無い状態では、プリズム66、67は同一の屈折率を有する。そのため、多段偏向素子2から射出された光Lは、連続偏向素子61により偏向されることなく当該連続偏向素子61を通過して照射対象物Jに照射される。つまり、多段偏向素子2による偏向方向Da、Da、Da、Daに応じて、照射対象物JでY方向に離散的に並ぶ照射位置Pa、Pa、Pa、Paのいずれかに光Lが照射される。 The driving unit 42 can apply a voltage corresponding to the signal to the common signal electrode 691. In the state where no voltage corresponding to the signal from the drive unit 42 to the common signal electrode 691 is applied, the prisms 66 and 67 have the same refractive index. Therefore, the light L emitted from the multistage deflection element 2 passes through the continuous deflection element 61 without being deflected by the continuous deflection element 61 and is irradiated to the irradiation object J. That is, according to the deflection directions Da 0 , Da 1 , Da 2 , Da 3 by the multistage deflection element 2, the irradiation positions Pa 0 , Pa 1 , Pa 2 , Pa 3 of the irradiation target J arranged in the Y direction are arranged. Either one is irradiated with light L.

一方、駆動部42から共通信号電極691へ信号に対応した電圧が印加されると、プリズム66、67の間には信号に対応した電圧の大きさに応じた屈折率の差が生じる。そのため、多段偏向素子2から射出された光Lは、連続偏向素子61により偏向されてから照射対象物Jに照射される。この際、駆動部42は、共通信号電極691への信号に対応した電圧の大きさを変化させることで、連続偏向素子61が光Lを偏向する角度を連続的に変化させることができる。したがって、照射位置Pa、Pa、Pa、Paそれぞれの間の範囲Ra、Ra、Raにも光Lを照射できる。かかる構成では、駆動制御部5は、駆動部41および駆動部42が印加する信号に対応した電圧を制御することで、照射位置Pa〜Paを含む範囲で光LをY方向に連続的に走査できる。 On the other hand, when a voltage corresponding to the signal is applied from the driving unit 42 to the common signal electrode 691, a difference in refractive index corresponding to the magnitude of the voltage corresponding to the signal is generated between the prisms 66 and 67. Therefore, the light L emitted from the multistage deflecting element 2 is deflected by the continuous deflecting element 61 and then irradiated to the irradiation object J. At this time, the drive unit 42 can continuously change the angle at which the continuous deflection element 61 deflects the light L by changing the magnitude of the voltage corresponding to the signal to the common signal electrode 691. Therefore, the light L can also be irradiated to the ranges Ra 1 , Ra 2 , Ra 3 between the irradiation positions Pa 0 , Pa 1 , Pa 2 , Pa 3, respectively. In such a configuration, the drive control unit 5 controls the voltage corresponding to the signal applied by the drive unit 41 and the drive unit 42 to continuously emit the light L in the Y direction in a range including the irradiation positions Pa 0 to Pa 3. Can be scanned.

このように第2実施形態に係る光偏向器1では、多段偏向素子2を通過した光Lを、Y方向へ連続的に偏向する連続偏向部6が設けられている。そして、駆動制御部5は、連続偏向部6による光Lの偏向角度を調整して、多段偏向素子2により光Lを照射可能な複数の離散的な照射位置Pa、Pa、Pa、Paの間に光Lを照射することで、光LをY方向へ連続的に走査する。かかる構成では、多段偏向素子2による離散的な光走査を連続偏向部6により補って、連続的な光走査を実現することが可能となっている。 As described above, the optical deflector 1 according to the second embodiment is provided with the continuous deflecting unit 6 that continuously deflects the light L that has passed through the multistage deflecting element 2 in the Y direction. Then, the drive control unit 5 adjusts the deflection angle of the light L by the continuous deflection unit 6 and a plurality of discrete irradiation positions Pa 0 , Pa 1 , Pa 2 , which can be irradiated with the light L by the multistage deflection element 2 . By irradiating the light L during Pa 3 , the light L is continuously scanned in the Y direction. In such a configuration, it is possible to realize continuous light scanning by supplementing the discrete light scanning by the multistage deflecting element 2 with the continuous deflection unit 6.

図7は本発明の第3実施形態に係る光偏向器を模式的に示す平面図である。第3実施形態が第2実施形態と異なるのは、光偏向器1が備える連続偏向部6の具体的構成である。つまり、連続偏向部6の連続偏向素子61を構成するプリズム66、67のプリズム面68は、光の進行方向、すなわちX方向に凸の湾曲形状を有する。プリズム面68をこのような形状に仕上げることで、プリズム面68(光Lの通過面)でのケラレを抑制することができる。特に第3実施形態では、プリズム66、67それぞれの偏角が最小偏角となる形状をプリズム面68が有する。これによって、プリズム面68でのケラレをより確実に抑制することが可能となっている。   FIG. 7 is a plan view schematically showing an optical deflector according to the third embodiment of the present invention. The third embodiment differs from the second embodiment in the specific configuration of the continuous deflection unit 6 provided in the optical deflector 1. That is, the prism surfaces 68 of the prisms 66 and 67 constituting the continuous deflection element 61 of the continuous deflection unit 6 have a curved shape that is convex in the light traveling direction, that is, in the X direction. By finishing the prism surface 68 in such a shape, vignetting on the prism surface 68 (the surface through which the light L passes) can be suppressed. Particularly in the third embodiment, the prism surface 68 has a shape in which the declination of each of the prisms 66 and 67 is the minimum declination. This makes it possible to more reliably suppress vignetting on the prism surface 68.

図8は本発明の第4実施形態に係る光偏向器を模式的に示す平面図である。第4実施形態が上記実施形態と異なるのは、多段偏向素子2が上述の3個の分極反転領域Sa、Sa、Sa以外に、3個の分極反転領域Sb、Sb、Sbを有する点である。つまり、多段偏向素子2では、分極反転領域Sa、Sa、Sa、Sb、Sb、Sbがこの順で直列に配列されている。なお、分極反転領域Sb、Sb、Sbを区別しない場合には、これらを分極反転領域Sbと適宜総称する。また、分極反転領域Sb、Sb、Sbそれぞれの構成を特徴付ける後述の周期Λb、Λb、Λb等も、それぞれを区別しない場合には、周期Λbと適宜総称する。 FIG. 8 is a plan view schematically showing an optical deflector according to the fourth embodiment of the present invention. The fourth embodiment is different from the above-described embodiment in that the multistage deflection element 2 has three polarization inversion regions Sb 1 , Sb 2 , Sb in addition to the three polarization inversion regions Sa 1 , Sa 2 , Sa 3 described above. 3 is a point. That is, in the multistage deflection element 2, the polarization inversion regions Sa 1 , Sa 2 , Sa 3 , Sb 1 , Sb 2 , Sb 3 are arranged in series in this order. In the case where the domain-inverted regions Sb 1 , Sb 2 , and Sb 3 are not distinguished, these are collectively referred to as domain-inverted regions Sb as appropriate. Further, periods Λb 1 , Λb 2 , Λb 3, etc., which characterize the configuration of each of the domain-inverted regions Sb 1 , Sb 2 , Sb 3 , are collectively referred to as a period Λb as appropriate unless they are distinguished from each other.

分極反転領域Sbは、リチウムナイオベートの単結晶である電気光学結晶基板内に形成され、分極反転領域Saと同様の直方体形状の外形を有する。この分極反転領域Sbは、互いに分極の向きが反転した区域が周期Λbで周期的に並ぶ周期分極反転構造を有する。この際、互いに分極の向きが反転した各区域の境界平面28がX方向に対して傾く向きが、分極反転領域Saと分極反転領域Sbとで逆である。つまり、分極反転領域Saでは、X方向に対してY方向の+Y側に境界平面28が傾斜しているのに対して、分極反転領域Sbでは、X方向に対してY方向の−Y側に境界平面28が傾斜している。   The domain-inverted region Sb is formed in an electro-optic crystal substrate that is a single crystal of lithium niobate, and has a rectangular parallelepiped outer shape similar to that of the domain-inverted region Sa. This domain-inverted region Sb has a periodic domain-inverted structure in which areas in which the directions of polarization are inverted are periodically arranged with a period Λb. At this time, the direction in which the boundary plane 28 of each section where the directions of polarization are reversed is inclined with respect to the X direction is opposite between the polarization inversion region Sa and the polarization inversion region Sb. That is, in the domain-inverted region Sa, the boundary plane 28 is inclined on the + Y side in the Y direction with respect to the X direction, whereas in the domain-inverted region Sb, on the −Y side in the Y direction with respect to the X direction. The boundary plane 28 is inclined.

電極部3は、3個の分極反転領域Sb、Sb、Sbに対応してそれぞれ個別に設けられた3個の信号電極Eb、Eb、Ebを有する。信号電極Eb、Eb、Ebのそれぞれは、Y方向に平行に延設された平板形状を有し、対応する分極反転領域Sb、Sb、Sbの一方主面に取り付けられている。また、電極部3の接地電極Egは、3個の分極反転領域Sb、Sb、Sbそれぞれの他方主面に共通に設けられている。こうして、3個の分極反転領域Sb、Sb、Sbのそれぞれは、対応する信号電極Eb、Eb、Ebと接地電極Egとにより挟まれている。 The electrode unit 3 includes three signal electrodes Eb 1 , Eb 2 , and Eb 3 that are individually provided corresponding to the three polarization inversion regions Sb 1 , Sb 2 , and Sb 3 . Each of the signal electrodes Eb 1 , Eb 2 , Eb 3 has a flat plate shape extending in parallel with the Y direction, and is attached to one main surface of the corresponding polarization inversion regions Sb 1 , Sb 2 , Sb 3. Yes. The ground electrode Eg of the electrode unit 3 is provided in common on the other main surface of each of the three polarization inversion regions Sb 1 , Sb 2 , Sb 3 . Thus, each of the three polarization inversion regions Sb 1 , Sb 2 , Sb 3 is sandwiched between the corresponding signal electrodes Eb 1 , Eb 2 , Eb 3 and the ground electrode Eg.

駆動部41は、信号電極Ea、Ea、Ea、Eb、Eb、Ebのそれぞれに個別に信号に対応した電圧を印加することができる。そして、駆動制御部5は、駆動部41による信号電極Ea、Ea、Ea、Eb、Eb、Ebへの信号に対応した電圧の印加を制御することで、分極反転領域Sa、Sa、Sa、Sb、Sb、Sb内に回折格子を生成し、光Lの偏向方向を調整する。分極反転領域Sa、Sa、Saによる光Lの偏向は上述と同様であるので説明を省略する。 The drive unit 41 can individually apply a voltage corresponding to a signal to each of the signal electrodes Ea 1 , Ea 2 , Ea 3 , Eb 1 , Eb 2 , Eb 3 . And the drive control part 5 controls the application of the voltage corresponding to the signal to the signal electrodes Ea 1 , Ea 2 , Ea 3 , Eb 1 , Eb 2 , Eb 3 by the drive part 41, and thereby the polarization inversion region Sa. 1 , Sa 2 , Sa 3 , Sb 1 , Sb 2 , Sb 3 , a diffraction grating is generated, and the deflection direction of the light L is adjusted. Since the deflection of the light L by the polarization inversion regions Sa 1 , Sa 2 , Sa 3 is the same as described above, the description thereof is omitted.

分極反転領域Sb、Sb、Sbは、対応する信号電極Eb、Eb、Ebへの信号に対応した電圧の印加を受けて、それぞれの周期分極反転構造内にブラッグ型の回折格子を生成する。そして、この回折格子が、X方向に対してY方向の−Y側へ傾斜した方向へ光Lを回折する。つまり、1段目の分極反転領域Sbに生成される回折格子は、分極反転領域Sa、Sa、Saを通過してX方向に平行に入射してきた光Lを、当該光Lに対して回折角βだけY方向の−Y側へ傾斜した方向へブラッグ回折により回折する。2段目の分極反転領域Sbに生成される回折格子は、前段の分極反転領域Sbにより回折された光Lを、当該光Lに対して回折角βだけY方向の−Y側へ傾斜した方向へブラッグ回折により回折する。3段目の分極反転領域Sbに生成される回折格子は、前段の分極反転領域Sbにより回折された光Lを、当該光Lに対して回折角βだけY方向の−Y側へ傾斜した方向へブラッグ回折により回折する。 Inverted regions Sb 1, Sb 2, Sb 3 is subjected to a voltage corresponding to the signal to the corresponding signal electrodes Eb 1, Eb 2, Eb 3 , Bragg diffraction of the respective periodic polarization inversion structure Generate a grid. The diffraction grating diffracts the light L in a direction inclined to the −Y side in the Y direction with respect to the X direction. In other words, the diffraction grating generated in the first-stage polarization inversion region Sb 1 causes the light L that has passed through the polarization inversion regions Sa 1 , Sa 2 , Sa 3 and entered in parallel in the X direction to the light L. diffracted by Bragg diffraction in the direction inclined by the diffraction angle beta 1 in the Y direction to the -Y side against. The diffraction grating generated in the second-stage polarization inversion region Sb 2 causes the light L diffracted by the previous-stage polarization inversion region Sb 1 to the −Y side in the Y direction by the diffraction angle β 2 with respect to the light L. Diffracted by Bragg diffraction in an inclined direction. The diffraction grating generated in the third-stage polarization inversion region Sb 3 causes the light L diffracted by the previous-stage polarization inversion region Sb 2 to move toward the −Y side in the Y direction by the diffraction angle β 3 with respect to the light L. Diffracted by Bragg diffraction in an inclined direction.

したがって、信号電極Eb、Eb、Ebへの信号に対応した電圧の印加を制御することで、方向Db〜Dbのいずれかに選択的に光Lを偏向できる。なお、分極反転領域SbによりY方向の−Y側へ光Lを偏向する場合には、分極反転領域Saに取り付けられた信号電極Ea、Ea、Eaには信号に対応した電圧は印加されない。同様に、分極反転領域SaによりY方向の+Y側へ光Lを偏向する場合には、分極反転領域Sbに取り付けられた信号電極Eb、Eb、Ebには信号に対応した電圧は印加されない。 Therefore, the light L can be selectively deflected in any one of the directions Db 0 to Db 3 by controlling the application of the voltage corresponding to the signal to the signal electrodes Eb 1 , Eb 2 , Eb 3 . When the light L is deflected to the −Y side in the Y direction by the polarization inversion region Sb, a voltage corresponding to the signal is applied to the signal electrodes Ea 1 , Ea 2 , Ea 3 attached to the polarization inversion region Sa. Not. Similarly, when the light L is deflected to the + Y side in the Y direction by the polarization inversion region Sa, a voltage corresponding to the signal is applied to the signal electrodes Eb 1 , Eb 2 , Eb 3 attached to the polarization inversion region Sb. Not.

このように第4実施形態では、多段偏向素子2は、周期分極反転構造をそれぞれ有するNb個の分極反転領域Sb、Sb、Sbをさらに有し、光LがNb個の分極反転領域Sb、Sb、Sbを順番に通過する。ここで、Nbは2以上の整数であり、第4実施形態では「3」である。また、電極部3は、Nb個の分極反転領域Sb、Sb、Sbに対応して設けられたNb個の信号電極Eb、Eb、Ebをさらに有する。そして、各分極反転領域Sb、Sb、Sbは、対応する信号電極Eb、Eb、Ebに信号に対応した電圧が印加されると、X方向に対して−Y側へ傾斜した方向へ光Lを回折する回折格子を周期分極反転構造内に生成する。 Thus, in the fourth embodiment, the multistage deflection element 2 further includes Nb polarization inversion regions Sb 1 , Sb 2 , and Sb 3 each having a periodic polarization inversion structure, and the light L has Nb polarization inversion regions. It passes through Sb 1 , Sb 2 and Sb 3 in order. Here, Nb is an integer equal to or greater than 2, and is “3” in the fourth embodiment. The electrode unit 3 further includes Nb signal electrodes Eb 1 , Eb 2 , Eb 3 provided corresponding to the Nb polarization inversion regions Sb 1 , Sb 2 , Sb 3 . Each polarization inversion region Sb 1 , Sb 2 , Sb 3 is inclined to the −Y side with respect to the X direction when a voltage corresponding to the signal is applied to the corresponding signal electrodes Eb 1 , Eb 2 , Eb 3. A diffraction grating that diffracts the light L in the selected direction is generated in the periodically poled structure.

特に、Nb個の分極反転領域Sb、Sb、Sbが順番にブラッグ回折により光Lを偏向できるように構成されている。つまり、Nb個の分極反転領域Sb、Sb、Sbのうち、1番目に光Lが入射する分極反転領域Sbに生成される回折格子は、X方向から入射してきた光Lをブラッグ回折により偏向する。さらに、Mb番目に光Lが入射する分極反転領域SbMbに生成される回折格子は、(Mb−1)番目に光Lが入射する分極反転領域SbMb−1に生成される回折格子がブラッグ回折により偏向した光Lをブラッグ回折により偏向する。ここで、Mbは2以上でNb以下の整数であり、第4実施形態では「2」または「3」である。したがって、光Lの通過順序の最初から数えた、回折格子を生成させる分極反転領域Sb、Sb、Sbの個数を増加させることで、−Y側への光Lの偏向角度を大きくすることができる。こうして、周期分極反転構造を利用することで高出力のレーザー光の高速偏向を可能としつつ、+Y側および−Y側への両方へ光Lの偏向角度を確保可能な光偏向技術が実現可能となっている。 In particular, the Nb polarization inversion regions Sb 1 , Sb 2 , Sb 3 are configured so as to be able to deflect the light L by Bragg diffraction in order. That is, among the Nb polarization inversion regions Sb 1 , Sb 2 , Sb 3 , the diffraction grating generated in the polarization inversion region Sb 1 where the light L is incident first Braggs the light L incident from the X direction. Deflection by diffraction. Further, the diffraction grating generated in the polarization inversion region Sb Mb where the light L is incident on the Mb-th is Bragg is the diffraction grating generated in the polarization inversion region Sb Mb-1 where the light L is incident on the (Mb-1) -th. Light L deflected by diffraction is deflected by Bragg diffraction. Here, Mb is an integer of 2 or more and Nb or less, and is “2” or “3” in the fourth embodiment. Therefore, by increasing the number of polarization inversion regions Sb 1 , Sb 2 , Sb 3 for generating a diffraction grating, counted from the beginning of the light L passing sequence, the deflection angle of the light L toward the −Y side is increased. be able to. In this way, it is possible to realize an optical deflection technique that can secure a deflection angle of the light L to both the + Y side and the -Y side while enabling high-speed deflection of high-power laser light by using the periodically poled structure. It has become.

さらに、+Y側に光Lを偏向する分極反転領域Sa、Sa、Saの個数と、−Y側に光Lを偏向する分極反転領域Sb、Sb、Sbの個数とが等しい。これによって、+Y側および−Y側の両方へバランス良く均等に光Lを偏向することができ、偏向角度をさらに大きくすることが可能となる。 Furthermore, the number of polarization inversion regions Sa 1 , Sa 2 , Sa 3 that deflect the light L toward the + Y side is equal to the number of polarization inversion regions Sb 1 , Sb 2 , Sb 3 that deflect the light L toward the −Y side. . As a result, the light L can be deflected evenly with good balance to both the + Y side and the −Y side, and the deflection angle can be further increased.

図9は本発明の第5実施形態に係る光偏向器を模式的に示す平面図である。第5実施形態が第4実施形態と異なるのは、3個の分極反転領域Sa、Sa、Saと、3個の分極反転領域Sb、Sb、Sbとの配置関係である。つまり、第4実施形態では、光Lの通過順序において、分極反転領域Sa、Sa、Saの後段に3個の分極反転領域Sb、Sb、Sbが配置されていた。これに対して、第5実施形態では、光Lの通過順序において、分極反転領域Saと分極反転領域Sbとが交互に配置されている。 FIG. 9 is a plan view schematically showing an optical deflector according to the fifth embodiment of the present invention. The fifth embodiment differs from the fourth embodiment in the arrangement relationship between the three domain-inverted regions Sa 1 , Sa 2 , Sa 3 and the three domain-inverted regions Sb 1 , Sb 2 , Sb 3. . That is, in the fourth embodiment, the three polarization inversion regions Sb 1 , Sb 2 , and Sb 3 are arranged in the subsequent stage of the polarization inversion regions Sa 1 , Sa 2 , Sa 3 in the light L passing sequence. On the other hand, in the fifth embodiment, the polarization inversion regions Sa and the polarization inversion regions Sb are alternately arranged in the light L passing sequence.

かかる構成においても、駆動制御部5は、駆動部41による信号電極Ea、Ea、Ea、Eb、Eb、Ebへの信号に対応した電圧の印加を第4実施形態と同様に制御することで、分極反転領域Sa、Sa、Sa、Sb、Sb、Sb内に回折格子を生成し、光Lの偏向方向を+Y側および−Y側の両側に調整することができる。特に+Y側と−Y側へ光を偏向する回折格子が、第4実施形態と比べて光軸上に交互に現れて分散されるので、光軸の後段に配置される光学系に無理が無く、+Y側、−Y側へ偏向できる。 Even in such a configuration, the drive control unit 5 applies the voltage corresponding to the signal to the signal electrodes Ea 1 , Ea 2 , Ea 3 , Eb 1 , Eb 2 , Eb 3 by the drive unit 41 as in the fourth embodiment. To generate a diffraction grating in the polarization inversion regions Sa 1 , Sa 2 , Sa 3 , Sb 1 , Sb 2 , Sb 3 , and adjust the deflection direction of the light L on both the + Y side and the −Y side. can do. In particular, the diffraction grating that deflects light toward the + Y side and the −Y side appears and disperses alternately on the optical axis as compared with the fourth embodiment, so there is no difficulty in the optical system arranged at the subsequent stage of the optical axis. , + Y side, −Y side.

さらに、+Y側に光Lを偏向する分極反転領域Sa、Sa、Saの個数と、−Y側に光Lを偏向する分極反転領域Sb、Sb、Sbの個数とが等しい。これによって、+Y側および−Y側の両方へバランス良く均等に光Lを偏向することが可能となっている。 Furthermore, the number of polarization inversion regions Sa 1 , Sa 2 , Sa 3 that deflect the light L toward the + Y side is equal to the number of polarization inversion regions Sb 1 , Sb 2 , Sb 3 that deflect the light L toward the −Y side. . As a result, the light L can be deflected evenly in a well-balanced manner to both the + Y side and the −Y side.

図10は本発明の第6実施形態に係る光偏向器を模式的に示す図である。第6実施形態に係る光偏向器1は、多段偏向素子2を通過した光Lを偏向するポリゴンミラーPMと、ポリゴンミラーPMを回転駆動する駆動部43とを備える。ポリゴンミラーPMは、Y方向に直交する回転方向Cに回転可能である。この光偏向器1では、駆動制御部5は駆動部41を制御することで、多段偏向素子2によって光LをY方向(主走査方向)に走査する(主走査)。なお、Y方向への主走査は、第2実施形態に示したように、多段偏向素子2と連続偏向部6とにより連続的に実行しても良い。   FIG. 10 is a diagram schematically showing an optical deflector according to the sixth embodiment of the present invention. The optical deflector 1 according to the sixth embodiment includes a polygon mirror PM that deflects the light L that has passed through the multistage deflection element 2, and a drive unit 43 that rotationally drives the polygon mirror PM. The polygon mirror PM is rotatable in a rotation direction C that is orthogonal to the Y direction. In this optical deflector 1, the drive control unit 5 controls the drive unit 41 to scan the light L in the Y direction (main scanning direction) with the multistage deflection element 2 (main scanning). The main scanning in the Y direction may be continuously performed by the multistage deflection element 2 and the continuous deflection unit 6 as shown in the second embodiment.

さらに、駆動制御部5は光Lの主走査に同期してポリゴンミラーPMを回転方向Cに回転させることで、多段偏向素子2により走査される光Lを回転方向C(副走査方向)に変位させる(副走査)。かかる構成では、多段偏向素子2によって主走査方向Y(第1走査方向)に光Lを走査しつつ、ポリゴンミラーPMによって副走査方向C(第2走査方向)に当該光Lを偏向させることで、二次元的に光Lを走査することが可能となっている。   Further, the drive control unit 5 displaces the light L scanned by the multistage deflection element 2 in the rotation direction C (sub-scanning direction) by rotating the polygon mirror PM in the rotation direction C in synchronization with the main scanning of the light L. (Sub-scan). In such a configuration, the multi-stage deflecting element 2 scans the light L in the main scanning direction Y (first scanning direction), and deflects the light L in the sub-scanning direction C (second scanning direction) by the polygon mirror PM. The light L can be scanned two-dimensionally.

ところで、第1〜第6実施形態を通じて例示した光偏向器1の用途は種々考えられる。続いて、光偏向器1の用途の具体例を適宜示す。ただし、光偏向器1の用途は、以下の装置に限定されるものではなく、他の装置にも適用可能である。   By the way, various uses of the optical deflector 1 exemplified through the first to sixth embodiments are conceivable. Then, the specific example of the use of the optical deflector 1 is shown suitably. However, the use of the optical deflector 1 is not limited to the following devices, and can be applied to other devices.

図11は本発明に係る光偏向器を備えた描画装置の一実施形態の概略構成を模式的に示す正面図である。描画装置7は、レジストなどの感光材料の層が形成された基板Wの上面に光を照射して、パターンを描画する装置である。なお、基板Wは、半導体基板、プリント基板、カラーフィルタ用基板、液晶表示装置やプラズマ表示装置に具備されるフラットパネルディスプレイ用ガラス基板、光ディスク用基板などの各種基板のいずれでもよい。図示例では円形の半導体基板の上面に形成された下層パターンに重ねて上層パターンが描画される。   FIG. 11 is a front view schematically showing a schematic configuration of an embodiment of a drawing apparatus having an optical deflector according to the present invention. The drawing device 7 is a device that draws a pattern by irradiating light onto the upper surface of the substrate W on which a layer of a photosensitive material such as a resist is formed. The substrate W may be any of various substrates such as a semiconductor substrate, a printed substrate, a color filter substrate, a glass substrate for a flat panel display provided in a liquid crystal display device or a plasma display device, and an optical disk substrate. In the illustrated example, the upper layer pattern is drawn so as to overlap the lower layer pattern formed on the upper surface of the circular semiconductor substrate.

描画装置7は、本体フレーム701で構成される骨格の天井面および周囲面にカバーパネル(図示省略)が取り付けられることによって形成される本体内部と、本体フレーム701の外側である本体外部とに、各種の構成要素を配置した構成となっている。描画装置7の本体内部は、処理領域702と受け渡し領域703とに区分されている。これらの領域のうち処理領域702には、主として、ステージ71、ステージ移動機構72および光学ヘッド73が配置される。一方、受け渡し領域703には、処理領域702に対する基板Wの搬出入を行う搬送ロボットなどの搬送装置74が配置される。さらに、描画装置7の本体には、描画装置7が備える装置各部と電気的に接続されて、これら各部の動作を制御する描画制御部75が配置される。   The drawing device 7 includes a main body inside formed by attaching cover panels (not shown) to the ceiling surface and the peripheral surface of the skeleton composed of the main body frame 701, and a main body exterior that is outside the main body frame 701. It has a configuration in which various components are arranged. The inside of the main body of the drawing apparatus 7 is divided into a processing area 702 and a delivery area 703. Of these areas, a stage 71, a stage moving mechanism 72, and an optical head 73 are mainly arranged in the processing area 702. On the other hand, in the transfer area 703, a transfer device 74 such as a transfer robot for transferring the substrate W to and from the processing area 702 is arranged. Further, a drawing control unit 75 that is electrically connected to each unit of the drawing device 7 and controls the operation of each unit is disposed in the main body of the drawing device 7.

ステージ71は、平板状の外形を有し、その上面に基板Wを水平姿勢に保持する。ステージ71の上面には、複数の吸引孔(図示省略)が形成されており、この吸引孔に負圧(吸引圧)を付与することによって、ステージ71上に載置された基板Wをステージ71の上面に固定することができる。そして、ステージ71はステージ移動機構72により副走査方向(図11の紙面左右方向)に移動させられる。   The stage 71 has a flat outer shape, and holds the substrate W in a horizontal posture on the upper surface thereof. A plurality of suction holes (not shown) are formed on the upper surface of the stage 71, and by applying a negative pressure (suction pressure) to the suction holes, the substrate W placed on the stage 71 is placed on the stage 71. It can be fixed to the upper surface of. Then, the stage 71 is moved in the sub-scanning direction (left and right direction in FIG. 11) by the stage moving mechanism 72.

光学ヘッド73は、描画パターンに対応するストリップデータに基づいてレーザー光を走査する。具体的には、光学ヘッド73は、レーザー光源731(光源部)と、レーザー光源731から射出されたレーザー光を主走査方向(図11の紙面垂直方向)に走査する光偏向器732と、光偏向器732が走査するレーザー光をステージ71上の基板Wに結像する走査光学系733とを有する。ここで、光偏向器732は、上述した各実施形態のいずれかに係る光偏向器1と同一の構成を有する。   The optical head 73 scans the laser beam based on the strip data corresponding to the drawing pattern. Specifically, the optical head 73 includes a laser light source 731 (light source unit), an optical deflector 732 that scans the laser light emitted from the laser light source 731 in the main scanning direction (the direction perpendicular to the plane of FIG. 11), and an optical head. And a scanning optical system 733 that forms an image of the laser beam scanned by the deflector 732 on the substrate W on the stage 71. Here, the optical deflector 732 has the same configuration as the optical deflector 1 according to any of the above-described embodiments.

そして、描画制御部75(制御部)は、ステージ移動機構72によりステージ71上の基板Wを副走査方向に移動させつつ、ストリップデータに基づき変調したレーザー光源731からのレーザー光を光偏向器732により主走査方向に走査させる。これによって、未処理の基板Wに形成されていた下層パターンに対して、上層パターン(描画パターン)が重ねて露光される。つまり、描画装置7は、光偏向器732を通過したレーザー光が基板Wに照射される位置を、光偏向器732によるレーザー光の偏向を制御することで調整して、基板Wに描画パターンを描画する。   Then, the drawing control unit 75 (control unit) moves the substrate W on the stage 71 in the sub-scanning direction by the stage moving mechanism 72, and the laser beam from the laser light source 731 modulated based on the strip data is an optical deflector 732. To scan in the main scanning direction. Thus, the upper layer pattern (drawing pattern) is overlaid and exposed on the lower layer pattern formed on the unprocessed substrate W. In other words, the drawing apparatus 7 adjusts the position where the laser light that has passed through the optical deflector 732 is irradiated on the substrate W by controlling the deflection of the laser light by the optical deflector 732, and thereby creates a drawing pattern on the substrate W. draw.

図12は本発明に係る光偏向器を備えた照明装置の一実施形態の概略構成を模式的に示す図である。照明装置8は、互いに異なる色(レッド、グリーン、ブルー、イエロー)の光Lを射出する4個の光源81r、81g、81b、81y(光源部)と、光源81r、81g、81b、81yから射出された光Lを偏向する光偏向器82と、光偏向器82により偏向された光Lを照射対象に照射する照明光学系83とを備える。   FIG. 12 is a diagram schematically illustrating a schematic configuration of an embodiment of an illumination device including the optical deflector according to the present invention. The illumination device 8 emits four light sources 81r, 81g, 81b, 81y (light source units) that emit light L of different colors (red, green, blue, yellow) and light sources 81r, 81g, 81b, 81y. And an illumination optical system 83 for irradiating the irradiation target with the light L deflected by the light deflector 82.

光偏向器82は、4個の光源81r、81g、81b、81yにそれぞれ対応する4個の多段偏向素子2r、2g、2b、2yを有する。これら多段偏向素子2r、2g、2b、2yは上述の各多段偏向素子2のいずれかと同様の構成を有する。また、上述と同様に、4個の多段偏向素子2r、2g、2b、2yそれぞれに対しては電極部3が設けられている。したがって、光源81r、81g、81b、81yから射出された光Lは、それぞれ対応する多段偏向素子2r、2g、2b、2yにより偏向されて、照明光学系83により位置SPに照射される。   The optical deflector 82 includes four multistage deflecting elements 2r, 2g, 2b, and 2y corresponding to the four light sources 81r, 81g, 81b, and 81y, respectively. These multistage deflection elements 2r, 2g, 2b, 2y have the same configuration as any of the multistage deflection elements 2 described above. Similarly to the above, the electrode section 3 is provided for each of the four multistage deflection elements 2r, 2g, 2b, 2y. Accordingly, the light L emitted from the light sources 81r, 81g, 81b, and 81y is deflected by the corresponding multistage deflection elements 2r, 2g, 2b, and 2y, and irradiated to the position SP by the illumination optical system 83.

さらに、照明装置8は、ユーザーの操作を受け付ける操作部84と、操作部84への操作に応じて光偏向器82を制御する照明制御部85とを有する。照明制御部85は、操作部84への入力の内容に基づき位置SPの照射方向を判断し、これを光偏向器82の駆動制御部5に出力する。そして、駆動制御部5は、照明制御部85から受信した照射方向に基づき駆動部41を制御することで、当該照射方向に応じた方向に多段偏向素子2r、2g、2b、2yによる光の偏向方向を調整する。   Furthermore, the illumination device 8 includes an operation unit 84 that receives a user operation, and an illumination control unit 85 that controls the light deflector 82 in accordance with an operation on the operation unit 84. The illumination control unit 85 determines the irradiation direction of the position SP based on the content of the input to the operation unit 84 and outputs this to the drive control unit 5 of the optical deflector 82. And the drive control part 5 controls the drive part 41 based on the irradiation direction received from the illumination control part 85, and deflects the light by the multistage deflection | deviation elements 2r, 2g, 2b, 2y in the direction according to the said irradiation direction. Adjust the direction.

なお、ここの例では、多段偏向素子2r、2g、2b、2yにより光Lを偏向しているが、第2実施形態に示したように、多段偏向素子2と連続偏向部6とにより連続的に光Lを偏向しても良い。また、ここの例では、4個の多段偏向素子2r、2g、2b、2yが平面状に配列されている。しかしながら、4個の多段偏向素子2r、2g、2b、2yと、これらに対応して設けられた電極部3とを相互に積層しても構わない。   In this example, the light L is deflected by the multistage deflecting elements 2r, 2g, 2b, and 2y. However, as shown in the second embodiment, the multistage deflecting element 2 and the continuous deflecting unit 6 continuously Alternatively, the light L may be deflected. In this example, four multistage deflection elements 2r, 2g, 2b, and 2y are arranged in a planar shape. However, the four multistage deflecting elements 2r, 2g, 2b, and 2y and the electrode portions 3 provided corresponding to these may be stacked on each other.

図13は本発明に係る光偏向器を備えた障害物検出装置の一実施形態を模式的に示す図である。障害物検出装置9は、障害物Bを検出するいわゆるLIDAR(Laser Imaging Detection and Ranging)と称される装置である。この障害物検出装置9は、光源91(光源部)と、ビームスプリッター92と、光源91から射出されてビームスプリッター92を通過した光Lを偏向する光偏向器93と、光偏向器93により偏向された光Lを結像する結像光学系94とを備える。   FIG. 13 is a diagram schematically showing an embodiment of an obstacle detection apparatus including an optical deflector according to the present invention. The obstacle detection device 9 is a so-called LIDAR (Laser Imaging Detection and Ranging) device that detects the obstacle B. The obstacle detection device 9 includes a light source 91 (light source unit), a beam splitter 92, an optical deflector 93 that deflects the light L emitted from the light source 91 and passed through the beam splitter 92, and is deflected by the optical deflector 93. An imaging optical system 94 that forms an image of the generated light L.

光偏向器93は、多段偏向素子2を有する。この多段偏向素子2は上述の各多段偏向素子2のいずれかと同様の構成を有する。また、上述と同様に、多段偏向素子2に対しては電極部3が設けられている。したがって、駆動制御部5は駆動部41から電極部3へ印加される信号に対応した電圧を制御することで、光源91から射出された光Lを多段偏向素子2によりY方向に走査することができる。なお、ここの例では、多段偏向素子2により光Lを走査しているが、第2実施形態に示したように、多段偏向素子2と連続偏向部6とにより連続的に光Lを走査しても良い。   The optical deflector 93 includes the multistage deflection element 2. The multistage deflection element 2 has the same configuration as any of the multistage deflection elements 2 described above. Similarly to the above, the electrode unit 3 is provided for the multistage deflection element 2. Therefore, the drive control unit 5 can scan the light L emitted from the light source 91 in the Y direction by the multistage deflection element 2 by controlling the voltage corresponding to the signal applied from the drive unit 41 to the electrode unit 3. it can. In this example, the light L is scanned by the multistage deflecting element 2, but as shown in the second embodiment, the light L is continuously scanned by the multistage deflecting element 2 and the continuous deflecting unit 6. May be.

障害物検出装置9は、こうして走査された光Lが障害物Bにより反射されたのを確認することで、障害物Bを検出する。つまり、障害物検出装置9は、光センサー95(検出部)と、ライダー制御部96(制御部)とを備える。障害物Bで反射された光Lの一部は、結像光学系94および多段偏向素子2を通過してビームスプリッター92により光センサー95へ反射される。そして、ライダー制御部96は、光センサー95が受光したのを確認することで、障害物Bの有無を判断する。   The obstacle detection device 9 detects the obstacle B by confirming that the light L thus scanned is reflected by the obstacle B. That is, the obstacle detection device 9 includes an optical sensor 95 (detection unit) and a rider control unit 96 (control unit). A part of the light L reflected by the obstacle B passes through the imaging optical system 94 and the multistage deflection element 2 and is reflected by the beam splitter 92 to the optical sensor 95. And the rider control part 96 judges the presence or absence of the obstruction B by confirming that the optical sensor 95 received light.

このように上述の実施形態では、光偏向器1が本発明の「光偏向器」の一例に相当し、多段偏向素子2が本発明の「多段偏向素子」の一例に相当し、分極反転領域Sa、Sa、Saが本発明の「一方偏向用領域」の一例に相当し、電極部3が本発明の「電極部」の一例に相当し、信号電極Ea、Ea、Eaが本発明の「一方偏向用電極」の一例に相当し、分極反転領域Sb、Sb、Sbが本発明の「他方偏向用領域」の一例に相当し、信号電極Eb、Eb、Ebが本発明の「他方偏向用電極」の一例に相当し、駆動制御部5が本発明の「走査制御部」の一例に相当し、連続偏向部6が本発明の「連続偏向部」の一例に相当し、プリズム66、67が本発明の「プリズム」の一例に相当し、共通信号電極691が本発明の「共通電極」の一例に相当し、ポリゴンミラーPMが本発明の「走査偏向部」の一例に相当し、光Lが本発明の「光」の一例に相当し、X方向が本発明の「進行方向」の一例に相当し、主走査方向Yが本発明の「第1走査方向」の一例に相当し、回転方向Cが本発明の「第2走査方向」の一例に相当する。 Thus, in the above-described embodiment, the optical deflector 1 corresponds to an example of the “optical deflector” of the present invention, the multistage deflecting element 2 corresponds to an example of the “multistage deflecting element” of the present invention, and the domain-inverted region. Sa 1 , Sa 2 , Sa 3 correspond to an example of the “one deflection region” of the present invention, the electrode unit 3 corresponds to an example of the “electrode unit” of the present invention, and the signal electrodes Ea 1 , Ea 2 , Ea 3 corresponds to an example of the “one deflection electrode” of the present invention, and the domain-inverted regions Sb 1 , Sb 2 , Sb 3 correspond to an example of the “other deflection region” of the present invention, and the signal electrodes Eb 1 , Eb 2 and Eb 3 correspond to an example of the “other deflection electrode” of the present invention, the drive control unit 5 corresponds to an example of the “scanning control unit” of the present invention, and the continuous deflection unit 6 corresponds to the “continuous deflection” of the present invention. The prisms 66 and 67 correspond to an example of the “prism” of the present invention, and the common signal 691 corresponds to an example of the “common electrode” of the present invention, the polygon mirror PM corresponds to an example of the “scanning deflection unit” of the present invention, the light L corresponds to an example of “light” of the present invention, and the X direction Corresponds to an example of the “traveling direction” of the present invention, the main scanning direction Y corresponds to an example of the “first scanning direction” of the present invention, and the rotation direction C corresponds to an example of the “second scanning direction” of the present invention. Equivalent to.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば多段偏向素子2を構成する分極反転領域Saの個数は2個以上であれば良く、適宜変更することができる。具体的には、光偏向器1に求められる性能に応じて、分極反転領域Saの個数を変更すれば良い。したがって、広い偏向角度が求められる場合には、10個以上の分極反転領域Saにより多段偏向素子2を構成しても良い。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, the number of polarization inversion regions Sa constituting the multistage deflection element 2 may be two or more and can be changed as appropriate. Specifically, the number of polarization inversion regions Sa may be changed according to the performance required for the optical deflector 1. Therefore, when a wide deflection angle is required, the multistage deflection element 2 may be configured by 10 or more polarization inversion regions Sa.

同様に、分極反転領域Sbの個数も適宜変更することができる。この際、分極反転領域Sbの個数が分極反転領域Saの個数と異なっていても良い。   Similarly, the number of polarization inversion regions Sb can be changed as appropriate. At this time, the number of polarization inversion regions Sb may be different from the number of polarization inversion regions Sa.

また、多段偏向素子2において隣接する分極反転領域Saが互いに接触している必要は必ずしも無く、これらの間に隙間を設けても構わない。分極反転領域Sbについても同様である。   In the multistage deflection element 2, adjacent polarization inversion regions Sa are not necessarily in contact with each other, and a gap may be provided between them. The same applies to the domain-inverted region Sb.

また、分極反転領域Saにおける周期Λaおよび傾斜角φaの具体値は、光偏向器1に求められる仕様等に応じて適宜設定すれば良い。この際、Na個の分極反転領域Saのうち、I(Iは1以上の整数)番目に光Lが入射する分極反転領域Saの周期分極反転構造では、分極区域26、27が周期Λaiで周期的に並ぶとともに互いに隣接する分極区域26、27の境界平面28が所定の進行方向に対して角度φai傾斜し、次の関係式
φai=θi−1+arcsin(λ/2nΛai
n:周期分極反転構造を構成する結晶の屈折率
θi−1:I番目の分極反転領域Saに入射する光Lと進行方向Xとの間の角度
λ:光Lの波長
が満たされるように、光偏向器1を構成すると良い。これによって、分極反転領域Saに入射する光Lを、ブラッグ回折により確実に偏向することが可能となる。なお、分極反転領域Sbについても同様である。
In addition, the specific values of the period Λa and the inclination angle φa in the domain-inverted region Sa may be set as appropriate according to the specifications required for the optical deflector 1. At this time, in the periodic polarization inversion structure of the polarization inversion region Sa I in which the light L is incident on the I (I is an integer of 1 or more) out of the Na polarization inversion regions Sa, the polarization sections 26 and 27 have the period Λa i. interface plane 28 of the polarization regions 26 and 27 adjacent to each other with periodically arranged in the angularly .phi.a i inclined with respect to a given traveling direction, the following relationship φa i = θ i-1 + arcsin (λ / 2nΛa i)
n: Refractive index of the crystal constituting the periodically poled structure θ i-1 : Angle between the light L incident on the I-th domain-inverted region Sa I and the traveling direction X λ: The wavelength of the light L is satisfied In addition, the optical deflector 1 may be configured. As a result, the light L incident on the domain-inverted region Sa can be reliably deflected by Bragg diffraction. The same applies to the polarization inversion region Sb.

また、上記実施形態では、分極反転領域Sa、Sa、Saを同一の電気光学結晶基板内に形成していた。しかしながら、分極反転領域Sa、Sa、Saを互いに異なる電気光学結晶基板内に形成しても良い。分極反転領域Sb、Sb、Sbについても同様である。 In the above embodiment, the domain-inverted regions Sa 1 , Sa 2 , and Sa 3 are formed in the same electro-optic crystal substrate. However, the polarization inversion regions Sa 1 , Sa 2 , Sa 3 may be formed in different electro-optic crystal substrates. The same applies to the domain-inverted regions Sb 1 , Sb 2 , Sb 3 .

また、上述の第2・第3実施形態で示した連続偏向部6の構成を変形することもできる。図14は第2実施形態で示した光偏向器の変形例を模式的に示す図であり、図15は第3実施形態で示した偏向器の変形例を模式的に示す図である。図14および図15それぞれに示す連続偏向部6では、互いに分極の向きが反転したプリズム66、67が交互にX方向に配列されてプリズム群667が構成され、複数のプリズム群667がY方向に配列されている。   Further, the configuration of the continuous deflection unit 6 shown in the second and third embodiments can be modified. FIG. 14 is a diagram schematically showing a modification of the optical deflector shown in the second embodiment, and FIG. 15 is a diagram schematically showing a modification of the deflector shown in the third embodiment. In the continuous deflection unit 6 shown in FIGS. 14 and 15, prisms 66 and 67 whose polarization directions are reversed are alternately arranged in the X direction to form a prism group 667, and a plurality of prism groups 667 are arranged in the Y direction. It is arranged.

そして、駆動部42から共通信号電極691へ信号に対応した電圧が印加されると、プリズム66、67の間には信号に対応した電圧の大きさに応じた屈折率の差が生じる。そのため、駆動部42は、共通信号電極691への信号に対応した電圧の大きさを変化させることで、連続偏向素子61が光Lを偏向する角度を連続的に変化させることができる。したがって、駆動制御部5は、駆動部41および駆動部42が印加する信号に対応した電圧を制御することで、照射位置Pa〜Paを含む範囲で光LをY方向に連続的に走査できる。 When a voltage corresponding to the signal is applied from the driving unit 42 to the common signal electrode 691, a difference in refractive index corresponding to the magnitude of the voltage corresponding to the signal is generated between the prisms 66 and 67. Therefore, the drive unit 42 can continuously change the angle at which the continuous deflection element 61 deflects the light L by changing the magnitude of the voltage corresponding to the signal to the common signal electrode 691. Therefore, the drive control unit 5 continuously scans the light L in the Y direction in a range including the irradiation positions Pa 0 to Pa 3 by controlling the voltage corresponding to the signal applied by the drive unit 41 and the drive unit 42. it can.

これらの変形例では、微小なプリズム66、67をX方向およびY方向にマトリックス状に多数配列することができるため、光偏向器1の大型化を伴わずに、屈折面(プリズム面68)を増やすことができる。したがって、個々の屈折面の屈折角を小さくできるため、プリズム66、67(分極反転構造)に印加する電圧を低く設定でき、より高速な光偏向が可能となる。   In these modifications, a large number of minute prisms 66 and 67 can be arranged in a matrix in the X direction and the Y direction, so that the refracting surface (prism surface 68) can be formed without increasing the size of the optical deflector 1. Can be increased. Therefore, since the refraction angle of each refracting surface can be reduced, the voltage applied to the prisms 66 and 67 (polarization inversion structure) can be set low, and light deflection can be performed at higher speed.

また、図15に示す変形例では、プリズム66、67のプリズム面68は、光の進行方向、すなわちX方向に凸の湾曲形状を有する。プリズム面68をこのような形状に仕上げることで、プリズム面68(光Lの通過面)でのケラレを抑制することができる。特にプリズム66、67それぞれの偏角が最小偏角となる形状をプリズム面68が有する。これによって、プリズム面68でのケラレをより確実に抑制することが可能となっている。また、個々の屈折面の屈折角を小さくできるため、プリズム66、67(分極反転構造)に印加する電圧を低く設定でき、より高速な光偏向が可能となる点は、先述のとおりである。   In the modification shown in FIG. 15, the prism surfaces 68 of the prisms 66 and 67 have a curved shape that is convex in the light traveling direction, that is, in the X direction. By finishing the prism surface 68 in such a shape, vignetting on the prism surface 68 (the surface through which the light L passes) can be suppressed. In particular, the prism surface 68 has a shape in which the declination of each of the prisms 66 and 67 is the minimum declination. This makes it possible to more reliably suppress vignetting on the prism surface 68. In addition, since the refraction angle of each refracting surface can be reduced, the voltage applied to the prisms 66 and 67 (polarization inversion structure) can be set low, and higher-speed light deflection is possible as described above.

次に本発明の実施例を示すが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Next, examples of the present invention will be shown. However, the present invention is not limited by the following examples as a matter of course, and it is of course possible to implement the present invention with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. They are all included in the technical scope of the present invention.

図16は本発明の具体的なシミュレーション結果の一例を示す光強度分布の等高線図である。この結果は、3段の分極反転領域Sa、Sa、Saを直列に配置した第1実施形態の光偏向器1により、+X方向に進行する光Lを偏向した様子を、BPM(Beam Propagation Method)によりシミュレーションすることで得られた。また、周期分極反転構造の周期Λ=10μm、光Lの波長λ=633nm、分極反転領域SaのX方向への長さL=2mm、電気光学結晶基板の厚みt=50μm、電気光学結晶基板の屈折率n=2.1936、駆動電圧30Vとの数値条件でシミュレーションを行った。 FIG. 16 is a contour map of the light intensity distribution showing an example of a specific simulation result of the present invention. As a result, a state in which the light L traveling in the + X direction is deflected by the optical deflector 1 according to the first embodiment in which the three-stage domain-inverted regions Sa 1 , Sa 2 , Sa 3 are arranged in series is shown as BPM (Beam It was obtained by simulation by Propagation Method). Further, the period Λ = 10 μm of the periodically poled structure, the wavelength λ = 633 nm of the light L, the length L = 2 mm in the X direction of the domain-inverted region Sa, the thickness t = 50 μm of the electro-optic crystal substrate, The simulation was performed under numerical conditions of refractive index n e = 2.1936 and drive voltage 30V.

図16では、横軸をY方向とし、縦軸をX方向として、光Lの偏向角度が示されている。数字「0」が付された結果は、3段全ての分極反転領域Sa、Sa、Saに電圧を印加しなかった場合を示す。数字「1」が付された結果は、1段目の分極反転領域Saにのみ電圧を印加した場合を示す。数字「2」が付された結果は、1段目および2段目の分極反転領域Sa、Saにのみ電圧を印加した場合を示す。数字「3」が付された結果は、3段全ての分極反転領域Sa、Sa、Saに電圧を印加した場合を示す。このように、光Lの通過順序の最初から数えた、回折格子を生成させる分極反転領域Sa、Sa、Saの個数を増大させることで、Y方向への光Lの偏向角度を大きくできることが判る。 In FIG. 16, the deflection angle of the light L is shown with the horizontal axis as the Y direction and the vertical axis as the X direction. The result with the numeral “0” indicates the case where no voltage is applied to all the polarization inversion regions Sa 1 , Sa 2 , Sa 3 of the three stages. The result with the numeral “1” indicates the case where a voltage is applied only to the first-stage polarization inversion region Sa 1 . The result with the numeral “2” indicates the case where a voltage is applied only to the first and second polarization inversion regions Sa 1 and Sa 2 . The result with the numeral “3” indicates the case where a voltage is applied to all three domain-inverted regions Sa 1 , Sa 2 , Sa 3 . In this way, by increasing the number of polarization inversion regions Sa 1 , Sa 2 , Sa 3 for generating diffraction gratings, counted from the beginning of the light L passing sequence, the deflection angle of the light L in the Y direction is increased. I understand that I can do it.

本発明は光を偏向する技術全般に利用可能である。   The present invention can be applied to all techniques for deflecting light.

1…光偏向器、
2…多段偏向素子、
3…電極部、
5…駆動制御部(走査制御部)、
6…連続偏向部、
66、67…プリズム、
691…共通信号電極(共通電極)、
C…回転方向(第2走査方向)
Ea、Ea、Ea…信号電極(一方偏向用電極)、
Eb、Eb、Eb…信号電極(他方偏向用電極)、
Sa、Sa、Sa…分極反転領域(一方偏向用領域)、
Sb、Sb、Sb…分極反転領域(他方偏向用領域)、
L…光、
PM…ポリゴンミラー(走査偏向部)、
X…X方向(進行方向)、
Y…主走査方向(第1走査方向)、
+Y…一方側、
−Y…他方側
1 ... Optical deflector,
2 ... Multi-stage deflection element,
3 ... electrode part,
5 ... Drive control unit (scanning control unit),
6 ... Continuous deflection part,
66, 67 ... Prism,
691 ... Common signal electrode (common electrode),
C: Rotation direction (second scanning direction)
Ea 1 , Ea 2 , Ea 3 ... Signal electrode (one deflection electrode),
Eb 1 , Eb 2 , Eb 3 ... Signal electrode (the other deflection electrode),
Sa 1 , Sa 2 , Sa 3 ... Domain inversion region (one deflection region),
Sb 1 , Sb 2 , Sb 3 ... Domain inversion region (the other deflection region),
L ... light,
PM: Polygon mirror (scanning deflection unit),
X ... X direction (traveling direction),
Y: main scanning direction (first scanning direction),
+ Y ... one side,
-Y ... the other side

Claims (17)

所定の進行方向に進行してきた光を偏向する光偏向器であって、
互いに分極の向きが反転した区域が周期的に並ぶ周期分極反転構造をそれぞれ有し、前記光が順番に通過するNa(Naは2以上の整数)個の一方偏向用領域を有する多段偏向素子と、
前記Na個の一方偏向用領域に対応して設けられたNa個の一方偏向用電極を有する電極部と
を備え、
前記各一方偏向用領域は、対応する前記一方偏向用電極に電圧が印加されると、前記進行方向に対して一方側へ傾斜した方向へ前記光を回折する回折格子を前記周期分極反転構造内に生成し、
前記Na個の一方偏向用領域のうち、1番目に前記光が入射する前記一方偏向用領域に生成される回折格子は、前記進行方向から入射してきた前記光をブラッグ回折により偏向し、
Ma(Maは2以上でNa以下の整数)番目に前記光が入射する前記一方偏向用領域に生成される回折格子は、(Ma−1)番目に光が入射する前記一方偏向用領域に生成される回折格子がブラッグ回折により偏向した前記光をブラッグ回折により偏向する光偏向器。
An optical deflector for deflecting light traveling in a predetermined traveling direction,
A multistage deflecting element having periodic polarization reversal structures in which areas in which the directions of polarization are reversed are periodically arranged, and having Na (Na is an integer of 2 or more) one deflection region through which the light passes in order; ,
An electrode portion having Na one deflection electrodes provided corresponding to the Na one deflection regions,
Each of the one deflection regions includes a diffraction grating that diffracts the light in a direction inclined to one side with respect to the traveling direction when a voltage is applied to the corresponding one deflection electrode. To generate
The diffraction grating generated in the one deflection region where the light is incident first among the Na one deflection regions deflects the light incident from the traveling direction by Bragg diffraction,
The diffraction grating generated in the one deflection area where the light enters Ma (Ma is an integer not less than 2 and not more than Na) is generated in the one deflection area where the light enters (Ma-1) th. An optical deflector for deflecting the light deflected by Bragg diffraction by the diffraction grating to be deflected by Bragg diffraction.
前記多段偏向素子は、前記周期分極反転構造をそれぞれ有するNb(Nbは2以上の整数)個の他方偏向用領域をさらに有し、
前記電極部は、前記Nb個の他方偏向用領域に対応して設けられたNb個の他方偏向用電極をさらに有し、
前記各他方偏向用領域は、対応する前記他方偏向用電極に電圧が印加されると、前記進行方向に対して他方側へ傾斜した方向へ前記光を回折する回折格子を前記周期分極反転構造内に生成し、
前記Nb個の他方偏向用領域のうち、1番目に前記光が入射する前記他方偏向用領域に生成される回折格子は、前記進行方向から入射してきた前記光をブラッグ回折により偏向し、
Mb(Mbは2以上でNb以下の整数)番目に前記光が入射する前記他方偏向用領域に生成される回折格子は、(Mb−1)番目に光が入射する前記他方偏向用領域に生成される回折格子がブラッグ回折により偏向した前記光をブラッグ回折により偏向する請求項1に記載の光偏向器。
The multistage deflection element further includes Nb (Nb is an integer of 2 or more) other deflection regions each having the periodic polarization inversion structure,
The electrode portion further includes Nb other deflection electrodes provided corresponding to the Nb other deflection regions,
Each of the other deflection regions includes a diffraction grating that diffracts the light in a direction inclined to the other side with respect to the traveling direction when a voltage is applied to the corresponding other deflection electrode. To generate
The diffraction grating generated in the other deflection region where the light is incident first among the Nb other deflection regions deflects the light incident from the traveling direction by Bragg diffraction,
The diffraction grating generated in the other deflection region where the light is incident on Mb (Mb is an integer not smaller than 2 and Nb) is generated in the other deflection region where the light is incident on the (Mb-1) th. The optical deflector according to claim 1, wherein the diffraction grating deflects the light deflected by Bragg diffraction by Bragg diffraction.
前記一方偏向用領域の個数Naと、前記他方偏向用領域の個数Nbとが等しい請求項2に記載の光偏向器。   3. The optical deflector according to claim 2, wherein the number Na of the one deflection region is equal to the number Nb of the other deflection region. 前記光が通過する順序において、前記Na個の一方偏向用領域の後に前記Nb個の他方偏向用領域が配置された請求項3に記載の光偏向器。   4. The optical deflector according to claim 3, wherein the Nb other deflection regions are arranged after the Na one deflection regions in the order in which the light passes. 前記光が通過する順序において、前記一方偏向用領域と前記他方偏向用領域とが交互に配置された請求項3に記載の光偏向器。   The optical deflector according to claim 3, wherein the one deflection region and the other deflection region are alternately arranged in the order in which the light passes. 前記電極部へ印加される電圧を制御することで、前記進行方向に交差する第1走査方向へ前記多段偏向素子により前記光を走査する走査制御部をさらに備えた請求項1ないし5のいずれか一項に記載の光偏向器。   The scanning control unit according to claim 1, further comprising a scanning control unit that controls the voltage applied to the electrode unit to scan the light with the multistage deflection element in a first scanning direction that intersects the traveling direction. The optical deflector according to one item. 前記多段偏向素子を通過した前記光を、前記第1走査方向へ連続的に偏向する連続偏向部をさらに備え、
前記走査制御部は、前記連続偏向部による前記光の偏向角度を調整して、前記多段偏向素子により前記光を照射可能な複数の離散的な位置の間に前記光を照射することで、前記光を前記第1方向へ連続的に走査する請求項6に記載の光偏向器。
A continuous deflecting unit that continuously deflects the light that has passed through the multistage deflecting element in the first scanning direction;
The scanning control unit adjusts a deflection angle of the light by the continuous deflecting unit, and irradiates the light between a plurality of discrete positions where the light can be irradiated by the multistage deflecting element. The optical deflector according to claim 6, wherein light is continuously scanned in the first direction.
前記連続偏向部は、前記光が順に通過する複数のプリズムと、前記複数のプリズムに共通に設けられた共通電極とを有し、前記光が通過する順序において前記複数のプリズムの分極の向きが交互に反転し、
前記走査制御部は、前記共通電極へ印加される電圧を制御することで、前記多段偏向素子を通過した前記光を前記連続偏向部により前記第1走査方向へ連続的に偏向させる請求項7に記載の光偏向器。
The continuous deflection unit includes a plurality of prisms through which the light sequentially passes and a common electrode provided in common to the plurality of prisms, and the polarization direction of the plurality of prisms in the order in which the light passes through Inverted alternately
8. The scanning control unit according to claim 7, wherein the scanning control unit deflects the light that has passed through the multistage deflection element continuously in the first scanning direction by the continuous deflection unit by controlling a voltage applied to the common electrode. The optical deflector as described.
前記プリズムの前記光の通過面は、前記進行方向へ凸に湾曲した形状を有する請求項8に記載の光偏向器。   The light deflector according to claim 8, wherein the light passage surface of the prism has a shape curved convexly in the traveling direction. 前記各プリズムの偏角が最小偏角となる形状を前記通過面が有する請求項9に記載の光偏向器。   The optical deflector according to claim 9, wherein the passage surface has a shape in which a deflection angle of each prism is a minimum deflection angle. 前記連続偏向部では、前記光が通過する順序において分極の向きが交互に反転する前記複数のプリズムにより構成されるプリズム群が、前記進行方向に直交する方向に複数配列されている請求項8ないし10のいずれか一項に記載の光偏向器。   The said continuous deflection | deviation part WHEREIN: The prism group comprised by these prisms by which the direction of polarization alternates in the order which the said light passes alternately is arranged in the direction orthogonal to the said advancing direction. The optical deflector according to claim 10. 前記多段偏向素子を通過した前記光を、前記第1走査方向に直交する第2走査方向へ偏向する走査偏向部をさらに備えた請求項7に記載の光偏向器。   The optical deflector according to claim 7, further comprising a scanning deflecting unit that deflects the light that has passed through the multistage deflecting element in a second scanning direction orthogonal to the first scanning direction. 前記Na個の一方偏向用領域のうち、I(Iは1以上の整数)番目に前記光が入射する前記一方偏向用領域の前記周期分極反転構造では、前記区域が周期Λiで周期的に並ぶとともに互いに隣接する前記区域の境界が前記進行方向に対して角度φi傾斜し、次の関係式
φi=θi−1+arcsin(λ/2nΛi
n:周期分極反転構造を構成する結晶の屈折率
θi−1:I番目の一方偏向用領域に入射する前記光と前記進行方向との間の角度
λ:前記光の波長
が満たされる請求項1ないし12のいずれか一項に記載の光偏向器。
In the periodic polarization reversal structure of the one deflection region in which the light enters I (I is an integer of 1 or more) of the Na one deflection regions, the section is periodically arranged with a period Λ i. The boundaries of the areas that are arranged and adjacent to each other are inclined by an angle φ i with respect to the traveling direction, and the following relational expression φ i = θ i−1 + arcsin (λ / 2nΛ i )
n: refractive index of the crystal constituting the periodically poled structure θ i-1 : angle between the light incident on the I-th one deflection region and the traveling direction λ: the wavelength of the light is satisfied The optical deflector according to any one of 1 to 12.
光源部と、
前記光源部からの光を偏向する請求項1ないし13のいずれか一項に記載の光偏向器と、
前記光偏向器を通過した前記光が描画対象に照射される位置を、前記光偏向器による前記光の偏向を制御することで調整して、前記描画対象にパターンを描画する制御部と
を備える描画装置。
A light source unit;
The optical deflector according to any one of claims 1 to 13, which deflects light from the light source unit,
A control unit that adjusts a position at which the light passing through the optical deflector is irradiated onto the drawing target by controlling the deflection of the light by the optical deflector and draws a pattern on the drawing target; Drawing device.
光源部と、
前記光源部からの光を偏向する請求項1ないし13のいずれか一項に記載の光偏向器と、
前記光偏向器による前記光の偏向を制御することで、照射対象に前記光を照射する制御部と
を備えた照明装置。
A light source unit;
The optical deflector according to any one of claims 1 to 13, which deflects light from the light source unit,
An illuminating device comprising: a control unit configured to irradiate the irradiation target with the light by controlling the deflection of the light by the optical deflector.
光源部と、
前記光源部からの光を走査する請求項1ないし13のいずれか一項に記載の光偏向器と、
走査された前記光の障害物による反射を検出する検出部と、
前記検出部の検出結果に基づき前記障害物の有無を判断する制御部と
を備えた障害物検出装置。
A light source unit;
The light deflector according to any one of claims 1 to 13, which scans light from the light source unit,
A detection unit for detecting reflection of the scanned light by an obstacle;
An obstacle detection apparatus comprising: a control unit that determines presence or absence of the obstacle based on a detection result of the detection unit.
進行方向から入射してきた光を偏向する光偏向方法であって、
互いに分極の向きが反転した区域が周期的に並ぶ周期分極反転構造をそれぞれ有し、前記光が順番に通過するNa(Naは2以上の整数)個の一方偏向用領域に対して、前記進行方向から前記光を入射させる工程と、
前記Na個の一方偏向用領域に対応して設けられたNa個の一方偏向用電極へ印加する電圧を制御する工程と
を備え、
前記各一方偏向用領域は、対応する前記一方偏向用電極に電圧が印加されると、前記進行方向に対して一方側へ傾斜した方向へ前記光を回折する回折格子を前記周期分極反転構造内に生成し、
前記Na個の一方偏向用領域のうち、1番目に前記光が入射する前記一方偏向用領域に生成される回折格子は、前記進行方向から入射してきた前記光をブラッグ回折により偏向し、
Ma(Maは2以上でNa以下の整数)番目に前記光が入射する前記一方偏向用領域に生成される回折格子は、(Ma−1)番目に光が入射する前記一方偏向用領域に生成される回折格子がブラッグ回折により偏向した前記光をブラッグ回折により偏向する光偏向方法。
An optical deflection method for deflecting light incident from a traveling direction,
Each of the one-polarization regions (Na is an integer of 2 or more) through which the light sequentially passes has a periodic polarization reversal structure in which areas where the directions of polarization are reversed are periodically arranged. Injecting the light from a direction;
A step of controlling a voltage applied to the Na one deflection electrode provided corresponding to the Na one deflection region,
Each of the one deflection regions includes a diffraction grating that diffracts the light in a direction inclined to one side with respect to the traveling direction when a voltage is applied to the corresponding one deflection electrode. To generate
The diffraction grating generated in the one deflection region where the light is incident first among the Na one deflection regions deflects the light incident from the traveling direction by Bragg diffraction,
The diffraction grating generated in the one deflection area where the light enters Ma (Ma is an integer not less than 2 and not more than Na) is generated in the one deflection area where the light enters (Ma-1) th. An optical deflection method for deflecting the light deflected by Bragg diffraction by a diffraction grating to be deflected by Bragg diffraction.
JP2017118250A 2017-06-16 2017-06-16 Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method Pending JP2019003079A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017118250A JP2019003079A (en) 2017-06-16 2017-06-16 Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method
PCT/JP2018/017780 WO2018230193A1 (en) 2017-06-16 2018-05-08 Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118250A JP2019003079A (en) 2017-06-16 2017-06-16 Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method

Publications (1)

Publication Number Publication Date
JP2019003079A true JP2019003079A (en) 2019-01-10

Family

ID=64659623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118250A Pending JP2019003079A (en) 2017-06-16 2017-06-16 Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method

Country Status (2)

Country Link
JP (1) JP2019003079A (en)
WO (1) WO2018230193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035960A (en) * 2017-08-16 2019-03-07 アナログ ディヴァイスィズ インク Hybrid beamsteerer for steering light beam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220155500A1 (en) * 2019-02-18 2022-05-19 Mantapoole Technologies Llc Novel active micro-optics system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902088A (en) * 1986-03-25 1990-02-20 Apa Optics, Inc. Integrated optic device for laser beam scanning
JPH10282531A (en) * 1997-04-08 1998-10-23 Tdk Corp Optical deflector
JPH10288798A (en) * 1997-04-15 1998-10-27 Tdk Corp Optical deflector
US20040076357A1 (en) * 2002-10-21 2004-04-22 Jeffery Maki Optical deflector using electrooptic effect to create small prisms
WO2005083492A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Illuminating light source and two-dimensional image display using same
JP2013044762A (en) * 2011-08-22 2013-03-04 Ricoh Co Ltd Electro-optical element and manufacturing method thereof, and optical deflection device using electro-optical element
JP2013064773A (en) * 2011-09-15 2013-04-11 Ricoh Co Ltd Optical deflector, optical scanner, and image forming device
JP2015052701A (en) * 2013-09-06 2015-03-19 株式会社Screenホールディングス Optical modulator and exposure head
JP2017003868A (en) * 2015-06-12 2017-01-05 株式会社島津製作所 Optical deflector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902088A (en) * 1986-03-25 1990-02-20 Apa Optics, Inc. Integrated optic device for laser beam scanning
JPH10282531A (en) * 1997-04-08 1998-10-23 Tdk Corp Optical deflector
JPH10288798A (en) * 1997-04-15 1998-10-27 Tdk Corp Optical deflector
US20040076357A1 (en) * 2002-10-21 2004-04-22 Jeffery Maki Optical deflector using electrooptic effect to create small prisms
WO2005083492A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Illuminating light source and two-dimensional image display using same
JP2013044762A (en) * 2011-08-22 2013-03-04 Ricoh Co Ltd Electro-optical element and manufacturing method thereof, and optical deflection device using electro-optical element
JP2013064773A (en) * 2011-09-15 2013-04-11 Ricoh Co Ltd Optical deflector, optical scanner, and image forming device
JP2015052701A (en) * 2013-09-06 2015-03-19 株式会社Screenホールディングス Optical modulator and exposure head
JP2017003868A (en) * 2015-06-12 2017-01-05 株式会社島津製作所 Optical deflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035960A (en) * 2017-08-16 2019-03-07 アナログ ディヴァイスィズ インク Hybrid beamsteerer for steering light beam

Also Published As

Publication number Publication date
WO2018230193A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
TW201232035A (en) Holografisches display
US20170212424A1 (en) System and method for micro-nano machining by femtosecond laster two-photon polymerization
US8270054B2 (en) High-speed multi-dimensional beam scanning system with angle amplification
JPH11337891A (en) Grating modulator array
JP2009524844A (en) Multi-beam digital projection video motor with static or dynamic pointing correction with or without slipperiscope
GB2480228A (en) Speckle reduction mask
WO2018230193A1 (en) Light deflector, drawing device, illumination device, obstruction detection device, and light deflection method
JP2013047797A5 (en)
TW201534013A (en) Pulsed light generation method, pulsed laser device, and exposure device and inspection device having the pulsed laser device
JP2008122572A (en) Electro-optical element, method for manufacturing electro-optical device, and scanning optical device
JP5965986B2 (en) Exposure apparatus for structured exposure of surfaces
JP2007156480A (en) Device for interference light
WO2017119362A1 (en) Circularly-polarized-light input/output device
EP3080663B1 (en) Acousto-optic beam steering modulator for a projection system
US7495814B2 (en) Raster scanning-type display device using diffractive optical modulator
JP6305855B2 (en) Image display device
JP5906300B1 (en) Spatial phase modulator
JP5325640B2 (en) Endoscope apparatus and optical scanning method thereof
US6900921B2 (en) Optical deflection module
US20070153270A1 (en) Raster scanning-type display device using diffractive light modulator
JP5249008B2 (en) Light modulator
US20080049288A1 (en) Prism scanner and display device using diffractive optical modulator and prism scanner
WO2015019551A1 (en) Image display device
JPH04181231A (en) Waveguide type electrooptical device
KR100897666B1 (en) Display apparatus which scans both the forward path and backward path

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511