JP2019002603A - Gas valve device - Google Patents

Gas valve device Download PDF

Info

Publication number
JP2019002603A
JP2019002603A JP2017115740A JP2017115740A JP2019002603A JP 2019002603 A JP2019002603 A JP 2019002603A JP 2017115740 A JP2017115740 A JP 2017115740A JP 2017115740 A JP2017115740 A JP 2017115740A JP 2019002603 A JP2019002603 A JP 2019002603A
Authority
JP
Japan
Prior art keywords
motor
valve
flow rate
cam
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017115740A
Other languages
Japanese (ja)
Other versions
JP6877253B2 (en
Inventor
近藤 秀幸
Hideyuki Kondo
秀幸 近藤
林 雄一
Yuichi Hayashi
雄一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2017115740A priority Critical patent/JP6877253B2/en
Publication of JP2019002603A publication Critical patent/JP2019002603A/en
Application granted granted Critical
Publication of JP6877253B2 publication Critical patent/JP6877253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Transmission Devices (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

To accurately regulate a gas flow rate even if hysteresis that is a rotation phase difference between when moving a valve body to the same axial position by rotating a motor forwards and when moving the valve body by rotating the motor backwards, is changed by varying play of a speed reduction gear mechanism, in a gas valve device comprising a flow rate regulation valve within a valve casing 1, the gas valve device also comprising a valve body 32 coupled to an operation rod 4 which is driven axially by a motor 5 via a speed reduction gear mechanism 51, a rotary shaft 52 and a motion conversion mechanism 6.SOLUTION: A gas valve device comprises: a detector 8 which is provided in a constituent member of the motion conversion mechanism 6 or in the operation rod 4; and a position sensor 9 which detects displacement of the detector 8 to a predetermined detection position. A difference of a rotation phase of the motor 5 is measured between when the displacement of the detector 8 to the detection position is detected by the position sensor 9 while the motor is rotated forwards and when the displacement of the detector 8 to the detection position is detected by the position sensor 9 while the motor is rotated backwards, and based on the difference, actual hysteresis is grasped.SELECTED DRAWING: Figure 7

Description

本発明は、バルブケーシング内に流量調節弁が設けられたガス弁装置に関する。   The present invention relates to a gas valve device in which a flow rate adjusting valve is provided in a valve casing.

従来、この種のガス弁装置において、バルブケーシングの軸方向一方を往動方向、軸方向他方を復動方向として、モータと、モータに減速歯車機構を介して連結される回転軸と、モータの正転及び逆転による回転軸の正転及び逆転で運動変換機構を介して往動方向及び復動方向に駆動される操作ロッドとを備え、流量調節弁は、操作ロッドに連結された弁体と、バルブケーシング内に設けられた復動方向を向く弁座とを備え、弁体は、弁座に開設した弁孔に復動方向から挿入されるニードル部を有し、弁体の往動方向及び復動方向への移動によりガス流量が減少及び増加するようにしたものが知られている(例えば、特許文献1参照)。   Conventionally, in this type of gas valve device, one of the valve casings has one axial direction as the forward movement direction and the other axial direction as the backward movement direction, a motor, a rotary shaft connected to the motor via a reduction gear mechanism, An operation rod driven in the forward direction and the backward direction via a motion conversion mechanism by forward and reverse rotation of the rotating shaft by forward rotation and reverse rotation, and the flow rate adjusting valve is a valve body connected to the operation rod; A valve seat provided in the valve casing and facing in the backward movement direction, and the valve body has a needle portion that is inserted into the valve hole formed in the valve seat from the backward movement direction, and the forward movement direction of the valve body In addition, there is known one in which the gas flow rate is decreased and increased by movement in the backward movement direction (see, for example, Patent Document 1).

ここで、弁体を同一の軸方向位置にモータの正転で移動させるときのモータの回転位相とモータの逆転で移動させるときのモータの回転位相は、減速歯車機構や運動変換機構が持つ遊びの影響で異なる位相になる。そこで、従来は、弁体を同一の軸方向位置にモータの正転で移動させるときとモータの逆転で移動させるときとのモータの回転位相差をヒステリシスとして設計データから算出し、モータの正転で弁体を往動方向に移動させてガス流量を減少させるときのモータの回転位相とガス流量との関係を表す正転時流量特性に基づいてガス流量を減少させるときのモータの制御を行うと共に、正転時流量特性に対しヒステリシス分だけモータの回転位相を逆転方向にずらして設定される、モータの逆転で弁体を復動方向に移動させてガス流量を増加させるときのモータの回転位相とガス流量との関係を表す逆転時流量特性に基づいてガス流量を増加させるときのモータの制御を行うようにしている(例えば、特許文献2参照)。   Here, the rotational phase of the motor when the valve body is moved to the same axial position by the forward rotation of the motor and the rotational phase of the motor when the valve body is moved by the reverse rotation of the motor are the play of the reduction gear mechanism and the motion conversion mechanism. It becomes a different phase by the influence of. Therefore, conventionally, the rotational phase difference of the motor between when the valve body is moved to the same axial position by forward rotation of the motor and when the valve body is moved by reverse rotation of the motor is calculated from design data as hysteresis, The motor is controlled when the gas flow rate is decreased based on the forward flow rate characteristic that represents the relationship between the rotational phase of the motor and the gas flow rate when the gas flow rate is decreased by moving the valve body in the forward direction. At the same time, the motor rotation phase is set by shifting the motor rotation phase in the reverse rotation direction by the amount of hysteresis relative to the flow rate characteristics during normal rotation, and the motor rotation when the valve body is moved in the backward movement direction due to motor reverse rotation. The motor is controlled to increase the gas flow rate based on the reverse flow rate characteristic representing the relationship between the phase and the gas flow rate (see, for example, Patent Document 2).

然し、減速歯車機構は使用する歯車の数が多く、各歯車の寸法誤差で、減速歯車機構全体の遊びが製品毎に大きくばらつく。そのため、実際のヒステリシスが設計データから算出される基準ヒステリシスと異なってしまう。そして、基準ヒステリシスを用いて設定される逆転時流量特性に基づいてガス流量を増加させるときのモータの制御を行ったのでは、ガス流量の調節誤差を生じてしまう。   However, the reduction gear mechanism uses a large number of gears, and the play of the entire reduction gear mechanism varies greatly from product to product due to the dimensional error of each gear. Therefore, the actual hysteresis is different from the reference hysteresis calculated from the design data. If the motor is controlled when the gas flow rate is increased based on the reverse flow rate characteristic set using the reference hysteresis, an adjustment error of the gas flow rate occurs.

特開2013−68356号公報JP 2013-68356 A 特開2014−115040号公報(請求項1)JP 2014-1115040 A (Claim 1)

本発明は、以上の点に鑑み、実際のヒステリシスを把握して、ガス流量を正確に調節できるようにしたガス弁装置を提供することをその課題としている。   This invention makes it the subject to grasp | ascertain an actual hysteresis and to provide the gas valve apparatus which enabled it to adjust a gas flow rate correctly in view of the above point.

上記課題を解決するために、本発明は、バルブケーシング内に流量調節弁が設けられたガス弁装置であって、バルブケーシングの軸方向一方を往動方向、軸方向他方を復動方向として、モータと、モータに減速歯車機構を介して連結される回転軸と、モータの正転及び逆転による回転軸の正転及び逆転で運動変換機構を介して往動方向及び復動方向に駆動される操作ロッドとを備え、流量調節弁は、操作ロッドに連結された弁体と、バルブケーシング内に設けられた復動方向を向く弁座とを備え、弁体は、弁座に開設した弁孔に復動方向から挿入されるニードル部を有し、弁体の往動方向及び復動方向への移動によりガス流量が減少及び増加するようにし、弁体を同一の軸方向位置にモータの正転で移動させるときとモータの逆転で移動させるときとのモータの回転位相差をヒステリシスとして、モータの正転で弁体を往動方向に移動させてガス流量を減少させるときのモータの回転位相とガス流量との関係を表す正転時流量特性に基づいてガス流量を減少させるときのモータの制御を行うと共に、正転時流量特性に対しヒステリシス分だけモータの回転位相を逆転方向にずらして設定される、モータの逆転で弁体を復動方向に移動させてガス流量を増加させるときのモータの回転位相とガス流量との関係を表す逆転時流量特性に基づいてガス流量を増加させるときのモータの制御を行うものにおいて、運動変換機構の構成部材又は操作ロッドに設けられた検出子と、所定の検出位置への検出子の変位を検出する位置センサとを備え、モータの正転時に位置センサで検出位置への検出子の変位が検出されたときとモータの逆転時に位置センサで検出位置への検出子の変位が検出されたときのモータの回転位相の差を計測し、この差に基づいて逆転時流量特性の設定に用いるヒステリシスを補正することを特徴とする。   In order to solve the above problems, the present invention is a gas valve device in which a flow rate adjusting valve is provided in a valve casing, wherein one axial direction of the valve casing is a forward movement direction, and the other axial direction is a backward movement direction. A motor, a rotating shaft connected to the motor via a reduction gear mechanism, and a forward and reverse rotation of the rotating shaft by forward and reverse rotation of the motor are driven in the forward direction and the backward direction via the motion conversion mechanism. The flow control valve includes a valve body connected to the operation rod and a valve seat provided in the valve casing and facing in the reverse direction, and the valve body is a valve hole opened in the valve seat. The needle part is inserted from the backward movement direction to the valve body so that the gas flow rate decreases and increases due to the movement of the valve body in the forward movement direction and the backward movement direction. When moving by rotating and by moving the motor in reverse The normal rotation flow rate represents the relationship between the rotation phase of the motor and the gas flow rate when reducing the gas flow rate by moving the valve body in the forward movement direction by forward rotation of the motor with the rotational phase difference of the motor as the hysteresis. The motor is controlled when the gas flow rate is decreased based on the characteristics, and the valve body is recovered by reverse rotation of the motor, which is set by shifting the rotational phase of the motor in the reverse rotation direction by the hysteresis amount with respect to the flow characteristics during normal rotation. A motion conversion mechanism that controls the motor when increasing the gas flow rate based on the reverse flow rate characteristic that represents the relationship between the rotational phase of the motor and the gas flow rate when the gas flow rate is increased by moving in the moving direction. And a position sensor for detecting the displacement of the detector to a predetermined detection position. When the motor is rotating forward, the position sensor detects the detection position. The difference in the rotational phase of the motor is measured when the displacement of the child is detected and when the displacement of the detector to the detection position is detected by the position sensor during the reverse rotation of the motor. It is characterized by correcting hysteresis used for setting.

本発明によれば、検出子が検出位置に変位する際のモータ正転時の回転位相とモータ逆転時の回転位相との差を計測することにより、検出子を設けた部材よりも動力伝達経路の上流側に位置する減速歯車機構を包含する部分の遊びを把握できる。そのため、減速歯車機構全体の遊びがばらついて実際のヒステリシスが基準のヒステリシスと異なっても、検出子が検出位置に変位する際のモータ正転時の回転位相とモータ逆転時の回転位相との差に基づいて逆転時流量特性の設定に用いるヒステリシスを実際のヒステリシスに合致するように補正して、ガス流量を正確に調節することができる。   According to the present invention, by measuring the difference between the rotational phase during forward rotation of the motor and the rotational phase during reverse rotation of the motor when the detector is displaced to the detection position, the power transmission path is greater than the member provided with the detector. The play of the part including the reduction gear mechanism located on the upstream side of the can be grasped. Therefore, even if the play of the entire reduction gear mechanism varies and the actual hysteresis differs from the reference hysteresis, the difference between the rotational phase during forward rotation of the motor and the rotational phase during reverse rotation of the motor when the detector is displaced to the detection position. Therefore, the gas flow rate can be accurately adjusted by correcting the hysteresis used for setting the flow rate characteristics during reverse rotation so as to match the actual hysteresis.

ところで、運転変換機構を、回転軸に連動して回転するように回転軸に連結子を介して連結される、操作ロッドと同心の筒状のカム体と、カム体に形成した螺旋状のカム溝に係合する、操作ロッドの軸心を通る放射方向の線に沿うように操作ロッドに固定したピンとを有し、カム体の正転と逆転でカム溝からピンを介して作用する軸方向推力により操作ロッドが往動方向と復動方向とに移動するようにしたカム機構で構成することがある。カム溝は、一般に、カム体の所定の径方向に可動なカム溝用の型板で成形される。この場合、型板を径方向に抜く関係で、カム溝の部分のうちカム体の軸心と当該部分とを結ぶ放射方向が型板の抜き方向に合致しない部分では、カム溝の往動方向側と復動方向側の各側面が上記放射方向に平行にならず、各側面にピンが点接触する。そのため、カム溝の各側面の摩耗を生じやすくなる。そして、この摩耗によりカム溝とピンとの間の遊びが変化して、実際のヒステリシスが変化し、ガス流量の調節誤差を生じてしまう。   By the way, a cylindrical cam body concentric with the operating rod, which is connected to the rotation shaft via a connector so that the operation conversion mechanism rotates in conjunction with the rotation shaft, and a helical cam formed on the cam body. An axial direction that has a pin fixed to the operating rod along a radial line passing through the axis of the operating rod and that engages with the groove, and acts via the pin from the cam groove by forward and reverse rotation of the cam body There are cases where the operating rod is constituted by a cam mechanism that moves in the forward direction and the backward direction by thrust. The cam groove is generally formed by a cam groove template that is movable in a predetermined radial direction of the cam body. In this case, because of the radial removal of the template, in the cam groove portion where the radial direction connecting the cam shaft axis and the portion does not match the die plate removal direction, the cam groove forward direction The side surfaces on the side and the backward direction side are not parallel to the radial direction, and the pins are in point contact with the side surfaces. Therefore, wear on each side surface of the cam groove is likely to occur. This wear changes the play between the cam groove and the pin, changes the actual hysteresis, and causes a gas flow rate adjustment error.

そのため、カム体は、カム溝を挟んで往動方向側に位置する往動方向側筒部と復動方向側に位置する復動方向側筒部との一方の内径を他方の外径以上とした段付き形状であり、往動方向側と復動方向側の各筒部のカム溝に面する端面で構成されるカム溝の往動方向側と復動方向側の各側面を、カム溝の長手方向全ての部分においてカム体の軸心と当該部分とを結ぶ放射方向に平行で、ピンが線接触するように形成することが望ましい。これによれば、カム溝の各側面が摩耗しにくくなり、ガス流量の調節誤差の発生を抑制することができる。尚、カム体を段付き形状にする必要性については後述する。   Therefore, the cam body has an inner diameter of one of the forward direction side cylinder portion located on the forward direction side and the backward direction side cylinder portion located on the backward direction side with the cam groove being sandwiched between the outer diameters of the other. Each step of the cam groove, which is composed of end faces facing the cam grooves of the cylinder portions on the forward direction side and the backward direction side, is connected to the side surfaces on the forward direction side and the backward direction side of the cam groove. It is desirable to form the pins so that the pins are in line contact with each other in the radial direction connecting the axis of the cam body and the portion in all the longitudinal directions. According to this, each side surface of the cam groove is less likely to be worn, and the occurrence of a gas flow rate adjustment error can be suppressed. The necessity of making the cam body stepped will be described later.

本発明の第1実施形態のガス弁装置の切断側面図。The cut | disconnection side view of the gas valve apparatus of 1st Embodiment of this invention. 第1実施形態のガス弁装置の斜視図。The perspective view of the gas valve apparatus of 1st Embodiment. (a)(b)(c)第1実施形態のガス弁装置の作動を示す要部の切断側面図。(A) (b) (c) The cutaway side view of the principal part which shows the action | operation of the gas valve apparatus of 1st Embodiment. 第1実施形態のガス弁装置の運動変換機構の構成部材及び弁座部材を示す斜視図。The perspective view which shows the structural member and valve seat member of the motion conversion mechanism of the gas valve apparatus of 1st Embodiment. 第1実施形態のガス弁装置の検出子と位置センサとの関係を示す側面図。The side view which shows the relationship between the detector of the gas valve apparatus of 1st Embodiment, and a position sensor. 第1実施形態のガス弁装置における正転時流量特性と逆転時流量特性を示すグラフ。The graph which shows the flow characteristic at the time of forward rotation, and the flow characteristic at the time of reverse rotation in the gas valve apparatus of 1st Embodiment. 第2実施形態のガス弁装置の切断側面図。The cutting | disconnection side view of the gas valve apparatus of 2nd Embodiment.

図1、図2を参照して、本発明の実施形態のガス弁装置は、筒状のバルブケーシング1と、バルブケーシング1内の軸方向一方寄り部分に配置した電磁安全弁2と、バルブケーシング1内の軸方向他方寄り部分に、電磁安全弁2と直列に配置した流量調節弁3と、バルブケーシング1内に軸方向他方から挿入されるバルブケーシング1の軸方向に長手の操作ロッド4と、バルブケーシング1の軸方向他方の端部に取付けられるボックス11の外端に搭載したステッピングモータから成るモータ5と、モータ5に減速歯車機構51を介して連結される回転軸52と、ボックス11内に配置した、回転軸52の回転運動を操作ロッド4の軸方向運動に変換する運動変換機構6とを備えている。以下の説明では、バルブケーシング1の軸方向一方を往動方向、軸方向他方を復動方向と記す。   1 and 2, a gas valve device according to an embodiment of the present invention includes a tubular valve casing 1, an electromagnetic safety valve 2 disposed at a position closer to one axial direction in the valve casing 1, and a valve casing 1. A flow rate adjusting valve 3 arranged in series with the electromagnetic safety valve 2 in a portion closer to the other side in the axial direction, an operation rod 4 elongated in the axial direction of the valve casing 1 inserted from the other axial direction into the valve casing 1, and a valve A motor 5 comprising a stepping motor mounted on the outer end of the box 11 attached to the other end in the axial direction of the casing 1, a rotating shaft 52 connected to the motor 5 via a reduction gear mechanism 51, and the box 11 A motion conversion mechanism 6 that converts the rotational motion of the rotary shaft 52 into the axial motion of the operation rod 4 is provided. In the following description, one axial direction of the valve casing 1 is referred to as a forward movement direction, and the other axial direction is referred to as a backward movement direction.

バルブケーシング1には、電磁安全弁2の上流側に位置するガス流入口1aと、流量調節弁3の下流側に位置するガス流出口1bとが開設されている。そして、電磁安全弁2が開弁したとき、ガス流入口1aからガス流出口1bにガスが流れ、コンロバーナBにガスが供給される。このコンロバーナBには、調理容器の底面に当接する鍋底温度センサBaが付設されている。   The valve casing 1 is provided with a gas inlet 1 a located on the upstream side of the electromagnetic safety valve 2 and a gas outlet 1 b located on the downstream side of the flow control valve 3. When the electromagnetic safety valve 2 is opened, the gas flows from the gas inlet 1a to the gas outlet 1b, and the gas is supplied to the burner B. The stove burner B is provided with a pan bottom temperature sensor Ba that comes into contact with the bottom surface of the cooking vessel.

電磁安全弁2は、往動方向を向く弁座21と、弁座21に対向する弁体22と、弁体22を復動方向に付勢して弁座21に着座させる弁バネ23と、弁体22に往動方向にのびる弁軸22aを介して連結した吸着片24と、吸着片24に対向する電磁石25とを備えている。そして、弁体22を吸着片24が電磁石25に当接する開弁位置まで弁バネ23に抗して押動させた状態で電磁石25に通電することにより、弁体22が開弁位置に吸着保持される。また、コンロバーナBに付設する火炎検知素子(図示省略)により失火が検知されたときは、電磁石25への通電を停止し、弁体22を弁バネ23により弁座21に着座する閉弁位置に復帰させて電磁安全弁2を閉弁し、ガスの流出を防止する。   The electromagnetic safety valve 2 includes a valve seat 21 that faces in the forward direction, a valve body 22 that faces the valve seat 21, a valve spring 23 that urges the valve body 22 in the backward movement direction to be seated on the valve seat 21, and a valve An attracting piece 24 connected to the body 22 via a valve shaft 22 a extending in the forward movement direction and an electromagnet 25 facing the attracting piece 24 are provided. The valve body 22 is attracted and held at the valve open position by energizing the electromagnet 25 in a state where the valve body 22 is pushed against the valve spring 23 to the valve open position where the suction piece 24 contacts the electromagnet 25. Is done. Further, when a misfire is detected by a flame detection element (not shown) attached to the burner B, the energization to the electromagnet 25 is stopped, and the valve closing position where the valve element 22 is seated on the valve seat 21 by the valve spring 23. The electromagnetic safety valve 2 is closed by returning to, and gas outflow is prevented.

電磁安全弁2の弁座21は、バルブケーシング1内に設けた、バルブケーシング1に対し軸方向に可動の弁座部材7の往動方向側端面に形成されている。また、バルブケーシング1内には、弁座部材7の復動方向への移動を電磁安全弁2の弁体22が着座可能な所定位置で制止する、バルブケーシング1の内面に形成した突起部から成る弁座ストッパ手段71と、弁座部材7を復動方向に付勢して上記所定位置に弾力的に保持するコイルスプリングから成る弁座付勢手段72とが設けられている。また、弁座部材7の外側にガスが流れることを防止するためにベロフラム73を設けている。   The valve seat 21 of the electromagnetic safety valve 2 is formed on the end surface in the forward direction of the valve seat member 7 provided in the valve casing 1 and movable in the axial direction with respect to the valve casing 1. Further, the valve casing 1 includes a protrusion formed on the inner surface of the valve casing 1 that stops movement of the valve seat member 7 in the backward movement direction at a predetermined position where the valve body 22 of the electromagnetic safety valve 2 can be seated. A valve seat stopper means 71 and a valve seat biasing means 72 comprising a coil spring that biases the valve seat member 7 in the backward movement direction and elastically holds it in the predetermined position are provided. In addition, a bellophram 73 is provided to prevent the gas from flowing outside the valve seat member 7.

流量調節弁3は、弁座部材7に復動方向を向くように形成した弁座31と、操作ロッド4の往動方向側端部に固定された弁体32とを備えている。弁体32は、弁座31に開設した弁孔31aを閉塞するように弁座31に着座可能な閉塞弁部321と、弁孔31aに復動方向から挿入可能なニードル部322と、流量調節弁3の上流側と下流側を常時連通するバイパス通路323とを有している。   The flow rate adjusting valve 3 includes a valve seat 31 that is formed on the valve seat member 7 so as to face the backward movement direction, and a valve body 32 that is fixed to the end of the operation rod 4 in the forward movement direction. The valve body 32 includes a closing valve portion 321 that can be seated on the valve seat 31 so as to close the valve hole 31a that is opened in the valve seat 31, a needle portion 322 that can be inserted into the valve hole 31a from the backward direction, and a flow rate adjustment. A bypass passage 323 that always communicates the upstream side and the downstream side of the valve 3 is provided.

以上の構成によれば、図1に示す状態からモータ5を正転させると、減速歯車機構51、回転軸52及び運動変換機構6を介して操作ロッド4が往動方向に移動して、先ず、流量調節弁用の弁体32の閉塞弁部321が弁座ストッパ手段71で制止される所定位置に存する弁座部材7の流量調節弁用の弁座31に当接し、以後、弁座部材7が流量調節弁用の弁体32に押されて往動方向に移動し、弁座部材7を介して安全弁用の弁体22が開弁位置に押動される(図3(a)に示す状態)。この状態で電磁石25に通電して弁体22を開弁位置に吸着保持し、その後、モータ5を逆転させて、操作ロッド4、即ち、流量調節弁用の弁体32を復動方向に移動させる。この際、弁座部材7は、弁座ストッパ手段71により制止される所定位置まで弁座付勢手段72の付勢力で弁体32に追従して復動方向に移動し、安全弁用の弁座21が開弁位置に吸着保持される弁体22から離れて、電磁安全弁2が開弁される。所定位置に制止される弁座部材7に対し流量調節弁用の弁体32が更に復動方向に移動すると、閉塞弁部321が流量調節弁用の弁座31から離れ、ニードル部322が弁孔31aから次第に抜け出て、ガス流量が次第に増加する。その後、流量調節弁用の弁体32が往動方向に移動して所定のストローク範囲、即ち、弁座部材7が弁座ストッパ手段71で制止される所定位置に存する状態で流量調節弁用の弁座31に閉塞弁部321が着座する位置(図3(b)の状態)と、開弁位置に存する安全弁用の弁体22に安全弁用の弁座21が当接する直前の位置(図3(c)の状態)との間の範囲に存するときであれば、バイパス通路323のみを介してガスが流れてガス流量が最小量になる状態に維持される。   According to the above configuration, when the motor 5 is rotated forward from the state shown in FIG. 1, the operation rod 4 moves in the forward direction via the reduction gear mechanism 51, the rotation shaft 52 and the motion conversion mechanism 6. The closing valve portion 321 of the valve body 32 for the flow rate adjusting valve comes into contact with the valve seat 31 for the flow rate adjusting valve of the valve seat member 7 located at a predetermined position stopped by the valve seat stopper means 71, and thereafter the valve seat member 7 is pushed by the valve body 32 for the flow rate adjusting valve and moves in the forward movement direction, and the valve body 22 for the safety valve is pushed to the valve opening position via the valve seat member 7 (see FIG. 3A). State shown). In this state, the electromagnet 25 is energized to attract and hold the valve body 22 at the valve open position, and then the motor 5 is rotated in the reverse direction to move the operation rod 4, that is, the valve body 32 for the flow control valve in the backward movement direction. Let At this time, the valve seat member 7 follows the valve body 32 by the urging force of the valve seat urging means 72 to a predetermined position that is restrained by the valve seat stopper means 71 and moves in the backward movement direction. The electromagnetic safety valve 2 is opened when the valve 21 is separated from the valve body 22 that is adsorbed and held at the valve opening position. When the valve body 32 for the flow rate adjusting valve further moves in the backward movement direction with respect to the valve seat member 7 restrained at a predetermined position, the closing valve portion 321 is separated from the valve seat 31 for the flow rate adjusting valve, and the needle portion 322 is The gas flow rate gradually increases through the holes 31a. Thereafter, the valve body 32 for the flow rate adjusting valve moves in the forward movement direction, and is in a predetermined stroke range, that is, in a state where the valve seat member 7 is in a predetermined position that is restrained by the valve seat stopper means 71. The position where the closing valve portion 321 is seated on the valve seat 31 (the state shown in FIG. 3B), and the position immediately before the valve seat 21 for safety valve abuts on the valve body 22 for the safety valve existing at the valve opening position (FIG. 3). (C) state), the gas flows only through the bypass passage 323, and the gas flow rate is maintained at the minimum amount.

ところで、安全弁用の弁体22が開弁位置に到達した瞬間、即ち、吸着片24が電磁石25に当接した瞬間に、ステッピングモータ5を停止することは制御上困難である。そのため、弁体22が開弁位置に到達した後の更なるモータ5の正転で運動変換機構6を介して操作ロッド4が往動方向に押されると、吸着片24と電磁石25との当接部に過大な力が加わり、吸着片24の傷付きで吸着不良を生ずることがある。   By the way, it is difficult in terms of control to stop the stepping motor 5 at the moment when the valve element 22 for the safety valve reaches the valve opening position, that is, at the moment when the attracting piece 24 contacts the electromagnet 25. Therefore, when the operating rod 4 is pushed in the forward direction via the motion conversion mechanism 6 by further forward rotation of the motor 5 after the valve element 22 reaches the valve opening position, the contact between the attracting piece 24 and the electromagnet 25 is prevented. An excessive force may be applied to the contact portion, and the suction piece 24 may be damaged, resulting in a suction failure.

そこで、本実施形態では、運動変換機構6を以下の如く構成している。即ち、運動変換機構6は、図4にも示すように、回転軸52に連動して回転するように回転軸52に連結子61を介して連結される、操作ロッド4と同心の筒状のカム体62と、カム体62に形成した螺旋状のカム溝63に係合する、操作ロッド4の軸心を通る放射方向の線に沿うように操作ロッド4に固定したピン64とを有し、カム体62の正転と逆転でカム溝63からピン64を介して作用する軸方向推力により操作ロッド4が往動方向と復動方向とに移動するようにしたカム機構で構成されている。   Therefore, in the present embodiment, the motion conversion mechanism 6 is configured as follows. That is, as shown in FIG. 4, the motion converting mechanism 6 has a cylindrical shape concentric with the operating rod 4 and connected to the rotating shaft 52 via the connector 61 so as to rotate in conjunction with the rotating shaft 52. A cam body 62; and a pin 64 that is engaged with a helical cam groove 63 formed in the cam body 62 and fixed to the operation rod 4 along a radial line passing through the axis of the operation rod 4. The cam body 62 is constituted by a cam mechanism in which the operation rod 4 is moved in the forward movement direction and the backward movement direction by an axial thrust acting from the cam groove 63 via the pin 64 by forward rotation and reverse rotation of the cam body 62. .

連結子61は、断面が非円形の回転軸52に嵌合する非円形の孔611を有し、回転軸52と一緒に回転する。また、連結子61には、カム体62の復動方向側端部に形成した切欠き部621に係合して回転力を伝達する突片部612が設けられている。カム体62には、バルブケーシング1から復動方向に延出したガイド筒65が挿入されている。ガイド筒65には、軸方向に長手の長孔651が形成されており、この長孔651にピン64を軸方向に摺動自在に係合させている。   The connector 61 has a non-circular hole 611 that fits in the rotary shaft 52 having a non-circular cross section, and rotates together with the rotary shaft 52. Further, the connector 61 is provided with a projecting piece portion 612 that engages with a notch portion 621 formed at the end of the cam body 62 in the backward movement direction to transmit the rotational force. A guide cylinder 65 extending in the backward movement direction from the valve casing 1 is inserted into the cam body 62. The guide tube 65 is formed with a long hole 651 that is long in the axial direction, and a pin 64 is slidably engaged with the long hole 651 in the axial direction.

また、カム体62は、軸方向に移動自在であって、カム体62の往動方向への移動を所定位置で制止する、ボックス11の端板で構成されるカムストッパ手段66と、カム体62を往動方向に付勢するコイルスプリングから成るカム付勢手段67とを設けている。そして、安全弁用の弁体22が開弁位置に到達した後の更なるモータ5の正転で、ピン64からカム溝63を介して作用する軸方向反力によりカム体62がカム付勢手段67の付勢力に抗して復動方向に移動するようにしている。これによれば、安全弁用の弁体22が開弁位置に到達した後に更にモータ5を正転させても、吸着片24と電磁石25との当接部に過大な力は加わらず、吸着片24の傷付きで吸着不良を生ずることを防止できる。尚、安全弁用の弁体22が開弁位置に到達する前に、弁バネ23及び弁座付勢手段72の付勢力に負けてカム体62が復動方向に移動することのないように、カム付勢手段67の付勢力は、弁バネ23及び弁座付勢手段72の付勢力の合力よりも若干大きくなるように設定される。   The cam body 62 is movable in the axial direction, and the cam body 62 is configured by an end plate of the box 11 and stops the movement of the cam body 62 in the forward movement direction at a predetermined position. And a cam biasing means 67 comprising a coil spring for biasing in the forward movement direction. Then, the cam body 62 is cam biased by the axial reaction force acting from the pin 64 via the cam groove 63 by further forward rotation of the motor 5 after the valve body 22 for the safety valve reaches the valve opening position. It moves in the backward movement direction against the urging force of 67. According to this, even if the motor 5 is further rotated forward after the valve element 22 for the safety valve reaches the valve opening position, an excessive force is not applied to the contact portion between the suction piece 24 and the electromagnet 25, and the suction piece. It is possible to prevent an adsorption failure due to 24 scratches. Before the safety valve body 22 reaches the valve opening position, the cam body 62 is not moved in the backward movement direction due to the urging force of the valve spring 23 and the valve seat urging means 72. The urging force of the cam urging means 67 is set to be slightly larger than the resultant force of the urging forces of the valve spring 23 and the valve seat urging means 72.

また、カム体62は、カム溝63を挟んで往動方向側に位置する往動方向側筒部622と復動方向側に位置する復動方向側筒部623との一方、例えば、往動方向側筒部622の内径を復動方向側筒部623の外径以上とした段付き形状である。そして、往動方向側と復動方向側の各筒部622,623のカム溝63に面する端面で構成されるカム溝63の往動方向側と復動方向側の各側面631,632を、カム溝63の長手方向全ての部分においてカム体62の軸心と当該部分とを結ぶ放射方向に平行で、ピン64が線接触するように形成している。これによれば、カム溝63の各側面631,632にピン64が点接触するものと異なり、各側面631,632が摩耗しにくくなり、ガス流量の調節誤差の発生を抑制することができる。   In addition, the cam body 62 has one of a forward direction side cylindrical portion 622 positioned on the forward direction side and a backward direction side cylindrical portion 623 positioned on the backward direction side with the cam groove 63 interposed therebetween, for example, forward movement This is a stepped shape in which the inner diameter of the direction side cylindrical portion 622 is equal to or larger than the outer diameter of the backward direction side cylindrical portion 623. Then, the side surfaces 631 and 632 on the forward direction side and the backward direction side of the cam groove 63 constituted by the end surfaces facing the cam grooves 63 of the respective cylindrical portions 622 and 623 on the forward direction side and the backward direction side are respectively defined. The pins 64 are formed so as to be in line contact with each other in the longitudinal direction of the cam groove 63 in parallel with the radial direction connecting the axis of the cam body 62 and the portion. According to this, unlike the case where the pin 64 makes point contact with the side surfaces 631 and 632 of the cam groove 63, the side surfaces 631 and 632 are less likely to be worn, and the occurrence of gas flow rate adjustment errors can be suppressed.

尚、カム体62を上記の如く段付き形状に形成すれば、カム体62の外周面を成形する外型の往動方向側筒部622の成形部分と復動方向側筒部623の成形部分との間の段差面でカム溝63の往動方向側の側面631を成形すると共に、カム体62の内周面を成形する内型の往動方向側筒部622の成形部分と復動方向側筒部623の成形部分との間の段差面でカム溝63の復動方向側の側面632を成形することができる。その結果、カム溝63を径方向に可動な型板で成形する場合と異なり、カム溝63の各側面631,632を、上記の如くカム溝63の長手方向全ての部分においてカム体62の軸心と当該部分とを結ぶ放射方向に平行になるように形成することが可能になる。   If the cam body 62 is formed in a stepped shape as described above, a molded portion of the outer cylinder portion 622 and a molded portion of the backward cylinder portion 623 of the outer mold for molding the outer peripheral surface of the cam body 62 are formed. The side surface 631 on the forward movement direction side of the cam groove 63 is molded with the step surface between the inner circumferential surface of the cam body 62 and the molding portion of the inner cylinder forward movement side cylinder portion 622 and the backward movement direction. The side surface 632 on the backward direction side of the cam groove 63 can be formed by a step surface between the side cylinder portion 623 and the forming portion. As a result, unlike the case where the cam groove 63 is formed of a mold plate movable in the radial direction, the side surfaces 631 and 632 of the cam groove 63 are connected to the shaft of the cam body 62 in all the longitudinal directions of the cam groove 63 as described above. It can be formed so as to be parallel to the radial direction connecting the core and the part.

図6を参照して、a線は、モータ5の正転で流量調節弁用の弁体32を往動方向に移動させてガス流量を減少させるときのモータ5の回転位相とガス流量との関係を表す正転時流量特性を示し、b線は、モータ5の逆転で流量調節弁用の弁体32を復動方向に移動させてガス流量を減少させるときのモータ5の回転位相とガス流量との関係を表す逆転時流量特性を示している。ここで、流量調節弁用の弁体32を同一の軸方向位置にモータ5の正転で移動させるときとモータ5の逆転で移動させるときとのモータ5の回転位相差をヒステリシスHとして、このヒステリシスHは、減速歯車機構51の遊び、回転軸52と連結子61との間の遊び、連結子61とカム体62との間の遊び、カム溝63とピン64との間の遊び及びピン64と長孔651との間の遊びを合計した遊び分に相当するものになる。そして、逆転時流量特性は、正転時流量特性に対しヒステリシスH分だけモータ5の回転位相を逆転方向にずらしたものになる。   Referring to FIG. 6, a line a indicates the rotation phase of the motor 5 and the gas flow rate when the valve body 32 for the flow rate adjustment valve is moved in the forward movement direction by the normal rotation of the motor 5 to reduce the gas flow rate. The forward flow rate characteristic representing the relationship is shown, and the b line represents the rotational phase of the motor 5 and the gas when the valve body 32 for the flow rate adjustment valve is moved in the reverse direction by the reverse rotation of the motor 5 to reduce the gas flow rate. The flow rate characteristics during reverse rotation representing the relationship with the flow rate are shown. Here, the rotational phase difference of the motor 5 when the valve body 32 for the flow rate adjusting valve is moved to the same axial position by the forward rotation of the motor 5 and when the motor 5 is moved by the reverse rotation of the motor 5 is defined as hysteresis H. Hysteresis H is the play of the reduction gear mechanism 51, the play between the rotating shaft 52 and the connector 61, the play between the connector 61 and the cam body 62, the play between the cam groove 63 and the pin 64, and the pin. 64 and the slot 651 correspond to the total amount of play. The reverse flow rate characteristic is obtained by shifting the rotational phase of the motor 5 in the reverse direction by the hysteresis H with respect to the normal flow rate characteristic.

モータ5を正転させてガス流量を減少させる際は、正転時流量特性に基づいてモータ5を制御し、モータ5を逆転させてガス流量を増加させる際は、逆転時流量特性に基づいてモータ5を制御する。具体的に説明すれば、本実施形態では、ガス流量を最小の第1流量Q1から最大の第5流量Q5までの5段階に可変調節するようにしており、正転時流量特性に基づいて定められる、第4、第3、第2、第1の各流量Q4〜Q1に対応する回転位相θ4n〜θ1nと、逆転時流量特性に基づいて定められる第2、第3、第4、第5の各流量Q2〜Q5に対応する回転位相θ2r〜θ5rとがコントローラに記憶されている。尚、θ2r=θ2n−H、θ3r=θ3n−H、θ4r=θ4n−Hになる。そして、ガス流量を第4乃至第1流量Q4〜Q1の何れかに減少させる場合は、モータ5を正転させて、回転位相がθ4n〜θ1nの何れかになったときに、モータ5を停止し、また、ガス流量を第2乃至第5流量Q2〜Q5の何れかに増加させる場合は、モータ5を逆転させて、回転位相がθ2r〜θ5rの何れかになったときにモータ5を停止する。尚、本実施形態のモータ5は、ステッピングモータであって、モータ5の回転位相はモータ5への入力パルス数により定まる。従って、上記各位相に相当する数のパルスをモータ5に入力して、上記各位相までモータ5を回転させるようにしている。   When the motor 5 is rotated forward to decrease the gas flow rate, the motor 5 is controlled based on the forward flow rate characteristic, and when the motor 5 is reversed to increase the gas flow rate, the reverse flow rate characteristic is set. The motor 5 is controlled. Specifically, in this embodiment, the gas flow rate is variably adjusted in five stages from the minimum first flow rate Q1 to the maximum fifth flow rate Q5, and is determined based on the forward flow rate characteristics. The second, third, fourth, and fifth rotation phases θ4n to θ1n corresponding to the fourth, third, second, and first flow rates Q4 to Q1 and the reverse flow rate characteristics are determined. The rotation phases θ2r to θ5r corresponding to the flow rates Q2 to Q5 are stored in the controller. Note that θ2r = θ2n−H, θ3r = θ3n−H, and θ4r = θ4n−H. When the gas flow rate is decreased to any one of the fourth to first flow rates Q4 to Q1, the motor 5 is rotated forward so that the motor 5 is stopped when the rotation phase becomes any one of θ4n to θ1n. In addition, when the gas flow rate is increased to any one of the second to fifth flow rates Q2 to Q5, the motor 5 is reversed and the motor 5 is stopped when the rotational phase becomes any one of θ2r to θ5r. To do. The motor 5 of the present embodiment is a stepping motor, and the rotational phase of the motor 5 is determined by the number of input pulses to the motor 5. Therefore, the number of pulses corresponding to each phase is input to the motor 5, and the motor 5 is rotated to each phase.

ところで、減速歯車機構51は使用する歯車の数が5〜6個と多く、各歯車の寸法誤差で、減速歯車機構51全体の遊びが製品毎に大きくばらつく。そのため、実際のヒステリシスが設計データから算出される基準ヒステリシスと異なってしまい、基準ヒステリシスを用いて設定される逆転時流量特性に基づいてガス流量を増加させるときのモータ5の制御を行ったのでは、ガス流量の調節誤差を生じてしまう。   By the way, the reduction gear mechanism 51 uses as many as 5 to 6 gears, and the play of the entire reduction gear mechanism 51 varies greatly for each product due to a dimensional error of each gear. For this reason, the actual hysteresis differs from the reference hysteresis calculated from the design data, and the motor 5 is controlled when increasing the gas flow rate based on the reverse flow rate characteristic set using the reference hysteresis. This causes an error in adjusting the gas flow rate.

そこで、本実施形態では、運動変換機構6の構成部材であるカム体62に検出子8を設けると共に、検出子8の所定の検出位置への変位を検出する位置センサ9を設けている。より具体的に説明すれば、検出子8は、カム体62の外周面に突設した、復動方向に盛上る山部81を有する突起部で構成されている。また、モータ5が例えば図6のθaの回転位相まで正転したときに検出子8が存在する位置を検出位置として、位置センサ9は、検出子8が検出位置に正転する際に、図5に示す如く、山部81で押し上げられる検知レバー91を有するマイクロスイッチで構成されている。そして、検出子8が検出位置まで正転変位した瞬間に位置センサ9の出力信号がオフからオンに切替わるようにしている。モータ5を上記θaの回転位相を越えた位相まで正転させてから逆転させると、カム体62よりも動力伝達経路の上流側に位置する減速歯車機構51の遊びと、回転軸52と連結子61との間の遊びと、連結子61とカム体62との間の遊びとの合計の遊び分だけθaの位相よりも逆転方向にずれた図6のθbの位相にモータ5が逆転したときに、検出子8が上記検出位置に逆転変位し、この検出位置を越えた瞬間に位置センサ9の出力信号がオンからオフに切替わる。   Therefore, in this embodiment, the detector 8 is provided on the cam body 62 that is a constituent member of the motion conversion mechanism 6, and the position sensor 9 that detects the displacement of the detector 8 to a predetermined detection position is provided. More specifically, the detector 8 is configured by a protrusion having a peak portion 81 that protrudes from the outer peripheral surface of the cam body 62 and rises in the backward movement direction. For example, when the motor 5 rotates forward to the rotational phase of θa in FIG. 6, the position where the detector 8 exists is set as a detection position, and the position sensor 9 is rotated when the detector 8 rotates forward to the detection position. 5, the micro switch includes a detection lever 91 that is pushed up by a peak portion 81. The output signal of the position sensor 9 is switched from OFF to ON at the moment when the detector 8 is forwardly displaced to the detection position. When the motor 5 is rotated forward to a phase exceeding the rotational phase of θa and then reversely rotated, the play of the reduction gear mechanism 51 located on the upstream side of the power transmission path with respect to the cam body 62, the rotation shaft 52 and the connector When the motor 5 reverses to the phase of θb in FIG. 6 shifted in the reverse direction from the phase of θa by the total play of the play between 61 and the play between the connector 61 and the cam body 62. Further, the detector 8 is reversely displaced to the detection position, and the output signal of the position sensor 9 is switched from on to off at the moment when the detection position is exceeded.

そして、工場出荷前やメンテナンス時に、モータ5の正転時に位置センサ9で検出位置への検出子8の変位が検出されたとき、即ち、位置センサ9の出力信号がオフからオンに切替わったときのモータ5の回転位相θaと、モータ5の逆転時に位置センサ9で検出位置への検出子8の変位が検出されたとき、即ち、位置センサ9の出力信号がオンからオフに切替わったときのモータ5の回転位相θbとの位相差(=θa−θb)を計測し、この差に基づいて逆転時流量特性の設定に用いるヒステリシスHを補正している。具体的には、減速歯車機構51の遊びと、回転軸52と連結子61との間の遊びと、連結子61とカム体62との間の遊びとの合計の遊びの設計値から求められる上記位相差の基準値と上記位相差の計測値とを比較し、逆転時流量特性の設定に用いるヒステリシスHを基準のヒステリシスに上記位相差の計測値と基準値との差分だけ加算したものに補正する。   When the displacement of the detector 8 to the detection position is detected by the position sensor 9 during forward rotation of the motor 5 before shipment from the factory or during maintenance, that is, the output signal of the position sensor 9 is switched from OFF to ON. When the rotational phase θa of the motor 5 and the displacement of the detector 8 to the detection position are detected by the position sensor 9 during the reverse rotation of the motor 5, that is, the output signal of the position sensor 9 is switched from on to off. The phase difference (= θa−θb) with respect to the rotational phase θb of the motor 5 is measured, and the hysteresis H used for setting the reverse flow characteristic is corrected based on this difference. Specifically, it is obtained from the design value of the total play of the play of the reduction gear mechanism 51, the play between the rotary shaft 52 and the connector 61, and the play between the connector 61 and the cam body 62. Comparing the reference value of the phase difference with the measured value of the phase difference, and adding the difference between the measured value of the phase difference and the reference value to the reference hysteresis to the hysteresis H used for setting the flow rate characteristics during reverse rotation to correct.

これによれば、減速歯車機構51全体の遊びがばらついて実際のヒステリシスが基準のヒステリシスと異なっても、逆転時流量特性の設定に用いるヒステリシスHを実際のヒステリシスに合致するように補正して、ガス流量を正確に調節することができる。   According to this, even if the play of the entire reduction gear mechanism 51 varies and the actual hysteresis is different from the reference hysteresis, the hysteresis H used for setting the reverse flow characteristic is corrected to match the actual hysteresis, The gas flow rate can be adjusted accurately.

ところで、上記第1実施形態では、検出子8をカム体62に設けているが、図7に示す第2実施形態の如く、ピン64に検出子8を設けてもよい。即ち、第2実施形態では、ピン64の端部に取付けた磁石で検出子8を構成している。そして、検出子8の所定の検出位置(例えば、ガス流量が第4流量Q4になるときの位置)への変位をホールIC等の磁気センサから成る位置センサ9で検出できるようにしている。   In the first embodiment, the detector 8 is provided on the cam body 62. However, the detector 8 may be provided on the pin 64 as in the second embodiment shown in FIG. That is, in the second embodiment, the detector 8 is composed of a magnet attached to the end of the pin 64. A displacement of the detector 8 to a predetermined detection position (for example, a position when the gas flow rate becomes the fourth flow rate Q4) can be detected by a position sensor 9 including a magnetic sensor such as a Hall IC.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、運動変換機構6の構成部材であるカム体62やピン64に検出子8を設けているが、操作ロッド4に検出子を設けることも可能である。更に、上記実施形態のガス弁装置は、バルブケーシング1内に流量調節弁3に加えて電磁安全弁2が設けられているが、電磁安全弁2を省略することも可能であり、この場合、弁座部材7をバルブケーシング1に固定としてもよい。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above-described embodiment, the detector 8 is provided on the cam body 62 and the pin 64 that are constituent members of the motion conversion mechanism 6, but the detector may be provided on the operation rod 4. Furthermore, in the gas valve device of the above-described embodiment, the electromagnetic safety valve 2 is provided in the valve casing 1 in addition to the flow rate adjusting valve 3, but the electromagnetic safety valve 2 can be omitted. The member 7 may be fixed to the valve casing 1.

1…バルブケーシング、3…流量調節弁、31…弁座、31a…弁孔、32…弁体、322…ニードル部、4…操作ロッド、5…モータ、51…減速歯車機構、52…回転軸、6…運動変換機構、61…連結子、62…カム体、622…往動方向側筒部、623…復動方向側筒部、63…カム溝、631…カム溝の往動方向側側面、632…カム溝の復動方向側側面、64…ピン、8…検出子、9…位置センサ。
DESCRIPTION OF SYMBOLS 1 ... Valve casing, 3 ... Flow control valve, 31 ... Valve seat, 31a ... Valve hole, 32 ... Valve body, 322 ... Needle part, 4 ... Operation rod, 5 ... Motor, 51 ... Reduction gear mechanism, 52 ... Rotating shaft , 6 ... motion conversion mechanism, 61 ... connector, 62 ... cam body, 622 ... forward movement side cylinder, 623 ... reverse movement direction cylinder, 63 ... cam groove, 631 ... forward direction side surface of the cam groove 632, a side surface in the backward direction of the cam groove, 64, a pin, 8 a detector, 9 a position sensor.

Claims (2)

バルブケーシング内に流量調節弁が設けられたガス弁装置であって、バルブケーシングの軸方向一方を往動方向、軸方向他方を復動方向として、モータと、モータに減速歯車機構を介して連結される回転軸と、モータの正転及び逆転による回転軸の正転及び逆転で運動変換機構を介して往動方向及び復動方向に駆動される操作ロッドとを備え、流量調節弁は、操作ロッドに連結された弁体と、バルブケーシング内に設けられた復動方向を向く弁座とを備え、弁体は、弁座に開設した弁孔に復動方向から挿入されるニードル部を有し、弁体の往動方向及び復動方向への移動によりガス流量が減少及び増加するようにし、弁体を同一の軸方向位置にモータの正転で移動させるときとモータの逆転で移動させるときとのモータの回転位相差をヒステリシスとして、モータの正転で弁体を往動方向に移動させてガス流量を減少させるときのモータの回転位相とガス流量との関係を表す正転時流量特性に基づいてガス流量を減少させるときのモータの制御を行うと共に、正転時流量特性に対しヒステリシス分だけモータの回転位相を逆転方向にずらして設定される、モータの逆転で弁体を復動方向に移動させてガス流量を増加させるときのモータの回転位相とガス流量との関係を表す逆転時流量特性に基づいてガス流量を増加させるときのモータの制御を行うものにおいて、
運動変換機構の構成部材又は操作ロッドに設けられた検出子と、所定の検出位置への検出子の変位を検出する位置センサとを備え、モータの正転時に位置センサで検出位置への検出子の変位が検出されたときとモータの逆転時に位置センサで検出位置への検出子の変位が検出されたときのモータの回転位相の差を計測し、この差に基づいて逆転時流量特性の設定に用いるヒステリシスを補正することを特徴とするガス弁装置。
A gas valve device in which a flow rate adjusting valve is provided in a valve casing, wherein one axial direction of the valve casing is a forward movement direction and the other axial direction is a backward movement direction, and is connected to the motor via a reduction gear mechanism. And a control rod driven in the forward and reverse directions through the motion conversion mechanism by forward and reverse rotation of the rotation shaft by forward and reverse rotation of the motor. A valve body connected to the rod and a valve seat provided in the valve casing and facing in the backward movement direction. The valve body has a needle portion that is inserted into the valve hole formed in the valve seat from the backward movement direction. The gas flow rate is decreased and increased by moving the valve body in the forward and backward movement directions, and the valve body is moved to the same axial position by the forward rotation of the motor and by the reverse rotation of the motor. The rotational phase difference of the motor As a cis, the gas flow rate is reduced based on the forward flow rate characteristic that represents the relationship between the rotational phase of the motor and the gas flow rate when the valve body is moved in the forward direction by the forward rotation of the motor to reduce the gas flow rate. The motor is controlled at the same time, and the rotational phase of the motor is shifted in the reverse direction by the hysteresis for the forward flow rate characteristics. In controlling the motor when increasing the gas flow rate based on the reverse flow rate characteristic representing the relationship between the rotation phase of the motor and the gas flow rate when increasing,
A detector provided on a constituent member of the motion conversion mechanism or the operating rod, and a position sensor for detecting the displacement of the detector to a predetermined detection position, and a detector for detecting the position at the position sensor when the motor is rotating forward The difference in rotational phase of the motor is measured when the displacement of the motor is detected and when the displacement of the detector to the detection position is detected by the position sensor during reverse rotation of the motor, and the reverse flow characteristic is set based on this difference A gas valve device that corrects hysteresis used in the process.
請求項1記載のガス弁装置であって、前記運動変換機構は、前記回転軸に連動して回転するように回転軸に連結子を介して連結される、前記操作ロッドと同心の筒状のカム体と、カム体に形成した螺旋状のカム溝に係合する、操作ロッドの軸心を通る放射方向の線に沿うように操作ロッドに固定したピンとを有し、カム体の正転と逆転でカム溝からピンを介して作用する軸方向推力により操作ロッドが往動方向と復動方向とに移動するようにしたカム機構で構成されるものにおいて、
カム体は、カム溝を挟んで往動方向側に位置する往動方向側筒部と復動方向側に位置する復動方向側筒部との一方の内径を他方の外径以上とした段付き形状であり、往動方向側と復動方向側の各筒部のカム溝に面する端面で構成されるカム溝の往動方向側と復動方向側の各側面は、カム溝の長手方向全ての部分においてカム体の軸心と当該部分とを結ぶ放射方向に平行で、ピンが線接触するように形成されることを特徴とするガス弁装置。
2. The gas valve device according to claim 1, wherein the motion conversion mechanism is connected to the rotation shaft via a connector so as to rotate in conjunction with the rotation shaft, and has a cylindrical shape concentric with the operation rod. A cam body, and a pin fixed to the operating rod along a radial line passing through the axis of the operating rod, which engages with a helical cam groove formed in the cam body, In what is composed of a cam mechanism in which the operating rod is moved in the forward direction and the backward direction by the axial thrust acting through the pin from the cam groove by reverse rotation,
The cam body is a step in which one inner diameter of the forward direction side cylindrical portion located on the forward direction side and the backward direction side cylindrical portion located on the backward direction side across the cam groove is equal to or larger than the other outer diameter. Each side surface on the forward direction side and the backward direction side of the cam groove composed of end faces facing the cam grooves of the respective cylinder portions on the forward direction side and the backward direction side is the length of the cam groove. A gas valve device characterized in that pins are formed in line contact with each other in a direction parallel to a radial direction connecting the axis of the cam body and the portion.
JP2017115740A 2017-06-13 2017-06-13 Gas valve gear Active JP6877253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115740A JP6877253B2 (en) 2017-06-13 2017-06-13 Gas valve gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115740A JP6877253B2 (en) 2017-06-13 2017-06-13 Gas valve gear

Publications (2)

Publication Number Publication Date
JP2019002603A true JP2019002603A (en) 2019-01-10
JP6877253B2 JP6877253B2 (en) 2021-05-26

Family

ID=65007323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115740A Active JP6877253B2 (en) 2017-06-13 2017-06-13 Gas valve gear

Country Status (1)

Country Link
JP (1) JP6877253B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359674B2 (en) 2019-12-09 2023-10-11 リンナイ株式会社 motor valve
WO2023203905A1 (en) * 2022-04-19 2023-10-26 株式会社不二工機 Control device for motor-operated valve, motor-operated valve, and motor-operated valve unit using same
CN117387192A (en) * 2023-11-23 2024-01-12 宜所(广东)智能科技有限公司 Control method and system for electronic expansion valve of air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146071U (en) * 1986-03-08 1987-09-14
JP2000179834A (en) * 1998-12-16 2000-06-27 Rinnai Corp Gas cock device
JP2005024116A (en) * 2003-06-30 2005-01-27 Rinnai Corp Gas valve
US20070012892A1 (en) * 2005-07-12 2007-01-18 Chung-Chih Huang Gas control knob that is operated manually or automatically
JP2013068356A (en) * 2011-09-22 2013-04-18 Rinnai Corp Gas valve device
JP2014115040A (en) * 2012-12-11 2014-06-26 Harman Co Ltd Combustion gas amount control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146071U (en) * 1986-03-08 1987-09-14
JP2000179834A (en) * 1998-12-16 2000-06-27 Rinnai Corp Gas cock device
JP2005024116A (en) * 2003-06-30 2005-01-27 Rinnai Corp Gas valve
US20070012892A1 (en) * 2005-07-12 2007-01-18 Chung-Chih Huang Gas control knob that is operated manually or automatically
JP2013068356A (en) * 2011-09-22 2013-04-18 Rinnai Corp Gas valve device
JP2014115040A (en) * 2012-12-11 2014-06-26 Harman Co Ltd Combustion gas amount control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359674B2 (en) 2019-12-09 2023-10-11 リンナイ株式会社 motor valve
WO2023203905A1 (en) * 2022-04-19 2023-10-26 株式会社不二工機 Control device for motor-operated valve, motor-operated valve, and motor-operated valve unit using same
JP7438593B1 (en) 2022-04-19 2024-02-27 株式会社不二工機 Motorized valve control device, motorized valve, and motorized valve unit using the same
CN117387192A (en) * 2023-11-23 2024-01-12 宜所(广东)智能科技有限公司 Control method and system for electronic expansion valve of air conditioner
CN117387192B (en) * 2023-11-23 2024-04-16 宜所(广东)智能科技有限公司 Control method and system for electronic expansion valve of air conditioner

Also Published As

Publication number Publication date
JP6877253B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP2019002603A (en) Gas valve device
JP6860988B2 (en) Electric valve
TWI427230B (en) Fluid control device
JP2012508857A (en) Solenoid valve with sensor for determining the stroke, speed and / or acceleration of the moving core of the valve as an indication of failure mode and health
JP4659514B2 (en) Electric control valve
WO2006046612A1 (en) Flow control valve
CN105339713A (en) A flow control valve servo mechanism based on a step motor and control method thereof
US9714722B2 (en) Pilot valve and/or proportional valve
JP6717694B2 (en) Gas valve device
EP1775504B1 (en) Servo-positioner for a micro-regulating valve
JP5473695B2 (en) Motor safety valve
JP4892592B2 (en) Clutch operating device
JP6908499B2 (en) Gas valve gear
JP6773469B2 (en) Gas valve device
JP2018204869A (en) Gas valve device
JP2011033090A (en) Flow regulating valve device
JP2005351308A (en) Control method of flow control valve
JP4566657B2 (en) Hot water mixing valve
JP2019082296A (en) Gas valve device
US20160153475A1 (en) Discrete Pilot Stage Valve Arrangement With Fail Freeze Mode
CN111379864A (en) Flow control valve
JP2006057761A5 (en)
SG11201909609WA (en) Flow rate regulating valve and fluid control apparatus using the same
JP7120895B2 (en) Electric gas valve device
JP2017040294A (en) Small-sized electric motor valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210427

R150 Certificate of patent or registration of utility model

Ref document number: 6877253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6877253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250