JP2019002032A - Electrocoating method - Google Patents

Electrocoating method Download PDF

Info

Publication number
JP2019002032A
JP2019002032A JP2017115261A JP2017115261A JP2019002032A JP 2019002032 A JP2019002032 A JP 2019002032A JP 2017115261 A JP2017115261 A JP 2017115261A JP 2017115261 A JP2017115261 A JP 2017115261A JP 2019002032 A JP2019002032 A JP 2019002032A
Authority
JP
Japan
Prior art keywords
electrodeposition
coating
tank
coating liquid
relative speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017115261A
Other languages
Japanese (ja)
Other versions
JP6703962B2 (en
Inventor
俊彦 小池
Toshihiko Koike
俊彦 小池
靖彦 佐古田
Yasuhiko Sakoda
靖彦 佐古田
慶一 林
Keiichi Hayashi
慶一 林
英幸 高木
Hideyuki Takagi
英幸 高木
真奈美 金原
Manami Kanehara
真奈美 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2017115261A priority Critical patent/JP6703962B2/en
Publication of JP2019002032A publication Critical patent/JP2019002032A/en
Application granted granted Critical
Publication of JP6703962B2 publication Critical patent/JP6703962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an electrocoating method capable of reducing a pump power necessary for transferring a coating liquid while preventing a difference in the thickness of coating films formed on the inner and outer faces of a coating object from arising.SOLUTION: The electrocoating method includes: an initial stage of an electrocoating process in which a coating film to be formed on the outer face of a coating object is completed while increasing a relative speed of a coating liquid flowing around a coating object W relative to the coating object; and a later stage of the electrocoating process in which a coating film to be formed on the inner face of the coating object is completed while maintaining the relative speed lower than the relative speed maintained in the initial stage.SELECTED DRAWING: Figure 1

Description

本発明は、電着塗装方法に関し、詳しくは、外部に対する開口が制限された内部空間を有する被塗物を電着槽内の塗料液に浸漬させた状態で、前記塗料液を介して前記電着槽における槽内電極と対極電極としての前記被塗物との間に所定の電位差を所定の電着時間だけ付与する電着工程を有し、この電着工程では、前記被塗物の周囲を流れる前記塗料液の前記被塗物に対する相対速度を所定の相対速度に保持する電着塗装方法に関する。   The present invention relates to an electrodeposition coating method, and more specifically, in a state where an object to be coated having an internal space whose opening to the outside is restricted is immersed in a coating liquid in an electrodeposition tank, the electrodeposition through the coating liquid. An electrodeposition step of applying a predetermined potential difference for a predetermined electrodeposition time between the electrode in the tank and the object to be counter electrode in the electrodeposition tank; in this electrodeposition process, the periphery of the object to be coated It is related with the electrodeposition coating method which hold | maintains the relative speed with respect to the said to-be-coated article of the said coating liquid which flows through a predetermined relative speed.

この種の電着塗装では、電着工程における所定の電着時間(一般的には180秒〜240秒)の間、電着槽における槽内電極と、槽内の塗料液に浸漬させた対極電極としての被塗物との間に電位差を付与して、塗料液に含まれる塗膜成分(換言すれば塗料成分)を電気的に被塗物の外面及び内面に引き付けて定着させることで、被塗物の外面及び内面夫々に塗膜を形成する。   In this type of electrodeposition coating, the electrode in the tank in the electrodeposition tank and the counter electrode immersed in the coating liquid in the tank for a predetermined electrodeposition time (generally 180 seconds to 240 seconds) in the electrodeposition process. By applying a potential difference between the object to be coated as an electrode and electrically fixing the coating film component (in other words, the paint component) contained in the coating liquid to the outer surface and inner surface of the object to be coated, A coating film is formed on each of the outer surface and the inner surface of the object to be coated.

ところで、外部に対する開口が制限された内部空間を有する自動車ボディなどの被塗物の場合、被塗物の内面(即ち、内部空間における被塗物表面)には被塗物の外面に比べ槽内電極との間での通電効果が及び難いことが原因で、被塗物の外面には膜厚の大きな塗膜(即ち、厚い塗膜)が形成されるのに対し、被塗物の内面には膜厚の小さな塗膜(即ち、薄い塗膜)しか形成されず、被塗物の外面と内面とで塗膜の厚さに差が生じる問題(所謂つきまわり性の差の問題)がある。   By the way, in the case of an object to be coated such as an automobile body having an internal space in which the opening to the outside is limited, the inner surface of the object to be coated (that is, the surface of the object to be coated in the inner space) is in the tank compared to the outer surface of the object to be coated. Due to the fact that the current-carrying effect with the electrode is difficult to achieve, a coating film having a large film thickness (that is, a thick coating film) is formed on the outer surface of the object to be coated. Has a problem that a coating film having a small film thickness (that is, a thin coating film) is formed, and the thickness of the coating film is different between the outer surface and the inner surface of the object to be coated (so-called difference in throwing power). .

これに対し、この問題を解決する提案技術として、下記の特許文献1には次のような電着塗装方法が開示されている。   On the other hand, as a proposed technique for solving this problem, the following patent document 1 discloses the following electrodeposition coating method.

図5及び図6に示すように、被塗物である自動車ボディ(B)が通過する電着槽(1)内の表面域及び中間域では、被塗物入槽部の側に向って塗料液(L)を噴出する表面域ノズル(36)及び中間域ノズル(37)を設けることで、表面域及び中間域における槽内の塗料液(L)が被塗物(B)の移動向き対して対向する向きに流れるようにし、一方、電着槽(1)の底面域では、被塗物出槽部の側に向って塗料液(L)を噴出する底面域ノズル(29),(35)を設けることで、底面域における槽内の塗料液(L)が被塗物(B)の移動向きと同じ向きに流れるようにする。   As shown in FIG. 5 and FIG. 6, in the surface area and the intermediate area in the electrodeposition tank (1) through which the automobile body (B) as the object passes, the paint is directed toward the object entering tank part. By providing the surface area nozzle (36) and the intermediate area nozzle (37) for ejecting the liquid (L), the coating liquid (L) in the tank in the surface area and the intermediate area is opposed to the moving direction of the object (B). On the other hand, in the bottom area of the electrodeposition tank (1), the bottom area nozzles (29), (35) for jetting the coating liquid (L) toward the substrate outlet tank side. ) So that the coating liquid (L) in the tank in the bottom area flows in the same direction as the moving direction of the article (B).

ここで、表面域とは、高さ方向において液面から自動車ボディ(B)のルーフ近傍に対応する槽内域、中間域とは、高さ方向において自動車ボディ(B)の側面に対応する槽内域、底面域とは、高さ方向において電着槽(1)の底壁から自動車ボディ(B)の床面近傍に対応する槽内域を言う。   Here, the surface area is a tank inner area corresponding to the vicinity of the roof of the automobile body (B) from the liquid level in the height direction, and the intermediate area is a tank corresponding to the side surface of the automobile body (B) in the height direction. The inner area and the bottom area refer to the inner area of the tank corresponding to the vicinity of the floor surface of the automobile body (B) from the bottom wall of the electrodeposition tank (1) in the height direction.

つまり、このように被塗物である自動車ボディ(B)が通過する表面域及び中間域については、槽内の塗料液(L)が被塗物(B)の移動向きに対して対向する向きに流れるようにすることで、被塗物である自動車ボディ(B)の周囲を流れる塗料液(L)の自動車ボディ(B)に対する相対速度を例えば0.24m/s程度に高め、これにより、電着塗装に伴い自動車ボディ(B)の表面で発生する反応ガスの気泡や反応熱が効果的に除去されるようにし、また、それに伴い、自動車ボディ(B)の外面と内面との間で生じるつきまわり性の差が小さくなるようにしている。(特許文献1の段落[0005],[0012],[0021],[0022],[0052],[0057],[0061],[0062],[0067]を参照)   That is, the direction in which the coating liquid (L) in the tank faces the moving direction of the object to be coated (B) in the surface area and the intermediate area through which the automobile body (B) as the object to be passed passes. To increase the relative speed of the coating liquid (L) flowing around the automobile body (B), which is the object to be coated, with respect to the automobile body (B), for example, to about 0.24 m / s. The reaction gas bubbles and reaction heat generated on the surface of the automobile body (B) due to the electrodeposition coating are effectively removed, and accordingly, between the outer surface and the inner surface of the automobile body (B). The difference in throwing power produced is made small. (See paragraphs [0005], [0012], [0021], [0022], [0052], [0057], [0061], [0062], [0067] of Patent Document 1)

また、これに加えて、特許文献1に開示された電着塗装方法では、電着槽(1)内に被塗物である自動車ボディ(B)が存在しない非稼働時には、電着槽(1)内における塗料液(L)の流れを停止してしまうのが省エネルギ化の観点から望ましいが、電着槽(1)内における塗料液(L)の流れを停止すると塗料液(L)中の顔料が沈降してしまうので好ましくないとの理由から、表面域ノズル(36)、中間域ノズル(37)、並びに、底面域ノズル(29),(35)から塗料液(L)を噴出させるポンプ(26),(32)について、図7に示すように、非稼働時には、稼働時に連続供給されるポンプ電力(W1)を間欠的に供給するとともに、それ以外は、稼働時に供給されるポンプ電力(W1)の30%〜60%のポンプ電力(W2)を供給するようにし、これにより、顔料の沈降を防止しながら省エネルギ化を図るようにしている。(特許文献1の段落[0004],[0034]を参照)   Moreover, in addition to this, in the electrodeposition coating method disclosed in Patent Document 1, when the automobile body (B) that is the object to be coated is not present in the electrodeposition tank (1), the electrodeposition tank (1 It is desirable from the viewpoint of energy saving to stop the flow of the coating liquid (L) in the electrode), but if the flow of the coating liquid (L) in the electrodeposition tank (1) is stopped, The coating liquid (L) is ejected from the surface area nozzle (36), the intermediate area nozzle (37), and the bottom area nozzles (29), (35) because it is not preferable because the pigment of the liquid settles down. For the pumps (26) and (32), as shown in FIG. 7, when not in operation, the pump power (W1) continuously supplied during operation is intermittently supplied, and otherwise, the pump is supplied during operation. 30% to 60% of pump power (W1) 2) so as to supply, thereby, so that achieve energy saving while preventing the sedimentation of the pigment. (See paragraphs [0004] and [0034] of Patent Document 1)

特開2002−206195号公報JP 2002-206195 A

しかし、特許文献1に開示された電着塗装方法では、被塗物である自動車ボディ(B)の外面と内面との間で生じるつきまわり性の差を小さくして、自動車ボディ(B)の外面に形成される塗膜の厚さと内面に形成される塗膜の厚さとの差を小さくし得るにしても、各ノズル(36),(37),(29),(35)から塗料液(L)を噴出させるポンプ(26),(32)の運転に要する電力については、電着槽(1)内に被塗物(B)が存在しない非稼働時に供給するポンプ電力を低減できるだけで、稼働時に供給するポンプ電力の低減には至らないため、省エネルギ化の効果が未だ低くて、稼働時及び非稼働時を通じた電着槽(1)の運転コストが未だ大きい問題がある。   However, in the electrodeposition coating method disclosed in Patent Document 1, the difference in throwing power generated between the outer surface and the inner surface of the automobile body (B) that is the object to be coated is reduced, and the automobile body (B) Even if the difference between the thickness of the coating film formed on the outer surface and the thickness of the coating film formed on the inner surface can be reduced, the coating liquid is supplied from each nozzle (36), (37), (29), (35). About the electric power required for the operation of the pumps (26) and (32) for ejecting (L), the pump power supplied at the time of non-operation when the coating object (B) is not present in the electrodeposition tank (1) can be reduced. Since the pump power supplied at the time of operation cannot be reduced, the energy saving effect is still low, and there is still a problem that the operation cost of the electrodeposition tank (1) during operation and non-operation is still large.

この実情に鑑み、本発明の主たる課題は、合理的な電着塗装方式を採ることで、被塗物の外面に形成される塗膜の厚さと被塗物の内面に形成される塗膜の厚さとに差が生じることを効果的に抑止しながら、省エネルギ化も併せて効果的に達成できるようにする点にある。   In view of this situation, the main problem of the present invention is that the thickness of the coating film formed on the outer surface of the object to be coated and the coating film formed on the inner surface of the object to be coated are taken by adopting a rational electrodeposition coating method. This is in that energy saving can be effectively achieved while effectively suppressing the difference in thickness.

本発明の第1特徴構成は、電着塗装方法に係り、その特徴は、
外部に対する開口が制限された内部空間を有する被塗物を電着槽内の塗料液に浸漬させた状態で、前記塗料液を介して前記電着槽における槽内電極と対極電極としての前記被塗物との間に所定の電位差を所定の電着時間だけ付与する電着工程を有し、
この電着工程では、前記被塗物の周囲を流れる前記塗料液の前記被塗物に対する相対速度を所定の相対速度に保持する電着塗装方法であって、
前記電着工程を初期工程と後期工程とに区分し、
前記初期工程では、保持する前記相対速度を大きくすることで、前記被塗物の外面に形成される塗膜を前記初期工程において完成させ、
前記後期工程では、保持する前記相対速度を前記初期工程で保持する前記相対速度より小さくした状態で、前記被塗物の内面に形成される塗膜を前記後期工程において完成させる点にある。
The first characteristic configuration of the present invention relates to an electrodeposition coating method,
In a state where an object to be coated having an internal space whose opening to the outside is restricted is immersed in a coating liquid in the electrodeposition tank, the electrode in the tank and the electrode as the counter electrode in the electrodeposition tank are passed through the coating liquid. An electrodeposition step of applying a predetermined potential difference between the coating and the coating material for a predetermined electrodeposition time;
In this electrodeposition step, an electrodeposition coating method for maintaining a relative speed of the coating liquid flowing around the object to be coated at a predetermined relative speed,
The electrodeposition process is divided into an initial process and a late process,
In the initial step, by increasing the relative speed to be held, the coating film formed on the outer surface of the object to be coated is completed in the initial step,
In the latter step, the coating film formed on the inner surface of the article to be coated is completed in the latter step in a state where the relative speed to be held is smaller than the relative speed to be held in the initial step.

つまり、電着塗装では、電着槽内における槽内電極と対極電極としての被塗物との間に電位差が付与されて所定電着時間の電着工程に入ると、被塗物表面に塗膜が析出して成長するのに伴い大量の反応ガス(被塗物が接地側の電極である場合は水素ガス)が発生し、この反応ガスが気泡の状態で析出塗膜から抜け出すのに伴って、析出塗膜が次第に緻密化するとともに析出塗膜の電気抵抗が次第に大きくなる。   In other words, in electrodeposition coating, when a potential difference is applied between the electrode in the tank and the object to be coated as the counter electrode in the electrodeposition tank, and the electrodeposition process for a predetermined electrodeposition time is entered, the surface of the object to be coated is applied. As the film precipitates and grows, a large amount of reaction gas (hydrogen gas if the object to be coated is an electrode on the ground side) is generated, and as this reaction gas escapes from the deposited coating in the form of bubbles. Thus, the deposited coating gradually becomes denser and the electrical resistance of the deposited coating gradually increases.

そして、この電気抵抗の増大により塗料液中の塗膜成分を電気的に被塗物に引き付けて定着させることが徐々に難しくなることで、塗膜の成長が徐々に抑止されるとともに、反応ガスの発生量も徐々に減少し、最終的には、緻密で電気抵抗の大きな塗膜が完成した段階で、塗膜の成長が停止して反応ガスの発生も無くなる。   And, by increasing the electrical resistance, it becomes gradually difficult to electrically attract and fix the coating film component in the coating liquid to the object to be coated. The amount of the generated gas gradually decreases, and finally, at the stage where the dense and highly resistant coating film is completed, the growth of the coating film stops and the generation of the reaction gas is eliminated.

これに対し、上記の第1特徴構成によれば、初期工程において相対速度を大きくすることで、被塗物の外面に塗膜が析出して成長するのに伴い大量に発生して塗膜を抜け出す反応ガスの気泡を、相対速度が大きい塗料液の流れにより被塗物から速やかに除去することができ、これにより、被塗物の外面に析出して成長する塗膜の緻密化及び電気抵抗の増大を効果的に促進することができる。   On the other hand, according to the first characteristic configuration described above, by increasing the relative speed in the initial step, the coating film is generated in large quantities as the coating film precipitates and grows on the outer surface of the object to be coated. The bubbles of the reaction gas that escapes can be quickly removed from the coating by the flow of the coating liquid having a high relative velocity. Can be effectively promoted.

したがって、被塗物の外面では、緻密で電気抵抗が大きい塗膜を初期工程の段階で早期に完成させて塗膜の成長を止めることができ、これにより、被塗物の外面での塗膜厚さの過大化を効果的に防止することができる。   Therefore, on the outer surface of the object to be coated, it is possible to stop the growth of the film by completing a dense and high electric resistance film at an early stage at an early stage. An excessive thickness can be effectively prevented.

一方、被塗物の内面については、被塗物周りを流れる塗料液流の影響が及び難いことから、初期工程において相対速度を大きくすることの影響はさほど受けず、その結果、槽内電極との間での通電効果が及び難い状況のもとで、塗膜の析出及び成長、反応ガスの発生、塗膜の緻密化及び電気抵抗の増大が、初期工程及びそれに続く後期工程を通じて徐々に進み、これにより、被塗物の内面では緻密で電気抵抗の大きい塗膜が後期工程において完成する。   On the other hand, the inner surface of the object to be coated is not easily affected by the flow of the paint liquid flowing around the object to be coated, so that it is not significantly affected by increasing the relative speed in the initial process. Under the circumstances where the energization effect is difficult and difficult, the deposition and growth of the coating film, the generation of the reaction gas, the densification of the coating film and the increase of the electrical resistance gradually progress through the initial process and the subsequent process. As a result, on the inner surface of the object to be coated, a dense coating film having a large electric resistance is completed in the later stage.

即ち、このように、被塗物の外面では、塗膜厚さの過大化が効果的に防止されるのに対して、被塗物の内面では、初期工程における大きな相対速度の影響を受けることなく後期工程において塗膜が完成することで、被塗物の外面に形成される塗膜の厚さと被塗物の内面に形成される塗膜の厚さとに差が生じることを効果的に抑止することができる。   That is, in this way, an excessive increase in the coating thickness is effectively prevented on the outer surface of the object to be coated, whereas the inner surface of the object is affected by a large relative speed in the initial process. By effectively completing the coating in the later stage, it is possible to effectively prevent the difference between the thickness of the coating formed on the outer surface of the object and the thickness of the coating formed on the inner surface of the object. can do.

また、第1特徴構成によれば、初期工程でのみ相対速度を大きくし、後期工程では相対速度を小さくするから、先述した特許文献1に開示された電着塗装方法のように電着工程の全体を通じて相対速度を大きくするのに比べ、後期工程において相対速度を小さくする分、電着工程での塗料液搬送に要する動力を削減することができ、これにより、電着槽に被塗物が存在しない非稼働状況での塗料液搬送に要する動力を節減することと合せて、省エネルギ化及び運転コストの低減を一層効果的に達成することができる。   In addition, according to the first feature configuration, the relative speed is increased only in the initial process, and the relative speed is decreased in the later process, so that the electrodeposition process is performed as in the electrodeposition coating method disclosed in Patent Document 1 described above. Compared to increasing the relative speed throughout the entire process, the power required for transporting the coating liquid in the electrodeposition process can be reduced by reducing the relative speed in the latter stage process. In combination with reducing the power required for transporting the coating liquid in a non-operating state that does not exist, energy saving and reduction in operating costs can be achieved more effectively.

なお、第1特徴構成によれば、初期工程において反応ガスの気泡が被塗物から速やかに除去されることで、塗膜からの気泡の抜け出しも容易かつ円滑になって、クレーターの如き抜け出し跡が塗膜に残ることが回避されるようになり、これにより、完成塗膜の平滑性を高めて電着塗装の塗装品質も高めることができる。   According to the first characteristic configuration, the bubbles of the reaction gas are quickly removed from the object to be coated in the initial step, so that the bubbles can be easily and smoothly removed from the coating film. Can be prevented from remaining in the coating film, thereby improving the smoothness of the finished coating film and improving the coating quality of the electrodeposition coating.

本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記初期工程では、前記後期工程において保持する前記相対速度の少なくとも2倍以上の前記相対速度を保持する点にある。
The second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
In the initial step, the relative speed which is at least twice as high as the relative speed held in the latter step is held.

つまり、初期工程において保持する相対速度が小さいほど、反応ガスの気泡が被塗物から除去され難くなることで、被塗物の外面において緻密で電気抵抗の大きな塗膜が完成されるまでに要する時間が長くなり、その分、被塗物の外面において塗膜厚さの過大化が進むようになるため、初期工程において保持する相対速度が後期工程において保持する相対速度の2倍未満であると、第1特徴構成による前述の如き作用効果が得難くなる。   In other words, the smaller the relative speed held in the initial step, the more difficult it is for the bubbles of the reaction gas to be removed from the object to be coated, so that it is necessary to complete a dense and high electric resistance coating on the outer surface of the object to be coated. Since the time becomes longer and the thickness of the coating film becomes excessive on the outer surface of the object, the relative speed retained in the initial process is less than twice the relative speed retained in the later process. Thus, it becomes difficult to obtain the above-described operational effects by the first characteristic configuration.

したがって、後期工程において保持する相対速度を一般的に採用されている相対速度にするのに対し、初期工程では後期工程において保持する相対速度の少なくとも2倍以上の相対速度を保持するようにすれば、前記した第1特徴構成による作用効果を一層顕著に得ることができる。   Therefore, while the relative speed held in the later stage process is set to a generally adopted relative speed, the relative speed held in the early stage process should be at least twice the relative speed held in the later stage process. The operational effects of the first characteristic configuration described above can be obtained more remarkably.

本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記電着槽内の前記塗料液に対して前記塗料液を噴出するノズルとして、
前記塗料液に浸漬させた前記被塗物の外面各部に対して噴出塗料液を吹き付ける複数の吹付用ノズルと、
前記電着槽内の全体にわたる前記塗料液の対流的な循環流動を噴出塗料液により誘導する複数の対流用ノズルとを設け、
前記初期工程では、全ての前記吹付用ノズル及び全ての前記対流用ノズルから定格噴出圧力で前記塗料液を噴出させ、
前記後期工程では、全ての前記対流用ノズルから定格噴出圧力で前記塗料液を噴出させるのに対し、前記吹付用ノズルについては、
全ての前記吹付用ノズルを噴出停止状態にする、
又は、一部の前記吹付用ノズルを噴出停止状態にして、残部の前記吹付用ノズルから定格噴出圧力若しくは定格噴出圧力より低い噴出圧力で前記塗料液を噴出させる、
又は、全ての前記吹付用ノズルから定格噴出圧力より低い噴出圧力で前記塗料液を噴出させる点にある。
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the first or second feature configuration.
As a nozzle that ejects the paint liquid to the paint liquid in the electrodeposition tank,
A plurality of spray nozzles for spraying spray paint liquid onto each part of the outer surface of the article immersed in the paint liquid;
A plurality of convection nozzles for inducing a convective circulation flow of the coating liquid throughout the electrodeposition tank by the sprayed coating liquid;
In the initial step, the coating liquid is ejected from all the spray nozzles and all the convection nozzles at a rated ejection pressure,
In the latter process, the coating liquid is ejected from all the convection nozzles at a rated ejection pressure, whereas the spray nozzles are
Put all the nozzles for spraying into a state where ejection is stopped,
Or, a part of the nozzles for spraying is stopped, and the coating liquid is ejected from the remaining nozzles for spraying at a rated ejection pressure or an ejection pressure lower than the rated ejection pressure.
Alternatively, the coating liquid is ejected from all the spray nozzles at an ejection pressure lower than a rated ejection pressure.

つまり、この第3特徴構成では、基本的に、複数の吹付用ノズルにより被塗物の外面各部に対して塗料液を吹き付けることで、被塗物に対する塗料液の相対速度を大きく確保し、また、対流用ノズルからの塗料液噴出により電着槽内の全体にわたる塗料液の対流的な循環流動を誘導することで、塗料液中に含まれる顔料等の塗膜成分の沈降を防止する。   That is, in this third characteristic configuration, basically, a plurality of spray nozzles spray a coating liquid onto each part of the outer surface of the object to be coated, thereby ensuring a large relative speed of the coating liquid with respect to the object to be coated. By inducing convective circulation flow of the coating liquid throughout the electrodeposition tank by jetting the coating liquid from the convection nozzle, sedimentation of coating film components such as pigments contained in the coating liquid is prevented.

そして、後期工程では、全ての吹付用ノズルを噴出停止状態にする、又は、一部の吹付用ノズルを噴出停止状態にして残部の吹付用ノズルから定格噴出圧力若しくは定格噴出圧力より低い噴出圧力で塗料液を噴出させる、又は、全ての吹付用ノズルから定格噴出圧力より低い噴出圧力で塗料液を噴出させることで、被塗物に対する塗料液の相対速度を初期工程での相対速度より低下させ、その分、電着工程での塗料液搬送に要する動力を削減する。   Then, in the latter stage, all the spray nozzles are brought into the ejection stop state, or some of the spray nozzles are brought into the jet stop state, and the remaining jet nozzles are operated at a jet pressure lower than the rated jet pressure or the rated jet pressure. By spraying the coating liquid or by spraying the coating liquid at a spray pressure lower than the rated spray pressure from all the spray nozzles, the relative speed of the coating liquid with respect to the object to be coated is reduced from the relative speed in the initial process, Accordingly, the power required for transporting the coating liquid in the electrodeposition process is reduced.

また、全ての対流用ノズルについては、初期工程及び後期工程を通じ定格噴出圧力で塗料液を噴出させることで、塗料液中における顔料等の塗膜成分の沈降を初期工程及び後期工程を通じて確実に防止する。   In addition, for all convection nozzles, the coating liquid is ejected at the rated ejection pressure through the initial process and the late process, so that the settling of coating components such as pigments in the paint liquid is reliably prevented through the initial process and the late process. To do.

即ち、このように対流用ノズルついては、初期工程及び後期工程を通じて定格噴出圧力で塗料液を噴出させるようにしながら、吹付用ノズルのみを後期工程において噴出停止状態や噴出圧力低下状態に切り換えることで塗料液の相対速度を変化させることにより、例えば、先述した特許文献1に開示された電着塗装方法において、吹付用ノズルに相当する表面域ノズル(36)や中間域ノズル(37)、並びに、対流用ノズルに相当する底面域ノズル(29),(35)夫々の塗料液噴出状態を、初期工程と後期工程とで一様に切り換えるようにするのに比べ、顔料等の塗膜成分の沈降を初期工程及び後期工程を通じて一層確実に防止しながら、塗料液の相対速度を初期工程と後期工程とで明確に変化させることができる。   That is, for the convection nozzle, the coating liquid is ejected at the rated ejection pressure through the initial process and the later process, while only the spray nozzle is switched to the ejection stop state or the ejection pressure lowered state in the later process. By changing the relative speed of the liquid, for example, in the electrodeposition coating method disclosed in Patent Document 1 described above, a surface area nozzle (36) or an intermediate area nozzle (37) corresponding to a spray nozzle, and convection Compared to the uniform switching of the coating liquid jetting state of the bottom surface nozzles (29) and (35) corresponding to the nozzles for use between the initial process and the latter process, the deposition of coating film components such as pigments is reduced. The relative speed of the coating liquid can be clearly changed between the initial process and the later process while preventing more reliably through the initial process and the later process.

本発明の第4特徴構成は、第1〜第3特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記初期工程では、前記後期工程において前記槽内電極と前記被塗物との間に付与する前記電位差より小さい前記電位差を前記槽内電極と前記被塗物との間に付与する点にある。
The fourth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third characteristic configurations,
In the initial step, the potential difference smaller than the potential difference applied between the in-tank electrode and the object to be coated in the latter step is provided between the in-tank electrode and the object to be coated.

つまり、電着工程の初期には反応ガスの発生量が特に大きいことから、初期工程において塗料液の相対速度を大きくして、塗料液の流れによる気泡の除去を促進したとしても、反応ガスの発生速度が気泡の除去速度を上回ることで、被塗物が一時的にせよ反応ガスの気泡群により覆われた状態になり、そのことで被塗物の外面での塗膜の完成が阻害される場合がある。   In other words, since the amount of reaction gas generated is particularly large at the beginning of the electrodeposition process, even if the relative speed of the coating liquid is increased in the initial process to promote the removal of bubbles due to the flow of the coating liquid, When the generation rate exceeds the bubble removal rate, the object to be coated is temporarily covered with the reaction gas bubbles, which hinders the completion of the coating on the outer surface of the object to be coated. There is a case.

これに対し、上記第4特徴構成では、初期工程では槽内電極と被塗物との間に付与する電位差を後期工程において付与する電位差より小さくすることで、反応ガスの発生量を抑制して気泡の除去負荷を軽減し、これにより、初期工程において相対速度を大きくした塗料液の流れにより被塗物から反応ガスの気泡を速やかに除去することを補償する。   On the other hand, in the fourth characteristic configuration, the generation amount of the reaction gas is suppressed by making the potential difference applied between the electrode in the tank and the object to be coated smaller than the potential difference applied in the later step in the initial step. The bubble removal load is reduced, thereby compensating for the rapid removal of reaction gas bubbles from the object to be coated by the flow of the coating liquid whose relative speed is increased in the initial step.

したがって、上記第4特徴構成によれば、緻密で電気抵抗が大きい塗膜を被塗物の外面において確実に初期工程の段階で早期に完成させることができ、これにより、被塗物の外面に形成される塗膜の厚さと被塗物の内面に形成される塗膜の厚さとに差が生じることを一層確実に抑止することができる。   Therefore, according to the fourth feature configuration, a dense and high electrical resistance coating film can be surely completed early in the initial process stage on the outer surface of the object to be coated. It can suppress more reliably that a difference arises in the thickness of the coating film formed, and the thickness of the coating film formed in the inner surface of a to-be-coated article.

なお、後期工程において槽内電極と被塗物との間に付与する電位差を一般的に採用されている電位差にするのに対し、初期工程において槽内電極と被塗物との間に付与する電位差を後期工程において付与する電位差よりどの程度小さい電位差にするかについては、初期工程における付与電位差と被塗物周りにおける気泡状態との相関を実験等により確認して決定すればよい。
また、第4特徴構成の実施においは、初期工程において被塗物の外面に形成される塗膜の電気抵抗の変化を検出して、その検出情報に基づき、初期工程において槽内電極と被塗物との間に付与する電位差を最適値に自動調整するようにしてもよい。
In addition, the potential difference applied between the electrode in the tank and the object to be coated in the latter process is changed to a generally adopted potential difference, whereas it is applied between the electrode in the tank and the object to be coated in the initial process. As to how much the potential difference is to be made smaller than the potential difference applied in the later stage process, the correlation between the applied potential difference in the initial process and the bubble state around the object to be coated may be confirmed by experiments or the like.
In the implementation of the fourth characteristic configuration, the change in the electrical resistance of the coating film formed on the outer surface of the object to be coated is detected in the initial process, and the electrode in the tank and the object to be coated are detected in the initial process based on the detected information. The potential difference applied to the object may be automatically adjusted to an optimum value.

本発明の第5特徴構成は、第1〜第4特徴構成のいずれかの実施に好適な実施形態を特定するものであり、その特徴は、
前記電着時間は、前記塗料液の条件に応じて決定し、
前記初期工程の時間は、前記電着時間の1/6〜1/2の範囲内の時間とする点にある。
つまり、電着時間は塗料液の条件に応じて決定されるべきであるが、そのうち初期工程の時間は、電着時間の1/6〜1/2の範囲内の時間が好適であり、一般的には、初期工程の時間を30秒〜120秒程度にするのが適当である。
The fifth characteristic configuration of the present invention specifies an embodiment suitable for implementation of any of the first to fourth characteristic configurations,
The electrodeposition time is determined according to the condition of the coating liquid,
The time for the initial step is that the time is within a range of 1/6 to 1/2 of the electrodeposition time.
That is, the electrodeposition time should be determined according to the conditions of the coating liquid, and the time of the initial process is preferably a time within the range of 1/6 to 1/2 of the electrodeposition time. Specifically, it is appropriate to set the initial process time to about 30 seconds to 120 seconds.

電着槽の概略構造を示す側面図Side view showing schematic structure of electrodeposition tank 電着槽の概略構造を示す平面図Plan view showing schematic structure of electrodeposition tank 塗料液相対速度と塗膜平滑性との相関を示すグラフA graph showing the correlation between paint liquid relative speed and coating film smoothness 従来の塗膜構造を示す模式図Schematic diagram showing conventional coating film structure 特許文献1の電着塗装方法を説明する電着槽の側面図Side view of electrodeposition tank explaining electrodeposition coating method of Patent Document 1 特許文献1の電着塗装方法を説明する電着槽の横断面図Cross-sectional view of an electrodeposition tank explaining the electrodeposition coating method of Patent Document 1 特許文献1の電着塗装方法を説明するポンプ電力のグラフA graph of pump power explaining the electrodeposition coating method of Patent Document 1

図1及び図2は、組立前の自動車ボディWを塗装対象の被塗物とする電着槽を示し、この電着槽1は舟形形状にし、槽内には、塗膜成分を含有させた塗料液Lを貯留してある。   1 and 2 show an electrodeposition tank in which an automobile body W before assembly is an object to be coated. This electrodeposition tank 1 has a boat shape, and a coating film component is contained in the tank. The coating liquid L is stored.

電着槽1の両側壁部1aには夫々、槽内の塗料液Lに浸漬させる状態で槽内電極(図示は省略)を配置してあり、これに対し、被塗物である自動車ボディWは、槽内電極に対する対極電極として電気的に接地した状態を保って、その全体を槽内の塗装液Lに浸漬させる。   Electrodes in the tank (not shown) are arranged on both side walls 1a of the electrodeposition tank 1 in a state of being immersed in the coating liquid L in the tank. Maintains the state of being electrically grounded as a counter electrode with respect to the electrode in the tank, and the whole is immersed in the coating liquid L in the tank.

つまり、この電着槽1では、自動車ボディWに対する電着工程として、自動車ボディWを槽内の塗料液Lに浸漬させた状態で、槽内の塗料液Lを介して槽内電極と対極電極としての被塗物Wとの間に所定の電位差Eを所定の電着時間tにわたって付与することで、塗料液L中の塗膜成分を電気的に被塗物Wの外面及び内面に引き付けて定着させ、これにより、被塗物Wの外面及び内面の夫々に塗膜を形成する。   That is, in this electrodeposition tank 1, as an electrodeposition process for the automobile body W, the electrode in the tank and the counter electrode are provided via the paint liquid L in the tank while the automobile body W is immersed in the paint liquid L in the tank. By applying a predetermined potential difference E to the object W as a coating over a predetermined electrodeposition time t, the coating film component in the coating liquid L is electrically attracted to the outer surface and the inner surface of the object W to be coated. By fixing, a coating film is formed on each of the outer surface and the inner surface of the workpiece W.

自動車ボディWは、搬送装置2による吊下げ形態での搬送に伴い、その搬送装置2により、電着槽1の長手方向における一端部の入槽部1Aにおいて槽内の塗料液L中に浸漬させ、この入槽に続き、塗料液L中への浸漬状態を保った状態で、電着槽1の長手方向における他端部の出槽部1Bに向けて槽内進行させ、この槽内進行過程において所定の電着時間tにわたる上記の電着工程を実施する。   The automobile body W is immersed in the coating liquid L in the tank at the inlet tank portion 1A at one end in the longitudinal direction of the electrodeposition tank 1 by the transport apparatus 2 along with the transport in the suspended form by the transport apparatus 2. Then, in the state where the immersion state in the coating liquid L is maintained following this entrance tank, the process proceeds in the tank toward the exit tank part 1B at the other end in the longitudinal direction of the electrodeposition tank 1, The above-described electrodeposition process is carried out over a predetermined electrodeposition time t.

電着工程を経て出槽部1Bに至った自動車ボディWは、搬送装置2による搬送に伴い、槽内の塗料液Lから引き上げ、この出槽に続いて後続工程部に送る。   The automobile body W that has reached the exit tank 1B through the electrodeposition process is pulled up from the coating liquid L in the tank along with the transport by the transport device 2, and is sent to the subsequent process section following this discharge tank.

電着槽1の槽外には液処理装置3を装備してあり、この液処理装置3は、電着槽1から出槽部1B側の付属槽4へ浮上性のゴミなどとともにオーバーフローした塗料液L、及び電着槽1における出槽部1B側の底部から沈降性のゴミなどとともに抜き出した塗料液Lに対して、除塵処理及び温度調整処理を施す。   A liquid processing apparatus 3 is provided outside the electrodeposition tank 1, and this liquid processing apparatus 3 overflows from the electrodeposition tank 1 to the auxiliary tank 4 on the outlet tank 1 B side together with floating dust and the like. A dust removal process and a temperature adjustment process are performed on the liquid L and the coating liquid L extracted together with sedimentary dust from the bottom of the electrodeposition tank 1 on the outlet tank 1B side.

電着槽1の槽内には、塗料液Lを槽内に噴出する多数のノズル5A,5Bを装備してあり、これらノズル5A,5Bには、それらノズル5A,5Bの夫々から噴出させる塗料液Lとして、液処理装置3により処理された塗料液Lが吹付用ポンプPa及び対流用ポンプPbにより送給される。   The tank of the electrodeposition tank 1 is equipped with a number of nozzles 5A and 5B for jetting the coating liquid L into the tank, and the nozzles 5A and 5B have paints jetted from the nozzles 5A and 5B, respectively. As the liquid L, the coating liquid L processed by the liquid processing apparatus 3 is fed by the spray pump Pa and the convection pump Pb.

即ち、槽内の塗料液Lは、液処理装置3において除塵処理及び温度調整処理を施しながら循環使用し、自動車ボディWとともに電着槽1から持ち出されるなどして減量する塗料液Lの分だけ、新たな塗料液Lが補給路を通じて電着槽1に供給される。   That is, the coating liquid L in the tank is circulated and used while being subjected to dust removal processing and temperature adjustment processing in the liquid processing apparatus 3, and is reduced by the amount of the coating liquid L that is reduced by being taken out of the electrodeposition tank 1 together with the automobile body W. The new coating liquid L is supplied to the electrodeposition tank 1 through the supply path.

多数のノズル5A,5Bは、その目的から吹付用ポンプPaに接続した複数の吹付用ノズル5Aと、対流用ポンプPbに接続した対流用ノズル5Bとに区分され、吹付用ノズル5Aは電着槽1の両側壁部1aに配置するのに対し、対流用ノズル5Bは、出槽部1Bの側に向けて塗料液Lを噴出させる姿勢で電着槽1の槽底部に配置してある。   The multiple nozzles 5A and 5B are divided into a plurality of spray nozzles 5A connected to the spray pump Pa and a convection nozzle 5B connected to the convection pump Pb for the purpose, and the spray nozzle 5A is an electrodeposition tank. 1, the convection nozzle 5B is disposed at the bottom of the electrodeposition tank 1 in such a posture that the coating liquid L is jetted toward the outlet tank 1B.

つまり、対流用ノズル5Bから塗料液Lを噴出させることで、その噴出塗料液Lによる槽内塗料液Lの誘導により、電着槽1における槽内の塗料液Lを、図中破線の太矢印で示す如く、電着槽1の底部では槽底に沿って入槽部1Aの側から出槽部1Bの側に向って流れ、かつ、槽内塗料液Lの上層部では出槽部1Bの側から入槽部1Aの側に向って流れる対流的な流動形態で、電着槽1の槽内全体にわたらせて循環流動させるようにし、これにより、塗料液L中における顔料などの塗膜成分の沈降を防止するとともに、自動車ボディWとともに槽内に持ち込まれるなどして塗料液L中に混入した浮遊性や沈降性のゴミなどの異物が塗料液Lとともに槽内から排出されて液処理装置3に送出されるのを促進する。   That is, the paint liquid L is ejected from the convection nozzle 5B, and the paint liquid L in the tank in the electrodeposition tank 1 is guided by the thick paint arrow in the figure by the induction of the paint liquid L in the tank by the sprayed paint liquid L. As shown in the figure, the bottom of the electrodeposition tank 1 flows along the tank bottom from the inlet tank part 1A toward the outlet tank part 1B, and the upper part of the coating liquid L in the tank of the outlet tank part 1B. In a convective flow form that flows from the side toward the inlet tank 1A, it is made to circulate and flow over the entire tank of the electrodeposition tank 1, and thereby, coating film components such as pigments in the coating liquid L In addition to preventing sedimentation, foreign substances such as floating and sedimentary dust mixed into the coating liquid L by being brought into the tank together with the automobile body W are discharged from the tank together with the coating liquid L, and the liquid processing apparatus. 3 is promoted.

一方、吹付用ノズル5Aは、それら吹付用ノズル5Aを所定間隔で自動車ボディWの槽内進行方向に並べたノズル列Ra〜Rcを、上段ノズル列Raと中段ノズル列Rbと下段ノズル列Rcとの3段配置にして、電着槽1の両側壁部1aの夫々に配備してあり、これら吹付用ノズル5Aは夫々、電着槽1の側壁部1aに対して所定角度(例えば15°)だけ槽内側に傾けた斜め向き姿勢で入槽部1Aの側に塗料液Lを噴出させる状態に配置してある。   On the other hand, the nozzle 5A for spraying includes nozzle rows Ra to Rc in which the nozzles 5A for spraying are arranged at predetermined intervals in the advancing direction in the tank of the vehicle body W, the upper nozzle row Ra, the middle nozzle row Rb, and the lower nozzle row Rc. The spray nozzles 5A are respectively arranged at a predetermined angle (for example, 15 °) with respect to the side wall 1a of the electrodeposition tank 1. The coating liquid L is disposed in a state in which the coating liquid L is ejected to the side of the tank 1 </ b> A in an obliquely inclined posture inclined only toward the inside of the tank.

そして、上段ノズル列Raは、槽内を進行する自動車ボディWのルーフ部外面wrに対応する高さに配置してあり、これにより、自動車ボディWが槽内を進行するのに併行して、自動車ボディWの上向き外面部分であるルーフ部外面wrには、上段ノズル列Raの吹付用ノズル5Aから噴出した塗料液Lが、ルーフ部外面wrに沿う吹付け形態で吹き付けられる。   The upper nozzle row Ra is disposed at a height corresponding to the roof outer surface wr of the automobile body W that travels in the tank, and in parallel, the automobile body W travels in the tank, The coating liquid L ejected from the spray nozzle 5A of the upper nozzle row Ra is sprayed on the roof outer surface wr, which is an upward outer surface portion of the automobile body W, in a spraying manner along the roof outer surface wr.

また、中段ノズル列Rb及び下段ノズル列Rcは、槽内を進行する自動車ボディWのサイド部外面wsにおける上部及び下部の夫々に対応する高さに配置してあり、これにより、自動車ボディWが槽内を進行するのに併行して、自動車ボディWの横向き外面部分であるサイド部外面wsの上部及び下部には、中段ノズル列Rbの吹付用ノズル5Aから噴出した塗料液L、及び、下段ノズル列Rcの吹付用ノズル5Aから噴出した塗料液Lが吹き付けられる。   Further, the middle nozzle row Rb and the lower nozzle row Rc are arranged at heights corresponding to the upper and lower portions of the side part outer surface ws of the automobile body W traveling in the tank. In parallel with traveling in the tank, the coating liquid L ejected from the spray nozzle 5A of the middle nozzle row Rb and the lower stage are formed on the upper and lower sides of the side part outer surface ws which is a laterally outer surface part of the automobile body W. The coating liquid L ejected from the spray nozzle 5A of the nozzle row Rc is sprayed.

したがって、この電着槽1において、槽内進行する自動車ボディWの周囲を流れる塗料液Lの自動車ボディWに対する相対速度Vは、対流用ノズル5Bからの噴出塗料液Lに誘導されて槽内を対流的に流動する塗料液Lの流速と、槽内を進行する自動車ボディWの進行速度と、各吹付用ノズル5Aにより自動車ボディWの各部に吹き付けられる塗料液Lの吹付け流速との合成速度となる。   Therefore, in this electrodeposition tank 1, the relative speed V of the coating liquid L flowing around the automobile body W traveling in the tank with respect to the automobile body W is guided by the coating liquid L ejected from the convection nozzle 5B and flows in the tank. The combined speed of the flow speed of the coating liquid L flowing convectively, the traveling speed of the automobile body W traveling in the tank, and the spraying flow speed of the coating liquid L sprayed to each part of the automobile body W by each spray nozzle 5A. It becomes.

ところで、外部に対する開口が制限された内部空間を有する自動車ボディWなどの被塗物を電着塗装する場合、被塗物の内面(即ち、内部空間における被塗物表面)には被塗物の外面に比べ槽内電極との間での通電効果が及び難いことが原因で、被塗物の外面に形成される塗膜の膜厚に対し、被塗物の内面に形成される塗膜の膜厚が小さくなる問題(所謂つきまわり性の差の問題)がある。   By the way, when an object to be coated such as an automobile body W having an internal space in which an opening to the outside is restricted is electrodeposited, the inner surface of the object to be coated (that is, the surface of the object to be coated in the internal space) Compared to the outer surface, the effect of energization between the electrodes in the tank is difficult and the film thickness of the coating film formed on the outer surface of the coating object is less than that of the coating film formed on the inner surface of the coating object. There is a problem that the film thickness becomes small (a so-called difference in throwing power).

これに対し、本例の電着槽1では、各々の自動車ボディWに対する所定電着時間t(例えば3分間)の電着工程を所定の時間比(例えば1:2)で初期工程と後期工程とに区分して、初期工程では、吹付用ポンプPa及び対流用ポンプPbの出力調整により、全ての吹付用ノズル5A及び全ての対流用ノズル5Bから定格噴出圧力で塗料液Lを噴出させる「相対速度増大モード」で電着槽1を運転する。   On the other hand, in the electrodeposition tank 1 of this example, the electrodeposition process of a predetermined electrodeposition time t (for example, 3 minutes) for each automobile body W is performed at an initial process and a late process at a predetermined time ratio (for example, 1: 2). In the initial step, the coating liquid L is ejected at the rated ejection pressure from all the spray nozzles 5A and all the convection nozzles 5B by adjusting the outputs of the spray pump Pa and the convection pump Pb. The electrodeposition tank 1 is operated in the “speed increase mode”.

一方、後期工程では、対流用ポンプPbの出力調整により初期工程に続いて全ての対流用ノズル5Bから定格噴出圧力で塗料液Lを噴出させるのに対し、吹付用ノズル5Aについては、吹付用ポンプPaを停止することで全ての吹付用ノズル5Aを噴出停止状態にする「相対速度低減モード」(又は、吹付用ポンプPaの出力を低下させることで全ての吹付用ノズル5Aから定格噴出圧力より低い噴出圧力で塗料液Lを噴出させる「相対速度低減モード」)で電着槽1を運転する。   On the other hand, in the latter process, the coating liquid L is ejected from all the convection nozzles 5B at the rated ejection pressure following the initial process by adjusting the output of the convection pump Pb, whereas the spray pump 5A “Relative speed reduction mode” in which all the spray nozzles 5A are stopped by stopping Pa (or lower than the rated jet pressure from all the spray nozzles 5A by reducing the output of the spray pump Pa) The electrodeposition tank 1 is operated in the “relative speed reduction mode” in which the coating liquid L is ejected at the ejection pressure.

即ち、初期工程では、全ての吹付用ノズル5Aから定格噴出圧力で塗料液Lを噴出させることで、自動車ボディWに対する塗料液Lの相対速度Vを後期工程において保持する相対速度Vの少なくとも2倍以上に高め、これにより、緻密で電気抵抗が大きい塗膜が自動車ボディWの外面において初期工程の段落で早期に完成されるようにして、自動車ボディWの外面での塗膜厚さの過大化を防止する。   In other words, in the initial process, the coating liquid L is ejected from all the spray nozzles 5A at the rated ejection pressure, so that the relative speed V of the coating liquid L with respect to the automobile body W is at least twice the relative speed V that is maintained in the latter process. This increases the thickness of the coating on the outer surface of the automobile body W so that a dense coating with high electrical resistance is completed on the outer surface of the automobile body W early in the paragraph of the initial process. To prevent.

また、後期工程では、全ての吹付用ノズル5Aを噴出停止状態にして(又は全ての吹付用ノズル5Aから定格噴出圧力より低い噴出圧力で塗料液Lを噴出させて)、自動車ボディWに対する塗料液Lの相対速度Vを低下させることで、電着工程において要するポンプ動力を低減する。   Further, in the latter process, all the spray nozzles 5A are stopped from being ejected (or the paint liquid L is ejected from all the spray nozzles 5A at an ejection pressure lower than the rated ejection pressure), and the paint liquid for the automobile body W is obtained. By reducing the relative speed V of L, the pump power required in the electrodeposition process is reduced.

そして、塗料液Lの流れの影響が及び難い自動車ボディWの内面では、相対速度Vの変化にかかわらず、初期工程及び後期工程を通じ塗膜が徐々に形成されて、緻密で電気抵抗が大きい塗膜が後期工程において完成されるようにし、これにより、自動車ボディWの外面に形成される塗膜の厚さと自動車ボディWの内面に形成される塗膜の厚さとに差が生じることを抑止する。   Then, on the inner surface of the automobile body W where the influence of the flow of the coating liquid L is difficult to be applied, a coating film is gradually formed through the initial process and the latter process regardless of the change in the relative speed V, and the coating is dense and has high electric resistance. The film is completed in a later step, thereby suppressing the difference between the thickness of the coating film formed on the outer surface of the automobile body W and the thickness of the coating film formed on the inner surface of the automobile body W. .

さらに、電着工程において槽内電極と自動車ボディWとの間に付与する電位差Eについては、初期工程において付与する電位差Eを、後期工程において付与する電位差Eより小さい電位差に制限し、これにより、反応ガスが大量に発生する電着工程の初期において一時的にせよ自動車ボディWが反応ガスの気泡群に覆われた状態になることを回避して、自動車ボディWの外面における初期工程での塗膜の完成を確実にする。   Furthermore, regarding the potential difference E applied between the electrode in the tank and the vehicle body W in the electrodeposition process, the potential difference E applied in the initial process is limited to a potential difference smaller than the potential difference E applied in the latter process, In the initial stage of the electrodeposition process in which a large amount of reaction gas is generated, it is avoided that the automobile body W is temporarily covered with the reaction gas bubbles, so that the coating on the outer surface of the automobile body W is applied in the initial process. Ensure the completion of the membrane.

ところで、塗料液Lは、平均粒径が0.1〜10μm程度の大粒径の顔料粒子aと、塗料の主成分となる平均粒径が20〜100nm程度の微細な主成分樹脂粒子bとを含むが、顔料粒子aは主成分樹脂粒子bより比重が大きくて沈降し易い。   By the way, the coating liquid L is composed of pigment particles a having an average particle size of about 0.1 to 10 μm and fine main component resin particles b having an average particle size of about 20 to 100 nm as the main component of the coating. However, the pigment particles a have a specific gravity larger than that of the main component resin particles b and are likely to settle.

この為、自動車ボディWのサイド部外面ws(即ち、被塗物の横向き外面部分)では、顔料粒子aがサイド部外面wsに沿って下方に沈降してしまうことで、電気的な引力により主成分樹脂粒子bとともにサイド部外面wsに定着する顔料粒子aが少なく、これが原因で、図4(a)において模式的に示すように、主成分樹脂粒子bの集合内に顔料粒子aがほぼ完全に埋まった状態で存在する形態の塗膜Tがサイド部外面wsに形成される。   For this reason, the pigment particle a sinks downward along the side portion outer surface ws on the side portion outer surface ws of the automobile body W (that is, the laterally facing outer surface portion of the object to be coated), and thus is mainly caused by electric attractive force. There are few pigment particles a fixed on the outer surface ws of the side portion together with the component resin particles b, and as a result, as shown schematically in FIG. 4A, the pigment particles a are almost completely within the assembly of the main component resin particles b. A coating film T in a state of being buried in is formed on the side portion outer surface ws.

一方、自動車ボディWのルーフ部外面wr(即ち、被塗物の上向き外面部分)では、顔料粒子aが沈降してルーフ部外面wrに堆積することで、主成分樹脂粒子bとともにルーフ部外面wrに定着する顔料粒子aが過多傾向になり、これが原因で、図4(b)において模式的に示すように、主成分樹脂粒子bの集合内に完全には埋まり切らない顔料粒子aが多く存在する形態の塗膜Tがルーフ部外面wrに形成される。   On the other hand, on the roof portion outer surface wr of the automobile body W (that is, the upward outer surface portion of the article to be coated), the pigment particles a settle and deposit on the roof portion outer surface wr, so that the roof portion outer surface wr together with the main component resin particles b. As shown schematically in FIG. 4 (b), there are many pigment particles a that are not completely filled in the aggregate of the main component resin particles b. The coating film T of the form to form is formed in the roof part outer surface wr.

そして、このことが原因で、電着塗装では、自動車ボディWのルーフ部外面wrに形成される塗膜Tが、自動車ボディWのサイド部外面wsに形成される塗膜Tに比べ粗い塗膜になって、ルーフ部外面wrにおける塗膜Tの平滑性がサイド部外面wsに形成される塗膜Tの平滑性に比べ低くなる傾向がある。   For this reason, in electrodeposition coating, the coating film T formed on the roof outer surface wr of the automobile body W is rougher than the coating film T formed on the side outer surface ws of the automobile body W. Thus, the smoothness of the coating film T on the roof portion outer surface wr tends to be lower than the smoothness of the coating film T formed on the side portion outer surface ws.

このことに対し、上記相対速度Vと自動車ボディWの外面各部に形成される塗膜の平滑性との相関について研究したところ、自動車ボディWのサイド部外面wsについては図3における◆印のグラフで示されるように、相対速度Vが変化しても塗膜の平滑性がそれほど変化しないのに対し、自動車ボディWのルーフ部外面wrについては、同図3における■印のグラフで示されるように、相対速度Vが大きくなると塗膜の平滑性が大きく向上する。(注:図3の縦軸では塗膜の粗さで塗膜の平滑性を表現しているため、縦軸の下側ほど、塗膜粗さが小さくなって塗膜の平滑性が高くなることを示している)   On the other hand, when the correlation between the relative speed V and the smoothness of the coating film formed on each part of the outer surface of the automobile body W was studied, the side surface outer surface ws of the automobile body W was shown in the graph of ◆ in FIG. As shown in FIG. 3, the smoothness of the coating film does not change so much even if the relative speed V changes, whereas the roof outer surface wr of the automobile body W is shown by the graph of ■ in FIG. In addition, when the relative speed V is increased, the smoothness of the coating film is greatly improved. (Note: Since the vertical axis in FIG. 3 represents the smoothness of the coating film by the roughness of the coating film, the lower the vertical axis, the smaller the coating film roughness and the higher the smoothness of the coating film. It is shown that)

この傾向は、サイド部外面wsでは、サイド部外面wsに沿って下方へ沈降してしまう顔料粒子aが元々多くて、塗料液Lの相対速度Vが変化したとしても、主成分樹脂粒子bとともにサイド部外面wsに定着する顔料粒子aの量はそれほど変化しないのに対し、ルーフ部外面wrでは、塗料液Lの相対速度Vが大きくなると、ルーフ部外面wrへの顔料粒子aの沈降堆積が阻害されて、主成分樹脂粒子bとともにルーフ部外面wrに定着する顔料粒子aの量が大きく減少するためと考えられる。   The tendency is that, on the outer side surface ws of the side part, there are many pigment particles a that have settled downward along the outer side surface ws of the side part. The amount of the pigment particles a fixed on the side portion outer surface ws does not change so much. On the roof portion outer surface wr, when the relative speed V of the coating liquid L increases, the sedimentation and deposition of the pigment particles a on the roof portion outer surface wr occurs. This is presumably because the amount of pigment particles a that are blocked and fixed on the outer surface wr of the roof portion together with the main component resin particles b is greatly reduced.

これらのことから、前述の如く電着工程における初期工程では、後期工程において保持する相対速度Vより大きな相対速度Vを保持するのに、相対速度Vとサイド部外面wsにおける塗膜の平滑性との相関、及び、相対速度Vとルーフ外面wrにおける塗膜の平滑性との相関において、サイド部外面wsで得られる塗膜の平滑性とルーフ部外面wrで得られる塗膜の平滑性とが同等になる共通の相対速度Vx(具体的には45cm/s程度)に近い相対速度Vを初期工程において保持するように、吹付用ノズル5Aの配置並びに定格噴出圧力を設定する。   Therefore, as described above, in the initial step in the electrodeposition step, the relative velocity V and the smoothness of the coating film on the outer surface ws of the side portion are maintained in order to maintain the relative velocity V larger than the relative velocity V retained in the latter step. And the correlation between the relative speed V and the smoothness of the coating film on the roof outer surface wr, the smoothness of the coating film obtained on the side portion outer surface ws and the smoothness of the coating film obtained on the roof portion outer surface wr The arrangement of the nozzle 5A for spraying and the rated ejection pressure are set so that the relative speed V close to the equivalent common relative speed Vx (specifically, about 45 cm / s) is maintained in the initial step.

即ち、このことにより、前述の如く自動車ボディWの外面に形成される塗膜の厚さと自動車ボディWの内面に形成される塗膜の厚さとに差が生じることを抑止するのに加え、自動車ボディWのサイド部外面wsに形成される塗膜と自動車ボディWのルーフ部外面wrに形成される塗膜とについて、それら外面に形成される塗膜の平滑性も均一にする。   That is, this suppresses the occurrence of a difference between the thickness of the coating film formed on the outer surface of the automobile body W and the thickness of the coating film formed on the inner surface of the automobile body W as described above. About the coating film formed in the side part outer surface ws of the body W, and the coating film formed in the roof part outer surface wr of the motor vehicle body W, the smoothness of the coating film formed in those outer surfaces is also made uniform.

なお、サイド部外面wsで得られる塗膜の平滑性とルーフ部外面wrで得られる塗膜の平滑性とが同等になる共通の相対速度Vxに近い相対速度Vとは、具体的には、上記共通の相対速度Vxの30%減〜30%増の範囲内の相対速度V(0.7Vx≦V≦1.3Vx)が望ましく、さらに望ましくは、上記共通の相対速度Vxの20%減〜20%増の範囲内の相対速度V(0.8Vx≦V≦1.2Vx)が望ましい。   In addition, the relative speed V close to the common relative speed Vx at which the smoothness of the coating film obtained on the side portion outer surface ws and the smoothness of the coating film obtained on the roof portion outer surface wr are equal is specifically, The relative speed V (0.7 Vx ≦ V ≦ 1.3 Vx) within the range of 30% decrease to 30% increase of the common relative speed Vx is desirable, and more preferably, the common relative speed Vx is decreased by 20% to A relative speed V (0.8 Vx ≦ V ≦ 1.2 Vx) within a 20% increase range is desirable.

また、電着工程の後期工程において、全ての対流用ノズル5Bから定格噴出圧力で塗料液Lを噴出させるのに対し、全ての吹付用ノズル5Aを噴出停止状態にする場合には、電着工程を実施していない状況においても、後期工程と同様、全ての対流用ノズル5Bから定格噴出圧力で塗料液Lを噴出させるのに対し、全ての吹付用ノズル5Aを噴出停止状態にし、これにより、電着工程を実施していない状況においても、顔料などの塗膜成分の沈降を防止しながら塗料液搬送に要する動力を節減する。   Further, in the latter stage of the electrodeposition process, the coating liquid L is ejected from all the convection nozzles 5B at the rated ejection pressure, whereas when all the spray nozzles 5A are brought into the ejection stop state, the electrodeposition process. Even in a situation where the coating liquid L is ejected from all the convection nozzles 5B at the rated ejection pressure as in the latter process, all the spraying nozzles 5A are brought into the ejection stop state, Even in a situation where the electrodeposition process is not performed, the power required for transporting the coating liquid is reduced while preventing sedimentation of coating film components such as pigments.

そしてまた、電着工程の後期工程において、全ての対流用ノズル5Bから定格噴出圧力で塗料液Lを噴出させるのに対し、全ての吹付用ノズル5Aから定格噴出圧力より低い噴出圧力で塗料液Lを噴出させる場合には、電着工程を実施していない状況では、全ての対流用ノズル5Bから定格噴出圧力で塗料液Lを噴出させるのに対し、全ての吹付用ノズル5Aを噴出停止状態にし、これにより、電着工程を実施していない状況において顔料などの塗膜成分の沈降を防止しながら塗料液搬送に要する動力をさらに節減する。   Also, in the latter stage of the electrodeposition process, the coating liquid L is ejected from all the convection nozzles 5B at the rated ejection pressure, whereas the coating liquid L is ejected from all the spray nozzles 5A at an ejection pressure lower than the rated ejection pressure. When the electrodeposition process is not performed, the coating liquid L is ejected from all the convection nozzles 5B at the rated ejection pressure, whereas all the spraying nozzles 5A are stopped. This further reduces the power required for conveying the coating liquid while preventing sedimentation of coating film components such as pigments in a situation where the electrodeposition step is not performed.

〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.

上記の実施形態では、電着工程の初期工程において全ての吹付用ノズル5Aから定格噴出圧力で塗料液Lを噴出させるのに対し、電着工程の後期工程では、全ての吹付用ノズル5Aを噴出停止状態にする、又は、全ての吹付用ノズル5Aから定格噴出圧力より小さい噴出圧力で塗料液Lを噴出させるようにしたが、これに代え、電着工程の初期工程では全ての吹付用ノズル5Aから定格噴出圧力で塗料液Lを噴出させるのに対し、電着工程の後期工程では、一部の吹付用ノズル5Aを噴出停止状態にするとともに、残部の吹付用ノズル5Aから定格噴出圧力又は定格噴出圧力より低い噴出圧力で塗料液Lを噴出させるようにして、塗料液Lの相対速度Vを電着工程における初期工程と後期工程とで切り換えるようにしてもよい。   In the above-described embodiment, the coating liquid L is ejected from all the spray nozzles 5A at the rated ejection pressure in the initial process of the electrodeposition process, whereas in the latter process of the electrodeposition process, all the spray nozzles 5A are ejected. The coating liquid L is ejected at a stop state or at an ejection pressure smaller than the rated ejection pressure from all the spray nozzles 5A. Instead of this, all the spray nozzles 5A are used in the initial step of the electrodeposition process. While the coating liquid L is ejected from the nozzle at the rated ejection pressure, in the latter stage of the electrodeposition process, a part of the spray nozzles 5A is stopped and the remaining spray nozzles 5A have the rated ejection pressure or rating. The coating liquid L may be ejected at an ejection pressure lower than the ejection pressure, and the relative speed V of the coating liquid L may be switched between the initial process and the later process in the electrodeposition process.

前記の実施形態では、自動車ボディWを塗装対象の被塗物とする例を示したが、本発明による電着塗装方法は、自動車ボディWの電着塗装に限らず、外部に対する開口が制限された内部空間を有するものであれば、電気製品のケーシングや建築資材、あるいは、自動車ボディ以外の車両や車両部品など、種々のものを塗装対象の被塗物とすることができる。   In the above-described embodiment, an example in which the automobile body W is an object to be coated has been shown. However, the electrodeposition coating method according to the present invention is not limited to the electrodeposition coating of the automobile body W, and the opening to the outside is limited. As long as it has an internal space, various objects such as casings for electrical products, building materials, vehicles other than automobile bodies, and vehicle parts can be used as objects to be coated.

前記の実施形態では、電着工程の実施時間である電着時間tを3分にして、初期工程と後期工程との時間比を1:2とする場合を例示したが、電着時間tは3分に限られるものではなく、状況に応じて適当な電着時間tを採用すればよく、また、初期工程と後期工程との時間比も1:2に限られるものではなく、状況に応じて適当な時間比を採用すればよい。   In the above embodiment, the case where the electrodeposition time t, which is the execution time of the electrodeposition process, is set to 3 minutes and the time ratio between the initial process and the later process is set to 1: 2, the electrodeposition time t is It is not limited to 3 minutes, and an appropriate electrodeposition time t may be adopted depending on the situation, and the time ratio between the initial process and the later process is not limited to 1: 2, but depending on the situation. An appropriate time ratio may be adopted.

初期工程において保持する塗料液Lの相対速度Vは、45cm/s程度の相対速度に限られるものではなく、自動車ボディWなどの被塗物における外面の塗膜が初期工程において完成される相対速度であればよく、また、後期工程において保持する塗料液Lの相対速度Vも、自動車ボディWなどの被塗物における内面の塗膜が初期工程及び後期工程を通じ徐々に形成されて後期工程において完成に至る相対速度であればよい。   The relative speed V of the coating liquid L retained in the initial process is not limited to the relative speed of about 45 cm / s, but the relative speed at which the coating film on the outer surface of the article such as the automobile body W is completed in the initial process. In addition, the relative speed V of the coating liquid L retained in the later process is also completed in the later process by gradually forming the coating film on the inner surface of the object such as the automobile body W through the initial process and the later process. Any relative speed to reach

初期工程において、塗料液Lの相対速度Vを大きくするだけで反応ガスの気泡を概ね十分に除去できる場合など、場合によっては、槽内電極と自動車ボディWなどの被塗物との間に付与する電位差Eを初期工程と後期工程とにおいて同じ電位差に保つようにしてもよい。   In the initial process, in some cases, such as when the reaction gas bubbles can be sufficiently removed simply by increasing the relative velocity V of the coating liquid L, it is applied between the electrode in the tank and the object to be coated such as the automobile body W. The potential difference E to be maintained may be kept at the same potential difference in the initial process and the later process.

本発明は、外部に対する開口が制限された内部空間を有する物品であれば、各種分野における種々の物品を電着塗装するのに利用することができる。   The present invention can be used for electrodeposition coating of various articles in various fields as long as the article has an internal space in which the opening to the outside is limited.

W 自動車ボディ(被塗物)
1 電着槽
L 塗料液
E 電位差
t 電着時間
V 相対速度
5A 吹付用ノズル
5B 対流用ノズル
W Auto Body (Coating)
1 Electrodeposition tank L Paint liquid E Potential difference t Electrodeposition time V Relative speed 5A Spray nozzle 5B Convection nozzle

Claims (5)

外部に対する開口が制限された内部空間を有する被塗物を電着槽内の塗料液に浸漬させた状態で、前記塗料液を介して前記電着槽における槽内電極と対極電極としての前記被塗物との間に所定の電位差を所定の電着時間だけ付与する電着工程を有し、
この電着工程では、前記被塗物の周囲を流れる前記塗料液の前記被塗物に対する相対速度を所定の相対速度に保持する電着塗装方法であって、
前記電着工程を初期工程と後期工程とに区分し、
前記初期工程では、保持する前記相対速度を大きくすることで、前記被塗物の外面に形成される塗膜を前記初期工程において完成させ、
前記後期工程では、保持する前記相対速度を前記初期工程で保持する前記相対速度より小さくした状態で、前記被塗物の内面に形成される塗膜を前記後期工程において完成させる電着塗装方法。
In a state where an object to be coated having an internal space whose opening to the outside is restricted is immersed in a coating liquid in the electrodeposition tank, the electrode in the tank and the electrode as the counter electrode in the electrodeposition tank are passed through the coating liquid. An electrodeposition step of applying a predetermined potential difference between the coating and the coating material for a predetermined electrodeposition time;
In this electrodeposition step, an electrodeposition coating method for maintaining a relative speed of the coating liquid flowing around the object to be coated at a predetermined relative speed,
The electrodeposition process is divided into an initial process and a late process,
In the initial step, by increasing the relative speed to be held, the coating film formed on the outer surface of the object to be coated is completed in the initial step,
The electrodeposition coating method in which, in the latter process, the coating film formed on the inner surface of the object to be coated is completed in the latter process in a state where the relative speed to be held is smaller than the relative speed to be held in the initial process.
前記初期工程では、前記後期工程において保持する前記相対速度の少なくとも2倍以上の前記相対速度を保持する請求項1記載の電着塗装方法。   2. The electrodeposition coating method according to claim 1, wherein in the initial step, the relative speed is maintained at least twice as high as the relative speed held in the latter step. 前記電着槽内の前記塗料液に対して前記塗料液を噴出するノズルとして、
前記塗料液に浸漬させた前記被塗物の外面各部に対して噴出塗料液を吹き付ける複数の吹付用ノズルと、
前記電着槽内の全体にわたる前記塗料液の対流的な循環流動を噴出塗料液により誘導する複数の対流用ノズルとを設け、
前記初期工程では、全ての前記吹付用ノズル及び全ての前記対流用ノズルから定格噴出圧力で前記塗料液を噴出させ、
前記後期工程では、全ての前記対流用ノズルから定格噴出圧力で前記塗料液を噴出させるのに対し、前記吹付用ノズルについては、
全ての前記吹付用ノズルを噴出停止状態にする、
又は、一部の前記吹付用ノズルを噴出停止状態にして、残部の前記吹付用ノズルから定格噴出圧力若しくは定格噴出圧力より低い噴出圧力で前記塗料液を噴出させる、
又は、全ての前記吹付用ノズルから定格噴出圧力より低い噴出圧力で前記塗料液を噴出させる請求項1又は2記載の電着塗装方法。
As a nozzle that ejects the paint liquid to the paint liquid in the electrodeposition tank,
A plurality of spray nozzles for spraying spray paint liquid onto each part of the outer surface of the article immersed in the paint liquid;
A plurality of convection nozzles for inducing a convective circulation flow of the coating liquid throughout the electrodeposition tank by the sprayed coating liquid;
In the initial step, the coating liquid is ejected from all the spray nozzles and all the convection nozzles at a rated ejection pressure,
In the latter process, the coating liquid is ejected from all the convection nozzles at a rated ejection pressure, whereas the spray nozzles are
Put all the nozzles for spraying into a state where ejection is stopped,
Or, a part of the nozzles for spraying is stopped, and the coating liquid is ejected from the remaining nozzles for spraying at a rated ejection pressure or an ejection pressure lower than the rated ejection pressure.
The electrodeposition coating method according to claim 1 or 2, wherein the coating liquid is ejected from all the spray nozzles at an ejection pressure lower than a rated ejection pressure.
前記初期工程では、前記後期工程において前記槽内電極と前記被塗物との間に付与する前記電位差より小さい前記電位差を前記槽内電極と前記被塗物との間に付与する請求項1〜3のいずれか1項に記載の電着塗装方法。   The said initial process WHEREIN: The said potential difference smaller than the said potential difference provided between the said electrode in a tank and the said to-be-coated object in the said latter process is provided between the said electrode in a tank and the to-be-coated object. 4. The electrodeposition coating method according to any one of 3 above. 前記電着時間は、前記塗料液の条件に応じて決定し、
前記初期工程の時間は、前記電着時間の1/6〜1/2の範囲内の時間とする請求項1〜4のいずれか1項に記載の電着塗装方法。
The electrodeposition time is determined according to the condition of the coating liquid,
The electrodeposition coating method according to any one of claims 1 to 4, wherein the time for the initial step is set to a time within a range of 1/6 to 1/2 of the electrodeposition time.
JP2017115261A 2017-06-12 2017-06-12 Electrodeposition coating method Active JP6703962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115261A JP6703962B2 (en) 2017-06-12 2017-06-12 Electrodeposition coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115261A JP6703962B2 (en) 2017-06-12 2017-06-12 Electrodeposition coating method

Publications (2)

Publication Number Publication Date
JP2019002032A true JP2019002032A (en) 2019-01-10
JP6703962B2 JP6703962B2 (en) 2020-06-03

Family

ID=65005517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115261A Active JP6703962B2 (en) 2017-06-12 2017-06-12 Electrodeposition coating method

Country Status (1)

Country Link
JP (1) JP6703962B2 (en)

Also Published As

Publication number Publication date
JP6703962B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
US6610187B2 (en) Dip type surface treatment apparatus and dip type surface treatment method
JP2007131869A (en) Plating tank
JP2019002032A (en) Electrocoating method
JP2011219844A (en) Electrodeposition coating apparatus
JP2006328487A (en) Hot-dip plated steel strip manufacturing method
JP6703959B2 (en) Electro-deposition coating equipment
JP4820298B2 (en) Surface treatment method
JP6851522B1 (en) Surface treatment equipment
JP5350414B2 (en) Plating tank
JP5775436B2 (en) Electrodeposition coating equipment
JP5893840B2 (en) Electrodeposition coating equipment
JPH0718494A (en) Full dipping type electrodeposition coating device and pretreating device
JPH0586497A (en) Electrodeposition coating method
JP2011183265A (en) Painting equipment for vehicle
JPH0343240Y2 (en)
KR102406984B1 (en) Floating dross processing system of snout and its gas injection apparatus
JP3959879B2 (en) Electrodeposition coating equipment
JP2004315837A (en) Treatment system for workpiece
KR100314527B1 (en) Electro painting air pocket eliminate device
JP2002235197A (en) Electrodeposition coating method
JPH11200092A (en) Electrodeposition coating device and electrodeposition coating method
JP2008303421A (en) Electrodeposition coating method and apparatus
JP3358513B2 (en) Electrodeposition coating method and electrodeposition coating equipment
JP2550003Y2 (en) Electrocoating equipment
JP5873634B2 (en) Electrodeposition coating apparatus and electrodeposition coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6703962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250