JP2019000846A - Device and method for generating impact pulse or vibration for construction machine - Google Patents

Device and method for generating impact pulse or vibration for construction machine Download PDF

Info

Publication number
JP2019000846A
JP2019000846A JP2018115130A JP2018115130A JP2019000846A JP 2019000846 A JP2019000846 A JP 2019000846A JP 2018115130 A JP2018115130 A JP 2018115130A JP 2018115130 A JP2018115130 A JP 2018115130A JP 2019000846 A JP2019000846 A JP 2019000846A
Authority
JP
Japan
Prior art keywords
piston
pressure fluid
space
control unit
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018115130A
Other languages
Japanese (ja)
Other versions
JP6676104B2 (en
Inventor
メルツホイザー マルクス
Merzhaeuser Markus
メルツホイザー マルクス
モスカリトロ トビアス
Moscaritolo Tobias
モスカリトロ トビアス
ウエルホフ ヘンリック
Uelhoff Henrik
ウエルホフ ヘンリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIRPDROLL GmbH
Eurodrill GmbH
Original Assignee
EIRPDROLL GmbH
Eurodrill GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIRPDROLL GmbH, Eurodrill GmbH filed Critical EIRPDROLL GmbH
Publication of JP2019000846A publication Critical patent/JP2019000846A/en
Application granted granted Critical
Publication of JP6676104B2 publication Critical patent/JP6676104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • E02D7/10Power-driven drivers with pressure-actuated hammer, i.e. the pressure fluid acting directly on the hammer structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B1/00Percussion drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B1/00Percussion drilling
    • E21B1/02Surface drives for drop hammers or percussion drilling, e.g. with a cable
    • E21B1/04Devices for reversing the movement of the rod or cable at the surface
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B1/00Percussion drilling
    • E21B1/12Percussion drilling with a reciprocating impulse member
    • E21B1/24Percussion drilling with a reciprocating impulse member the impulse member being a piston driven directly by fluid pressure
    • E21B1/26Percussion drilling with a reciprocating impulse member the impulse member being a piston driven directly by fluid pressure by liquid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/40Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups with testing, calibrating, safety devices, built-in protection, construction details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/73Drilling

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Earth Drilling (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

To provide a device and a method for generating impact pulse or vibration capable of more flexibly setting and changing impact or vibration motion.SOLUTION: A device and a method for generating impact pulse or vibration for a construction machine is provided. In a movement space of a housing, inverted reciprocation of a piston is performed between a first inversion point and a second inversion point. It is set that the piston performs the inverted reciprocation in order to generate impact pulse or vibration by pressure fluid supplied and discharged with respect to the movement space in regions of the first inversion point and the second inversion point. According to the device and the method for generating impact pulse or vibration, a position of the piston is measured by measuring means, a control unit controls at least one controllable valve for supplying and/or discharging pressure fluid with respect to the movement space in accordance with a measured position of the piston, and movement of the piston is controlled by the control unit.SELECTED DRAWING: Figure 1

Description

本発明は、請求項1に記載のとおり、筐体と、筐体内の動作空間において第1反転点と第2反転点との間で反転往復移動可能なピストンと、第1反転点および第2反転点の領域において、動作空間に対して圧力流体を供給および排出可能とする圧力流体供給部とを有し、衝撃パルスまたは振動を生成するために、ピストンが反転往復移動するように設定可能な、建設機械用の、衝撃パルスまたは振動を生成する装置に関する。   According to a first aspect of the present invention, there is provided a housing, a piston capable of reciprocating reciprocating between a first reversing point and a second reversing point in an operation space in the housing, a first reversing point and a second reversing point. In the region of the reversal point, it has a pressure fluid supply section that can supply and discharge the pressure fluid to and from the working space, and can be set so that the piston reciprocates in reverse to generate shock pulses or vibrations The invention relates to a device for generating shock pulses or vibrations for construction machinery.

本発明はさらに、請求項10に記載のとおり、筐体内の動作空間において第1反転点と第2反転点との間でピストンを反転往復移動させ、第1反転点および第2反転点の領域において、動作空間に対して供給および排出される圧力流体により、衝撃パルスまたは振動を生成するためにピストンが反転往復移動するように設定する、建設機械用の、衝撃パルスまたは振動を生成する方法に関する。   According to a tenth aspect of the present invention, there is provided the region of the first inversion point and the second inversion point by reciprocally moving the piston between the first inversion point and the second inversion point in the operation space in the housing. A method for generating a shock pulse or vibration for a construction machine, wherein the pressure fluid supplied to and discharged from the working space is set such that a piston is reciprocally moved back and forth to generate the shock pulse or vibration. .

特許文献1に、公知の一般的な振動発生器が開示されている。この公知の振動発生器においては、筐体内の動作空間が動作ピストンにより、2つの圧力室に分割されている。圧力流体が2つの圧力室の入口、出口を通じて交互に選択的に供給、排出されることで、動作ピストンが反復移動し、振動が発生する。圧力流体の各圧力室に対する時限供給/排出は、動作ピストン内で複雑に配置されたダクトにより実現される。動作ピストン内ではさらに、制御ピストンが移動可能に支持されている。制御ピストンの動作ピストンに対する位置は、筐体の前面から突出して所与のダクトを開放/閉鎖する栓部材により選択的に変更可能となる。したがって、圧力流体の供給/排出が機械的手段で実現されている。即ち、圧力流体の供給/排出の切り替えは、所与の切り替え点に到達した際に、所与のダクトを介して実行される。   Patent Document 1 discloses a known general vibration generator. In this known vibration generator, the operating space in the housing is divided into two pressure chambers by the operating piston. As the pressure fluid is selectively supplied and discharged alternately through the inlets and outlets of the two pressure chambers, the operating piston repeatedly moves and vibrations are generated. Timed supply / discharge of pressure fluid to each pressure chamber is achieved by ducts arranged in a complex manner in the working piston. In addition, a control piston is movably supported in the working piston. The position of the control piston relative to the working piston can be selectively changed by a plug member that projects from the front of the housing to open / close a given duct. Therefore, supply / discharge of the pressure fluid is realized by mechanical means. That is, pressure fluid supply / discharge switching is performed through a given duct when a given switching point is reached.

特許文献2〜4に、同様の振動発生器における機械的制御手段の例が開示されている。これら公知の装置の全てにおいて、動作ピストンと制御ピストンが設けられ、それぞれの筐体における位置に応じて、所与のダクトが開放または閉鎖される。これにより、それぞれ反対側に設けられた2つの圧力室に対する選択的な交互供給が実行され、動作ピストンが移動する。   Patent Documents 2 to 4 disclose examples of mechanical control means in a similar vibration generator. In all these known devices, an operating piston and a control piston are provided, and a given duct is opened or closed depending on the position in the respective housing. Thereby, selective alternate supply to the two pressure chambers provided on the opposite sides is executed, and the operating piston moves.

EP1728564B1公報EP1728564B1 publication GB920,158A公報GB920,158A publication US4,026,193A公報US Pat. No. 4,026,193A US4,031,812A公報US Pat. No. 4,031,812A

このような装置は製造に時間とコストがかかる。さらに、ダクトの配置により、ピストンの所与の振動または衝撃運動が、所定の圧力レベルに事前に限定されてしまう。したがって、振動周波数および衝撃エネルギーの変更幅が非常に限定されてしまい、場合によっては変更に大がかりな機械的再構成を要する。   Such devices are time consuming and expensive to manufacture. Furthermore, the arrangement of the ducts pre-limits a given vibration or impact movement of the piston to a predetermined pressure level. Therefore, the range of change in vibration frequency and impact energy is very limited, and in some cases, extensive mechanical reconfiguration is required for the change.

本発明の目的は、衝撃または振動運動の設定および変更をより柔軟に実現可能な、衝撃パルスまたは振動を生成する装置および方法を提供することである。   It is an object of the present invention to provide an apparatus and method for generating shock pulses or vibrations that can more flexibly realize setting and changing of shock or vibration movements.

この目的の一方は請求項1の特徴を有する装置により実現され、他方は請求項10の特徴を有する方法により実現される。本発明の好ましい実施形態については従属項に記載される。   One of the objects is achieved by a device having the features of claim 1 and the other is achieved by a method having the features of claim 10. Preferred embodiments of the invention are described in the dependent claims.

本発明の装置では、動作空間におけるピストンの位置を判定するための測定手段が設けられ、動作空間に対して圧力流体を供給および/または排出するように少なくとも1つの制御可能弁が配置され、測定手段と少なくとも1つの制御可能弁とに接続されて、動作空間内のピストンの移動を制御および変更可能とする制御ユニットが設けられる。   In the device according to the invention, measuring means are provided for determining the position of the piston in the working space, at least one controllable valve is arranged to supply and / or discharge pressure fluid to the working space, A control unit is provided that is connected to the means and to the at least one controllable valve so as to control and change the movement of the piston in the working space.

本発明の根本的概念は、動作空間におけるピストンに対する従前の入り組んだ機械的制御を放棄し、電気または電子制御ユニットによる制御を実現することである。本発明によると、動作空間におけるピストンの位置を判定するための少なくとも1つの測定手段が設けられる。測定手段は、ピストンの位置データに関する信号を、連続的にまたは所定の短い時間間隔で送信できる。当該信号は、制御ユニットにより受信され、所定の制御ロジックの機能として処理される。このように制御信号または制御データは1つまたはいくつかの制御可能弁に対して生成される。したがって、少なくとも1つの制御可能弁により、動作空間に対して圧力流体を選択的に供給および排出できる。   The basic idea of the present invention is to abandon previous complicated mechanical control over the piston in the operating space and to realize control by an electric or electronic control unit. According to the invention, at least one measuring means is provided for determining the position of the piston in the operating space. The measuring means can transmit a signal relating to the position data of the piston continuously or at predetermined short time intervals. The signal is received by the control unit and processed as a function of predetermined control logic. Thus, control signals or control data are generated for one or several controllable valves. Thus, at least one controllable valve can selectively supply and discharge pressure fluid to the working space.

そのため、本発明の装置によると、複数のラインが設けられるような精巧に作り上げられた動作ピストンは不要である。したがって、大幅に製造コストが低減される。さらに、制御ユニットの該当する制御ロジックを変更または適用することで、筐体内のピストンの移動運動が特に容易に制御、変更できるようになる。したがって、ピストンの反復移動の行程および/または周波数を比較的容易に制御および変更可能となる。   Therefore, according to the device of the present invention, an elaborately crafted operating piston that is provided with a plurality of lines is unnecessary. Therefore, the manufacturing cost is greatly reduced. Furthermore, by changing or applying the corresponding control logic of the control unit, the movement of the piston in the housing can be controlled and changed particularly easily. Therefore, the stroke and / or frequency of the repetitive movement of the piston can be controlled and changed relatively easily.

本発明の装置には、基本的にあらゆる適切な制御可能弁が利用可能である。本発明のさらなる態様によると、弁は好適には電磁弁である。弁体は、開位置および閉位置との間の電磁的配置により調整できる。中間位置も設定できる。これにより動作空間に供給される圧力流体の量も調整できる。基本的には、任意の圧力流体を設けてもよいが、好ましくは作動油が使用される。   Essentially any suitable controllable valve can be used in the device of the invention. According to a further aspect of the invention, the valve is preferably a solenoid valve. The valve body can be adjusted by an electromagnetic arrangement between the open position and the closed position. An intermediate position can also be set. Thereby, the amount of the pressure fluid supplied to the operation space can also be adjusted. Basically, any pressure fluid may be provided, but hydraulic oil is preferably used.

同様に、特に光学的、容量的、誘導的、磁気的等の方式で動作する、長さまたは位置測定用に使用可能な任意のセンサにより測定手段が実現できる。本発明の実施形態によると、測定手段がリニアセンサを有することが特に有利である。この構成は、筐体内で、ピストンが2つの反転点間で直線移動する場合に特に好ましい。   Similarly, the measuring means can be realized by any sensor that can be used for length or position measurement, operating in particular in a manner such as optical, capacitive, inductive, magnetic, etc. According to an embodiment of the invention, it is particularly advantageous that the measuring means comprises a linear sensor. This configuration is particularly preferable when the piston moves linearly between two inversion points in the housing.

本発明の好ましい実施形態の態様は、測定手段が動作空間内およびピストンの自由空間に延在する細長第1測定部材を有することにより実現される。即ち、測定部材を筐体の壁の背後に配置するのではなく、ピストンの移動が生じる動作空間内に直接配置する。細長第1測定部材がピストンの対応する自由空間内に突出することで、特に正確な位置測定が実現できる。この構成において、ピストンは、ピストンと一体の第2測定部材が第1測定部材とは非接触で、第1測定部材に沿って移動することが好ましい。   A preferred embodiment aspect of the invention is realized by the measuring means having an elongated first measuring member extending in the working space and in the free space of the piston. That is, the measuring member is not disposed behind the wall of the housing, but is directly disposed in the operation space in which the piston moves. A particularly accurate position measurement can be realized by the elongated first measuring member projecting into the corresponding free space of the piston. In this configuration, the piston preferably moves along the first measurement member, with the second measurement member integral with the piston being in non-contact with the first measurement member.

ピストンの自由空間に、特に磁石のような第2測定部材が配置されることが特に好ましい。第1測定部材に対して、したがって筐体の動作空間に対して、第2測定部材、したがってピストンの位置が高精度で決定できるように、2つの測定部材が非接触で相互作用する。第1測定部材はコイルを有してもよい。磁石が4から20mAの電流をコイルに誘導することで、ピストンの位置が測定される。   It is particularly preferred that a second measuring member such as a magnet is arranged in the free space of the piston. The two measuring members interact in a non-contact manner so that the position of the second measuring member, and hence the piston, can be determined with high accuracy relative to the first measuring member and thus to the operating space of the housing. The first measurement member may have a coil. The position of the piston is measured by the magnet inducing a current of 4 to 20 mA into the coil.

基本的に、ピストンはその2つの端面が筐体の壁に接触しないように筐体内で反復移動可能である。このようにして、装置はいわゆる振動発生器として利用可能である。本発明の有利な実施形態は、特に衝撃パルスを生成するために、ピストンが衝突する衝突面が少なくとも1つの反転点に設けられることで実現される。基本的には、衝突面は筐体において、ピストンの互いに反対側の端面に対して配置できる。ただし、例えば衝撃削孔において所望のとおりに、特定の衝撃パルスが生成できるよう、単一の衝突面のみ存在することが好ましい。   Basically, the piston can be moved repeatedly within the housing such that its two end faces do not contact the wall of the housing. In this way, the device can be used as a so-called vibration generator. An advantageous embodiment of the invention is realized in that at least one reversal point is provided with a collision surface on which the piston collides, in particular to generate a shock pulse. Basically, the impact surface can be arranged in the housing with respect to the opposite end surfaces of the piston. However, it is preferable that only a single collision surface exists so that a specific shock pulse can be generated as desired, for example, in the shock drilling.

本発明のさらなる態様によると、制御ユニットにより、ピストンの周波数および/または行程が設定および調整可能であることが好ましい。制御ユニットは、開閉タイミングおよび必要に応じて油圧エネルギー供給を設定することで、特に周波数を変更できる。さらに、ピストンの行程は、2つの反転点の位置を、対応する制御可能弁の開閉により変更することで、実現できる。このため、制御ユニットは好ましくは入力フィールドのような入力インタフェースを有する。さらに、制御ユニットは、オペレータによる操作ユニットを介した一般的な機械制御により直接作動できる。   According to a further aspect of the invention, it is preferred that the frequency and / or stroke of the piston can be set and adjusted by the control unit. The control unit can change the frequency in particular by setting the opening / closing timing and the hydraulic energy supply as required. Furthermore, the stroke of the piston can be realized by changing the position of the two reversal points by opening and closing the corresponding controllable valve. For this, the control unit preferably has an input interface such as an input field. Furthermore, the control unit can be actuated directly by general machine control via an operator operating unit.

本発明の別の好ましい実施形態の態様では、制御ユニットが、ピストンを制御するための異なる複数の制御プログラムが記憶できる、プログラムメモリを有する。例えば、特定の用途に合わせて特定の制御プログラムを記憶可能である。例えば、プログラム開始時には、小ピストン行程による高周波数であって、その後プログラムシーケンスにおいて時間の経過とともにピストン行程が大きくなり、周波数が低減するようにしてもよい。周波数と行程に関してピストンを制御するために、任意の数の異なるプログラムシーケンスが設けられてもよい。例えば、急速前進または特別緩やかな駆動処理用のプログラムを設けてもよい。さらに、特定の種類の土壌に対するプログラムを記憶してもよい。   In another preferred embodiment aspect of the invention, the control unit comprises a program memory in which a plurality of different control programs for controlling the piston can be stored. For example, a specific control program can be stored in accordance with a specific application. For example, at the start of the program, the frequency may be high due to the small piston stroke, and then the piston stroke may increase with the passage of time in the program sequence, and the frequency may be reduced. Any number of different program sequences may be provided to control the piston with respect to frequency and stroke. For example, a program for rapid advance or special slow drive processing may be provided. Furthermore, you may memorize | store the program with respect to a specific kind of soil.

本発明は、衝撃パルスまたは振動を生成する上述の装置が設けられた建設機械を含む。特に、建設機械は基礎工法のために設けられてもよい。   The present invention includes a construction machine provided with the above-described device for generating shock pulses or vibrations. In particular, the construction machine may be provided for the foundation method.

本発明の実施形態によると、建設機械がアースドリル用装置であることが特に好ましい。衝撃パルス生成用の装置が設けられれば、衝撃削孔が実施できる。これは、硬い岩盤層を貫通する際に特に有利である。さらに/あるいは、装置は衝撃接触なしで振動を生成するものであってもよい。回転駆動される掘削機を有するアースドリル用装置であれば、特にいわゆるオーバーバーデン掘削が実施できる。ここで、振動運動が、掘削機の回転運動に加わる。振動を加えることで、少なくとも掘削機が接触する領域においていわゆる地盤の液状化が生じて、掘削処理が行いやすくなる。   According to an embodiment of the present invention, it is particularly preferred that the construction machine is a ground drill device. If a device for generating shock pulses is provided, impact drilling can be performed. This is particularly advantageous when penetrating through hard rock formations. Additionally / or the device may generate vibrations without impact contact. If it is an apparatus for earth drills having an excavator that is driven to rotate, so-called overburden excavation can be carried out. Here, the vibration motion is added to the rotational motion of the excavator. By applying vibration, so-called ground liquefaction occurs at least in a region where the excavator contacts, and excavation processing is facilitated.

本発明の別の実施形態は、建設機械が杭打機またはバイブレータであることで実現される。当該杭打機またはバイブレータは、例えば衝撃パルスまたは振動により地盤内に打ち込まれる鋼桁、杭、矢板を送り込むために使用できる。   Another embodiment of the present invention is realized when the construction machine is a pile driver or a vibrator. The pile driver or vibrator can be used to feed steel girders, piles, and sheet piles that are driven into the ground by impact pulses or vibration, for example.

本発明の方法は、ピストンの位置が測定手段により検出され、ピストンの検出された位置に応じて、制御ユニットは、動作空間に対して圧力流体を供給および/または排出するための少なくとも1つの制御可能弁を制御し、制御ユニットにより、前記ピストンの移動が制御されることで実現される。   According to the method of the present invention, the position of the piston is detected by the measuring means, and according to the detected position of the piston, the control unit has at least one control for supplying and / or discharging pressure fluid to the working space. This is realized by controlling the enabling valve and controlling the movement of the piston by the control unit.

具体的には、本発明の方法は上述の装置で実行可能である。したがって、当該方法により上述の利点が得られる。   Specifically, the method of the present invention can be performed with the above-described apparatus. Therefore, the above-described advantages can be obtained by this method.

本発明の実施形態に係る衝撃パルスを生成する装置を示す図である。It is a figure which shows the apparatus which produces | generates the shock pulse which concerns on embodiment of this invention.

添付の図に概略的に示す好適な実施形態に基づいて、以下に本発明をさらに説明する。   The invention is further described below on the basis of preferred embodiments schematically illustrated in the accompanying drawings.

図面は1つであり、衝撃パルスを生成するように設計された本発明の実施形態に係る装置10を示す。装置10は、円筒形の動作空間14を有する筐体12を備える。当該空間内で、略円筒形のピストン20が2つの反転点間で反転可能なように、直線移動可能に支持される。ピストン20は液密に筐体12内に支持され、実施形態にて示すように、一方側が筐体12から突出可能である。ピストン20は、自由端面24により、対応する衝突面18に衝突可能である。当該面18は、ドリルドライブシャフトの挿入側端であってもよい。   The drawing is one and shows an apparatus 10 according to an embodiment of the present invention designed to generate shock pulses. The apparatus 10 includes a housing 12 having a cylindrical operating space 14. Within the space, the substantially cylindrical piston 20 is supported so as to be linearly movable so as to be reversible between two reversal points. The piston 20 is liquid-tightly supported in the housing 12, and one side can protrude from the housing 12 as shown in the embodiment. The piston 20 can collide with the corresponding collision surface 18 by the free end surface 24. The surface 18 may be the insertion side end of the drill drive shaft.

上側第1反転点の領域において、筐体12に、圧力流体供給部30の第1供給路31のための第1開口部15が設けられる。下側第2反転点の領域において、動作空間14が、圧力流体供給部30の第2供給路32に対して第2開口部16を通じて接続されている。図示の実施形態では2/4方向制御弁として設計されている制御可能弁36により、2つの開口部15および16が油圧源Pと非加圧排気タンクTとに交互に接続される。この構成により、動作空間14の2つの互いに反対側の圧力室が、それぞれ交互に圧力流体で充填されるか、圧力流体が抜かれる。この結果、ピストン20が筐体12内で所望の反転移動するように設定される。なお、本実施形態では、動作空間14の2つの圧力室は、ピストン20と一体で移動する例えばピストンリングのような形状の隔壁部材によって仕切られるが、ピストン20自体により仕切られても良い。   In the region of the upper first inversion point, the housing 12 is provided with a first opening 15 for the first supply path 31 of the pressure fluid supply unit 30. In the region of the lower second inversion point, the operation space 14 is connected to the second supply path 32 of the pressure fluid supply unit 30 through the second opening 16. In the illustrated embodiment, two openings 15 and 16 are alternately connected to the hydraulic source P and the non-pressurized exhaust tank T by a controllable valve 36 which is designed as a 2/4 directional control valve. With this configuration, the two pressure chambers on the opposite sides of the working space 14 are alternately filled with the pressure fluid, or the pressure fluid is discharged. As a result, the piston 20 is set so as to perform a desired reverse movement in the housing 12. In the present embodiment, the two pressure chambers of the operation space 14 are partitioned by a partition member having a shape such as a piston ring that moves integrally with the piston 20, but may be partitioned by the piston 20 itself.

本発明の実施形態によると、第1細長測定部材42を有する測定手段40が筐体12上に設けられる。第1測定部材42は棒状に設計され、動作空間14内およびピストン20において対応するように配置された自由空間22内に延在する。自由空間22の下部領域に、磁石例えば環状磁石が第2測定部材44として配置される。第2測定部材44は移動可能ピストン20に強固に接続されて、細長第1測定部材42は筐体12に強固に取り付けられる。測定手段40の第1,第2測定部材42,44は、非接触で相互作用する。測定手段40は例えば、第2測定部材44の位置、したがって細長第1測定部材42に対するピストン20の位置、即ちピストン20の動作空間14内の位置を正確に判定するための誘導リニアセンサとして設計される。本実施形態では、環状磁石(第2測定部材)44の中空穴を通過する第1測定部材42が、例えば、環状磁石44の磁界によって電流が誘導されるコイルを含むことができる。誘導される電流により、ピストン20の位置が測定される。   According to an embodiment of the present invention, a measuring means 40 having a first elongated measuring member 42 is provided on the housing 12. The first measuring member 42 is designed in the shape of a rod and extends into the working space 14 and the free space 22 arranged correspondingly in the piston 20. In the lower region of the free space 22, a magnet, for example, an annular magnet is arranged as the second measurement member 44. The second measurement member 44 is firmly connected to the movable piston 20, and the elongated first measurement member 42 is firmly attached to the housing 12. The first and second measuring members 42 and 44 of the measuring means 40 interact without contact. The measuring means 40 is designed, for example, as an inductive linear sensor for accurately determining the position of the second measuring member 44 and thus the position of the piston 20 relative to the elongated first measuring member 42, ie the position of the piston 20 in the operating space 14. The In the present embodiment, the first measurement member 42 that passes through the hollow hole of the annular magnet (second measurement member) 44 may include, for example, a coil in which a current is induced by the magnetic field of the annular magnet 44. The position of the piston 20 is measured by the induced current.

測定手段40がライン接続52を介して制御ユニット50に接続されることで、ピストン20の動作空間14内の現在位置を示すアナログ信号またはデジタルデータが送信される。所定のプログラムまたは制御ユニット50の制御ロジックに応じて、制御可能弁36が電磁要素37を介して作動することで、図示のように例えば第1供給路31が非加圧タンクTに接続され、第2供給路32が圧力源Pに接続される。弁36が制御ユニット50により切り替えられると、圧力源Pが第1供給路31に接続され、タンクTが第2供給路32に接続される。このような弁位置では、動作空間14の下側領域から圧力流体が抜かれて、同時に動作空間14の上側領域が圧力流体で満たされる。この場合、ピストン20は、上側第1反転点から下側第2反転点に向かって下側に移動する。測定手段40により、ピストン20が筐体12内のトリガ点に達したことが認識されると、制御ユニット50が再び弁36を切り替えて、制御ライン54を介して制御可能弁36の電磁要素37が作動されることで、方向転換が生じる。   By connecting the measuring means 40 to the control unit 50 via the line connection 52, an analog signal or digital data indicating the current position of the piston 20 in the operating space 14 is transmitted. The controllable valve 36 is operated via the electromagnetic element 37 according to a predetermined program or the control logic of the control unit 50, so that, for example, the first supply path 31 is connected to the non-pressurized tank T as shown in FIG. The second supply path 32 is connected to the pressure source P. When the valve 36 is switched by the control unit 50, the pressure source P is connected to the first supply path 31 and the tank T is connected to the second supply path 32. In such a valve position, the pressure fluid is withdrawn from the lower region of the working space 14 and at the same time the upper region of the working space 14 is filled with the pressure fluid. In this case, the piston 20 moves downward from the upper first inversion point toward the lower second inversion point. When the measuring means 40 recognizes that the piston 20 has reached the trigger point in the housing 12, the control unit 50 switches the valve 36 again and the electromagnetic element 37 of the controllable valve 36 via the control line 54. When the is operated, a change of direction occurs.

対応する制御ロジック50の制御ロジックの変化のみにより、2つの反転点間のピストン20の周波数および行程が変更および設定可能である。   Only by changing the control logic of the corresponding control logic 50, the frequency and stroke of the piston 20 between the two reversal points can be changed and set.

以上のように本実施形態について詳細に説明したが、本発明の新規事項および効果から
実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また生体情報推定装置の構成、動作も本実施形態で説明したものに限定されず、種々の変形実施が可能である。
Although the present embodiment has been described in detail as described above, it will be easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included in the scope of the present invention. For example, a term described at least once together with a different term having a broader meaning or the same meaning in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. The configuration and operation of the biological information estimation apparatus are not limited to those described in the present embodiment, and various modifications can be made.

14…動作空間、20…ピストン、22…自由空間、30…圧力流体供給部、36…制御可能弁、40…測定手段、42…棒状第1測定部材、44…第2測定部材(磁石)、50…制御ユニット
DESCRIPTION OF SYMBOLS 14 ... Operation | movement space, 20 ... Piston, 22 ... Free space, 30 ... Pressure fluid supply part, 36 ... Controllable valve, 40 ... Measuring means, 42 ... Rod-shaped 1st measurement member, 44 ... 2nd measurement member (magnet), 50 ... Control unit

Claims (10)

建設機械用の、衝撃パルスまたは振動を生成する装置であって、
筐体と、
衝撃パルスまたは振動を生成するために、前記筐体内の動作空間において第1反転点と第2反転点との間で反転往復移動可能なピストンと、
前記第1反転点および前記第2反転点の領域において、前記動作空間に対して圧力流体を供給および排出可能とする圧力流体供給部と、
前記動作空間における前記ピストンの位置を測定するため測定手段と、
前記動作空間に対して前記圧力流体を供給および/または排出する少なくとも1つの制御可能弁と、
前記測定手段と前記少なくとも1つの制御可能弁とに接続されて、前記動作空間内の前記ピストンの移動を制御および変更可能とする制御ユニットと、
前記ピストン内の自由空間に固定される磁石と、
を有し、
前記測定手段は、前記動作空間内および前記ピストン内の自由空間内に延在するように前記筐体に固定される棒状第1測定部材を含み、
前記測定手段の第2測定部材である前記磁石を有する前記ピストンは、前記磁石と前記棒状第1測定部材とが非接触で、前記棒状第1測定部材に沿って移動する、装置。
A device for generating shock pulses or vibrations for construction machinery,
A housing,
A piston capable of reciprocating reciprocally between a first reversing point and a second reversing point in an operating space within the housing to generate a shock pulse or vibration;
A pressure fluid supply section capable of supplying and discharging pressure fluid to and from the operating space in the region of the first inversion point and the second inversion point;
Measuring means for measuring the position of the piston in the operating space;
At least one controllable valve for supplying and / or discharging the pressure fluid to and from the working space;
A control unit connected to the measuring means and the at least one controllable valve to control and change the movement of the piston in the operating space;
A magnet fixed in free space in the piston;
Have
The measurement means includes a rod-shaped first measurement member fixed to the housing so as to extend into the operation space and a free space within the piston,
The said piston which has the said magnet which is a 2nd measurement member of the said measurement means is an apparatus with which the said magnet and the said rod-shaped 1st measurement member are non-contact, and move along the said rod-shaped 1st measurement member.
前記弁が電磁弁である、請求項1に記載の装置。   The apparatus of claim 1, wherein the valve is a solenoid valve. 前記測定手段がリニアセンサである、請求項1に記載の装置。   The apparatus according to claim 1, wherein the measuring means is a linear sensor. 特に衝撃パルスを生成するために、前記ピストンが衝突する衝突面が少なくとも1つの反転点に設けられた、請求項1に記載の装置。   The device according to claim 1, wherein a collision surface against which the piston collides is provided at at least one inversion point, in particular for generating a shock pulse. 前記制御ユニットにより、前記ピストンの周波数および/または行程が設定および調整可能である、請求項1に記載の装置。   The device according to claim 1, wherein the frequency and / or stroke of the piston can be set and adjusted by the control unit. 前記制御ユニットが、前記ピストンを制御するための異なる複数のプログラムが記憶されるプログラムメモリを有する、請求項1に記載の装置。   The apparatus according to claim 1, wherein the control unit comprises a program memory in which a plurality of different programs for controlling the piston are stored. 請求項1に記載の、衝撃パルスまたは振動を生成する装置が設けられた建設機械。   A construction machine provided with a device for generating shock pulses or vibrations according to claim 1. アースドリル用装置である、請求項7に記載の建設機械。   The construction machine according to claim 7, which is an earth drill device. 杭打機またはバイブレータである、請求項7に記載の建設機械。   The construction machine according to claim 7, which is a pile driver or a vibrator. 建設機械用の、衝撃パルスまたは振動を、特に請求項1に記載の装置で生成する方法であって、
筐体内の動作空間において第1反転点と第2反転点との間でピストンを反転往復移動させることと、
前記第1反転点および前記第2反転点の領域において、前記動作空間に対して供給および排出される圧力流体により、衝撃パルスまたは振動を生成するために前記ピストンが反転往復移動するように設定することと、
を含み、
前記ピストンの位置が測定手段により測定され、
前記ピストンの測定された位置に応じて、制御ユニットは、前記動作空間に対して前記圧力流体を供給および/または排出するための少なくとも1つの制御可能弁を制御し、
前記制御ユニットにより、前記ピストンの移動が制御される、方法。
A method for generating shock pulses or vibrations for construction machinery, in particular with the device according to claim 1, comprising:
Reversing and reciprocating the piston between a first reversing point and a second reversing point in an operating space in the housing;
In the region of the first inversion point and the second inversion point, the piston is set to reciprocate in reverse to generate an impact pulse or vibration by the pressure fluid supplied to and discharged from the operation space. And
Including
The position of the piston is measured by measuring means;
Depending on the measured position of the piston, the control unit controls at least one controllable valve for supplying and / or discharging the pressure fluid to the working space;
The method wherein movement of the piston is controlled by the control unit.
JP2018115130A 2017-06-19 2018-06-18 Apparatus and method for generating shock pulses or vibrations for construction machinery Active JP6676104B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17176586.0A EP3417951B1 (en) 2017-06-19 2017-06-19 Device and method for generating impact impulses or vibration of a construction machine
EP17176586.0 2017-06-19

Publications (2)

Publication Number Publication Date
JP2019000846A true JP2019000846A (en) 2019-01-10
JP6676104B2 JP6676104B2 (en) 2020-04-08

Family

ID=59093402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115130A Active JP6676104B2 (en) 2017-06-19 2018-06-18 Apparatus and method for generating shock pulses or vibrations for construction machinery

Country Status (9)

Country Link
US (1) US10730075B2 (en)
EP (1) EP3417951B1 (en)
JP (1) JP6676104B2 (en)
KR (1) KR102090038B1 (en)
CN (1) CN109127346B (en)
CA (1) CA3005244C (en)
DK (1) DK3417951T3 (en)
ES (1) ES2922006T3 (en)
PT (1) PT3417951T (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705776B (en) * 2020-06-23 2021-11-16 山东松岩建设工程有限公司 Electromagnetic track rammer for building construction
PL4001510T3 (en) * 2020-11-13 2023-09-11 Eurodrill Gmbh Device for generating impact impulses or vibrations for a construction machine
CN113739908A (en) * 2021-09-06 2021-12-03 中嵌科技(北京)有限公司 Vibration and impact composite sensor based on MEMS chip

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293400A (en) * 1991-03-22 1992-10-16 Ishikawajima Harima Heavy Ind Co Ltd Fluid pressure driven speaker
JPH05306521A (en) * 1990-03-29 1993-11-19 Takahashi Eng:Kk Pile driver
JPH07269503A (en) * 1994-03-30 1995-10-17 Nakamura Koki Kk Piston position detection device for piston type accumulator
JPH08184042A (en) * 1994-12-28 1996-07-16 Hitachi Constr Mach Co Ltd Vibration work device
JPH11158860A (en) * 1997-11-28 1999-06-15 Hitachi Constr Mach Co Ltd Vibrating work device
JP2015137482A (en) * 2014-01-22 2015-07-30 日本車輌製造株式会社 Earth drilling machine
WO2017010400A1 (en) * 2015-07-13 2017-01-19 古河ロックドリル株式会社 Hydraulic hammering device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB920158A (en) 1960-05-25 1963-03-06 Dehavilland Aircraft Canada Vibrator motor
US4031812A (en) 1974-03-08 1977-06-28 Nikolai Vasilievich Koshelev Hydraulic vibrator for actuator drive
US4026193A (en) 1974-09-19 1977-05-31 Raymond International Inc. Hydraulically driven hammer system
DE3038835A1 (en) * 1979-10-22 1981-04-30 The Secretary Of State For Industry In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland, London PRESSURE-DRIVEN VIBRATOR AND DRIVER DRIVEN BY THEM
GB2062124B (en) * 1979-10-22 1983-10-05 Secretary Industry Brit Fluid driven oscillator and hammer device
DE3443542A1 (en) * 1984-11-29 1986-06-05 Fried. Krupp Gmbh, 4300 Essen HYDRAULIC BEATER
JPH07127607A (en) * 1993-09-07 1995-05-16 Yutani Heavy Ind Ltd Hydraulic device of work machine
JP3434441B2 (en) * 1997-10-31 2003-08-11 飛島建設株式会社 Wear detector
DE19923680B4 (en) * 1999-05-22 2004-02-26 Atlas Copco Construction Tools Gmbh Method for determining the operating time and the operating state of a hydraulic impact unit, in particular hydraulic hammer, and device for carrying out the method
US7404449B2 (en) * 2003-05-12 2008-07-29 Bermingham Construction Limited Pile driving control apparatus and pile driving system
DE102004059938A1 (en) * 2003-12-14 2005-07-07 GEDIB Ingenieurbüro und Innovationsberatung GmbH Piling vibrator for material to be rammed has control loop to control excitation power by regulating vibration amplitude
EP1728564B1 (en) 2005-05-30 2010-04-07 Klemm Bohrtechnik GmbH Vibration generator with an operating piston that is slidingly supported between pressure chambers
SE529615C2 (en) * 2006-02-20 2007-10-09 Atlas Copco Rock Drills Ab Percussion and rock drill and method for controlling the stroke of the piston
SE530781C2 (en) * 2007-01-11 2008-09-09 Atlas Copco Rock Drills Ab Rock drilling equipment and method associated with this
FI121978B (en) * 2009-12-21 2011-06-30 Sandvik Mining & Constr Oy Method for determining the degree of use of a refractive hammer, refractive hammer and measuring device
CN201757728U (en) * 2010-06-29 2011-03-09 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 Center swivel joint endurance test device
US8829893B2 (en) * 2011-09-09 2014-09-09 Honeywell International Inc. Linear position sensor
CN103148051B (en) * 2013-03-25 2016-03-30 长沙中联消防机械有限公司 Hydraulic jack, comprise its hydraulic jack control system, engineering machinery
CN104265715B (en) * 2014-10-16 2017-02-15 江苏恒立液压科技有限公司 pressure compensating valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306521A (en) * 1990-03-29 1993-11-19 Takahashi Eng:Kk Pile driver
JPH04293400A (en) * 1991-03-22 1992-10-16 Ishikawajima Harima Heavy Ind Co Ltd Fluid pressure driven speaker
JPH07269503A (en) * 1994-03-30 1995-10-17 Nakamura Koki Kk Piston position detection device for piston type accumulator
JPH08184042A (en) * 1994-12-28 1996-07-16 Hitachi Constr Mach Co Ltd Vibration work device
JPH11158860A (en) * 1997-11-28 1999-06-15 Hitachi Constr Mach Co Ltd Vibrating work device
JP2015137482A (en) * 2014-01-22 2015-07-30 日本車輌製造株式会社 Earth drilling machine
WO2017010400A1 (en) * 2015-07-13 2017-01-19 古河ロックドリル株式会社 Hydraulic hammering device

Also Published As

Publication number Publication date
CA3005244A1 (en) 2018-12-19
CN109127346B (en) 2020-10-27
PT3417951T (en) 2022-07-08
CN109127346A (en) 2019-01-04
CA3005244C (en) 2020-04-28
KR20180138170A (en) 2018-12-28
KR102090038B1 (en) 2020-04-23
US20180361432A1 (en) 2018-12-20
JP6676104B2 (en) 2020-04-08
US10730075B2 (en) 2020-08-04
ES2922006T3 (en) 2022-09-06
EP3417951A1 (en) 2018-12-26
DK3417951T3 (en) 2022-07-04
EP3417951B1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP6676104B2 (en) Apparatus and method for generating shock pulses or vibrations for construction machinery
US6877569B2 (en) Method for controlling operating cycle of impact device, and impact device
AU2002253203A1 (en) Method for controlling operating cycle of impact device, and impact device
US20220152655A1 (en) Device for generating percussive pulses or vibrations for a construction machine
US3805896A (en) Hydraulic repeating hammer
US1005770A (en) Apparatus for sinking tubular piles.
SE529615C2 (en) Percussion and rock drill and method for controlling the stroke of the piston
EP0613024A2 (en) Mechanical sweep frequency vibrator
CN107013527A (en) Piston and Magnetic Bearing for Hydraulic Hammer
CA1046897A (en) Impact tools
EP3775484B1 (en) A percussion device and a method for controlling a percussion mechanism of a percussion device
CN109469058B (en) Hydraulic excitation high-frequency linear impact device
RU2611103C2 (en) Unit of impact action
JP2000237975A (en) Excitation device
FI125012B (en) Oscillation mechanism
Novoseltseva et al. Modelling of Hydraulic Pulse Systems of Drilling Machines with Pneumatic Spring
US613312A (en) Impact tool
US1046779A (en) Valve-gear for power-hammers.
JP2015230075A (en) Vibration generating apparatus
JPS6363762B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6676104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250