JP2019000001A - Cell culture device - Google Patents

Cell culture device Download PDF

Info

Publication number
JP2019000001A
JP2019000001A JP2015190614A JP2015190614A JP2019000001A JP 2019000001 A JP2019000001 A JP 2019000001A JP 2015190614 A JP2015190614 A JP 2015190614A JP 2015190614 A JP2015190614 A JP 2015190614A JP 2019000001 A JP2019000001 A JP 2019000001A
Authority
JP
Japan
Prior art keywords
cell
culture
cells
cell mass
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015190614A
Other languages
Japanese (ja)
Inventor
千鶴 平井
Chizuru Hirai
千鶴 平井
啓介 渋谷
Keisuke Shibuya
啓介 渋谷
拓司 安藤
Takuji Ando
拓司 安藤
良一 芳賀
Ryoichi Haga
良一 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015190614A priority Critical patent/JP2019000001A/en
Priority to PCT/JP2016/072711 priority patent/WO2017056695A1/en
Publication of JP2019000001A publication Critical patent/JP2019000001A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Abstract

To provide methods for controlling the diameter of a cell mass in view of the actual condition that a diameter control method of a cell cluster suitable for the suspension culture aiming at mass production is not present now, and to provide cell culture devices using the controlling method.SOLUTION: The cell culture device according to the present invention controls the diameter of a cell mass by imparting an ultrasonic wave to a comparatively large cell mass floating in a culture solution.SELECTED DRAWING: Figure 1

Description

本発明は、人工多能性細胞のような細胞を培養する細胞培養装置に関する。   The present invention relates to a cell culture apparatus for culturing cells such as artificial pluripotent cells.

動物細胞は、主に医療や医薬品等の産業で利用される。動物細胞の一種である幹細胞(人工多能性細胞など)は、様々な細胞に分化することが可能である。近年、幹細胞は損傷した臓器などを治療する、再生医療用の細胞性医薬品として利用され始めている。細胞性医薬品の生産は、幹細胞を培養し、増殖させることで得ることができる。   Animal cells are mainly used in the medical and pharmaceutical industries. Stem cells (such as induced pluripotent cells), which are a kind of animal cells, can differentiate into various cells. In recent years, stem cells have begun to be used as cellular medicines for regenerative medicine that treat damaged organs and the like. Cellular pharmaceutical production can be obtained by culturing and proliferating stem cells.

従来、再生医療で用いられる動物細胞の培養方法には接着培養が用いられてきた。接着培養は細胞を培養容器に接着させ培養する方法である。今まで、再生医療は細胞シートなど接着培養を用いた少量生産で行われてきた。幹細胞の一種である人工多能性細胞は、細胞塊を形成して増殖する。その細胞塊の直径は人工多能性細胞の特性(未分化状態、生存率)に影響を与える。そのため、人工多能性細胞など一部の細胞では、細胞塊の直径制御が必要である。この直径制御は細胞塊に物理的な力を加えて行われる。ここで言う物理的な力とは、ピペッティング操作で細胞に加えられるせん断応力などである。少量生産を目的とした接着培養では、人工多能性細胞の細胞塊への力の加え方に手作業によるピペッティングが用いられてきた。   Conventionally, adhesion culture has been used as a method for culturing animal cells used in regenerative medicine. Adhesion culture is a method in which cells are adhered to a culture vessel and cultured. Until now, regenerative medicine has been carried out in small-scale production using adhesion culture such as cell sheets. Artificial pluripotent cells, which are a type of stem cell, form a cell mass and proliferate. The diameter of the cell mass affects the properties (undifferentiated state, survival rate) of the induced pluripotent cells. Therefore, in some cells such as artificial pluripotent cells, it is necessary to control the diameter of the cell mass. This diameter control is performed by applying physical force to the cell mass. The physical force referred to here is a shear stress applied to cells by pipetting operation. In adhesion culture for the purpose of small-scale production, manual pipetting has been used to apply force to the cell mass of artificial pluripotent cells.

一般的に再生医療によって心疾患などを治療する場合は、幹細胞から心筋細胞に分化させた細胞が109個必要になる。現在幹細胞の培養で主に用いられている接着培養の場合、一般的に用いられる直径10cmの培養皿1枚に、107個程度の幹細胞を培養するのが限界である。もし接着培養で109個の細胞を生産する場合、100枚の培養皿が必要となる。100枚の培養皿の培養、維持には多大な労力がかかってしまうため、接着培養は大量生産に向かない。 In general, when treating heart disease or the like by regenerative medicine, 10 9 cells differentiated from stem cells into cardiomyocytes are required. In the case of adhesion culture, which is currently used mainly for culturing stem cells, the limit is that about 10 7 stem cells can be cultured in one commonly used culture dish having a diameter of 10 cm. If 10 9 cells are produced by adhesion culture, 100 culture dishes are required. Adhesive culture is not suitable for mass production because it takes a lot of labor to culture and maintain 100 culture dishes.

大量培養技術の1つとして、浮遊系培養技術の適用が検討されている。浮遊系培養でも、人工多能性細胞の場合細胞塊の直径が特性の維持に関わる。そのため、人工多能性細胞では、浮遊培養でも細胞塊の直径制御が必要である。人工多能性細胞の浮遊培養では、効率的に大量の細胞塊の直径を制御する必要がある。   As one of the mass culture techniques, application of a suspension culture technique is being studied. Even in suspension culture, in the case of induced pluripotent cells, the diameter of the cell mass is involved in maintaining the characteristics. Therefore, in artificial pluripotent cells, it is necessary to control the diameter of the cell mass even in suspension culture. In suspension culture of induced pluripotent cells, it is necessary to efficiently control the diameter of a large amount of cell mass.

従来技術では、浮遊培養において、細胞塊の直径を制御する方法として、メッシュを適応している。この制御方法は、一度に多くの細胞塊に適応可能だが、メッシュの目詰まりが問題になってしまう。実用化した際、メッシュの交換作業により、コストと作業効率が悪くなる可能性が高い。   In the prior art, mesh is applied as a method for controlling the diameter of a cell mass in suspension culture. This control method can be applied to many cell clusters at once, but mesh clogging becomes a problem. When put into practical use, there is a high possibility that the cost and work efficiency will deteriorate due to the replacement work of the mesh.

細胞塊に物理的な力を加える手段として、超音波を細胞に照射する手法が考えられる。従来の細胞に対する超音波の処理例は以下の通りである。特許文献1では、培養槽と攪拌翼と超音波照射手段を有する細胞培養装置が記載され、超音波を培養槽壁面に付着した細胞に照射することで、細胞を剥離する方法が開示されている。しかし、この方法は培養槽内の細胞全体に超音波を当ててしまうため、細胞によっては余分な物理的ストレスを受ける。   As a means for applying a physical force to the cell mass, a method of irradiating cells with ultrasonic waves can be considered. The example of the process of the ultrasonic wave with respect to the conventional cell is as follows. Patent Document 1 describes a cell culture device having a culture tank, a stirring blade, and an ultrasonic irradiation means, and discloses a method of detaching cells by irradiating the cells attached to the wall of the culture tank with ultrasonic waves. . However, since this method applies ultrasonic waves to the entire cells in the culture tank, some cells are subjected to extra physical stress.

また超音波を細胞に照射する例として、特許文献2には、容器に付着した接着培養に対して局所的に超音波を与え、所望の細胞を培養容器から剥離する方法が記載されている。この超音波照射方法は、局所的な超音波付与が可能で、細胞に余分なストレスを与えることは無い。しかし、特許文献1と同様に、付着した細胞を剥すことを目的とした有効な技術であり、培養液中に浮遊する特定の細胞のみに超音波を照射することはできない。   As an example of irradiating cells with ultrasonic waves, Patent Document 2 describes a method in which ultrasonic waves are locally applied to an adhesion culture attached to a container and desired cells are detached from the culture container. This ultrasonic irradiation method can apply a local ultrasonic wave and does not apply extra stress to the cells. However, as in Patent Document 1, it is an effective technique for the purpose of peeling attached cells, and it is not possible to irradiate only specific cells floating in the culture solution with ultrasonic waves.

特開平6−141850号公報JP-A-6-141850 特開2014−18185号公報JP 2014-18185 A

現在、大量生産を目的とした、浮遊培養に適した細胞塊の直径制御方法は存在しない。そこで、本発明は、上述したような実情に鑑み、細胞塊の直径を制御する方法、当該制御方法を適用した細胞培養装置を提供することを目的とする。   Currently, there is no method for controlling the diameter of cell mass suitable for suspension culture for mass production. Then, in view of the above situation, an object of the present invention is to provide a method for controlling the diameter of a cell mass and a cell culture device to which the control method is applied.

本発明に係る培養装置は、培養液中に浮遊する中で比較的に大きい細胞塊に超音波付与を行うことで、細胞塊の直径を制御する。   The culture apparatus according to the present invention controls the diameter of a cell mass by applying ultrasonic waves to a relatively large cell mass while floating in a culture solution.

培養時に細胞塊の直径を容易に制御可能な細胞培養装置を提供できる。   A cell culture device capable of easily controlling the diameter of a cell mass during culture can be provided.

本実施形態に係る細胞培養装置の一例である。It is an example of the cell culture apparatus which concerns on this embodiment. 実施例2に係る細胞培養装置である。2 is a cell culture device according to Example 2. 実施例3に係る細胞培養装置である。3 is a cell culture device according to Example 3. 実施例4に係る細胞培養装置である。4 is a cell culture device according to Example 4; 実施例5に係る細胞培養装置である。10 is a cell culture device according to Example 5.

以下、本実施形態に係る細胞培養装置を、図面を参照して詳細に説明する。本実施形態に係る細胞培養装置は、例えば、細胞自体が医薬品となる細胞の培養に適用できる。また、培養対象の細胞は、動物細胞、植物細胞、昆虫細胞、細菌、酵母、真菌及び藻類などをあげることができる。特に、iPS細胞などの細胞塊を凝集して培養する細胞が好ましい。   Hereinafter, the cell culture device according to the present embodiment will be described in detail with reference to the drawings. The cell culture device according to the present embodiment can be applied, for example, to culture of cells in which the cells themselves are pharmaceuticals. Examples of cells to be cultured include animal cells, plant cells, insect cells, bacteria, yeasts, fungi, and algae. In particular, cells in which cell clusters such as iPS cells are aggregated and cultured are preferred.

図1に本実施形態に係る細胞培養装置の一例を模式的に示す。細胞培養装置20は容器本体1を備える。容器本体1は、大きさが異なる複数の細胞の凝集体である細胞塊を含む培養液3と、培養液3を攪拌する攪拌手段2と、超音波を発信する端子である超音波発信端子4とを有する。超音波発信端子4は培養液3の液面に接し、かつ蓋体8に配設されている。   FIG. 1 schematically shows an example of a cell culture device according to the present embodiment. The cell culture device 20 includes a container body 1. The container body 1 includes a culture solution 3 including a cell mass that is an aggregate of a plurality of cells having different sizes, an agitation unit 2 that agitates the culture solution 3, and an ultrasonic transmission terminal 4 that is a terminal that transmits ultrasonic waves. And have. The ultrasonic transmission terminal 4 is in contact with the liquid surface of the culture solution 3 and is disposed on the lid body 8.

容器本体1の外部には、超音波を照射する超音波照射手段5と、超音波のサイズ等を計測する計測装置6と、細胞を観察する細胞観察手段7を備える。   Outside the container main body 1, an ultrasonic irradiation unit 5 that irradiates ultrasonic waves, a measuring device 6 that measures the size of ultrasonic waves, and a cell observation unit 7 that observes cells are provided.

細胞塊が細胞観察手段7により撮影され、撮影画像を取得する。計測装置6でその撮影画像の解析が行われ、解析結果を基に撮影画像に写された細胞塊が超音波発信端子4からの超音波を受ける位置にあるとき、超音波照射手段5に計測装置6からシグナルが送られ、超音波発信端子4から超音波を発信する。   A cell mass is photographed by the cell observation means 7 to obtain a photographed image. The measurement device 6 analyzes the captured image, and the ultrasonic irradiation means 5 performs measurement when the cell mass captured in the captured image is in a position to receive the ultrasonic wave from the ultrasonic transmission terminal 4 based on the analysis result. A signal is sent from the device 6, and an ultrasonic wave is transmitted from the ultrasonic transmission terminal 4.

細胞観察手段7は、容器本体1の外部に配設したCCD素子を用いたカメラのなどで構成する。超音波発信端子4の先端の定められた領域に存在する細胞もしくは細胞塊を撮影し、画像データを取得する。   The cell observation means 7 is constituted by a camera using a CCD element disposed outside the container body 1. A cell or a cell mass existing in a predetermined region at the tip of the ultrasonic wave transmitting terminal 4 is photographed to acquire image data.

細胞観察手段7は予め定められた領域を撮影するように固定しても良い。攪拌手段2により培養液3は攪拌され周回するので、細胞観察手段7を固定していても、培養液に含まれる各細胞塊を定期的に観察することができる。   The cell observation means 7 may be fixed so as to photograph a predetermined area. Since the culture solution 3 is stirred and circulated by the stirring means 2, even if the cell observation means 7 is fixed, each cell mass contained in the culture solution can be regularly observed.

また、細胞観察手段7を固定せずに可動可能な形態としても良い。その際は培養液3の中にサイズの大きな細胞塊が生成されたらすぐに発見できるように、細胞観察手段7を細胞塊全体について観察可能な位置に配置する。   The cell observation means 7 may be movable without being fixed. In that case, the cell observation means 7 is arranged at a position where the entire cell mass can be observed so that it can be found as soon as a large cell mass is generated in the culture solution 3.

計測装置6は、細胞塊を認識し、さらにその直径を計測する機能を持った、画像解析ソフトを搭載したコンピュータである。細胞観察手段7と超音波照射手段5と接続しており、細胞観察手段7が撮影した画像データを受信し、画像データ中の細胞塊の直径を計測し、あらかじめ定められた大きさを超えた細胞塊を発見したとき、超音波照射手段5にシグナルを送り、超音波照射手段5を作動させる。   The measuring device 6 is a computer equipped with image analysis software that has a function of recognizing a cell mass and measuring its diameter. The cell observation means 7 and the ultrasonic irradiation means 5 are connected, and the image data taken by the cell observation means 7 is received, the diameter of the cell mass in the image data is measured, and exceeds a predetermined size. When a cell mass is found, a signal is sent to the ultrasonic irradiation means 5 to activate the ultrasonic irradiation means 5.

超音波照射手段5は計測装置6と超音波発信端子4と接続している。超音波照射手段5は圧電セラミックスを用いた方法をとる。また、超音波の出力は培養槽の一部にのみ超音波が届く程度の出力を用いる。もしくは、超音波発信端子4に反射器を取り付け局所的に超音波が伝達するようにしても良い。   The ultrasonic irradiation means 5 is connected to the measuring device 6 and the ultrasonic transmission terminal 4. The ultrasonic irradiation means 5 is a method using piezoelectric ceramics. Moreover, the output of an ultrasonic wave is used so that the ultrasonic wave reaches only a part of the culture tank. Alternatively, a reflector may be attached to the ultrasonic transmission terminal 4 so that ultrasonic waves are transmitted locally.

このように、培養液全体のうち閾値を超えた細胞塊は超音波照射手段5による超音波の照射範囲に含まれ、閾値を超えない細胞塊は超音波照射手段5による超音波の照射範囲に含まれない構成とする。超音波を照射された細胞塊はストレスを受けるので、サイズが閾値を超えない細胞塊に対して超音波を照射せず余分な物理的ストレスを与えないようにする。   Thus, the cell mass exceeding the threshold in the whole culture solution is included in the ultrasonic irradiation range by the ultrasonic irradiation means 5, and the cell mass not exceeding the threshold is in the ultrasonic irradiation range by the ultrasonic irradiation means 5. The configuration is not included. Since the cell mass irradiated with the ultrasonic wave is subjected to stress, the cell mass whose size does not exceed the threshold value is not irradiated with the ultrasonic wave so as to avoid applying an extra physical stress.

超音波照射手段5が照射する超音波の周波数は20Hz〜10GHzであることが望ましい。この周波数は所望の細胞塊が細分化するのに適切である。また超音波が培養槽の一部にのみ伝達される範囲を用いるのがさらに望ましい。細胞塊の細分化に必要な時間は、主に超音波の周波数に関係しているので、所望の細胞塊の大きさに合わせて決定することができる。   The frequency of the ultrasonic wave emitted by the ultrasonic wave irradiation means 5 is desirably 20 Hz to 10 GHz. This frequency is appropriate for the desired cell mass to be subdivided. It is further desirable to use a range in which ultrasonic waves are transmitted only to a part of the culture tank. Since the time required for subdividing the cell mass is mainly related to the frequency of the ultrasonic wave, it can be determined according to the size of the desired cell mass.

容器本体1は、一部もしくは全てが透明容器であり、ガラスやプラスチックなどを用いる。さらに、超音波の影響を最小限に留めるために、図4のように流路15を取り付けても良いし、図5のようにプラスチック製の支柱17と、プラスチック製の壁18を取り付けても良い。流路16はガラスやプラスチックなど透明な材質を用いる。   A part or all of the container body 1 is a transparent container, and uses glass or plastic. Further, in order to minimize the influence of ultrasonic waves, the flow path 15 may be attached as shown in FIG. 4, or the plastic support 17 and the plastic wall 18 may be attached as shown in FIG. good. The channel 16 is made of a transparent material such as glass or plastic.

なお、図1に示した細胞培養装置20は、回分培養(一回毎に新たな培地を用意し、そこへ株を植えて収穫まで培地を加えない方法)に適した構成となっているが、当該構成に限定されるものではない。流加培養(培養中に、培地自体や培地中の特定の成分を添加し、培養終了時までその生成物を抜き取らない方法)を適応する場合は添加培地装置を加えて構成することもできる。連続培養(一定の速度で培養系に培地を供給し、同時に同量の培養液を抜き取る方法)を適応する場合は、培養液抜き出しようのラインを設けても良いし、エアリフト型の培養装置に超音波照射手段と超音波発信端子と培養液観察手段を備えても良い。   The cell culture apparatus 20 shown in FIG. 1 has a configuration suitable for batch culture (a method in which a new medium is prepared every time, a strain is planted there, and no medium is added until harvest). However, the present invention is not limited to this configuration. In the case of adapting to fed-batch culture (a method in which the medium itself or a specific component in the medium is added during cultivation and the product is not extracted until the end of the culture), an addition medium apparatus can be added. When applying continuous culture (a method of supplying a culture medium to a culture system at a constant speed and simultaneously extracting the same amount of culture solution), a line for extracting the culture solution may be provided, or an airlift type culture device may be provided. You may provide an ultrasonic irradiation means, an ultrasonic transmission terminal, and a culture solution observation means.

<実施例1>
図1の培養装置を市販の温度調節用のヒーター上で使用し、本実施形態を回分培養に適応したものが実施例1である。容器本体1を小規模のスピナーフラスコまたはガラス製の容器で構成する。
<Example 1>
Example 1 is an example in which the culture apparatus of FIG. 1 is used on a commercially available temperature control heater and this embodiment is adapted to batch culture. The container body 1 is composed of a small-scale spinner flask or a glass container.

攪拌手段2として平羽根型の翼を用いて、回転数30rpmで培養液の攪拌を行った。細胞として市販の人工多能性細胞を用いた。また、細胞の培養液は、市販のDMEM/F12培地を主成分とする培地を用いた。   Using a flat blade type blade as the stirring means 2, the culture solution was stirred at a rotation speed of 30 rpm. Commercially available induced pluripotent cells were used as the cells. In addition, a medium mainly composed of a commercially available DMEM / F12 medium was used as a cell culture solution.

外部に培養液観察手段7として、拡大撮影機能のついたデジタル顕微鏡を用いた。容器本体1の外部に設置され、培養液3中の細胞を撮影する。培養液観察手段7で録画された細胞塊の拡大画像をもとに、計測手段6により細胞塊の大きさを計測した。計測装置6としてコンピュータと市販の画像解析ソフトを用いた。取得した画像を市販の画像解析ソフトで二値化し、細胞塊を認識した。細胞が密集している部分を細胞塊とし、単体の細胞のみ検出された部分は細胞塊とはみなさなかった。細胞塊と認識した部分の直径を計測し、規定外に大きいか否かを判断した。細胞塊が規定外に大きい場合は超音波照射手段5を作動させ、細胞塊の細分化を行った。   A digital microscope with an enlarged photographing function was used as the culture medium observation means 7 outside. It is installed outside the container body 1 and photographs the cells in the culture medium 3. Based on the enlarged image of the cell mass recorded by the culture medium observation means 7, the size of the cell mass was measured by the measurement means 6. A computer and commercially available image analysis software were used as the measuring device 6. The acquired image was binarized with commercially available image analysis software, and the cell mass was recognized. The portion where the cells were dense was defined as a cell mass, and the portion where only a single cell was detected was not regarded as a cell mass. The diameter of the part recognized as a cell mass was measured, and it was judged whether it was larger than the specification. When the cell mass was excessively large, the ultrasonic irradiation means 5 was operated to subdivide the cell mass.

細胞培養装置20は、超音波照射手段5と、超音波発信端子4によって細胞塊に超音波を付与し細分化する。超音波発信端子4は培養液3に先端が接するように設置されている。またその先端は、培養液観察手段7で得られた動物細胞の拡大画像データを計測装置6が処理し、超音波付与を行うか否か決定した時に、処理した画像データ上にある細胞が、超音波が届く位置に流れる場所に位置する。攪拌されている培養液中の細胞は約0.3m/sで移動しており、培養液観察手段7から攪拌翼の回転方向に3秒後に超音波が照射されるため、約10cm離れた所に1つ設置する。超音波照射手段5が用いる周波数は20Hz〜10GHzである。   The cell culture device 20 applies ultrasonic waves to the cell mass by the ultrasonic wave irradiation means 5 and the ultrasonic wave transmission terminal 4 and subdivides them. The ultrasonic transmission terminal 4 is installed so that the tip is in contact with the culture solution 3. In addition, when the measurement device 6 processes the enlarged image data of the animal cell obtained by the culture medium observation means 7 and determines whether or not to apply ultrasonic waves, the tip of the tip is the cell on the processed image data. Located in a location where ultrasonic waves can reach. The cells in the culture medium being stirred are moving at about 0.3 m / s, and ultrasonic waves are irradiated from the culture medium observation means 7 in the direction of rotation of the stirring blade 3 seconds later. Install one. The frequency used by the ultrasonic irradiation means 5 is 20 Hz to 10 GHz.

この装置に50mLの市販の培地を入れ、人工多能性細胞を7日間培養した。7日間で、3×105cellsから7×107cellsまで細胞が増殖した。 50 mL of a commercially available medium was put into this apparatus, and artificial pluripotent cells were cultured for 7 days. In 7 days, the cells grew from 3 × 10 5 cells to 7 × 10 7 cells.

培養開始前、細胞塊の直径は50〜100μmである。培養を開始すると、細胞塊は大きくなるが、大きくなり過ぎると細胞の特性(未分化状態、生存率)に悪い影響を与えるため、直径が閾値を超えた細胞塊に超音波照射手段5で超音波を照射する。この閾値は例えば300μmとする。超音波を照射された細胞塊は細分化され、培養終了時は200μm〜300μmになった。   Before the start of culturing, the diameter of the cell mass is 50-100 μm. When culturing is started, the cell mass becomes large, but if it becomes too large, cell characteristics (undifferentiated state, survival rate) are adversely affected. Irradiate sound waves. This threshold value is, for example, 300 μm. The cell mass irradiated with ultrasonic waves was subdivided and became 200 μm to 300 μm at the end of the culture.

<実施例2>
図2は実施例2に係る細胞培養装置を示す。実施例2は細胞培養装置を流加培養に適応したものである。蓋体8に5ng/mL線維芽細胞増殖因子を添加物用管路9と、添加物用管路9に接続された添加物を無菌的に保存するためのガラス瓶を取り付けたものである。5ng/mL線維芽細胞増殖因子は1日毎添加した。この装置に50mLの市販の培地を入れ、人工多能性細胞を7日間培養した。3×105cellsから7.4×107cellsまで細胞が増殖した。
<Example 2>
FIG. 2 shows a cell culture apparatus according to the second embodiment. In Example 2, the cell culture apparatus is adapted for fed-batch culture. The lid 8 is provided with a 5 ng / mL fibroblast growth factor additive conduit 9 and a glass bottle for aseptically storing the additive connected to the additive conduit 9. 5 ng / mL fibroblast growth factor was added every day. 50 mL of a commercially available medium was put into this apparatus, and artificial pluripotent cells were cultured for 7 days. Cells grew from 3 × 10 5 cells to 7.4 × 10 7 cells.

実施例1と同様に超音波照射手段5で細胞塊のサイズを制御したところ、細胞塊細胞塊の直径は、培養開始時の50〜100μmから、培養終了時は200μm〜300μmになった。さらに、流加培養に装置を適応したことで、細胞の維持のために毎日行っていた繊維芽細胞増殖因子の添加作業をする必要が無くなり、労働効率が良くなった。   When the size of the cell mass was controlled by the ultrasonic irradiation means 5 in the same manner as in Example 1, the diameter of the cell mass cell mass was changed from 50 to 100 μm at the start of the culture to 200 μm to 300 μm at the end of the culture. Furthermore, by adapting the apparatus to fed-batch culture, the work of adding fibroblast growth factor, which was performed every day for cell maintenance, was eliminated, and work efficiency was improved.

<実施例3>
図3は本実施形態を連続培養に適応した実施例3を概略的にあらわしたものである。蓋体8に新鮮培地用管路11と、新鮮培地用管路11に接続した新鮮培地を無菌状態で保存できる新鮮培地保存用容器14と、廃液用管路12と、廃液用ガラス容器13を設置した。新鮮培地用管路11と廃液用管路12には除菌フィルター10を設置した。24時間毎に20分間培養装置の攪拌をとめ、細胞塊を培養液の底に沈めた。さらに上澄みを廃液用管路12で吸引し、新しい培地を新鮮培地用管路11で入れた。この装置に50mLの市販の培地を入れ、人工多能性細胞を7日間培養した。3×105cellsから6.5×107cellsまで細胞が増殖した。
<Example 3>
FIG. 3 schematically shows Example 3 in which this embodiment is applied to continuous culture. A fresh medium conduit 11 on the lid 8, a fresh medium storage container 14 that can store the fresh medium connected to the fresh medium conduit 11 in an aseptic state, a waste liquid conduit 12, and a waste liquid glass container 13. installed. A sterilization filter 10 was installed in the fresh medium pipe 11 and the waste liquid pipe 12. The culture apparatus was agitated for 20 minutes every 24 hours, and the cell mass was submerged in the bottom of the culture solution. Further, the supernatant was aspirated through the waste liquid line 12, and a new medium was added through the fresh medium line 11. 50 mL of a commercially available medium was put into this apparatus, and artificial pluripotent cells were cultured for 7 days. Cells grew from 3 × 10 5 cells to 6.5 × 10 7 cells.

実施例1と同様に超音波照射手段5で細胞塊のサイズを制御したところ、細胞塊の直径は、培養開始時の50〜100μmから、培養終了時は200μm〜300μmになった。さらに、連続培養に装置を適応したことで、細胞の維持に必要な培地交換をする必要が無くなり、労働効率が良くなった。   When the size of the cell mass was controlled by the ultrasonic irradiation means 5 as in Example 1, the diameter of the cell mass was changed from 50 to 100 μm at the start of the culture to 200 μm to 300 μm at the end of the culture. Furthermore, adapting the device to continuous culture eliminates the need for medium change necessary for cell maintenance, and improves labor efficiency.

<実施例4>
図4は本実施形態における実施例4を概略的にあらわしたものである。容器本体1に流路15を取り付け、培養液観察手段7を流路15の外部に取り付け、超音波発信端子4を流路15に取り付ける。この装置に50mLの市販の培地を入れ、人工多能性細胞を7日間培養した。3×105cellsから7.5×107cellsまで細胞が増殖した。
<Example 4>
FIG. 4 schematically shows Example 4 in the present embodiment. A flow path 15 is attached to the container body 1, the culture solution observation means 7 is attached to the outside of the flow path 15, and the ultrasonic transmission terminal 4 is attached to the flow path 15. 50 mL of a commercially available medium was put into this apparatus, and artificial pluripotent cells were cultured for 7 days. Cells grew from 3 × 10 5 cells to 7.5 × 10 7 cells.

実施例1と同様に超音波照射手段5で細胞塊のサイズを制御したところ、細胞塊の直径は、培養開始時の50〜100μmから、培養終了時は200μm〜300μmになった。培養液中に含まれる細胞塊のうちで一部の細胞塊が流路15を流れる。   When the size of the cell mass was controlled by the ultrasonic irradiation means 5 as in Example 1, the diameter of the cell mass was changed from 50 to 100 μm at the start of the culture to 200 μm to 300 μm at the end of the culture. A part of the cell mass contained in the culture fluid flows through the flow path 15.

流路15を取り付けたことで、取り付けない時より一部の細胞にのみ超音波が照射され易くなり、細胞への影響を最小限に抑えることができた。   By attaching the flow path 15, it becomes easier to irradiate only a part of the cells with ultrasonic waves than when it is not attached, and the influence on the cells can be minimized.

<実施例5>
図5は本実施形態における実施例5を概略的にあらわしたものである。容器本体1の内部に5cmの長さをもつ支柱16を用いて容器本体1と10cm2の正方形の板17を取り付けた。超音波発信端子4を板17と容器本体1の壁面に設置した。この装置に50mLの市販の培地を入れ、人工多能性細胞を7日間培養した。3×105cellsから8.0×107cellsまで細胞が増殖した。
<Example 5>
FIG. 5 schematically shows Example 5 in the present embodiment. The container body 1 and a 10 cm 2 square plate 17 were attached to the inside of the container body 1 by using a support column 16 having a length of 5 cm. The ultrasonic transmission terminal 4 was installed on the wall surface of the plate 17 and the container body 1. 50 mL of a commercially available medium was put into this apparatus, and artificial pluripotent cells were cultured for 7 days. Cells grew from 3 × 10 5 cells to 8.0 × 10 7 cells.

実施例1と同様に超音波照射手段5で細胞塊のサイズを制御したところ、細胞塊の直径は、培養開始時の50〜100μmから、培養終了時は200μm〜300μmになった。   When the size of the cell mass was controlled by the ultrasonic irradiation means 5 as in Example 1, the diameter of the cell mass was changed from 50 to 100 μm at the start of the culture to 200 μm to 300 μm at the end of the culture.

1…容器本体、2…攪拌手段、3…培養液、4…超音波発信端子、
5…超音波照射手段、6…計測装置、7…培養液観察手段、
8…蓋体、9…添加物用管路、10…除菌フィルター、
11…新鮮培地用管路、12…廃液用管路、13…廃液用ガラス容器、
14…新鮮培地保存用容器、15…流路、16…支柱、17…板
DESCRIPTION OF SYMBOLS 1 ... Container body, 2 ... Stirring means, 3 ... Culture solution, 4 ... Ultrasonic transmission terminal,
5 ... Ultrasonic irradiation means, 6 ... Measuring device, 7 ... Culture medium observation means,
8 ... Lid, 9 ... Pipe for additive, 10 ... Disinfection filter,
11 ... Pipe for fresh medium, 12 ... Pipe for waste liquid, 13 ... Glass container for waste liquid,
14 ... Fresh medium storage container, 15 ... Channel, 16 ... Post, 17 ... Plate

Claims (7)

細胞を培養する細胞培養装置であって、
培養液を有する容器と、
複数の細胞塊を含む前記培養液の画像を取得する細胞観察手段と、
前記細胞観察手段により取得された画像に基づき、細胞塊のサイズを計測する計測手段と、
前記計測手段により計測した細胞塊のサイズが閾値を超えた場合に、当該閾値を超えた細胞塊に対し超音波を照射する超音波照射手段と、を有することを特徴とする細胞培養装置。
A cell culture device for culturing cells,
A container having a culture solution;
Cell observation means for acquiring an image of the culture solution containing a plurality of cell masses;
Based on the image acquired by the cell observation means, measurement means for measuring the size of the cell mass,
An ultrasonic irradiation means for irradiating an ultrasonic wave to the cell mass exceeding the threshold when the size of the cell mass measured by the measurement means exceeds the threshold.
請求項1に記載の細胞培養装置において、
前記培養液を攪拌する攪拌手段を有し、
前記細胞観察手段は前記攪拌手段により攪拌された培養液の画像を取得することを特徴とする細胞培養装置。
The cell culture device according to claim 1,
A stirring means for stirring the culture solution;
The cell culturing device, wherein the cell observation means acquires an image of the culture solution stirred by the stirring means.
請求項2に記載の細胞培養装置において、
前記細胞観察手段は予め定められた領域を撮影するように固定されていることを特徴とする細胞培養装置。
The cell culture device according to claim 2,
The cell culturing apparatus, wherein the cell observation means is fixed so as to photograph a predetermined region.
請求項1乃至3のいずれか一項に記載の細胞培養装置において、
前記計測手段は計測する細胞塊のサイズは、細胞塊の直径であることを特徴とする細胞培養装置。
In the cell culture device according to any one of claims 1 to 3,
The cell culture apparatus characterized in that the size of the cell mass measured by the measuring means is the diameter of the cell mass.
請求項1乃至4のいずれか一項に記載の細胞培養装置において、
前記培養液全体のうち前記閾値を超えた細胞塊は、前記超音波照射手段による超音波の照射範囲に含まれ、
前記培養液全体のうち前記閾値を超えない細胞塊は、前記超音波照射手段による超音波の照射範囲に含まれないことを特徴とする細胞培養装置。
In the cell culture device according to any one of claims 1 to 4,
The cell mass that exceeds the threshold value in the whole culture solution is included in the ultrasonic irradiation range by the ultrasonic irradiation means,
A cell mass that does not exceed the threshold in the whole culture solution is not included in the ultrasonic irradiation range by the ultrasonic irradiation means.
請求項1乃至5のいずれか一項に記載の細胞培養装置において、
前記培養液の一部を循環させる流路を有し、
前記流路を流れる培養液の画像を取得することを特徴とする細胞培養装置。
In the cell culture device according to any one of claims 1 to 5,
Having a flow path for circulating a part of the culture solution;
A cell culture device characterized by acquiring an image of a culture solution flowing through the flow path.
請求項1乃至6のいずれか一項に記載の細胞培養装置において、
前記容器の一部または全体が透明であることを特徴とする細胞培養装置。
In the cell culture device according to any one of claims 1 to 6,
A cell culture apparatus, wherein a part or the whole of the container is transparent.
JP2015190614A 2015-09-29 2015-09-29 Cell culture device Pending JP2019000001A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015190614A JP2019000001A (en) 2015-09-29 2015-09-29 Cell culture device
PCT/JP2016/072711 WO2017056695A1 (en) 2015-09-29 2016-08-03 Cell culture apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190614A JP2019000001A (en) 2015-09-29 2015-09-29 Cell culture device

Publications (1)

Publication Number Publication Date
JP2019000001A true JP2019000001A (en) 2019-01-10

Family

ID=58423427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190614A Pending JP2019000001A (en) 2015-09-29 2015-09-29 Cell culture device

Country Status (2)

Country Link
JP (1) JP2019000001A (en)
WO (1) WO2017056695A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130396B2 (en) * 2018-03-15 2022-09-05 株式会社エビデント Analysis device, analysis system, program
US20210054330A1 (en) * 2018-07-05 2021-02-25 Mitsubishi Electric Corporation Cell culture device, cell culture method, and recording medium
JP7280574B2 (en) * 2018-08-20 2023-05-24 アイ ピース,インコーポレイテッド cell incubator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081434A (en) * 2004-09-15 2006-03-30 Ishikawajima Harima Heavy Ind Co Ltd Cell culture apparatus and method
US20130129799A1 (en) * 2010-08-30 2013-05-23 Fukuoka University Tumor proliferation inhibitor containing ultrasound-sensitive substance and method for inhibiting tumor proliferation by using tumor proliferation inhibitor and low-intensity pulsed ultrasound waves
EP2784153B1 (en) * 2011-11-25 2018-01-03 Kyoto University Method for culturing pluripotent stem cell
JP2015062400A (en) * 2013-08-30 2015-04-09 独立行政法人放射線医学総合研究所 Method for preparing cell aggregate derived from cancer tissues, and anticancer drug screening method using cell aggregate derived from cancer tissues, quantitative analysis of anticancer agent, or radiosensitivity test of cancer tissues

Also Published As

Publication number Publication date
WO2017056695A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP2019528087A (en) Bioreactor and use thereof
US20160215257A1 (en) Pluripotent stem cell expansion and passage using a stirred tank bioreactor
KR102282939B1 (en) High-density cell banking methods
JP5460241B2 (en) Biological cell culture method and culture apparatus
JP4928831B2 (en) Automatic culture equipment
EP2733199B1 (en) Cell culture device, device for long-term monitoring of cell culture, method for long-term cell culture, and method for long-term monitoring of cell culture
JP2016093149A (en) Cell culture apparatus, and cell culture method
WO2017056695A1 (en) Cell culture apparatus
JP2006246720A (en) Chamber for cell culture
JP6326827B2 (en) Cell culture device and cell culture method
CN104371919A (en) Microfluidic chip for cell culture, and dynamic culture device and method
JP4649224B2 (en) Method and apparatus for culturing adherent cells
CN103966092A (en) Organ decellularization and circular fusion regeneration culture bottle
JP2019509047A (en) Proliferation and passage of pluripotent stem cells using a stirred tank bioreactor
JP6733126B2 (en) Method for producing three-dimensional cell aggregate
JP6475322B2 (en) Three-dimensional cell culture system and cell culture method using the same
CN102428168A (en) Bioreactor system
US20230002718A1 (en) Automated medium exchange strategy for suspension cells
JP6055166B2 (en) Sheet cell culture production method, sheet cell culture formation substrate production method, bubble removal method, and gas detection system
CN106754367A (en) The method for carrying medicine cell climbing sheet is prepared by electrostatic spinning
US20240093155A1 (en) Method of changing culture medium of a culture using spinfilters
JP2020198794A (en) Culture mold, shaking culture vessel, culture system, coculture method, fertilized egg, and endometrium cell
JP6349949B2 (en) Carrier supply method, carrier supply apparatus and cell culture system
JP2019162093A (en) Hematopoietic cell production method
CN210340843U (en) Adherent cell microcarrier culture apparatus