JP2018536350A - Change of cyclic prefix (CP) length based on precoder mode selection - Google Patents

Change of cyclic prefix (CP) length based on precoder mode selection Download PDF

Info

Publication number
JP2018536350A
JP2018536350A JP2018523443A JP2018523443A JP2018536350A JP 2018536350 A JP2018536350 A JP 2018536350A JP 2018523443 A JP2018523443 A JP 2018523443A JP 2018523443 A JP2018523443 A JP 2018523443A JP 2018536350 A JP2018536350 A JP 2018536350A
Authority
JP
Japan
Prior art keywords
precoder mode
length
signal
precoder
selecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018523443A
Other languages
Japanese (ja)
Other versions
JP2018536350A5 (en
JP6882283B2 (en
Inventor
アレクサンドロス・マノーラコス
ティンファン・ジー
ジュネ・ナムグン
ジョセフ・ビナミラ・ソリアガ
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2018536350A publication Critical patent/JP2018536350A/en
Publication of JP2018536350A5 publication Critical patent/JP2018536350A5/ja
Application granted granted Critical
Publication of JP6882283B2 publication Critical patent/JP6882283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

各態様は、送信のためのプリコーダモードを選択し、選択されたプリコーダモードに基づいてサイクリックプレフィックス(CP)長を変更し、変更されたCP長を含む信号を送信することを可能にする。CP長を変更することは、選択されたプリコーダモードを使用して公称CP長を変更するための値を検索することを含んでもよい。CP長を変更した後、変更されたCP長を示す情報が信号のレシーバに送信されてもよい。プリコーダモード選択は、レシーバがCP長の変更を要求しているかどうかを示すフィードバック情報に基づいてもよい。プリコーダモード選択は、通信チャネルの状態を示す受信された基準信号に基づいてもよい。基準信号は、最小相対遅延拡散、最大相対遅延拡散圧縮、最大相対ビームフォーミング利得、および/または最大相対スループットをもたらすプリコーダモードを選択するために使用されてもよい。  Each aspect allows to select a precoder mode for transmission, change a cyclic prefix (CP) length based on the selected precoder mode, and transmit a signal including the changed CP length To do. Changing the CP length may include searching for a value to change the nominal CP length using the selected precoder mode. After changing the CP length, information indicating the changed CP length may be transmitted to the receiver of the signal. Precoder mode selection may be based on feedback information indicating whether the receiver is requesting a CP length change. Precoder mode selection may be based on a received reference signal indicating the state of the communication channel. The reference signal may be used to select a precoder mode that results in minimum relative delay spread, maximum relative delay spread compression, maximum relative beamforming gain, and / or maximum relative throughput.

Description

関連出願の相互参照
本願は、2015年11月24日に米国特許商標庁に出願された仮出願第62/259,446号、および2016年3月23日に米国特許商標庁に出願された非仮出願第15/078,087号の優先権および利益を主張し、それらの内容全体が、以下に完全に記載されたかのように、すべての適用可能な目的のために参照により本明細書に組み込まれている。
Cross-reference to related applications This application is a provisional application 62 / 259,446 filed with the US Patent and Trademark Office on November 24, 2015, and a non-provisional application filed with the US Patent and Trademark Office on March 23, 2016 No. 15 / 078,087, all of which are hereby incorporated by reference for all applicable purposes, as if fully set forth below.

本開示の態様は、一般に、ワイヤレス通信システムに関し、より詳細には、プリコーダモード選択に基づいてサイクリックプレフィックス(CP)長を変更することに関する。   Aspects of the present disclosure generally relate to wireless communication systems, and more particularly, to changing cyclic prefix (CP) length based on precoder mode selection.

ワイヤレス通信ネットワークは、電話、ビデオ、データ、メッセージング、ブロードキャストなど、様々な通信サービスを提供するために広く展開されている。通常は多元接続ネットワークであるそのようなネットワークは、利用可能なネットワークリソースを共有することによって、複数のユーザに対する通信をサポートする。そのようなワイヤレスネットワーク内では、音声、ビデオ、および電子メールを含む様々なデータサービスが提供される場合がある。そのようなワイヤレス通信ネットワークに割り振られるスペクトルは、許可スペクトルおよび/または無許可スペクトルを含むことが可能である。許可スペクトルは、一般に、所与の領域内で政府機関または他の機関によって規制されるような許可使用を除いて、ワイヤレス通信のためのその使用が限定される。無許可スペクトルは、一般に、そのような許可の購入または使用なしに、限度内で自由に使用できる。モバイルブロードバンドアクセスの需要が増大し続けているので、モバイルブロードバンドアクセスの増大する需要を満たし、全体的なユーザエクスペリエンスを向上させるために、ワイヤレス通信技術を進化させるための研究および開発が引き続き行われている。   Wireless communication networks are widely deployed to provide various communication services such as telephone, video, data, messaging, broadcast, and so on. Such networks, usually multiple access networks, support communication for multiple users by sharing available network resources. Within such a wireless network, various data services may be provided including voice, video, and email. The spectrum allocated to such a wireless communication network can include allowed and / or unlicensed spectrum. The licensed spectrum is generally limited in its use for wireless communications except for authorized usage as regulated by government agencies or other agencies within a given area. Unlicensed spectrum is generally free to use within limits without the purchase or use of such permission. As the demand for mobile broadband access continues to increase, research and development continues to evolve wireless communication technologies to meet the growing demand for mobile broadband access and improve the overall user experience. Yes.

以下のことは、本開示の1つまたは複数の態様の基本的理解を可能にするために、そのような態様の簡略化した概要を提示する。本概要は、本開示のすべての企図される特徴の広範な概観ではなく、本開示のすべての態様の主要または重要な要素を識別するものでも、本開示のいずれかまたはすべての態様の範囲を定めるものでもない。その唯一の目的は、後で提示されるより詳細な説明の前置きとして、本開示の1つまたは複数の態様のいくつかの概念を簡略化した形で提示することである。   The following presents a simplified summary of such aspects in order to enable a basic understanding of one or more aspects of the present disclosure. This summary is not an extensive overview of all contemplated features of this disclosure, but it does identify the major or important elements of all aspects of this disclosure and is intended to cover the scope of any or all aspects of this disclosure. It is not something that is defined. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.

一態様では、本開示は、ワイヤレス通信のための装置を提供する。この装置は、トランシーバと、メモリと、トランシーバおよびメモリに通信可能に結合された少なくとも1つのプロセッサとを含む。少なくとも1つのプロセッサは、送信のためのプリコーダモードを選択するように構成されてよい。少なくとも1つのプロセッサは、選択されたプリコーダモードに基づいてサイクリックプレフィックス(CP)長を変更するようにさらに構成されてもよい。少なくとも1つのプロセッサは、変更されたCP長を含む信号を、トランシーバを利用して送信するようにさらに構成されてもよい。   In one aspect, the present disclosure provides an apparatus for wireless communication. The apparatus includes a transceiver, a memory, and at least one processor communicatively coupled to the transceiver and the memory. At least one processor may be configured to select a precoder mode for transmission. The at least one processor may be further configured to change the cyclic prefix (CP) length based on the selected precoder mode. The at least one processor may be further configured to transmit a signal including the changed CP length utilizing the transceiver.

別の態様では、本開示は、ワイヤレス通信のための方法を提供する。この方法は、送信のためのプリコーダモードを選択するステップを含んでもよい。この方法はまた、選択されたプリコーダモードに基づいてCP長を変更するステップを含んでもよい。この方法はまた、変更されたCP長を含む信号を送信するステップを含んでもよい。   In another aspect, the present disclosure provides a method for wireless communication. The method may include selecting a precoder mode for transmission. The method may also include changing the CP length based on the selected precoder mode. The method may also include transmitting a signal that includes the changed CP length.

また別の態様では、本開示は、コンピュータ実行可能コードを記憶するコンピュータ可読媒体を提供する。コンピュータ実行可能コードは、送信のためのプリコーダモードを選択するように構成された命令を含んでもよい。これらの命令は、選択されたプリコーダモードに基づいてCP長を変更するようにさらに構成されてもよい。これらの命令は、変更されたCP長を含む信号を送信するようにさらに構成されてもよい。   In yet another aspect, the present disclosure provides a computer-readable medium that stores computer-executable code. The computer executable code may include instructions configured to select a precoder mode for transmission. These instructions may be further configured to change the CP length based on the selected precoder mode. These instructions may be further configured to transmit a signal that includes the changed CP length.

本開示のさらなる態様では、本開示は、ワイヤレス通信のための装置を提供する。この装置は、送信のためのプリコーダモードを選択するための手段を含んでもよい。この装置はまた、選択されたプリコーダモードに基づいてCP長を変更するための手段を含んでもよい。この装置はまた、変更されたCP長を含む信号を送信するための手段を含んでもよい。   In a further aspect of the present disclosure, the present disclosure provides an apparatus for wireless communication. The apparatus may include means for selecting a precoder mode for transmission. The apparatus may also include means for changing the CP length based on the selected precoder mode. The apparatus may also include means for transmitting a signal that includes the changed CP length.

本開示のこれらの態様および他の態様は、以下の詳細な説明を検討すれば、より十分に理解されるであろう。添付の図面とともに本開示の特定の例示的な実施形態の以下の説明を検討すれば、本開示の他の態様、特徴、および実施形態が当業者に明らかになろう。本開示の特徴について以下のいくつかの実施形態および図面に関して説明することがあるが、本開示のすべての実施形態は、本明細書において説明する有利な特徴のうちの1つまたは複数を含むことができる。言い換えれば、1つまたは複数の実施形態についていくつかの有利な特徴を有するものとして説明することがあるが、そのような特徴のうちの1つまたは複数はまた、本明細書において説明する本開示の様々な実施形態に従って使用されてよい。同様に、例示的な実施形態についてデバイス実施形態、システム実施形態、または方法実施形態として以下で説明することがあるが、そのような例示的な実施形態を様々なデバイス、システム、および方法において実施することができることを理解されたい。   These and other aspects of the disclosure will be more fully understood upon review of the following detailed description. Other aspects, features, and embodiments of the disclosure will become apparent to those skilled in the art upon review of the following description of specific exemplary embodiments of the disclosure in conjunction with the accompanying drawings. The features of the present disclosure may be described with respect to several embodiments and figures that follow, but all embodiments of the present disclosure include one or more of the advantageous features described herein. Can do. In other words, although one or more embodiments may be described as having some advantageous features, one or more of such features may also be described in the present disclosure as described herein. May be used according to various embodiments. Similarly, although example embodiments may be described below as device embodiments, system embodiments, or method embodiments, such example embodiments may be implemented in various devices, systems, and methods. Please understand that you can.

本開示の態様による、スケジューリングエンティティと1つまたは複数の従属エンティティとの間の様々な通信の一例を示す図である。FIG. 4 illustrates an example of various communications between a scheduling entity and one or more subordinate entities, in accordance with aspects of the present disclosure. 本開示の態様による、スケジューリングエンティティのハードウェア実装形態の一例を示す図である。FIG. 4 illustrates an example hardware implementation of a scheduling entity in accordance with aspects of the present disclosure. 本開示の態様による、従属エンティティのハードウェア実装形態の一例を示す図である。FIG. 6 illustrates an example of a hardware implementation of a dependent entity according to aspects of the present disclosure. 本開示の態様による、アクセスネットワークにおいて従属エンティティと通信するスケジューリングエンティティの一例を示す図である。FIG. 4 illustrates an example scheduling entity that communicates with subordinate entities in an access network according to aspects of the disclosure. 本開示の態様によるマルチパス通信の一例を示す図である。FIG. 3 is a diagram illustrating an example of multipath communication according to an aspect of the present disclosure. 本開示の態様によるマルチパス通信に対応するタイムラインの一例を示す図である。It is a figure showing an example of a time line corresponding to multipath communication by the mode of this indication. 本開示の態様による、従属エンティティに信号が到着する時間の例を示す図である。FIG. 6 is a diagram illustrating an example of a time for a signal to arrive at a dependent entity in accordance with aspects of the present disclosure. 本開示の態様による、従属エンティティに信号が到着する時間のさらなる例を示す図である。FIG. 6 is a diagram illustrating a further example of a time at which a signal arrives at a dependent entity according to aspects of the disclosure. 本開示の態様による、スケジューリングエンティティによって送信される様々な信号に関する最大遅延拡散の例を示す図である。FIG. 4 illustrates an example of maximum delay spread for various signals transmitted by a scheduling entity, in accordance with aspects of the present disclosure. 本開示の態様による、プリコーダモードにおいて使用される経路の数の変更に関連する態様を示す図である。FIG. 6 illustrates aspects relating to changing the number of paths used in precoder mode, according to aspects of the disclosure. 本開示の態様による、信号品質とスループットとの間の関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of a relationship between signal quality and throughput according to aspects of the present disclosure. 本開示の態様による例示的な実装形態を示す図である。FIG. 6 illustrates an example implementation in accordance with aspects of the present disclosure. 本開示の態様による、スケジューリングエンティティによって実行される様々な方法および/またはプロセスを示す図である。FIG. 4 illustrates various methods and / or processes performed by a scheduling entity in accordance with aspects of the present disclosure.

添付の図面に関して以下に記載される詳細な説明は、様々な構成について説明するものであり、本明細書において説明する概念が実践される場合がある構成のみを表すものではない。詳細な説明は、様々な概念の完全な理解を可能にする目的で、具体的な細部を含む。しかし、当業者には、これらの概念が、これらの具体的な細部なしでも実践される場合があることが明らかであろう。場合によっては、そのような概念を不明瞭にすることを避けるために、いくつかの構造および構成要素は、ブロック図の形態で示される。   The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of enabling a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, some structures and components are shown in block diagram form in order to avoid obscuring such concepts.

本開示全体にわたって提示される概念は、幅広い種類の電気通信システム、ネットワークアーキテクチャ、および通信規格にわたって実現されてもよい。たとえば、第3世代パートナーシッププロジェクト(3GPP)は、ロングタームエボリューション(LTE)ネットワークと呼ばれることもある、発展型パケットシステム(EPS)を伴うネットワーク用のいくつかのワイヤレス通信規格を定義する規格団体である。LTEネットワークでは、各パケットは同じまたは同様のレイテンシ目標を利用してもよい。したがって、LTEネットワークは、汎用レイテンシ設定を設けてもよい。第5世代(5G)ネットワークなどのLTEネットワークの発展バージョンは、多くの様々なタイプのサービスおよび/またはアプリケーション(たとえば、ウェブブラウジング、ビデオストリーミング、VoIP、ミッションクリティカルアプリケーション、マルチホップネットワーク、リアルタイムフィードバックを伴う遠隔操作、遠隔手術など)を提供してもよい。本開示全体にわたって提示される概念は、追加または代替として、多種多様なワイヤレスローカルエリアネットワーク(WLAN)および対応する通信規格(たとえば、IEEE802.11などの、米国電気電子技術者協会(IEEE)によって公表された規格)を介して実装されてもよい。   The concepts presented throughout this disclosure may be implemented across a wide variety of telecommunication systems, network architectures, and communication standards. For example, the 3rd Generation Partnership Project (3GPP) is a standards body that defines several wireless communication standards for networks with evolved packet systems (EPS), sometimes referred to as Long Term Evolution (LTE) networks. . In LTE networks, each packet may utilize the same or similar latency target. Thus, the LTE network may provide general purpose latency settings. Evolution versions of LTE networks such as 5th generation (5G) networks involve many different types of services and / or applications (e.g. web browsing, video streaming, VoIP, mission critical applications, multi-hop networks, real-time feedback) Remote operation, remote surgery, etc.) may be provided. The concepts presented throughout this disclosure are, in addition or alternatively, published by a wide variety of wireless local area networks (WLANs) and corresponding communication standards (e.g., the Institute of Electrical and Electronics Engineers (IEEE), such as IEEE 802.11). Standard)).

図1は、本開示の態様によるスケジューリングエンティティ102と1つまたは複数の従属エンティティ104との間の様々な通信の一例を示す図100を示す。概して、スケジューリングエンティティ102は、様々なダウンリンク(DL)送信およびアップリンク(UL)送信を含む、ワイヤレス通信ネットワーク内のトラフィックをスケジューリングする責任を負うノードまたはデバイスである。スケジューリングエンティティ102は、本開示の範囲から逸脱することなくスケジューラおよび/または任意の他の適切な用語で呼ばれることがある。スケジューリングエンティティ102は、基地局、基地トランシーバ局、無線基地局、無線トランシーバ、トランシーバ機能、基本サービスセット、拡張サービスセット、アクセスポイント、ノードB、ユーザ機器(UE)、メッシュノード、リレー、ピア、および/または任意の他の適切なデバイスであってもよく、あるいはそれら内に存在してもよい。   FIG. 1 shows a diagram 100 illustrating an example of various communications between a scheduling entity 102 and one or more dependent entities 104 in accordance with aspects of the present disclosure. In general, scheduling entity 102 is a node or device responsible for scheduling traffic in a wireless communication network, including various downlink (DL) transmissions and uplink (UL) transmissions. Scheduling entity 102 may be referred to as a scheduler and / or any other suitable terminology without departing from the scope of this disclosure. Scheduling entity 102 includes base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set, extended service set, access point, node B, user equipment (UE), mesh node, relay, peer, and It may be / or any other suitable device or may be present therein.

概して、従属エンティティ104は、限定はしないが、スケジューリングエンティティ102などのワイヤレス通信ネットワーク内の別のエンティティからのスケジューリング許可、同期またはタイミング情報、または他の制御情報を含む、スケジューリング情報および/または制御情報を受信するノードまたはデバイスである。従属エンティティ104は、本開示の範囲から逸脱することなく、スケジューリーおよび/または任意の他の適切な用語で呼ばれることがある。従属エンティティ104は、UE、携帯電話、スマートフォン、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、端末、ユーザエージェント、モバイルクライアント、クライアント、メッシュノード、ピア、セッション開始プロトコル電話、ラップトップ、ノートブック、ネットブック、スマートブック、携帯情報端末、衛星無線、全地球測位システムデバイス、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ、カメラ、ゲームコンソール、エンターテインメントデバイス、車両構成要素、ウェアラブルコンピューティングデバイス(たとえば、スマートウォッチ、眼鏡、ヘルスまたはフィットネストラッカーなど)、電気器具、センサ、自動販売機、および/または任意の他の適切なデバイスであってもよく、あるいはそれら内に存在してもよい。   In general, the dependent entity 104 includes scheduling information and / or control information, including but not limited to scheduling grants, synchronization or timing information, or other control information from another entity in the wireless communication network, such as the scheduling entity 102. Node or device that receives Dependent entity 104 may be referred to as a schedule and / or any other suitable term without departing from the scope of this disclosure. Dependent entity 104 is a UE, mobile phone, smartphone, mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, Access terminal, mobile terminal, wireless terminal, remote terminal, handset, terminal, user agent, mobile client, client, mesh node, peer, session initiation protocol telephone, laptop, notebook, netbook, smart book, personal digital assistant, Satellite radio, global positioning system device, multimedia device, video device, digital audio player, camera, game console, entertainment device, vehicle structure May be, or within, an element, a wearable computing device (e.g., smart watch, glasses, health or fitness tracker, etc.), appliance, sensor, vending machine, and / or any other suitable device May be present.

本明細書において使用される「制御チャネル」は、許可情報を伝達するために使用される場合がある。スケジューリングエンティティ102は、DLデータチャネル106およびDL制御チャネル108を送信してもよい。従属エンティティ104は、ULデータチャネル110およびUL制御チャネル112を送信してもよい。図1に示すチャネルは、必ずしも、スケジューリングエンティティ102および/または従属エンティティ104によって利用される場合があるチャネルのすべてであるわけではない。当業者には、図示されたチャネルに加えて、他のデータ、制御、およびフィードバックチャネルなどの他のチャネルが利用されてもよいことが認識されよう。本明細書において使用する「ダウンリンク」または"DL"という用語は、スケジューリングエンティティ102から発信されるポイントツーマルチポイント送信を指す場合があり、本明細書において使用する「アップリンク」または"UL"という用語は、従属エンティティ104から発信されるポイントツーポイント送信を指す場合がある。本開示の態様によれば、「通信する」および/または「通信している」という用語は送信および/または受信を指す。当業者は、本開示の範囲から逸脱することなしに、多くのタイプの技術によってそのような通信が実行されてもよいことを理解するであろう。本明細書において使用する「DLセントリック時分割複信(TDD)サブフレーム」という用語は、情報の一部はUL方向において通信される場合があるが、情報の実質的な部分(たとえば、大部分)がDL方向において通信されるTDDサブフレームを指す。また、本明細書において使用する「ULセントリック時分割複信(TDD)サブフレーム」という用語は、情報の一部はDL方向において通信される場合があるが、情報の実質的な部分(たとえば、大部分)がUL方向において通信されるTDDサブフレームを指す。   A “control channel” as used herein may be used to convey grant information. Scheduling entity 102 may transmit DL data channel 106 and DL control channel 108. Dependent entity 104 may transmit UL data channel 110 and UL control channel 112. The channels shown in FIG. 1 are not necessarily all of the channels that may be utilized by scheduling entity 102 and / or subordinate entity 104. One skilled in the art will recognize that other channels such as other data, control, and feedback channels may be utilized in addition to the illustrated channels. As used herein, the term “downlink” or “DL” may refer to a point-to-multipoint transmission originating from the scheduling entity 102 and is used herein as “uplink” or “UL”. The term may refer to a point-to-point transmission originating from subordinate entity 104. According to aspects of the present disclosure, the terms “communicate” and / or “communicating” refer to transmission and / or reception. Those skilled in the art will appreciate that such communication may be performed by many types of techniques without departing from the scope of this disclosure. As used herein, the term `` DL-centric time division duplex (TDD) subframe '' means that a portion of information may be communicated in the UL direction, but a substantial portion of information (e.g., large (Part) refers to the TDD subframe communicated in the DL direction. Also, as used herein, the term `` UL-centric time division duplex (TDD) subframe '' means that a portion of information may be communicated in the DL direction, but a substantial portion of information (e.g., , Most) refers to TDD subframes that are communicated in the UL direction.

図2は、本開示の様々な態様による、スケジューリングエンティティ102のハードウェア実装形態の一例を示す図200である。スケジューリングエンティティ102は、ユーザインターフェース212を含んでもよい。ユーザインターフェース212は、1つまたは複数の入力をスケジューリングエンティティ102のユーザから受信するように構成されてもよい。いくつかの構成では、ユーザインターフェース212は、キーパッド、ディスプレイ、スピーカー、マイクロフォン、ジョイスティック、および/またはスケジューリングエンティティ102の任意の他の適切な構成要素であってもよい。ユーザインターフェース212は、バスインターフェース208を介してデータを交換してもよい。スケジューリングエンティティ102は、トランシーバ210を含んでもよい。トランシーバ210は、別の装置と通信して、データを受信しかつ/またはデータを送信するように構成されてもよい。トランシーバ210は、有線伝送媒体および/またはワイヤレス伝送媒体を介して別の装置と通信するための手段を提供する。トランシーバ210は、本開示の範囲から逸脱することなく、様々なタイプの技術を使用してそのような通信を実行するように構成されてもよい。   FIG. 2 is a drawing 200 illustrating an example of a hardware implementation of the scheduling entity 102 in accordance with various aspects of the present disclosure. The scheduling entity 102 may include a user interface 212. User interface 212 may be configured to receive one or more inputs from a user of scheduling entity 102. In some configurations, the user interface 212 may be a keypad, display, speaker, microphone, joystick, and / or any other suitable component of the scheduling entity 102. User interface 212 may exchange data via bus interface 208. Scheduling entity 102 may include a transceiver 210. The transceiver 210 may be configured to communicate with another device to receive and / or transmit data. The transceiver 210 provides a means for communicating with another device via a wired transmission medium and / or a wireless transmission medium. The transceiver 210 may be configured to perform such communications using various types of techniques without departing from the scope of the present disclosure.

スケジューリングエンティティ102はまた、メモリ214と、1つまたは複数のプロセッサ204と、コンピュータ可読媒体206と、バスインターフェース208とを含んでもよい。バスインターフェース208は、バス216とトランシーバ210との間のインターフェースを提供してもよい。メモリ214、1つまたは複数のプロセッサ204、コンピュータ可読媒体206、およびバスインターフェース208は、バス216を介して互いに接続されてもよい。プロセッサ204は、トランシーバ210および/またはメモリ214に通信可能に結合されてもよい。   The scheduling entity 102 may also include a memory 214, one or more processors 204, a computer readable medium 206, and a bus interface 208. Bus interface 208 may provide an interface between bus 216 and transceiver 210. Memory 214, one or more processors 204, computer readable medium 206, and bus interface 208 may be connected to one another via bus 216. The processor 204 may be communicatively coupled to the transceiver 210 and / or the memory 214.

プロセッサ204は、プリコーダ回路220を含んでもよい。プリコーダ回路220は、送信のためのプリコーダモードを選択するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。プロセッサ204はまた、サイクリックプレフィックス(CP)回路221を含んでもよい。CP回路221は、選択されたプリコーダモードに基づいてCP長を変更するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。プロセッサ204はまた、通信回路222を含んでもよい。通信回路222は、変更されたCP長を含む信号を送信するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。   The processor 204 may include a precoder circuit 220. Precoder circuit 220 may include hardware components that provide a means for selecting a precoder mode for transmission, and / or may execute various algorithms that provide such means. The processor 204 may also include a cyclic prefix (CP) circuit 221. The CP circuit 221 may include hardware components that provide a means for changing the CP length based on the selected precoder mode, and / or execute various algorithms that provide such means. May be. The processor 204 may also include a communication circuit 222. The communication circuit 222 may include hardware components that provide a means for transmitting a signal that includes a modified CP length, and / or may execute various algorithms that provide such means. .

いくつかの構成では、CP回路221は、選択されたプリコーダモードを使用して公称CP長を変更するための値を検索するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。いくつかの構成では、通信回路222は、CP長を変更した後で、変更されたCP長を示す情報を信号のレシーバに送信するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。いくつかの構成では、通信回路222は、プリコーダモードを選択した後で、選択されたプリコーダモードを示す情報を信号のレシーバに送信するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。   In some configurations, the CP circuit 221 may include hardware components that provide a means for retrieving a value for changing the nominal CP length using the selected precoder mode, and / or Alternatively, various algorithms that provide such means may be executed. In some configurations, the communication circuit 222 may include a hardware component that provides a means for transmitting information indicative of the changed CP length to a receiver of the signal after changing the CP length, and Various algorithms that provide such means may be implemented. In some configurations, the communication circuit 222 may include a hardware component that provides a means for transmitting information indicative of the selected precoder mode to a receiver of the signal after selecting the precoder mode. And / or various algorithms providing such means may be implemented.

プリコーダモードを選択するための手段は、本明細書においてより詳細に説明する様々な態様のうちの任意の1つまたは複数に従って構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、信号のレシーバがCP長の変更を要求しているかどうかを示すフィードバック情報を信号のレシーバから受信し、フィードバック情報に基づいてプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最小相対遅延拡散をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対遅延拡散圧縮をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対ビームフォーミング利得をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対スループットをもたらすプリコーダモードを選択するように構成されてもよい。   The means for selecting a precoder mode may be configured according to any one or more of the various aspects described in more detail herein. In some configurations, the means for selecting a precoder mode receives feedback information from the signal receiver indicating whether the signal receiver is requesting a change in CP length and based on the feedback information It may be configured to select a mode. In some configurations, the means for selecting the precoder mode is adapted to receive a reference signal indicative of the state of the communication channel and to select a precoder mode that provides a minimum relative delay spread based on the received reference signal. It may be configured. In some configurations, the means for selecting a precoder mode receives a reference signal indicative of the state of the communication channel and selects a precoder mode that provides maximum relative delay spread compression based on the received reference signal. May be configured. In some configurations, the means for selecting the precoder mode receives a reference signal indicative of the state of the communication channel and selects a precoder mode that provides a maximum relative beamforming gain based on the received reference signal. May be configured. In some configurations, the means for selecting a precoder mode is configured to receive a reference signal indicative of a state of the communication channel and select a precoder mode that provides maximum relative throughput based on the received reference signal. May be.

上記の説明は、スケジューリングエンティティ102のプロセッサ204の非限定的な例を示す。上記では様々な回路220、221、222について説明したが、当業者には、プロセッサ204が、上述の回路220、221、222への追加および/または代替である様々な他の回路223も含んでもよいことが理解されよう。そのような他の回路223は、本明細書において説明した機能、方法、プロセス、特徴、および/または態様のうちの任意の1つまたは複数を実行するための手段を提供してもよい。   The above description illustrates a non-limiting example of the processor 204 of the scheduling entity 102. While various circuits 220, 221 and 222 have been described above, those skilled in the art will recognize that the processor 204 may include various other circuits 223 that are additions and / or alternatives to the circuits 220, 221 and 222 described above. It will be understood that it is good. Such other circuitry 223 may provide a means for performing any one or more of the functions, methods, processes, features, and / or aspects described herein.

コンピュータ可読媒体206は、様々なコンピュータ実行可能命令を含んでもよい。コンピュータ実行可能命令は、本明細書に記載の様々な機能を実行し、および/または本明細書に記載される様々な態様を可能にするように構成されたコンピュータ実行可能コードを含んでもよい。コンピュータ実行可能命令は、スケジューリングエンティティ102の様々なハードウェア構成要素(たとえば、プロセッサ204、および/またはその回路220、221、222、223のうちのいずれか)によって実行されてもよい。コンピュータ実行可能命令は、様々なソフトウェアプログラムおよび/またはソフトウェアモジュールの一部であってもよい。   The computer readable medium 206 may include a variety of computer executable instructions. Computer-executable instructions may include computer-executable code configured to perform various functions described herein and / or to enable various aspects described herein. Computer-executable instructions may be executed by various hardware components of scheduling entity 102 (eg, any of processor 204 and / or its circuits 220, 221, 222, 223). Computer-executable instructions may be part of various software programs and / or software modules.

コンピュータ可読媒体206は、プリコーダ命令240を含んでもよい。プリコーダ命令240は、送信のためのプリコーダモードを選択するように構成されたコンピュータ実行可能命令を含んでもよい。コンピュータ可読媒体206はまた、CP命令241を含んでもよい。CP命令241は、選択されたプリコーダモードに基づいてCP長を変更するように構成されたコンピュータ実行可能命令を含んでもよい。コンピュータ可読媒体206はまた、通信命令242を含んでもよい。通信命令242は、変更されたCP長を含む信号を送信するように構成されたコンピュータ実行可能命令を含んでもよい。   Computer readable medium 206 may include precoder instructions 240. Precoder instructions 240 may include computer-executable instructions configured to select a precoder mode for transmission. The computer readable medium 206 may also include CP instructions 241. CP instructions 241 may include computer-executable instructions configured to change the CP length based on the selected precoder mode. The computer readable medium 206 may also include communication instructions 242. Communication instructions 242 may include computer-executable instructions configured to send a signal that includes the changed CP length.

いくつかの構成では、CP命令241はまた、選択されたプリコーダモードを使用して公称CP長を変更するための値を検索するように構成されたコンピュータ実行可能命令を含んでもよい。いくつかの構成では、通信命令242はまた、CP長を変更した後で、変更されたCP長を示す情報を信号のレシーバに送信するように構成されたコンピュータ実行可能命令を含んでもよい。いくつかの構成では、通信命令242はまた、プリコーダモードを選択した後で、選択されたプリコーダモードを示す情報を信号のレシーバに送信するように構成されたコンピュータ実行可能命令を含んでもよい。   In some configurations, the CP instruction 241 may also include a computer-executable instruction configured to retrieve a value for changing the nominal CP length using the selected precoder mode. In some configurations, the communication instructions 242 may also include computer-executable instructions configured to send information indicating the changed CP length to the receiver of the signal after changing the CP length. In some configurations, the communication instructions 242 may also include computer-executable instructions configured to send information indicating the selected precoder mode to the receiver of the signal after selecting the precoder mode. .

プリコーダ命令240は、本明細書においてより詳細に説明する様々な態様のうちの任意の1つまたは複数に従って構成されたコンピュータ実行可能命令を含んでもよい。いくつかの構成では、プリコーダモードを選択するように構成されたプリコーダ命令240は、信号のレシーバがCP長の変更を要求しているかどうかを示すフィードバック情報を信号のレシーバから受信し、フィードバック情報に基づいてプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令240は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最小相対遅延拡散をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令240は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対遅延拡散圧縮をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令240は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対ビームフォーミング利得をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令240は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対スループットをもたらすプリコーダモードを選択するように構成されてもよい。   Precoder instructions 240 may include computer-executable instructions configured according to any one or more of the various aspects described in more detail herein. In some configurations, a precoder instruction 240 configured to select a precoder mode receives feedback information from the signal receiver indicating whether the signal receiver is requesting a CP length change, and the feedback information May be configured to select a precoder mode based on In some configurations, the precoder instruction 240 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that results in a minimum relative delay spread based on the received reference signal. In some configurations, the precoder instruction 240 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that provides maximum relative delay spread compression based on the received reference signal. . In some configurations, the precoder instruction 240 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that provides maximum relative beamforming gain based on the received reference signal. . In some configurations, the precoder instruction 240 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that provides maximum relative throughput based on the received reference signal.

上記の説明は、スケジューリングエンティティ102のコンピュータ可読媒体206の非限定的な例を示す。上記では様々なコンピュータ実行可能命令240、241、242について説明したが、当業者には、コンピュータ可読媒体206が、上述のコンピュータ実行可能命令240、241、242への追加および/または代替である様々な他のコンピュータ実行可能命令243も含んでもよいことが理解されよう。そのような他のコンピュータ実行可能命令243は、本明細書において説明した機能、方法、プロセス、特徴、および/または態様のうちの任意の1つまたは複数向けに構成されてもよい。   The above description illustrates a non-limiting example of the computer readable medium 206 of the scheduling entity 102. While various computer-executable instructions 240, 241, 242 have been described above, those skilled in the art will appreciate that the computer-readable medium 206 is an addition and / or alternative to the computer-executable instructions 240, 241, 242 described above. It will be appreciated that other computer-executable instructions 243 may also be included. Such other computer-executable instructions 243 may be configured for any one or more of the functions, methods, processes, features, and / or aspects described herein.

メモリ214は、様々なメモリモジュールを含んでもよい。メモリモジュールは、様々な値および/または情報を記憶し、プロセッサ204またはその回路220、221、222、223のいずれかによってそれらの値および/または情報を読み取らせるように構成されてもよい。メモリモジュールは、様々な値および/または情報を記憶し、コンピュータ可読媒体206に含まれるコンピュータ実行可能コード、またはその命令240、241、242、243のいずれかの実行時にそれらの値および/または情報を読み取らせるように構成されてもよい。メモリ214は、プリコーダ情報230を含んでもよい。プリコーダ情報230は、本明細書においてより詳細に説明する様々な態様のうちの1つまたは複数によるプリコーダまたはプリコーダモードに関係する様々なタイプ、量、設定、構成、および/または形式の情報を含んでもよい。メモリ214はまた、CP情報231を含んでもよい。CP情報231は、本明細書においてより詳細に説明するようにCPに関係する様々なタイプ、量、設定、構成、および/または形式の情報を含んでもよい。上記ではメモリ214の様々なタイプのデータについて説明したが、当業者には、メモリ214が、上述の情報230、231への追加および/または代替である様々な他のデータを含んでもよいことが理解されよう。そのような他のデータは、本明細書に記載の機能、方法、プロセス、特徴、および/または態様のうちの任意の1つまたは複数と関連付けされてもよい。   The memory 214 may include various memory modules. The memory module may be configured to store various values and / or information and have the values and / or information read by the processor 204 or any of its circuits 220, 221, 222, 223. The memory module stores various values and / or information, and the values and / or information when executing any of the computer-executable code included in the computer-readable medium 206, or its instructions 240, 241, 242, 243. May be configured to be read. The memory 214 may include precoder information 230. Precoder information 230 includes information of various types, quantities, settings, configurations, and / or formats related to a precoder or precoder mode according to one or more of the various aspects described in more detail herein. May be included. The memory 214 may also include CP information 231. The CP information 231 may include various types, amounts, settings, configurations, and / or types of information related to the CP as described in more detail herein. While various types of data in the memory 214 have been described above, those skilled in the art will appreciate that the memory 214 may include various other data that are additions and / or alternatives to the information 230, 231 described above. It will be understood. Such other data may be associated with any one or more of the functions, methods, processes, features, and / or aspects described herein.

当業者には、スケジューリングエンティティ102が、本開示の範囲から逸脱することなく代替および/または追加の特徴を含んでもよいことが理解されよう。本開示の様々な態様によれば、要素、または要素の任意の一部分、または要素の任意の組合せが、1つまたは複数のプロセッサ204を含む処理システムとともに実装されてもよい。1つまたは複数のプロセッサ204の例には、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、ステートマシン、ゲート論理、ディスクリートハードウェア回路、および本開示全体にわたって説明する様々な機能を実施するように構成された他の適切なハードウェアが含まれる。処理システムは、バス216およびバスインターフェース208によって概略的に表されるバスアーキテクチャとともに実装されてもよい。バス216は、処理システムの特定の適用例および全体的な設計制約に応じて、任意の数の相互接続するバスおよびブリッジを含んでもよい。バス216は、1つまたは複数のプロセッサ204、メモリ214、およびコンピュータ可読媒体206を含む様々な回路を互いにリンクしてもよい。バス216は、様々な他の回路、たとえばタイミングソース、周辺機器、電圧調整器、および電力管理回路をリンクしてもよい。   Those skilled in the art will appreciate that the scheduling entity 102 may include alternative and / or additional features without departing from the scope of this disclosure. In accordance with various aspects of the present disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system that includes one or more processors 204. Examples of one or more processors 204 include a microprocessor, microcontroller, digital signal processor (DSP), field programmable gate array (FPGA), programmable logic device (PLD), state machine, gate logic, discrete hardware circuitry , And other suitable hardware configured to perform the various functions described throughout this disclosure. The processing system may be implemented with a bus architecture schematically represented by bus 216 and bus interface 208. Bus 216 may include any number of interconnecting buses and bridges depending on the particular application of the processing system and the overall design constraints. Bus 216 may link various circuits including one or more processors 204, memory 214, and computer readable medium 206 together. Bus 216 may link various other circuits, such as timing sources, peripherals, voltage regulators, and power management circuits.

1つまたは複数のプロセッサ204は、バス216の管理、およびコンピュータ可読媒体206に記憶されたソフトウェアの実行を含む全般的な処理に対して責任を負ってもよい。ソフトウェアは、1つまたは複数のプロセッサ204によって実行されたときに、任意の1つまたは複数の装置について以下で説明する様々な機能を処理システムに実行させる。コンピュータ可読媒体206はまた、ソフトウェアを実行するときに1つまたは複数のプロセッサ204によって操作されるデータを記憶するために使用されてもよい。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはその他の名称のうちのいずれで呼ばれるかにかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、プロシージャ、関数などを意味するように広く解釈されるものとする。ソフトウェアは、コンピュータ可読媒体206上に存在してもよい。   One or more processors 204 may be responsible for general processing, including management of bus 216 and execution of software stored on computer readable medium 206. The software, when executed by one or more processors 204, causes the processing system to perform various functions described below for any one or more devices. The computer-readable medium 206 may also be used to store data that is manipulated by one or more processors 204 when executing software. Software, whether called by software, firmware, middleware, microcode, hardware description language, or other name, instructions, instruction set, code, code segment, program code, program, subprogram, It shall be interpreted broadly to mean software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, and the like. The software may reside on computer readable media 206.

コンピュータ可読媒体206は、非一時的コンピュータ可読媒体であってもよい。非一時的コンピュータ可読媒体には、例として、磁気ストレージデバイス(たとえば、ハードディスク、フロッピー(登録商標)ディスク、磁気ストリップ)、光ディスク(たとえば、コンパクトディスク(CD)またはデジタル多用途ディスク(DVD))、スマートカード、フラッシュメモリデバイス(たとえば、カード、スティック、またはキードライブ)、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM)、レジスタ、リムーバブルディスク、ならびにコンピュータによってアクセスされ読み取られる場合があるソフトウェアおよび/または命令を記憶するための任意の他の適切な媒体が含まれる。コンピュータ可読媒体206はまた、例として、搬送波、伝送線路、ならびにコンピュータによってアクセスされ読み取られる場合がある、ソフトウェアおよび/または命令を送信するための任意の他の適切な媒体を含んでもよい。コンピュータ可読媒体206は、処理システム内に存在してもよく、処理システムの外部に存在してもよく、または処理システムを含む複数のエンティティにわたって分散されてもよい。コンピュータ可読媒体206は、コンピュータプログラム製品内で具現化されてもよい。限定ではなく例として、コンピュータプログラム製品は、パッケージング材料内にコンピュータ可読媒体を含んでもよい。当業者には、特定の適用例および全体的なシステムに課された全体的な設計制約に応じて、本開示全体にわたって提示される上述の機能を最適に実施する方法が認識されよう。   The computer readable medium 206 may be a non-transitory computer readable medium. Non-transitory computer readable media include, by way of example, magnetic storage devices (e.g., hard disks, floppy disks, magnetic strips), optical disks (e.g., compact disks (CDs) or digital versatile disks (DVDs)), Smart cards, flash memory devices (for example, cards, sticks, or key drives), random access memory (RAM), read-only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), registers, removable disks, and any other suitable medium for storing software and / or instructions that may be accessed and read by a computer. The computer-readable medium 206 may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and / or instructions that may be accessed and read by a computer. The computer-readable medium 206 may reside within the processing system, may be external to the processing system, or may be distributed across multiple entities that include the processing system. The computer readable medium 206 may be embodied within a computer program product. By way of example, and not limitation, a computer program product may include a computer-readable medium in packaging material. Those skilled in the art will recognize how to best perform the above-described functions presented throughout this disclosure, depending on the particular application and the overall design constraints imposed on the overall system.

図3は、本開示の様々な態様による、従属エンティティ104のハードウェア実装形態の一例を示す図300である。従属エンティティ104は、ユーザインターフェース312を含んでもよい。ユーザインターフェース312は、1つまたは複数の入力を従属エンティティ104のユーザから受信するように構成されてもよい。いくつかの構成では、ユーザインターフェース312は、キーパッド、ディスプレイ、スピーカー、マイクロフォン、ジョイスティック、および/または従属エンティティ104の任意の他の適切な構成要素であってもよい。ユーザインターフェース312は、バスインターフェース308を介してデータを交換してもよい。従属エンティティ104は、トランシーバ310を含んでもよい。トランシーバ310は、別の装置と通信して、データを受信しならびに/あるいはデータを送信するように構成されてもよい。トランシーバ310は、有線伝送媒体および/またはワイヤレス伝送媒体を介して別の装置と通信するための手段を提供する。トランシーバ310は、本開示の範囲から逸脱することなく、様々なタイプの技術を使用してそのような通信を実行するように構成されてもよい。   FIG. 3 is a drawing 300 illustrating an example of a hardware implementation of the dependent entity 104 in accordance with various aspects of the present disclosure. The dependent entity 104 may include a user interface 312. User interface 312 may be configured to receive one or more inputs from a user of subordinate entity 104. In some configurations, user interface 312 may be a keypad, display, speaker, microphone, joystick, and / or any other suitable component of subordinate entity 104. User interface 312 may exchange data via bus interface 308. Dependent entity 104 may include a transceiver 310. The transceiver 310 may be configured to communicate with another device to receive data and / or transmit data. The transceiver 310 provides a means for communicating with another device via a wired transmission medium and / or a wireless transmission medium. The transceiver 310 may be configured to perform such communications using various types of techniques without departing from the scope of the present disclosure.

従属エンティティ104は、メモリ314と、1つまたは複数のプロセッサ304と、コンピュータ可読媒体306と、バスインターフェース308とを含んでもよい。バスインターフェース308は、バス316とトランシーバ310との間のインターフェースを提供してもよい。メモリ314、1つまたは複数のプロセッサ304、コンピュータ可読媒体306、およびバスインターフェース308は、バス316を介して互いに接続されてもよい。プロセッサ304は、トランシーバ310および/またはメモリ314に通信可能に結合されてもよい。   The dependent entity 104 may include a memory 314, one or more processors 304, a computer readable medium 306, and a bus interface 308. Bus interface 308 may provide an interface between bus 316 and transceiver 310. Memory 314, one or more processors 304, computer readable media 306, and bus interface 308 may be connected to one another via bus 316. The processor 304 may be communicatively coupled to the transceiver 310 and / or the memory 314.

従属エンティティ104は、メモリ314と、1つまたは複数のプロセッサ304と、コンピュータ可読媒体306と、バスインターフェース308とを含んでもよい。バスインターフェース308は、バス316とトランシーバ310との間のインターフェースを提供してもよい。メモリ314、1つまたは複数のプロセッサ304、コンピュータ可読媒体306、およびバスインターフェース308は、バス316を介して互いに接続されてもよい。プロセッサ304は、トランシーバ310および/またはメモリ314に通信可能に結合されてもよい。   The dependent entity 104 may include a memory 314, one or more processors 304, a computer readable medium 306, and a bus interface 308. Bus interface 308 may provide an interface between bus 316 and transceiver 310. Memory 314, one or more processors 304, computer readable media 306, and bus interface 308 may be connected to one another via bus 316. The processor 304 may be communicatively coupled to the transceiver 310 and / or the memory 314.

プロセッサ304は、プリコーダ回路320を含んでもよい。プリコーダ回路320は、送信のためのプリコーダモードを選択するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。プロセッサ304はまた、CP回路321を含んでもよい。CP回路321は、選択されたプリコーダモードに基づいてCP長を変更するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。プロセッサ304はまた、通信回路322を含んでもよい。通信回路322は、変更されたCP長を含む信号を送信するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。   The processor 304 may include a precoder circuit 320. Precoder circuit 320 may include hardware components that provide a means for selecting a precoder mode for transmission, and / or may execute various algorithms that provide such means. The processor 304 may also include a CP circuit 321. The CP circuit 321 may include hardware components that provide a means for changing the CP length based on the selected precoder mode and / or execute various algorithms that provide such means. May be. The processor 304 may also include a communication circuit 322. The communication circuit 322 may include hardware components that provide a means for transmitting a signal that includes a modified CP length, and / or may execute various algorithms that provide such means. .

いくつかの構成では、CP回路321は、公称CP長を変更するための値を、選択されたプリコーダモードを使用して検索するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。いくつかの構成では、通信回路322は、CP長を変更した後で、変更されたCP長を示す情報を信号のレシーバに送信するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。いくつかの構成では、通信回路322は、プリコーダモードを選択した後で、選択されたプリコーダモードを示す情報を信号のレシーバに送信するための手段を提供するハードウェア構成要素を含んでもよく、ならびに/あるいはそのような手段を提供する様々なアルゴリズムを実行してもよい。   In some configurations, the CP circuit 321 may include a hardware component that provides a means for retrieving a value for changing the nominal CP length using a selected precoder mode, and Various algorithms that provide such means may be implemented. In some configurations, the communication circuit 322 may include hardware components that provide a means for transmitting information indicating the changed CP length to a receiver of the signal after changing the CP length, and Various algorithms that provide such means may be implemented. In some configurations, the communication circuit 322 may include a hardware component that provides a means for transmitting information indicative of the selected precoder mode to a receiver of the signal after selecting the precoder mode. And / or various algorithms providing such means may be implemented.

プリコーダモードを選択するための手段は、本明細書においてより詳細に説明する様々な態様のうちの任意の1つまたは複数に従って構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、信号のレシーバがCP長の変更を要求しているかどうかを示すフィードバック情報を信号のレシーバから受信し、フィードバック情報に基づいてプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最小相対遅延拡散をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対遅延拡散圧縮をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対ビームフォーミング利得をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダモードを選択するための手段は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対スループットをもたらすプリコーダモードを選択するように構成されてもよい。   The means for selecting a precoder mode may be configured according to any one or more of the various aspects described in more detail herein. In some configurations, the means for selecting a precoder mode receives feedback information from the signal receiver indicating whether the signal receiver is requesting a change in CP length and based on the feedback information It may be configured to select a mode. In some configurations, the means for selecting the precoder mode is adapted to receive a reference signal indicative of the state of the communication channel and to select a precoder mode that provides a minimum relative delay spread based on the received reference signal. It may be configured. In some configurations, the means for selecting a precoder mode receives a reference signal indicative of the state of the communication channel and selects a precoder mode that provides maximum relative delay spread compression based on the received reference signal. May be configured. In some configurations, the means for selecting the precoder mode receives a reference signal indicative of the state of the communication channel and selects a precoder mode that provides a maximum relative beamforming gain based on the received reference signal. May be configured. In some configurations, the means for selecting a precoder mode is configured to receive a reference signal indicative of a state of the communication channel and select a precoder mode that provides maximum relative throughput based on the received reference signal. May be.

上記の説明は、従属エンティティ104のプロセッサ304の非限定的な例を示す。上記では様々な回路320、321、322について説明したが、当業者には、プロセッサ304が、上述の回路320、321、322への追加および/または代替である様々な他の回路323も含んでもよいことが理解されよう。そのような他の回路323は、本明細書において説明した機能、方法、プロセス、特徴、および/または態様のうちの任意の1つまたは複数を実行するための手段を提供してもよい。   The above description illustrates a non-limiting example of the processor 304 of the dependent entity 104. While various circuits 320, 321, and 322 have been described above, those skilled in the art will appreciate that the processor 304 may include various other circuits 323 that are additions and / or alternatives to the circuits 320, 321, and 322 described above. It will be understood that it is good. Such other circuitry 323 may provide a means for performing any one or more of the functions, methods, processes, features, and / or aspects described herein.

コンピュータ可読媒体306は、プリコーダ命令340を含んでもよい。プリコーダ命令340は、送信のためのプリコーダモードを選択するように構成されたコンピュータ実行可能命令を含んでもよい。コンピュータ可読媒体306はまた、CP命令341を含んでもよい。CP命令341は、選択されたプリコーダモードに基づいてCP長を変更するように構成されたコンピュータ実行可能命令を含んでもよい。コンピュータ可読媒体306はまた、通信命令342を含んでもよい。通信命令342は、変更されたCP長を含む信号を送信するように構成されたコンピュータ実行可能命令を含んでもよい。   Computer readable medium 306 may include precoder instructions 340. Precoder instructions 340 may include computer-executable instructions configured to select a precoder mode for transmission. Computer readable medium 306 may also include CP instructions 341. CP instructions 341 may include computer-executable instructions configured to change the CP length based on the selected precoder mode. The computer readable medium 306 may also include communication instructions 342. Communication instructions 342 may include computer-executable instructions configured to send a signal that includes the changed CP length.

いくつかの構成では、CP命令341はまた、選択されたプリコーダモードを使用して公称CP長を変更するための値を検索するように構成されたコンピュータ実行可能命令を含んでもよい。いくつかの構成では、通信命令342はまた、CP長を変更した後で、変更されたCP長を示す情報を信号のレシーバに送信するように構成されたコンピュータ実行可能命令を含んでもよい。いくつかの構成では、通信命令342はまた、プリコーダモードを選択した後で、選択されたプリコーダモードを示す情報を信号のレシーバに送信するように構成されたコンピュータ実行可能命令を含んでもよい。   In some configurations, the CP instructions 341 may also include computer-executable instructions configured to retrieve a value for changing the nominal CP length using the selected precoder mode. In some configurations, the communication instructions 342 may also include computer-executable instructions configured to send information indicating the changed CP length to the receiver of the signal after changing the CP length. In some configurations, the communication instructions 342 may also include computer-executable instructions configured to send information indicating the selected precoder mode to a receiver of the signal after selecting the precoder mode. .

プリコーダ命令340は、本明細書においてより詳細に説明する様々な態様のうちの任意の1つまたは複数に従って構成されたコンピュータ実行可能命令を含んでもよい。いくつかの構成では、プリコーダモードを選択するように構成されたプリコーダ命令340は、信号のレシーバがCP長の変更を要求しているかどうかを示すフィードバック情報を信号のレシーバから受信し、フィードバック情報に基づいてプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令340は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最小相対遅延拡散をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令340は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対遅延拡散圧縮をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令340は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対ビームフォーミング利得をもたらすプリコーダモードを選択するように構成されてもよい。いくつかの構成では、プリコーダ命令340は、通信チャネルの状態を示す基準信号を受信し、受信された基準信号に基づく最大相対スループットをもたらすプリコーダモードを選択するように構成されてもよい。   Precoder instructions 340 may include computer-executable instructions configured according to any one or more of the various aspects described in more detail herein. In some configurations, a precoder instruction 340 configured to select a precoder mode receives feedback information from the receiver of the signal indicating whether the receiver of the signal requests a change in CP length, and the feedback information May be configured to select a precoder mode based on In some configurations, the precoder instruction 340 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that results in a minimum relative delay spread based on the received reference signal. In some configurations, the precoder instruction 340 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that provides maximum relative delay spread compression based on the received reference signal. . In some configurations, the precoder instruction 340 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that provides a maximum relative beamforming gain based on the received reference signal. . In some configurations, the precoder instruction 340 may be configured to receive a reference signal indicative of the state of the communication channel and select a precoder mode that provides maximum relative throughput based on the received reference signal.

上記の説明は、従属エンティティ104のコンピュータ可読媒体306の非限定的な例を示す。上記では様々なコンピュータ実行可能命令340、341、342について説明したが、当業者には、コンピュータ可読媒体306が、上述のコンピュータ実行可能命令340、341、342への追加および/または代替である様々な他のコンピュータ実行可能命令343も含んでもよいことが理解されよう。そのような他のコンピュータ実行可能命令343は、本明細書において説明した機能、方法、プロセス、特徴、および/または態様のうちの任意の1つまたは複数向けに構成されてもよい。   The above description illustrates a non-limiting example of a computer readable medium 306 of a dependent entity 104. While various computer-executable instructions 340, 341, 342 have been described above, those skilled in the art will appreciate that various computer-readable media 306 are additions and / or alternatives to the computer-executable instructions 340, 341, 342 described above. It will be appreciated that other computer-executable instructions 343 may also be included. Such other computer-executable instructions 343 may be configured for any one or more of the functions, methods, processes, features, and / or aspects described herein.

メモリ314は、様々なメモリモジュールを含んでもよい。メモリモジュールは、様々な値および/または情報を記憶し、プロセッサ304またはその回路320、321、322、323のいずれかによってそれらの値および/または情報を読み取らせるように構成されてもよい。メモリモジュールは、様々な値および/または情報を記憶し、コンピュータ可読媒体306に含まれるコンピュータ実行可能コード、またはその命令340、341、342、343のいずれかの実行時にそれらの値および/または情報を読み取らせるように構成されてもよい。メモリ314は、プリコーダ情報330を含んでもよい。プリコーダ情報330は、本明細書においてより詳細に説明する様々な態様のうちの1つまたは複数によるプリコーダまたはプリコーダモードに関係する様々なタイプ、量、設定、構成、および/または形式の情報を含んでもよい。メモリ314はまた、CP情報331を含んでもよい。CP情報331は、本明細書においてより詳細に説明するようにCPに関係する様々なタイプ、量、設定、構成、および/または形式の情報を含んでもよい。上記ではメモリ314の様々なタイプのデータについて説明したが、当業者には、メモリ314が、上述の情報330、331への追加および/または代替である様々な他のデータを含んでもよいことが理解されよう。そのような他のデータは、本明細書に記載の機能、方法、プロセス、特徴、および/または態様のうちの任意の1つまたは複数と関連付けされてもよい。   The memory 314 may include various memory modules. The memory module may be configured to store various values and / or information and have the values and / or information read by the processor 304 or any of its circuits 320, 321, 322, 323. The memory module stores various values and / or information, and those values and / or information when executing any of the computer-executable code included in the computer-readable medium 306 or its instructions 340, 341, 342, 343. May be configured to be read. Memory 314 may include precoder information 330. Precoder information 330 includes various types, quantities, settings, configurations, and / or forms of information related to a precoder or precoder mode according to one or more of the various aspects described in more detail herein. May be included. The memory 314 may also include CP information 331. The CP information 331 may include various types, quantities, settings, configurations, and / or types of information related to the CP as described in more detail herein. While various types of data in the memory 314 have been described above, those skilled in the art will appreciate that the memory 314 may include various other data that are additions and / or alternatives to the information 330, 331 described above. It will be understood. Such other data may be associated with any one or more of the functions, methods, processes, features, and / or aspects described herein.

当業者には、従属エンティティ104が、本開示の範囲から逸脱することなく代替および/または追加の特徴を含んでもよいことが理解されよう。本開示の様々な態様によれば、要素、または要素の任意の一部分、または要素の任意の組合せが、1つまたは複数のプロセッサ304を含む処理システムとともに実装されてもよい。1つまたは複数のプロセッサ304の例には、マイクロプロセッサ、マイクロコントローラ、DSP、FPGA、PLD、ステートマシン、ゲート論理、ディスクリートハードウェア回路、および本開示全体にわたって説明する様々な機能を実施するように構成された他の適切なハードウェアが含まれる。処理システムは、バス316およびバスインターフェース308によって概略的に表されるバスアーキテクチャとともに実装されてもよい。バス316は、処理システムの特定の適用例および全体的な設計制約に応じて、任意の数の相互接続するバスおよびブリッジを含んでもよい。バス316は、1つまたは複数のプロセッサ304、メモリ314、およびコンピュータ可読媒体306を含む様々な回路を互いにリンクしてもよい。バス316は、様々な他の回路、たとえばタイミングソース、周辺機器、電圧調整器、および電力管理回路をリンクしてもよい。   Those skilled in the art will appreciate that dependent entities 104 may include alternative and / or additional features without departing from the scope of the present disclosure. In accordance with various aspects of the present disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system that includes one or more processors 304. Examples of one or more processors 304 include a microprocessor, microcontroller, DSP, FPGA, PLD, state machine, gate logic, discrete hardware circuitry, and various functions described throughout this disclosure. Other suitable hardware configured is included. The processing system may be implemented with a bus architecture schematically represented by bus 316 and bus interface 308. Bus 316 may include any number of interconnecting buses and bridges depending on the particular application of the processing system and the overall design constraints. Bus 316 may link various circuits including one or more processors 304, memory 314, and computer-readable medium 306 together. Bus 316 may link various other circuits, such as timing sources, peripherals, voltage regulators, and power management circuits.

1つまたは複数のプロセッサ304は、バス316の管理、およびコンピュータ可読媒体306に記憶されたソフトウェアの実行を含む全般的な処理に対して責任を負ってもよい。ソフトウェアは、1つまたは複数のプロセッサ304によって実行されたときに、任意の1つまたは複数の装置について以下で説明する様々な機能を処理システムに実行させる。コンピュータ可読媒体306はまた、ソフトウェアを実行するときに1つまたは複数のプロセッサ304によって操作されるデータを記憶するために使用されてもよい。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはその他の名称のうちのいずれで呼ばれるかにかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、プロシージャ、関数などを意味するように広く解釈されるものとする。ソフトウェアは、コンピュータ可読媒体306上に存在してもよい。   One or more processors 304 may be responsible for general processing, including management of bus 316 and execution of software stored on computer readable medium 306. The software, when executed by one or more processors 304, causes the processing system to perform various functions described below for any one or more devices. The computer-readable medium 306 may also be used for storing data that is manipulated by one or more processors 304 when executing software. Software, whether called by software, firmware, middleware, microcode, hardware description language, or other name, instructions, instruction set, code, code segment, program code, program, subprogram, It shall be interpreted broadly to mean software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, and the like. The software may reside on computer readable media 306.

コンピュータ可読媒体306は、非一時的コンピュータ可読媒体であってもよい。非一時的コンピュータ可読媒体には、例として、磁気ストレージデバイス(たとえば、ハードディスク、フロッピー(登録商標)ディスク、磁気ストリップ)、光ディスク(たとえば、CDまたはDVD)、スマートカード、フラッシュメモリデバイス(たとえば、カード、スティック、またはキードライブ)、RAM、ROM、PROM、EPROM、EEPROM、レジスタ、リムーバブルディスク、ならびに、コンピュータによってアクセスされ読み取られる場合があるソフトウェアおよび/または命令を記憶するための任意の他の適切な媒体が含まれる。コンピュータ可読媒体306はまた、例として、搬送波、伝送線路、ならびにコンピュータによってアクセスされ読み取られる場合がある、ソフトウェアおよび/または命令を送信するための任意の他の適切な媒体を含んでもよい。コンピュータ可読媒体306は、処理システム内に存在してもよく、処理システムの外部に存在してもよく、または処理システムを含む複数のエンティティにわたって分散されてもよい。コンピュータ可読媒体306は、コンピュータプログラム製品内で具現化されてもよい。限定ではなく例として、コンピュータプログラム製品は、パッケージング材料内にコンピュータ可読媒体を含んでもよい。当業者には、特定の適用例および全体的なシステムに課された全体的な設計制約に応じて、本開示全体にわたって提示される上述の機能を最適に実施する方法が認識されよう。   The computer readable medium 306 may be a non-transitory computer readable medium. Non-transitory computer readable media include, by way of example, magnetic storage devices (e.g., hard disks, floppy disks, magnetic strips), optical disks (e.g., CD or DVD), smart cards, flash memory devices (e.g., cards Stick, or key drive), RAM, ROM, PROM, EPROM, EEPROM, registers, removable disks, and any other suitable for storing software and / or instructions that may be accessed and read by a computer Media included. The computer-readable medium 306 may also include, by way of example, carrier waves, transmission lines, and any other suitable medium for transmitting software and / or instructions that may be accessed and read by a computer. The computer readable medium 306 may reside within the processing system, may be external to the processing system, or may be distributed across multiple entities that include the processing system. The computer readable medium 306 may be embodied within a computer program product. By way of example, and not limitation, a computer program product may include a computer-readable medium in packaging material. Those skilled in the art will recognize how to best perform the above-described functions presented throughout this disclosure, depending on the particular application and the overall design constraints imposed on the overall system.

図4は、本開示の態様による、アクセスネットワークにおいて従属エンティティ104と通信するスケジューリングエンティティ102を示す図400を示す。DLでは、コアネットワークからの上位レイヤパケットが、コントローラ/プロセッサ475に供給される。コントローラ/プロセッサ475は、L2レイヤの機能を実現する。DLでは、コントローラ/プロセッサ475は、ヘッダ圧縮、暗号化、パケットのセグメント化および並べ替え、論理チャネルとトランスポートチャネルとの間の多重化、ならびに様々な優先度メトリックに基づく従属エンティティ104への無線リソース割振りを行う。コントローラ/プロセッサ475は、HARQ動作、失われたパケットの再送、従属エンティティ104へのシグナリングに対する責任も負う。   FIG. 4 shows a diagram 400 illustrating a scheduling entity 102 communicating with subordinate entities 104 in an access network according to aspects of this disclosure. In DL, the upper layer packet from the core network is supplied to the controller / processor 475. The controller / processor 475 implements the L2 layer function. In DL, the controller / processor 475 enables header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio to dependent entities 104 based on various priority metrics. Allocate resources. Controller / processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to subordinate entity 104.

送信(TX)プロセッサ416は、L1レイヤ(すなわち、物理レイヤ)に関する種々の信号処理機能を実現する。信号処理機能には、従属エンティティ104における前方誤り訂正(FEC)を促進するためのコーディングおよびインターリービングならびに様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、M直交振幅変調(M-QAM))に基づく信号コンステレーションへのマッピングが含まれる。次いで、コーディングされ変調されたシンボルが、並列ストリームに分割される。次いで、各ストリームは、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域において基準信号(たとえば、パイロット)と多重化され、次いで、逆高速フーリエ変換(IFFT)を使用して一緒に結合されて、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成する。OFDMストリームは、空間的にプリコーディングされて、複数の空間ストリームを生成する。チャネル推定器474からのチャネル推定値が、コーディングおよび変調の方式を決定するために使用されるとともに、空間処理のために使用される場合がある。チャネル推定値は、従属エンティティ104によって送信された基準信号および/またはチャネル状態フィードバックから導出されてもよい。次いで、各空間ストリームは、別個のトランスミッタ418TXを介して異なるアンテナ420に供給されてもよい。各トランスミッタ418TXは、送信用のそれぞれの空間ストリームを用いてRFキャリアを変調してもよい。   A transmit (TX) processor 416 implements various signal processing functions for the L1 layer (ie, physical layer). Signal processing functions include coding and interleaving to facilitate forward error correction (FEC) at the dependent entity 104 and various modulation schemes (e.g., two phase shift keying (BPSK), four phase shift keying (QPSK), M Mapping to signal constellations based on phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) is included. The coded and modulated symbols are then divided into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time domain and / or frequency domain, and then combined together using an inverse fast Fourier transform (IFFT). A physical channel carrying the time-domain OFDM symbol stream. The OFDM stream is spatially precoded to generate multiple spatial streams. The channel estimates from channel estimator 474 are used to determine coding and modulation schemes and may be used for spatial processing. The channel estimate may be derived from a reference signal and / or channel state feedback transmitted by the dependent entity 104. Each spatial stream may then be fed to a different antenna 420 via a separate transmitter 418TX. Each transmitter 418TX may modulate an RF carrier with a respective spatial stream for transmission.

各レシーバ418RXは、様々なタイプ、方式、構成、および/または変調のワイヤレス信号を受信するように構成されてもよい。RXプロセッサ470は、レシーバ418RXによって受信される任意のUL信号を受信し、復号し、復調し、ならびに/あるいはその他の方法で処理するように構成されてもよい。いくつかの例では、UL信号は、直交周波数分割多元接続(OFDMA)、すなわち、直交周波数分割多重(OFDM)と呼ばれる変調方式のマルチユーザバージョンに適合される。いくつかの例では、UL信号は、シングルキャリア周波数分割多元接続(SC-FDMA)に適合される。そのような信号は、いくつかの例では共存する場合もある。言い換えれば、RXプロセッサ470およびレシーバ418RXは、OFDMAおよびSC-FDMAにおいて共存する場合がある波形を使用してUL通信を実行してもよい。   Each receiver 418RX may be configured to receive wireless signals of various types, schemes, configurations, and / or modulations. RX processor 470 may be configured to receive, decode, demodulate, and / or otherwise process any UL signal received by receiver 418RX. In some examples, UL signals are adapted to a multi-user version of a modulation scheme called orthogonal frequency division multiple access (OFDMA), or orthogonal frequency division multiplexing (OFDM). In some examples, the UL signal is adapted for single carrier frequency division multiple access (SC-FDMA). Such signals may coexist in some examples. In other words, RX processor 470 and receiver 418RX may perform UL communication using waveforms that may co-exist in OFDMA and SC-FDMA.

従属エンティティ104において、各レシーバ454RXは、そのそれぞれのアンテナ452を介して信号を受信する。各レシーバ454RXは、RFキャリア上に変調されている情報を復元し、その情報を受信(RX)プロセッサ456に供給する。RXプロセッサ456は、L1レイヤの種々の信号処理機能を実施する。RXプロセッサ456は、従属エンティティ104を宛先とする任意の空間ストリームを復元するために、情報に対して空間処理を実行してもよい。複数の空間ストリームが従属エンティティ104を宛先とする場合、それらの空間ストリームは、RXプロセッサ456によって単一のOFDMシンボルストリームとして組み合わされてもよい。次いで、RXプロセッサ456は、高速フーリエ変換(FFT)を使用して、OFDMシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号のサブキャリアごとに別個のOFDMシンボルストリームを備える。各サブキャリア上のシンボル、および基準信号が、スケジューリングエンティティ102によって送信された最も可能性の高い信号コンステレーションポイントを判定することによって復元され復調される。これらの軟判定は、チャネル推定器458によって計算されたチャネル推定値に基づいてもよい。次いで、軟判定は復号されデインタリーブされて、物理チャネル上でスケジューリングエンティティ102によって最初に送信されたデータおよび制御信号を復元する。次いで、データ信号および制御信号は、コントローラ/プロセッサ459に供給される。   In the dependent entity 104, each receiver 454RX receives a signal via its respective antenna 452. Each receiver 454RX recovers the information modulated on the RF carrier and provides the information to a receive (RX) processor 456. The RX processor 456 performs various signal processing functions of the L1 layer. RX processor 456 may perform spatial processing on the information to recover any spatial stream destined for subordinate entity 104. If multiple spatial streams are destined for the dependent entity 104, those spatial streams may be combined by the RX processor 456 as a single OFDM symbol stream. RX processor 456 then transforms the OFDM symbol stream from the time domain to the frequency domain using a fast Fourier transform (FFT). The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier and the reference signal are recovered and demodulated by determining the most likely signal constellation point transmitted by the scheduling entity 102. These soft decisions may be based on channel estimates calculated by channel estimator 458. The soft decisions are then decoded and deinterleaved to recover the data and control signals originally transmitted by the scheduling entity 102 on the physical channel. The data and control signals are then provided to the controller / processor 459.

コントローラ/プロセッサ459はL2レイヤを実現する。コントローラ/プロセッサは、プログラムコードおよびデータを記憶するメモリ460に関連付けることができる。メモリ460は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ459は、コアネットワークからの上位レイヤパケットを復元するために、トランスポートチャネルと論理チャネルとの間の逆多重化、パケット再組立、解読、ヘッダ圧縮解除、制御信号処理を行う。次いで、上位レイヤパケットはデータシンク462に供給され、データシンク462はL2レイヤの上方のすべてのプロトコルレイヤを表す。様々な制御信号が、L3処理のためにデータシンク462に供給されてもよい。コントローラ/プロセッサ459はまた、HARQ動作をサポートするために、確認応答(ACK)および/または否定応答(NACK)のプロトコルを使用して誤り検出を行う責任を負う。   The controller / processor 459 implements the L2 layer. The controller / processor can be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer readable medium. In UL, the controller / processor 459 performs demultiplexing, packet reassembly, decoding, header decompression, and control signal processing between the transport and logical channels to recover higher layer packets from the core network. Do. The upper layer packet is then provided to the data sink 462, which represents all protocol layers above the L2 layer. Various control signals may be provided to the data sink 462 for L3 processing. The controller / processor 459 is also responsible for error detection using an acknowledgment (ACK) and / or negative acknowledgment (NACK) protocol to support HARQ operations.

ULでは、データソース467は、上位レイヤパケットをコントローラ/プロセッサ459に提供するために使用される。データソース467は、L2レイヤの上方のすべてのプロトコルレイヤを表す。コントローラ/プロセッサ459は、スケジューリングエンティティ102によるDL送信に関して説明した機能と同様に、ヘッダ圧縮、暗号化、パケットのセグメント化および並べ替え、ならびに、スケジューリングエンティティ102による無線リソース割振りに基づく論理チャネルとトランスポートチャネルとの間の多重化を行うことによって、ユーザプレーンおよび制御プレーンに関するL2レイヤを実装する。コントローラ/プロセッサ459は、HARQ動作、失われたパケットの再送、スケジューリングエンティティ102へのシグナリングに対する責任も負う。   In UL, data source 467 is used to provide upper layer packets to controller / processor 459. Data source 467 represents all protocol layers above the L2 layer. The controller / processor 459 is responsible for logical channels and transports based on header compression, encryption, packet segmentation and reordering, and radio resource allocation by the scheduling entity 102, as well as the functions described for DL transmission by the scheduling entity 102. Implement L2 layer for user plane and control plane by multiplexing with channels. Controller / processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to scheduling entity 102.

適切なコーディングおよび変調の方式を選択し、空間処理を容易にするために、スケジューリングエンティティ102によって送信された基準信号またはフィードバックからチャネル推定器458によって導出されたチャネル推定値が、TXプロセッサ468によって使用されてもよい。TXプロセッサ468によって生成された空間ストリームは、別個のトランスミッタ454TXを介して異なるアンテナ452に供給されてもよい。各トランスミッタ454TXは、送信用のそれぞれの空間ストリームを用いてRFキャリアを変調してもよい。   The channel estimate derived by the channel estimator 458 from the reference signal or feedback transmitted by the scheduling entity 102 is used by the TX processor 468 to select an appropriate coding and modulation scheme and facilitate spatial processing. May be. Spatial streams generated by TX processor 468 may be provided to different antennas 452 via separate transmitters 454TX. Each transmitter 454TX may modulate an RF carrier with a respective spatial stream for transmission.

各トランスミッタ454TXは、様々なタイプ、方式、構成、および/または変調のワイヤレス信号を送信するように構成されてもよい。TXプロセッサ468は、トランスミッタ454TXによって送信される任意のUL信号を生成し、符号化し、変調し、ならびに/あるいはその他の方法で生成するように構成されてもよい。いくつかの例では、UL信号はOFDMAに適合されてもよい。いくつかの例では、UL信号はSC-FDMAに適合されてもよい。そのような信号は、いくつかの例では共存する場合もある。言い換えれば、TXプロセッサ468およびトランスミッタ454TXは、OFDMAおよびSC-FDMAにおいて共存する波形を使用してUL通信を実行してもよい。   Each transmitter 454TX may be configured to transmit wireless signals of various types, schemes, configurations, and / or modulations. TX processor 468 may be configured to generate, encode, modulate, and / or otherwise generate any UL signal transmitted by transmitter 454TX. In some examples, the UL signal may be adapted to OFDMA. In some examples, the UL signal may be adapted for SC-FDMA. Such signals may coexist in some examples. In other words, TX processor 468 and transmitter 454TX may perform UL communication using waveforms that co-exist in OFDMA and SC-FDMA.

UL送信は、スケジューリングエンティティ102において、従属エンティティ104におけるレシーバ機能に関して説明した方法と同様の方法で処理される。各レシーバ418RXは、それのそれぞれのアンテナ420を通じて信号を受信する。各レシーバ418RXは、RFキャリア上に変調されている情報を復元し、その情報をRXプロセッサ470に供給する。RXプロセッサ470は、L1レイヤを実装してもよい。   The UL transmission is processed at the scheduling entity 102 in a manner similar to that described for the receiver function at the subordinate entity 104. Each receiver 418RX receives a signal through its respective antenna 420. Each receiver 418RX recovers the information modulated on the RF carrier and supplies the information to the RX processor 470. The RX processor 470 may implement the L1 layer.

コントローラ/プロセッサ475はL2レイヤを実現する。コントローラ/プロセッサ475は、プログラムコードおよびデータを記憶するメモリ476に関連付けることができる。メモリ476は、コンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ475が、従属エンティティ104からの上位レイヤパケットを復元するために、トランスポートチャネルと論理チャネルとの間の逆多重化、パケット再組立、解読、ヘッダ圧縮解除、制御信号処理を行う。コントローラ/プロセッサ475からの上位レイヤパケットは、コアネットワークに供給される場合がある。コントローラ/プロセッサ475は、HARQ動作をサポートするために、ACKおよび/またはNACKプロトコルを使用して誤り検出を行う責任も負う。   The controller / processor 475 implements the L2 layer. The controller / processor 475 can be associated with a memory 476 that stores program codes and data. Memory 476 may be referred to as a computer readable medium. In UL, the controller / processor 475 allows demultiplexing, packet reassembly, decoding, header decompression, control signal processing between transport and logical channels to recover higher layer packets from subordinate entities 104. I do. Upper layer packets from the controller / processor 475 may be supplied to the core network. The controller / processor 475 is also responsible for error detection using the ACK and / or NACK protocol to support HARQ operations.

図5は、本開示の態様によるマルチパス通信の一例を示す図500である。この例は、信号が、スケジューリングエンティティ102から従属エンティティ104まで伝搬する際にどのように複数の経路をとり得るかを示す。たとえば、経路Aは、スケジューリングエンティティ102から従属エンティティ104までの直接経路を表す。送信される信号はまた、間接経路を介してスケジューリングエンティティ102から従属エンティティ104まで伝わってもよい。いくつかの経路は、従属エンティティ104に到達する前に様々な障害物502、504から反射される場合がある。一例として、経路Bは、信号の送信先を従属エンティティ104に変える障害物502から信号が反射する経路を表す。別の例として、経路Cは、信号の送信先を従属エンティティ104に変える別の障害物504から信号が反射する経路を表す。図5に示す例では、経路Cは経路Bよりも長い。したがって、経路B内を伝搬する信号は、経路C内を伝搬する信号よりも前に従属エンティティ104に到着する。経路A内を伝搬する信号は、経路Bおよび経路C内を伝搬する両方の信号よりも前に到着する。 FIG. 5 is a diagram 500 illustrating an example of multipath communication in accordance with aspects of the present disclosure. This example shows how a signal can take multiple paths as it propagates from a scheduling entity 102 to a dependent entity 104. For example, path A represents a direct path from scheduling entity 102 to subordinate entity 104. The transmitted signal may also travel from the scheduling entity 102 to the dependent entity 104 via an indirect path. Some paths may be reflected from various obstacles 502, 504 before reaching the subordinate entity 104. As an example, the path B represents a path where the signal is reflected from the obstacle 502 that changes the transmission destination of the signal to the subordinate entity 104. As another example, path C represents a path where the signal reflects from another obstacle 504 that redirects the signal to the subordinate entity 104. In the example shown in FIG. 5, the path C is longer than the path B. Thus, a signal propagating in path B arrives at the dependent entity 104 before a signal propagating in path C. A signal propagating in path A arrives before both signals propagating in path B and path C.

図6は、本開示の態様によるマルチパス通信に対応するタイムラインの一例を示す図600である。図6は、経路A内を伝搬する信号が経路B内を伝搬する信号と比較してより早い時間に到着することを示す。図6はまた、経路B内を伝搬する信号が経路C内を伝搬する信号と比較してより早い時間に到着することを示す。図6に示す信号は、各シンボルがCPを有する場合があることを示す。一般に、CPは、シンボルの前に位置するそのシンボルの繰返し部分を指す。言い換えれば、シンボルの前にCPが位置し、そのCPは、そのシンボルの一部(たとえば、終了部分)を繰り返す。たとえば、図6に示すように、CP1はシンボル1の終了部分を繰り返す。通常、CPはレシーバ(たとえば、従属エンティティ104)によって破棄されるが、CPは様々な目的を有する。CPの多数の目的のうちの1つは、シンボル間干渉を軽減するためのガード間隔として機能することである。たとえば、CP2はシンボル1とシンボル2との間の干渉を軽減する場合がある。 FIG. 6 is a diagram 600 illustrating an example of a timeline corresponding to multipath communication according to an aspect of the present disclosure. FIG. 6 shows that the signal propagating in path A arrives earlier than the signal propagating in path B. FIG. 6 also shows that the signal propagating in path B arrives earlier than the signal propagating in path C. The signal shown in FIG. 6 indicates that each symbol may have a CP. In general, CP refers to the repeated portion of a symbol that precedes the symbol. In other words, a CP is positioned in front of a symbol, and the CP repeats a part of the symbol (for example, an end portion). For example, as shown in FIG. 6, CP 1 repeats the end portion of symbol 1 . Usually, the CP is discarded by the receiver (eg, the dependent entity 104), but the CP has various purposes. One of the many purposes of CP is to function as a guard interval to mitigate intersymbol interference. For example, CP 2 may mitigate interference between symbol 1 and symbol 2 .

CPは、本開示の範囲から逸脱することなく、様々な長さを有してもよい。いくつかの既存のシステムでは、CP長は、物理チャネルのリソースの5%〜10%を利用してもよい。当業者には、本明細書における「長さ」のあらゆる参照が、本開示の範囲から逸脱することなく持続時間、時間、期間、ビット、およびその他の適切な概念などの関連する概念を指す場合もあることが理解されよう。したがって、本明細書における「CP長」のあらゆる参照は、本開示の範囲から逸脱することなくCPオーバーヘッド、CP持続時間、CP時間、CP期間、CPビット、およびその他の適切なCP関連態様を指す場合もある。   The CP may have various lengths without departing from the scope of the present disclosure. In some existing systems, the CP length may utilize 5% to 10% of the physical channel resources. For those skilled in the art, any reference to “length” herein refers to related concepts such as duration, time, duration, bits, and other suitable concepts without departing from the scope of this disclosure. It will be understood that there are also. Thus, any reference herein to “CP length” refers to CP overhead, CP duration, CP time, CP duration, CP bits, and other suitable CP related aspects without departing from the scope of this disclosure. In some cases.

一般に、プリコーディングを行わない場合、信号がとる経路の数が増えるにつれて、CPに適切な長さも大きくなる。この一般的な関係の1つの理由は、特定のシンボル(たとえば、シンボル1)のエコー(たとえば、経路Bおよび経路C内を伝搬する信号)からのエネルギーが、別のシンボル(たとえば、シンボル2)を受信する前に散逸するにはより多くの時間が必要であることである。そうでない場合、先行するシンボル(たとえば、シンボル1)からのエコーが現在のシンボル(たとえば、シンボル2)に干渉する場合がある。したがって、いくつかの状況では、経路の数が増えるにつれて相対的に大きいCP長が適切になることがある。 In general, when precoding is not performed, the length suitable for CP increases as the number of paths taken by the signal increases. One reason for this general relationship is that the energy from an echo (e.g., a signal propagating in path B and path C ) of a particular symbol (e.g., symbol 1 ) is transferred to another symbol (e.g., symbol 2 ) Is that it takes more time to dissipate before receiving. Otherwise, the echo from the preceding symbol (eg, symbol 1 ) may interfere with the current symbol (eg, symbol 2 ). Thus, in some situations, a relatively large CP length may be appropriate as the number of paths increases.

しかし、不必要に長すぎるCP長はシステム性能に悪影響を及ぼす(たとえば、スループットを低下させる)場合がある。上述のように、CPは通常、レシーバ(たとえば、従属エンティティ104)において破棄される。それにもかかわらず、CPは、他の場合にレシーバ(たとえば、従属エンティティ104)において破棄されない情報を伝達するのに利用されることがある通信リソースを利用する。したがって、CPはワイヤレス通信の多くの実装形態において利用されるが、CPに適切な長さは、様々な状況の下で異なる場合がある。 However, an unnecessarily long CP length can adversely affect system performance (eg, reduce throughput). As described above, the CP is typically discarded at the receiver (eg, dependent entity 104). Nevertheless, the CP utilizes communication resources that may be utilized to convey information that would otherwise not be discarded at the receiver (eg, dependent entity 104). Thus, although CP is utilized in many implementations of wireless communications, the appropriate length for CP may differ under various circumstances.

図7は、従属エンティティ104に信号が到着する時間の例を示す図700、750である。当業者には、図7に提示された例が、概略的な一般的な時間関係を示し、厳密な時間増分を示すようにスケーリングされていないことが理解されよう。第1の図700は、スケジューリングエンティティ102が送信のための拡張プリコーディングを実施しないときに経路A、経路B、および経路Cからの信号が従属エンティティ104に到着する時間の例を示す。 FIG. 7 is a diagram 700, 750 illustrating examples of times at which a signal arrives at the subordinate entity 104. Those skilled in the art will appreciate that the example presented in FIG. 7 shows a general general time relationship and is not scaled to show exact time increments. First diagram 700 shows an example of the time when signals from path A , path B , and path C arrive at subordinate entity 104 when scheduling entity 102 does not perform enhanced precoding for transmission.

一般に、プリコーディングはマルチアンテナデバイスによってワイヤレス通信に利用されてもよい。プリコーディングは、レシーバ(たとえば、従属エンティティ104)においてリンクスループットが最大になるように独立した適切な重みとともに送信アンテナから放出される複数のデータストリームを伴う場合がある。言い換えれば、プリコーディングは、場合によってはワイヤレス通信チャネルに関する情報または知識を使用して、情報ストリームに重み付けすることによって送信ダイバーシティを利用する。プリコーディングはビームフォーミングをサポートする場合がある。一般に、ビームフォーミングは指向性信号送信に使用される空間フィルタ処理技法を指す。言い換えれば、トランスミッタ(たとえば、スケジューリングエンティティ102)は、トランスミッタ(たとえば、スケジューリングエンティティ102)の様々なアンテナに様々な重みを加えてマルチパスを最小限に抑え、それによってレシーバ(従属エンティティ104)においてエコーが検出される持続時間を最短に抑え、したがって、その送信に適切なCP長が短くなる場合がある。ワイヤレス通信デバイスは、ワイヤレス通信に利用することができる多数のアンテナを有する場合があるので、拡張プリコーディング技法は、マルチパスを実質的に減らし、したがって、特定の送信に必要なCP長を最小限に抑える場合がある。いくつかの構成では、プリコーディングおよび/またはビームフォーミングは、トーンごとに適用される場合がある。言い換えれば、トーンごとのビームフォーミング/プリコーディングは、場合によっては(たとえば、大規模な多入力多出力(MIMO)通信システムにおいて)遅延拡散をさらに圧縮することがある。たとえば、CP長は、約50%短くなり、あるいは場合によってはそれよりもずっと短くなる場合がある。   In general, precoding may be utilized for wireless communication by multi-antenna devices. Precoding may involve multiple data streams emitted from transmit antennas with independent appropriate weights to maximize link throughput at a receiver (eg, dependent entity 104). In other words, precoding takes advantage of transmit diversity by weighting the information stream, possibly using information or knowledge about the wireless communication channel. Precoding may support beamforming. In general, beamforming refers to a spatial filtering technique used for directional signal transmission. In other words, the transmitter (e.g., scheduling entity 102) applies various weights to the various antennas of the transmitter (e.g., scheduling entity 102) to minimize multipath, thereby echoing at the receiver (subordinate entity 104). Is kept to a minimum, and thus the CP length appropriate for its transmission may be shortened. Because wireless communication devices may have multiple antennas that can be utilized for wireless communication, enhanced precoding techniques substantially reduce multipath and thus minimize the CP length required for a particular transmission. There is a case to suppress to. In some configurations, precoding and / or beamforming may be applied on a per tone basis. In other words, per tone beamforming / precoding may further compress the delay spread in some cases (eg, in large scale multiple input multiple output (MIMO) communication systems). For example, the CP length may be about 50% shorter or in some cases much shorter.

第1の図700は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されないときに従属エンティティ104に信号が到着する時間の例を示すが、第2の図750は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されるときに従属エンティティ104に信号が到着する時間の例を示す。2つの図700、750を比較すると、拡張プリコーディング技法は、従属エンティティ104において信号エコーが受信される時間量を減らす場合があることがわかる。たとえば、経路Bおよび経路C内の信号は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されるときには、時間T2およびT3に近い時間に到着するのではなく、時間T1に近い時間に到着する。言い換えれば、送信信号にプリコーディングを適用すると、マルチパスエコーのエコーのうちの多くが崩れて基本的に単一のエネルギーピークになる。 The first diagram 700 shows an example of the time that a signal arrives at the subordinate entity 104 when the extended precoding technique is not utilized by the scheduling entity 102, while the second diagram 750 shows the enhanced precoding technique by the scheduling entity 102. An example of the time when a signal arrives at the subordinate entity 104 when is used is shown. Comparing the two diagrams 700, 750, it can be seen that the enhanced precoding technique may reduce the amount of time a signal echo is received at the dependent entity 104. For example, signals in path B and path C arrive at a time close to time T 1 instead of arriving at a time close to times T 2 and T 3 when the extended precoding technique is utilized by scheduling entity 102 To do. In other words, when precoding is applied to the transmission signal, many of the echoes of the multipath echo collapse and basically become a single energy peak.

図8は、従属エンティティ104に信号が到着する時間のさらなる例を示す図800、850を示す。第1の図800は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されないときに従属エンティティ104に信号が到着する時間の例を示す。これに対して、第2の図850は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されるときに従属エンティティ104に信号が到着する時間の例を示す。2つの図800、850を比較すると、拡張プリコーディング技法は、従属エンティティ104において信号エコーが受信される持続時間を減らす場合があることがわかる。たとえば、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されるとき、送信信号のエコーからのエネルギーは、検出されるにしても、t+50〜t+150の期間において検出されるのではなく、t+50よりも前の期間において検出される。   FIG. 8 shows diagrams 800, 850 illustrating further examples of times at which signals arrive at the dependent entity 104. FIG. First diagram 800 shows an example of a time for a signal to arrive at dependent entity 104 when the extended precoding technique is not utilized by scheduling entity 102. In contrast, a second diagram 850 shows an example of the time at which a signal arrives at the dependent entity 104 when the extended precoding technique is utilized by the scheduling entity 102. Comparing the two diagrams 800, 850, it can be seen that the enhanced precoding technique may reduce the duration in which signal echoes are received at the dependent entity 104. For example, when extended precoding techniques are utilized by the scheduling entity 102, the energy from the echo of the transmitted signal, if detected, is not detected in the period t + 50 to t + 150, but t Detected in periods prior to +50.

いくつかの態様では、図800、850は電力遅延プロファイル(PDP)と呼ばれることがあり、これらのプロファイルの各々はチャネルインパルス応答の電力のプロットを含む場合がある。チャネル(たとえば、広帯域チャネル)はいくつか(たとえば、L個)の(非ゼロ)マルチパス成分を有する場合があり、これらのマルチパス成分は「タップ」または「チップ」と呼ばれることがある。たとえば、図8の第1の図800では、9つのマルチパス成分(たとえば、タップまたはチップ)が示されており、各マルチパス成分が異なる振幅を有している。これらのマルチパス成分は、信号が(たとえば、スケジューリングエンティティ102における)NT個の送信アンテナから(たとえば、従属エンティティ104における)NR個の受信アンテナまで伝わるかまたは伝搬したそれぞれに異なる経路に対応してもよい。 In some aspects, the diagrams 800, 850 may be referred to as power delay profiles (PDPs), each of which may include a plot of the power of the channel impulse response. A channel (eg, a wideband channel) may have several (eg, L) (non-zero) multipath components, which may be referred to as “taps” or “chips”. For example, in the first diagram 800 of FIG. 8, nine multipath components (eg, taps or chips) are shown, with each multipath component having a different amplitude. These multipath components correspond to different paths through which the signal traveled or propagated from N T transmit antennas (e.g. at scheduling entity 102) to N R receive antennas (e.g. at subordinate entity 104) May be.

数学的な観点から、これらの各マルチパス成分(たとえば、タップまたはチップ)はhl1, hl2, . . . , hlLと呼ばれることがあり、この場合、hiは、i番目のマルチパス成分(たとえば、タップまたはチップ)における各送信アンテナから各受信アンテナアレイまでのマルチパス成分(たとえば、タップまたはチップ)に対応するNT個の複素数を有するベクトルを指し、マルチパス成分(たとえば、タップまたはチップ)の位置のインデックスは、 From a mathematical point of view, each of these multi-path components (e.g., tap or chip) h l1, h l2,.. ., Sometimes referred to as h lL, in this case, h i is, i-th multipath Refers to a vector with NT complex numbers corresponding to multipath components (e.g. taps or chips) from each transmit antenna to each receive antenna array in the component (e.g. taps or chips), and multipath components (e.g. taps) (Or chip) position index is

と表される場合がある。チャネルの周波数領域表現は次式のように表される場合がある。 May be represented. The frequency domain representation of the channel may be expressed as:

いくつかの態様では、HKは、送信受信(TX-RX)アンテナ対ごとのk番目のサブキャリアのチャネル推定値に対応するNT個の複素数を有するベクトルを表す。 In some embodiments, H K represents a vector with N T complex corresponding to the channel estimation value of the k-th subcarrier of each transmission received (TX-RX) antenna pair.

のサブセットはCと呼ばれる場合がある。すなわち、Cは関係するマルチパス成分のインデックスのサブセットを指す場合がある。いくつかの状況では、Cの選択がプリコーダ設計に影響を与えることがある。たとえば、Cは、1つまたは複数の性能メトリックが最適化または最大化されるように選択されてもよい。本開示では、相対遅延拡散、相対遅延拡散圧縮、相対ビームフォーミング利得、相対スループット、および他の多くの性能メトリックなどの性能メトリックの多くの非限定的な例について説明する。 A subset of may be called C. That is, C may refer to a subset of related multipath component indices. In some situations, the choice of C can affect precoder design. For example, C may be selected such that one or more performance metrics are optimized or maximized. This disclosure describes many non-limiting examples of performance metrics such as relative delay spread, relative delay spread compression, relative beamforming gain, relative throughput, and many other performance metrics.

チャネルの周波数領域表現は、Cを使用して次式のように表される場合がある。   The frequency domain representation of the channel may be expressed as follows using C:

上式は、HKの「疎な」表現と呼ばれることがある。本開示のいくつかの態様によれば、トランスミッタ(たとえば、スケジューリングエンティティ102)は次式に従ってサブキャリアkごとのプリコーダを設計してもよい。 The above equation, is sometimes referred to as a "sparse" representation of H K. According to some aspects of the present disclosure, a transmitter (eg, scheduling entity 102) may design a precoder for each subcarrier k according to the following equation:

上式において、Pは、(いくつかの送信電力制約条件を満たすように正規化される場合がある)総電力を指し、*は、次式の共役転置演算を指す。 In the above equation, P refers to the total power (which may be normalized to satisfy some transmit power constraint conditions), and * refers to the conjugate transpose operation of

そのようなプリコーダを適用した後、サブキャリアごとのチャネルは、Gk=Hk Pkのように表される場合がある。いくつかの態様では、Gkは、トランスミッタ(たとえば、スケジューリングエンティティ102)が各サブキャリアにおいてプリコーダを適用した後レシーバ(たとえば、従属エンティティ104)が観測することがある有効チャネルを表す場合がある。時間領域では、そのようなチャネルは次式のように表される場合がある。 After applying such a precoder, the channel for each subcarrier may be expressed as G k = H k P k . In some aspects, G k may represent an effective channel that a receiver (eg, dependent entity 104) may observe after a transmitter (eg, scheduling entity 102) applies a precoder on each subcarrier. In the time domain, such a channel may be expressed as:

上式において、Nは離散フーリエ変換(DFT)サイズを指し、"mod"はモジュロ演算を指す。そのようなプリコーダを適用した後のPDPは、|gl|2によって定義される場合があり、この数式はプリコーディング後の有効チャネルと呼ばれることもある。 In the above equation, N refers to the discrete Fourier transform (DFT) size, and “mod” refers to the modulo operation. The PDP after applying such a precoder may be defined by | g l | 2 and this formula may be referred to as the effective channel after precoding.

図9は、スケジューリングエンティティ102によって送信される様々な信号に関する最大遅延拡散の例を示す図900、950を示す。本明細書で使用する「遅延拡散」は、通信チャネルのマルチパスに関する測度である。遅延拡散は、最も早い有意のマルチパス信号(たとえば、経路A内を伝搬する信号)の到着時間と最も遅い有意のマルチパス信号(たとえば、経路C内を伝搬する信号)の到着時間との間の差として解釈されてもよい。遅延拡散は、ワイヤレス通信チャネルの特徴付けにおいて使用されてもよい。 FIG. 9 shows diagrams 900 950 illustrating examples of maximum delay spread for various signals transmitted by the scheduling entity 102. As used herein, “delay spread” is a measure for multipath of a communication channel. Delay spread is between the arrival time of the earliest significant multipath signal (for example, a signal propagating in path A ) and the arrival time of the latest significant multipath signal (for example, a signal propagating in path C ). May be interpreted as a difference between Delay spread may be used in characterizing wireless communication channels.

本明細書で使用する遅延拡散の低減は、本開示の範囲から逸脱することなく「遅延拡散圧縮」と呼ばれることがある。そのような遅延拡散の低減(たとえば、遅延拡散圧縮)は、送信信号にプリコーディングを適用すると、マルチパスエコーのエコーのうちの多くが崩れて基本的に単一のエネルギーピークになることに起因して実現される場合がある。   As used herein, the reduction of delay spread may be referred to as “delay spread compression” without departing from the scope of this disclosure. Such delay spread reduction (e.g., delay spread compression) is due to the fact that when precoding is applied to the transmitted signal, many of the echoes of the multipath echo collapse and basically become a single energy peak. May be realized.

本明細書で使用する「最大遅延拡散」は、受信されたシンボルのエネルギーがシンボルの平均電力よりもある量だけ(たとえば、20デシベル(dB))低下するのに必要な持続時間または時間サンプル数を指す。言い換えれば、最大遅延拡散は、(シンボルが終了した後の)電力がシンボルの平均エネルギーよりもある量だけ(たとえば、-20dB)低くなるのにどれだけの時間が必要であるかの測度を指す場合がある。   As used herein, “maximum delay spread” is the number of durations or time samples required to reduce the received symbol energy by some amount (eg, 20 decibels (dB)) from the average power of the symbol. Point to. In other words, maximum delay spread refers to a measure of how long it takes for the power (after the symbol is finished) to be lower by some amount (eg, -20 dB) than the average energy of the symbol. There is a case.

第1の図900は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されないときの様々な最大遅延拡散の例を示す。これに対して、第2の図950は、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されるときの様々な最大遅延拡散の例を示す。2つの図900、950を比較すると、拡張プリコーディング技法が最大遅延拡散を低減させる場合があることがわかる。たとえば、n個のTXアンテナは、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されないときに最大遅延拡散が10x+500ナノ秒(xは任意の正の値を表す)になる場合があり、n個のTXアンテナは、スケジューリングエンティティ102によって拡張プリコーディング技法が利用されるときに最大遅延拡散がx+4ナノ秒になる場合がある。   First diagram 900 shows examples of various maximum delay spreads when extended precoding techniques are not utilized by scheduling entity 102. In contrast, a second diagram 950 shows examples of various maximum delay spreads when enhanced precoding techniques are utilized by the scheduling entity 102. Comparing the two diagrams 900, 950, it can be seen that enhanced precoding techniques may reduce maximum delay spread. For example, n TX antennas may have a maximum delay spread of 10x + 500 nanoseconds (x represents any positive value) when the extended precoding technique is not utilized by the scheduling entity 102, and n The TX antennas may have a maximum delay spread of x + 4 nanoseconds when extended precoding techniques are utilized by the scheduling entity 102.

図10は、プリコーダモードにおいて使用される経路の数の変更に関連する態様を示す図1000、1050を示す。一般に、プリコーダモードにおいて使用される経路の数は、プリコーダモードがそのアンテナによって送信される様々な信号に重み付けする際に考慮に入れる経路の数を指す。第1の図1000は、プリコーダモードにおいて使用される経路の数が2乗平均(RMS)遅延拡散にどのように影響を与える場合があるかを示す。一般に、RMS遅延拡散は、信号エコー(たとえば、反射)の遅延の標準偏差に対応する。たとえば、RMS遅延拡散は、信号エコー(たとえば、反射)の到着時間の可変性を示す場合がある。レシーバは、レシーバの信号/シンボルの受信をマルチパス送信の平均遅延拡散に整合させてもよい。しかし、レシーバは遅延拡散の可変性(たとえば、偏差)を考慮してもよい。言い換えれば、同じ平均遅延拡散が、信号エコー(たとえば、反射)の遅延可変性に応じて異なるRMS遅延拡散値を有してもよい。したがって、いくつかの状況では、RMS遅延拡散は、CP長の選択において使用される因子であってもよい。たとえば、レシーバは、信号エコー(たとえば、反射)における遅延のうちの特定の割合または比率を受け入れるCP長を選択してもよい。図10に示す第1の図1000において、RMS遅延拡散はナノ秒単位で測定される。   FIG. 10 shows diagrams 1000, 1050 illustrating aspects related to changing the number of paths used in the precoder mode. In general, the number of paths used in the precoder mode refers to the number of paths that the precoder mode takes into account when weighting the various signals transmitted by its antenna. The first diagram 1000 shows how the number of paths used in the precoder mode may affect the root mean square (RMS) delay spread. In general, RMS delay spread corresponds to the standard deviation of the delay of the signal echo (eg, reflection). For example, RMS delay spread may indicate variability in arrival times of signal echoes (eg, reflections). The receiver may match the receiver signal / symbol reception to the average delay spread of the multipath transmission. However, the receiver may take into account delay spread variability (eg, deviation). In other words, the same average delay spread may have different RMS delay spread values depending on the delay variability of the signal echo (eg, reflection). Thus, in some situations, RMS delay spread may be a factor used in CP length selection. For example, the receiver may select a CP length that accepts a particular percentage or rate of delay in the signal echo (eg, reflection). In the first diagram 1000 shown in FIG. 10, RMS delay spread is measured in nanoseconds.

第1の図1000は、その一部において、プリコーダモードにおいて使用される経路の数が増えるにつれてRMS遅延拡散が低減することを示している。たとえば、プリコーダモードにおいて使用される経路の数が1pから6pに増えると(pは任意の正の整数を表す)、RMS遅延拡散は約a+360から約a+40に低減する(aは任意の正の値を表す)。しかし、別の部分では、第1の図1000は、プリコーダモードにおいて使用される経路の数が増えていくときにRMS遅延拡散が比較的一定のままであるかあるいは場合によっては増大する場合があることを示している。たとえば、プリコーダモードにおいて使用される経路の数が6pから9pに増えるとき、RMS遅延拡散は比較的一定のままであり(約a+40)、その後増大する(約a+40から約a+80まで)。   The first diagram 1000 shows in part that the RMS delay spread decreases as the number of paths used in the precoder mode increases. For example, as the number of paths used in precoder mode increases from 1p to 6p (p represents any positive integer), RMS delay spread decreases from about a + 360 to about a + 40 (a is Represents any positive value). However, in another part, the first diagram 1000 shows that the RMS delay spread may remain relatively constant or may increase in some cases as the number of paths used in precoder mode increases. It shows that there is. For example, when the number of paths used in precoder mode increases from 6p to 9p, the RMS delay spread remains relatively constant (about a + 40) and then increases (about a + 40 to about a + Up to 80).

図10において、第2の図1050は、プリコーダモードにおいて使用される経路の数がビームフォーミング利得にどのように影響を与える場合があるかを示す。この例では、ビームフォーミング利得はデシベル単位で測定される。一般に、ビームフォーミング利得は、ワイヤレス送信の前に送信信号をプリコーディングする結果として実現されるエネルギー利得または電力利得を指す。第1に、この図1050は、プリコーダモードに含まれる経路の数が増えるにつれて主経路エネルギーが実質的に増大することを示す。第2に、この図1050は、プリコーダモードにおいて使用される経路の数が変化するときでもマルチパスエネルギーが比較的一定のままであることを示す。   In FIG. 10, a second diagram 1050 shows how the number of paths used in the precoder mode may affect the beamforming gain. In this example, the beamforming gain is measured in decibels. In general, beamforming gain refers to the energy gain or power gain that is achieved as a result of precoding the transmitted signal prior to wireless transmission. First, the diagram 1050 shows that the main path energy increases substantially as the number of paths included in the precoder mode increases. Second, the diagram 1050 shows that the multipath energy remains relatively constant even when the number of paths used in the precoder mode changes.

図11は、遅延拡散の顕著な低減をもたらす場合があるプリコーダモードが使用されるときの信号品質とスループットとの間の関係の例を示す図1100を示す。この関係は、システムのピークスループットに達するために一般に7pのCP長を必要とするチャネルに関する様々なCP長に関して示されている。この例では、スループットはメガビット毎秒(Mbps)単位で測定され、CP長はマイクロ秒単位で測定される。図11に示し本明細書において説明する「信号品質」は、キャリア対干渉ノイズ比(CINR)、信号対ノイズ比(SNR)、および/または信号品質の様々な他の適切な測度を指す場合がある。第1に、この図1100は、信号品質が比較的高いときにCP長が小さくなるとスループットが低下することがあることを示す。信号品質が比較的高い(たとえば、3q〜5q)ときに、CP長が5pから2pに小さくなると、スループットが実質的に低下する(たとえば、6zから4.5zに低下する)。この場合、pおよびzの各々は任意の正の値を表す。第2に、この図1100は、CP長が小さくなっても必ずしもスループットが低下するとは限らず、いくつかのシナリオでは、ピークスループットが増大することを示す。このことが起こり得る理由は、圧縮された遅延拡散に対処するには依然としてより短いCP長で十分である場合があるからである。図11の図1100における5pおよび7pのCP長に対するピークスループットを比較するとわかり得るように、比較的高いピークスループットが実現されることがある。その理由は、CP長が比較的短く、それによって比較的多くのデータ情報を送信することが可能になる場合があるからである。当業者には、信号品質が比較的高い(たとえば、3q〜5q)とき、CP長が2pからpに小さくなってもあるいはCP長が7pから5pに小さくなってもスループットが実質的に低減することはなく、このことは、特定のプリコーダモードを使用することによってもたらされる圧縮遅延拡散に起因する場合があることが留意されよう。   FIG. 11 shows a diagram 1100 illustrating an example of the relationship between signal quality and throughput when a precoder mode is used that may result in a significant reduction in delay spread. This relationship is shown for various CP lengths for channels that typically require 7p CP length to reach the peak throughput of the system. In this example, the throughput is measured in megabits per second (Mbps) and the CP length is measured in microseconds. `` Signal quality '' shown in FIG. 11 and described herein may refer to a carrier to interference noise ratio (CINR), signal to noise ratio (SNR), and / or various other suitable measures of signal quality. is there. First, this FIG. 1100 shows that the throughput may decrease as the CP length decreases when the signal quality is relatively high. When the signal quality is relatively high (eg, 3q to 5q), the throughput is substantially reduced (eg, reduced from 6z to 4.5z) when the CP length is reduced from 5p to 2p. In this case, each of p and z represents an arbitrary positive value. Second, this FIG. 1100 shows that the throughput does not necessarily decrease as the CP length decreases, and that in some scenarios the peak throughput increases. This can happen because a shorter CP length may still be sufficient to deal with compressed delay spread. As can be seen by comparing the peak throughput for the CP lengths of 5p and 7p in FIG. 1100 of FIG. 11, a relatively high peak throughput may be achieved. The reason is that the CP length is relatively short, which may allow a relatively large amount of data information to be transmitted. For those skilled in the art, when the signal quality is relatively high (eg 3q-5q), the throughput is substantially reduced even if the CP length is reduced from 2p to p or the CP length is reduced from 7p to 5p. It will be noted that this may not be due to the compressed delay spread caused by using a particular precoder mode.

図12は、本開示の態様による例示的な実装形態を示す図1200を示す。ブロック1206はプリコーダモード選択を概念的に表す。一般に、プリコーダモード選択は、様々なタイプのワイヤレス通信のためのプリコーダモードの選択を指す。本明細書で使用する「プリコーダモード」は、本開示の範囲から逸脱することなくプリコーダタイプ、プリコーダ構成、プリコーダ方式、プリコーダ設定、プリコーダパラメータ、プリコーダ重み、および/またはプリコーダモードに関連する任意の他の適切な態様を指しならびに/あるいは含む場合がある。いくつかの構成では、プリコーダモードは特定の送信モード(TM)に対応してもよい。たとえば、装置がTMに基づいてプリコーダモードを推定してもよい。プリコーダモード選択は、本開示の範囲から逸脱することなく多くのタイプの情報に基づいてもよい。   FIG. 12 shows a diagram 1200 illustrating an example implementation in accordance with aspects of the present disclosure. Block 1206 conceptually represents precoder mode selection. In general, precoder mode selection refers to selection of a precoder mode for various types of wireless communications. As used herein, “precoder mode” refers to precoder type, precoder configuration, precoder scheme, precoder settings, precoder parameters, precoder weights, and / or precoder modes without departing from the scope of this disclosure. May refer to and / or include any other suitable embodiment. In some configurations, the precoder mode may correspond to a specific transmission mode (TM). For example, the device may estimate the precoder mode based on TM. Precoder mode selection may be based on many types of information without departing from the scope of this disclosure.

(プリコーダモード選択の基準となる)そのような情報の非限定的な例は、受信された基準信号であり、ブロック1202によって表されている。たとえば、従属エンティティ104は、スケジューリングエンティティ102に基準信号(たとえば、サウンディング信号)を送信してもよい。基準信号は、(たとえば、プリコーディングを行わない)ワイヤレス通信チャネルの状態などの様々なタイプの情報を含んでもよい。スケジューリングエンティティ102は、その受信された基準信号に基づいて適切なプリコーダモードを選択してもよい。スケジューリングエンティティによって選択される特定のプリコーダモードは、様々な構成間で異なる場合がある。いくつかの構成では、スケジューリングエンティティ102は、最小相対遅延拡散をもたらすプリコーダモードを選択する場合がある。いくつかの構成では、スケジューリングエンティティ102は、最大相対遅延拡散圧縮をもたらすプリコーダモードを選択する場合がある。遅延拡散および遅延拡散圧縮に関する態様については、図9および図10を参照しながらより詳細に説明しており、したがって、これらの態様については繰り返さない。いくつかの構成では、スケジューリングエンティティ102は、最大相対ビームフォーミング利得をもたらすプリコーダモードを選択する場合がある。ビームフォーミング利得に関する態様については、図10を参照しながらより詳細に説明しており、したがって、これらの態様については繰り返さない。いくつかの構成では、スケジューリングエンティティ102は、最大相対スループットをもたらすプリコーダモードを選択する場合がある。スループットに関する態様については、図11を参照しながらより詳細に説明しており、したがって、これらの態様については繰り返さない。   A non-limiting example of such information (based on precoder mode selection criteria) is a received reference signal, represented by block 1202. For example, the dependent entity 104 may send a reference signal (eg, a sounding signal) to the scheduling entity 102. The reference signal may include various types of information such as the state of a wireless communication channel (eg, without precoding). The scheduling entity 102 may select an appropriate precoder mode based on the received reference signal. The particular precoder mode selected by the scheduling entity may differ between various configurations. In some configurations, the scheduling entity 102 may select a precoder mode that results in minimum relative delay spread. In some configurations, the scheduling entity 102 may select a precoder mode that results in maximum relative delay spread compression. The aspects relating to delay spread and delay spread compression have been described in more detail with reference to FIGS. 9 and 10, and therefore, these aspects will not be repeated. In some configurations, the scheduling entity 102 may select a precoder mode that yields the maximum relative beamforming gain. Aspects relating to beamforming gain are described in more detail with reference to FIG. 10, and therefore these aspects will not be repeated. In some configurations, the scheduling entity 102 may select a precoder mode that results in maximum relative throughput. Aspects relating to throughput are described in more detail with reference to FIG. 11, and therefore, these aspects will not be repeated.

(プリコーダモード選択の基準となる)そのような情報の別の非限定的な例は、受信されたフィードバック情報であり、ブロック1204によって表されている。たとえば、スケジューリングエンティティ102が従属エンティティ104に信号を送信してもよく、従属エンティティ104がスケジューリングエンティティ102にフィードバック情報を報告して返してもよい。フィードバック情報は、本開示の範囲から逸脱することなく、CP長、遅延拡散、スループット、および/または様々な他の適切な態様に関してもよい。いくつかの例では、フィードバック情報は、従属エンティティ104がCP長の変更を要求しているかどうかを示してもよい。フィードバック情報はまた、本開示の範囲から逸脱することなく、様々な形態および/または構成であってもよい。いくつかの例では、フィードバック情報は、単一ビット(たとえば、ハッピービット)の形態であってもよく、このビットは、従属エンティティ104がCP長の変更を要求しているかどうかを示す場合がある。いくつかの例では、フィードバック情報はまた、さらなるビットを含んでもよい。従属エンティティ104がCP長の変更を要求している場合、このさらなるビットは、その変更がCP長を大きくすることであるかそれとも小さくすることであるかを示すことがある。スケジューリングエンティティ102は、そのようなフィードバック情報に基づいて特定のプリコーダモードを選択してもよい。   Another non-limiting example of such information (based on precoder mode selection) is received feedback information, represented by block 1204. For example, the scheduling entity 102 may send a signal to the dependent entity 104, and the dependent entity 104 may report feedback information back to the scheduling entity 102. The feedback information may relate to CP length, delay spread, throughput, and / or various other suitable aspects without departing from the scope of this disclosure. In some examples, the feedback information may indicate whether dependent entity 104 is requesting a CP length change. The feedback information may also take a variety of forms and / or configurations without departing from the scope of the present disclosure. In some examples, the feedback information may be in the form of a single bit (eg, a happy bit), which may indicate whether dependent entity 104 is requesting a CP length change. . In some examples, the feedback information may also include additional bits. If the dependent entity 104 is requesting a CP length change, this additional bit may indicate whether the change is to increase or decrease the CP length. The scheduling entity 102 may select a specific precoder mode based on such feedback information.

ブロック1208は、選択されたプリコーダモードを概念的に表す。ブロック1210はCP長の変更を概念的に表す。本開示の様々な態様によれば、CP長の変更は、選択されたプリコーダモードに基づく。多くの既存のシステムでは、CP長は、選択されたプリコーダモードに基づくものではない。いくつかの既存のシステム(たとえば、いくつかの電気通信システム)では、CP長は固定されるかまたはあらかじめ決定される場合がある。いくつかの他の既存のシステム(たとえば、いくつかのワイヤレスローカルアクセスネットワーク)では、CP長は、選択されたプリコーダモードではなく、ワイヤレス通信チャネルに関する情報に基づいて変更されることがある。言い換えれば、既存のシステムは、選択されたプリコーダモードが変わるときでも同様にCP長を変更する場合がある。言い換えれば、既存のシステムでは、特定のプリコーダモードを選択することが必ずしも、CP長をどのように変更するかに影響を与えるとは限らない。しかし、プリコーダモード選択に基づいてCP長を変更することは、既存にシステムに勝る多くの利点を有する。たとえば、選択されたプリコーダモードは、ワイヤレス送信の遅延拡散(または遅延拡散圧縮)を推定できる場合があるので、トランスミッタはその特定のワイヤレス送信に適切なCP長を認識することがある。適切なCP長は、(たとえば、図6を参照しながら上記においてより詳細に説明したように)シンボル間干渉を最小限に抑えるのに十分な長さであるが、(たとえば、図6および図11を参照しながら上記においてより詳細に説明したように)CP長がスループットに悪影響を与えるほど長くない長さであってもよい。したがって、スケジューリングエンティティ102がプリコーダモード選択に基づいてCP長を変更するのを可能にすると、ワイヤレス通信の効率が向上する場合がある。   Block 1208 conceptually represents the selected precoder mode. Block 1210 conceptually represents a change in CP length. According to various aspects of the present disclosure, the CP length change is based on the selected precoder mode. In many existing systems, the CP length is not based on the selected precoder mode. In some existing systems (eg, some telecommunications systems), the CP length may be fixed or predetermined. In some other existing systems (eg, some wireless local access networks), the CP length may be changed based on information about the wireless communication channel rather than the selected precoder mode. In other words, existing systems may change the CP length in the same way even when the selected precoder mode changes. In other words, in an existing system, selecting a specific precoder mode does not necessarily affect how the CP length is changed. However, changing the CP length based on precoder mode selection has many advantages over existing systems. For example, the selected precoder mode may be able to estimate the delay spread (or delay spread compression) of the wireless transmission, so the transmitter may recognize the appropriate CP length for that particular wireless transmission. A suitable CP length is sufficient to minimize intersymbol interference (e.g., as described in more detail above with reference to FIG. 6), but (e.g., FIG. 6 and FIG. The CP length may be not long enough to adversely affect throughput (as described in more detail above with reference to 11). Thus, enabling the scheduling entity 102 to change the CP length based on precoder mode selection may improve the efficiency of wireless communication.

スケジューリングエンティティ102が選択されたプリコーダモードに基づくCP長の変更を実施するための機構および/または技法は、特定のワイヤレス通信デバイス、ネットワーク、および/または技術の特定の設計制約に基づいて異なる場合がある。そのような機構および/または技法のいくつかの例について本明細書において説明する場合があるが、当業者には、様々な他の代替形態も本開示の範囲内であることが理解されよう。いくつかの例では、スケジューリングエンティティ102は、選択されたプリコーダモードを使用して公称CP長を変更するための値を検索することによってCP長を変更してもよい。たとえば、ルックアップテーブルがそのような値を記憶してもよい。この値は、固定の数量(たとえば、任意の実数)、乗数(たとえば、2x)、分数(たとえば、1/2)、および/または公称CP長(たとえば、デフォルトCP長、所定のCP長、あらかじめ設定されたCP長、前のCP長など)を変更することのできる任意の他の適切なパラメータであってもよい。そのような値は、様々なシステムパラメータ、ネットワーク状態、および他の適切なトリガに基づいて適宜更新されてもよい。これらの値の各々は、特定のプリコーダモードにマッピングされてもよい。選択されたプリコーダモードに基づいて、対応するCP長が取り出され、CP長を変更するために使用されてもよい。   The mechanisms and / or techniques for the scheduling entity 102 to implement CP length changes based on the selected precoder mode may vary based on specific design constraints of the particular wireless communication device, network, and / or technology There is. Although some examples of such mechanisms and / or techniques may be described herein, one of ordinary skill in the art will appreciate that various other alternatives are within the scope of this disclosure. In some examples, the scheduling entity 102 may change the CP length by searching for a value to change the nominal CP length using the selected precoder mode. For example, a lookup table may store such values. This value can be a fixed quantity (e.g. any real number), a multiplier (e.g. 2x), a fraction (e.g. 1/2), and / or a nominal CP length (e.g. default CP length, predetermined CP length, pre- It may be any other suitable parameter that can change the set CP length, previous CP length, etc.). Such values may be updated as appropriate based on various system parameters, network conditions, and other suitable triggers. Each of these values may be mapped to a specific precoder mode. Based on the selected precoder mode, the corresponding CP length may be retrieved and used to change the CP length.

CP長が変更された後、信号が送信されてもよい。ブロック1212は信号送信を概念的に表す。送信信号は、ブロック1206、1208を参照しながら上記において説明したように、選択されたプリコーダモードを使用してプリコーディングされてもよい。送信信号はまた、ブロック1210を参照しながら上記において説明したように、変更されたCP長を含んでもよい。   A signal may be transmitted after the CP length is changed. Block 1212 conceptually represents signal transmission. The transmitted signal may be precoded using the selected precoder mode, as described above with reference to blocks 1206, 1208. The transmitted signal may also include a modified CP length, as described above with reference to block 1210.

図13は、スケジューリングエンティティ102によって実行される様々な方法および/またはプロセスを示す図1300を示す。当業者には、そのような方法および/またはプロセスが、本開示の範囲から逸脱することなく様々な任意の他の適切な装置によって実行されてもよいことが理解されよう。ブロック1302において、スケジューリングエンティティ102は送信のためのプリコーダモードを選択してもよい。いくつかの例では、スケジューリングエンティティ102は、従属エンティティ104から受信されたフィードバック情報に基づいてプリコーダモードを選択してもよい。フィードバック情報は、従属エンティティ104がCP長の変更を要求しているかどうかを示してもよい。いくつかの例では、スケジューリングエンティティ102は、従属エンティティ104から受信された基準信号に基づいてプリコーダモードを選択してもよい。スケジューリングエンティティ102は、基準信号に基づいて、最小相対遅延拡散、最大相対遅延拡散圧縮、最大ビームフォーミング利得、および/または最大相対スループットをもたらすプリコーダモードを選択してもよい。   FIG. 13 shows a drawing 1300 that illustrates various methods and / or processes performed by the scheduling entity. Those skilled in the art will appreciate that such methods and / or processes may be performed by a variety of other suitable devices without departing from the scope of the present disclosure. At block 1302, the scheduling entity 102 may select a precoder mode for transmission. In some examples, the scheduling entity 102 may select a precoder mode based on feedback information received from the subordinate entity 104. The feedback information may indicate whether the dependent entity 104 is requesting a CP length change. In some examples, the scheduling entity 102 may select a precoder mode based on the reference signal received from the subordinate entity 104. The scheduling entity 102 may select a precoder mode that results in minimum relative delay spread, maximum relative delay spread compression, maximum beamforming gain, and / or maximum relative throughput based on the reference signal.

ブロック1304では、スケジューリングエンティティ102は、選択されたプリコーダモードに基づいてCP長を変更してもよい。いくつかの例では、スケジューリングエンティティ102は、選択されたプリコーダモードを使用して公称CP長を変更するための値を検索することによってCP長を変更してもよい。選択されたプリコーダモードに基づいてCP長を変更するための様々な他の技法および/または機構が本開示の範囲内である。ブロック1306において、スケジューリングエンティティ102は、変更されたCP長を含む信号を送信してもよい。いくつかの例では、信号は、選択されたプリコーダモードを使用してプリコーディングされてもよい。プリコーディングおよびCP長に関するさらなる説明は、たとえば図6を参照しながら本明細書において提示されており、したがって、これらについては繰り返さない。いくつかの構成では、ブロック1308において、スケジューリングエンティティ102は信号のレシーバ(たとえば、従属エンティティ104)に特定の情報を送信してもよい。いくつかの例では、そのような情報は、変更されたCP長を示してもよい。いくつかの例では、そのような情報は、選択されたプリコーダモードを示してもよい。レシーバ(たとえば、従属エンティティ104)は、これらの種類の情報のうちのいずれかを提供することによって、変更されたCP長を含むプリコーディングされた信号を受信するように準備されてもよい。たとえば、レシーバは、受信信号においてCP長に対応する部分に関する情報を有する。   At block 1304, the scheduling entity 102 may change the CP length based on the selected precoder mode. In some examples, the scheduling entity 102 may change the CP length by searching for a value to change the nominal CP length using the selected precoder mode. Various other techniques and / or mechanisms for changing the CP length based on the selected precoder mode are within the scope of this disclosure. At block 1306, the scheduling entity 102 may send a signal including the changed CP length. In some examples, the signal may be precoded using the selected precoder mode. Further explanation regarding precoding and CP length is presented herein with reference to eg FIG. 6 and will therefore not be repeated. In some configurations, at block 1308, the scheduling entity 102 may send specific information to the receiver of the signal (eg, the dependent entity 104). In some examples, such information may indicate the changed CP length. In some examples, such information may indicate the selected precoder mode. A receiver (eg, dependent entity 104) may be prepared to receive a precoded signal that includes the modified CP length by providing any of these types of information. For example, the receiver has information regarding a portion corresponding to the CP length in the received signal.

図13を参照しながら説明した方法および/またはプロセスは、例示を目的として提示されており、本開示の範囲を制限するものではない。図13を参照しながら説明した方法および/またはプロセスは、本開示の範囲から逸脱することなく図13に示す方法および/またはプロセスとは異なるシーケンスにおいて実行されてもよい。さらに、図13を参照しながら説明した方法および/またはプロセスのうちのいくつかまたはすべてが、本開示の範囲から逸脱することなく個別に実行されならびに/あるいはまとめて実行されてもよい。開示される方法におけるステップの特定の順序または階層は、例示的なプロセスを示すことを理解されたい。設計上の選好に基づいて、方法におけるステップの特定の順序または階層が並べ替えられてもよいことが理解される。添付の方法クレームは、例示的な順序で様々なステップの要素を提示し、特に記載されない限り、提示された特定の順序または階層に限定されることを意味しない。   The methods and / or processes described with reference to FIG. 13 are presented for purposes of illustration and are not intended to limit the scope of the present disclosure. The method and / or process described with reference to FIG. 13 may be performed in a different sequence than the method and / or process shown in FIG. 13 without departing from the scope of the present disclosure. Further, some or all of the methods and / or processes described with reference to FIG. 13 may be performed individually and / or collectively without departing from the scope of the present disclosure. It should be understood that the specific order or hierarchy of steps in the methods disclosed represents an exemplary process. It is understood that a particular order or hierarchy of steps in the method may be rearranged based on design preferences. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically stated.

102 スケジューリングエンティティ
104 従属エンティティ
102A スケジューリングエンティティ#1
102B スケジューリングエンティティ#2
104A 従属エンティティ#1
104B 従属エンティティ#2
106 DLデータチャネル
108 DL制御チャネル
110 ULデータチャネル
112 UL制御チャネル
204 プロセッサ
206 コンピュータ可読媒体
208 バスインターフェース
210 トランシーバ
212 ユーザインターフェース
214 メモリ
216 バス
220 プリコーダ回路
221 CP回路
222 通信回路
223 回路
230 プリコーダ情報
231 CP情報
240 プリコーダ命令
241 CP命令
242 通信命令
243 コンピュータ実行可能命令
304 プロセッサ
306 コンピュータ可読媒体
308 バスインターフェース
310 トランシーバ
312 ユーザインターフェース
314 メモリ
316 バス
320 プリコーダ回路
321 CP回路
322 基準信号回路
323 回路
330 プリコーダ情報
331 CP情報
340 プリコーダ命令
341 CP命令
342 通信命令
343 コンピュータ実行可能命令
416 送信(TX)プロセッサ
418TX トランスミッタ
418RX レシーバ
420 アンテナ
452 アンテナ
454TX トランスミッタ
454RX レシーバ
456 RXプロセッサ
458 チャネル推定器
459 コントローラ/プロセッサ
460 メモリ
462 データシンク
467 データソース
468 TXプロセッサ
470 RXプロセッサ
474 チャネル推定器
475 コントローラ/プロセッサ
476 メモリ
500 図
502、504 障害物
600 図
700 第1の図
750 第2の図
800 第1の図
850 第2の図
900 第1の図
950 第2の図
1000 第1の図
1050 第2の図
1100 図
1200 図
1300 図
102 Scheduling entity
104 Dependent entities
102 A scheduling entity # 1
102 B Scheduling entity # 2
104 A Dependent Entity # 1
104 B Dependent Entity # 2
106 DL data channel
108 DL control channel
110 UL data channel
112 UL control channel
204 processor
206 Computer-readable media
208 bus interface
210 transceiver
212 User interface
214 memory
216 bus
220 Precoder circuit
221 CP circuit
222 Communication circuit
223 circuit
230 Precoder information
231 CP information
240 precoder instructions
241 CP instruction
242 Communication command
243 Computer-executable instructions
304 processor
306 Computer-readable medium
308 Bus interface
310 transceiver
312 User interface
314 memory
316 bus
320 Precoder circuit
321 CP circuit
322 Reference signal circuit
323 circuit
330 Precoder information
331 CP information
340 Precoder instruction
341 CP instruction
342 Communication command
343 Computer-executable instructions
416 Transmit (TX) processor
418TX transmitter
418RX receiver
420 Antenna
452 Antenna
454TX transmitter
454RX receiver
456 RX processor
458 channel estimator
459 Controller / Processor
460 memory
462 Data Sync
467 Data Source
468 TX processor
470 RX processor
474 channel estimator
475 Controller / Processor
476 memory
500 Figure
502, 504 Obstacle
600 Figure
700 Figure 1
750 Figure 2
800 Figure 1
850 Figure 2
900 Figure 1
950 Figure 2
1000 Figure 1
1050 Figure 2
1100 fig
1200 Figure
1300 fig

Claims (30)

ワイヤレス通信の方法であって、
送信のためのプリコーダモードを選択するステップと、
前記選択されたプリコーダモードに基づいてサイクリックプレフィックス(CP)長を変更するステップと、
前記変更されたCP長を含む信号を送信するステップとを含む方法。
A wireless communication method,
Selecting a precoder mode for transmission;
Changing a cyclic prefix (CP) length based on the selected precoder mode;
Transmitting a signal including the changed CP length.
前記選択されたプリコーダモードに基づいて前記CP長を変更する前記ステップは、
前記選択されたプリコーダモードを使用して公称CP長を変更するための値を検索するステップを含む、請求項1に記載の方法。
The step of changing the CP length based on the selected precoder mode comprises:
The method of claim 1, comprising searching for a value to change a nominal CP length using the selected precoder mode.
前記CP長を変更した後、前記変更されたCP長を示す情報を前記信号のレシーバに送信するステップをさらに含む、請求項1に記載の方法。   2. The method according to claim 1, further comprising transmitting information indicating the changed CP length to a receiver of the signal after changing the CP length. 前記プリコーダモードを選択した後、前記選択されたプリコーダモードを示す情報を前記信号のレシーバに送信するステップをさらに含む、請求項1に記載の方法。   2. The method of claim 1, further comprising: after selecting the precoder mode, transmitting information indicating the selected precoder mode to a receiver of the signal. 前記プリコーダモードを選択する前記ステップは、
前記信号のレシーバからフィードバック情報を受信するステップであって、前記フィードバック情報が、前記レシーバが前記CP長の変更を要求しているかどうかを示す、ステップと、
前記フィードバック情報に基づいて前記プリコーダモードを選択するステップとを含む、請求項1に記載の方法。
The step of selecting the precoder mode comprises:
Receiving feedback information from a receiver of the signal, the feedback information indicating whether the receiver is requesting a change in the CP length; and
2. The method of claim 1, comprising: selecting the precoder mode based on the feedback information.
前記プリコーダモードを選択する前記ステップは、
通信チャネルの状態を示す基準信号を受信するステップと、
前記受信された基準信号に基づいて、最小相対遅延拡散をもたらすプリコーダモードを選択するステップとを含む、請求項1に記載の方法。
The step of selecting the precoder mode comprises:
Receiving a reference signal indicating the state of the communication channel;
Selecting a precoder mode that results in a minimum relative delay spread based on the received reference signal.
前記プリコーダモードを選択する前記ステップは、
通信チャネルの状態を示す基準信号を受信するステップと、
前記受信された基準信号に基づいて、最大相対遅延拡散圧縮をもたらすプリコーダモードを選択するステップとを含む、請求項1に記載の方法。
The step of selecting the precoder mode comprises:
Receiving a reference signal indicating the state of the communication channel;
Selecting a precoder mode that results in maximum relative delay spread compression based on the received reference signal.
前記プリコーダモードを選択する前記ステップは、
通信チャネルの状態を示す基準信号を受信するステップと、
前記受信された基準信号に基づいて、最大相対ビームフォーミング利得をもたらすプリコーダモードを選択するステップとを含む、請求項1に記載の方法。
The step of selecting the precoder mode comprises:
Receiving a reference signal indicating the state of the communication channel;
Selecting a precoder mode that results in a maximum relative beamforming gain based on the received reference signal.
前記プリコーダモードを選択する前記ステップは、
通信チャネルの状態を示す基準信号を受信するステップと、
前記受信された基準信号に基づいて、最大相対スループットをもたらすプリコーダモードを選択するステップとを含む、請求項1に記載の方法。
The step of selecting the precoder mode comprises:
Receiving a reference signal indicating the state of the communication channel;
Selecting a precoder mode that results in a maximum relative throughput based on the received reference signal.
前記信号は、前記選択されたプリコーダモードを使用してプリコーディングされる、請求項1に記載の方法。   The method of claim 1, wherein the signal is precoded using the selected precoder mode. ワイヤレス通信用に構成された装置であって、
トランシーバと、
メモリと、
前記トランシーバおよび前記メモリに通信可能に結合された少なくとも1つのプロセッサとを備え、前記少なくとも1つのプロセッサが、
送信のためのプリコーダモードを選択し、
前記選択されたプリコーダモードに基づいてサイクリックプレフィックス(CP)長を変更し、
前記変更されたCP長を含む信号を送信するように構成される装置。
A device configured for wireless communication,
A transceiver,
Memory,
At least one processor communicatively coupled to the transceiver and the memory, the at least one processor comprising:
Select the precoder mode for transmission,
Change the cyclic prefix (CP) length based on the selected precoder mode,
An apparatus configured to transmit a signal including the changed CP length.
前記選択されたプリコーダモードに基づく前記CP長の前記変更は、
前記選択されたプリコーダモードを使用して公称CP長を変更するための値を検索することを含む、請求項11に記載の装置。
The change of the CP length based on the selected precoder mode is
12. The apparatus of claim 11, comprising retrieving a value for changing a nominal CP length using the selected precoder mode.
前記少なくとも1つのプロセッサは、
前記CP長の前記変更の後、前記変更されたCP長を示す情報を前記信号のレシーバに送信するようにさらに構成される、請求項11に記載の装置。
The at least one processor is
12. The apparatus of claim 11, further configured to send information indicating the changed CP length to a receiver of the signal after the change of the CP length.
前記少なくとも1つのプロセッサは、
前記プリコーダモードの前記選択の後、前記選択されたプリコーダモードを示す情報を前記信号のレシーバに送信するようにさらに構成される、請求項11に記載の装置。
The at least one processor is
12. The apparatus of claim 11, further configured to send information indicating the selected precoder mode to a receiver of the signal after the selection of the precoder mode.
前記プリコーダモードの前記選択は、
前記信号のレシーバからフィードバック情報を受信することであって、前記フィードバック情報が、前記レシーバが前記CP長の変更を要求しているかどうかを示す、受信することと、
前記フィードバック情報に基づいて前記プリコーダモードを選択することとを含む、請求項11に記載の装置。
The selection of the precoder mode is
Receiving feedback information from a receiver of the signal, wherein the feedback information indicates whether the receiver is requesting a change in the CP length; and
12. The apparatus of claim 11, comprising selecting the precoder mode based on the feedback information.
前記プリコーダモードの前記選択は、
通信チャネルの状態を示す基準信号を受信することと、
前記受信された基準信号に基づいて、最小相対遅延拡散をもたらすプリコーダモードを選択することとを含む、請求項11に記載の装置。
The selection of the precoder mode is
Receiving a reference signal indicating the state of the communication channel;
12. The apparatus of claim 11, comprising selecting a precoder mode that provides minimum relative delay spread based on the received reference signal.
前記プリコーダモードの前記選択は、
通信チャネルの状態を示す基準信号を受信することと、
前記受信された基準信号に基づいて、最大相対遅延拡散圧縮をもたらすプリコーダモードを選択することとを含む、請求項11に記載の装置。
The selection of the precoder mode is
Receiving a reference signal indicating the state of the communication channel;
12. The apparatus of claim 11, comprising selecting a precoder mode that provides maximum relative delay spread compression based on the received reference signal.
前記プリコーダモードの前記選択は、
通信チャネルの状態を示す基準信号を受信することと、
前記受信された基準信号に基づいて、最大相対ビームフォーミング利得をもたらすプリコーダモードを選択することとを含む、請求項11に記載の装置。
The selection of the precoder mode is
Receiving a reference signal indicating the state of the communication channel;
12. The apparatus of claim 11, comprising: selecting a precoder mode that provides a maximum relative beamforming gain based on the received reference signal.
前記プリコーダモードの前記選択は、
通信チャネルの状態を示す基準信号を受信することと、
前記受信された基準信号に基づいて、最大相対スループットをもたらすプリコーダモードを選択することとを含む、請求項11に記載の装置。
The selection of the precoder mode is
Receiving a reference signal indicating the state of the communication channel;
12. The apparatus of claim 11, comprising selecting a precoder mode that provides maximum relative throughput based on the received reference signal.
前記信号は、前記選択されたプリコーダモードを使用してプリコーディングされる、請求項11に記載の装置。   12. The apparatus of claim 11, wherein the signal is precoded using the selected precoder mode. ワイヤレス通信のための装置であって、
送信のためのプリコーダモードを選択するための手段と、
前記選択されたプリコーダモードに基づいてサイクリックプレフィックス(CP)長を変更するための手段と、
前記変更されたCP長を含む信号を送信するための手段とを備える装置。
A device for wireless communication,
Means for selecting a precoder mode for transmission;
Means for changing a cyclic prefix (CP) length based on the selected precoder mode;
Means for transmitting a signal comprising said changed CP length.
前記選択されたプリコーダモードに基づいて前記CP長を変更するための前記手段は、
前記選択されたプリコーダモードを使用して公称CP長を変更するための値を検索するように構成される、請求項21に記載の装置。
The means for changing the CP length based on the selected precoder mode is:
23. The apparatus of claim 21, configured to retrieve a value for changing a nominal CP length using the selected precoder mode.
前記CP長を変更した後、前記変更されたCP長を示す情報を前記信号のレシーバに送信するための手段をさらに備える、請求項21に記載の装置。   23. The apparatus of claim 21, further comprising means for transmitting information indicating the changed CP length to a receiver of the signal after changing the CP length. 前記プリコーダモードを選択した後、前記選択されたプリコーダモードを示す情報を前記信号のレシーバに送信するための手段をさらに備える、請求項21に記載の装置。   23. The apparatus of claim 21, further comprising means for transmitting information indicative of the selected precoder mode to a receiver of the signal after selecting the precoder mode. 前記信号が、前記選択されたプリコーダモードを使用してプリコーディングされる、請求項21に記載の装置。   23. The apparatus of claim 21, wherein the signal is precoded using the selected precoder mode. 命令を含むコンピュータ実行可能コードを記憶するコンピュータ可読記憶媒体であって、前記命令が、
送信のためのプリコーダモードを選択し、
前記選択されたプリコーダモードに基づいてサイクリックプレフィックス(CP)長を変更し、
前記変更されたCP長を含む信号を送信するように構成されるコンピュータ可読記憶媒体。
A computer readable storage medium storing computer executable code including instructions, wherein the instructions are:
Select the precoder mode for transmission,
Change the cyclic prefix (CP) length based on the selected precoder mode,
A computer readable storage medium configured to transmit a signal including the changed CP length.
前記選択されたプリコーダモードに基づく前記CP長の前記変更は、
前記選択されたプリコーダモードを使用して公称CP長を変更するための値を検索することを含む、請求項26に記載のコンピュータ可読記憶媒体。
The change of the CP length based on the selected precoder mode is
27. The computer readable storage medium of claim 26, comprising retrieving a value for changing a nominal CP length using the selected precoder mode.
前記命令は、
前記CP長を変更した後、前記変更されたCP長を示す情報を前記信号のレシーバに送信するようにさらに構成される、請求項26に記載のコンピュータ可読記憶媒体。
The instructions are
27. The computer readable storage medium of claim 26, further configured to transmit information indicating the changed CP length to a receiver of the signal after changing the CP length.
前記命令は、
前記プリコーダモードを選択した後、前記選択されたプリコーダモードを示す情報を前記信号のレシーバに送信するようにさらに構成される、請求項26に記載のコンピュータ可読記憶媒体。
The instructions are
27. The computer readable storage medium of claim 26, further configured to transmit information indicative of the selected precoder mode to a receiver of the signal after selecting the precoder mode.
前記信号は、前記選択されたプリコーダモードを使用してプリコーディングされる、請求項26に記載のコンピュータ可読記憶媒体。   27. The computer readable storage medium of claim 26, wherein the signal is precoded using the selected precoder mode.
JP2018523443A 2015-11-24 2016-10-28 Change cyclic prefix (CP) length based on precoder mode selection Active JP6882283B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562259446P 2015-11-24 2015-11-24
US62/259,446 2015-11-24
US15/078,087 2016-03-23
US15/078,087 US10237103B2 (en) 2015-11-24 2016-03-23 Changing cyclic prefix (CP) length based on precoder mode selection
PCT/US2016/059478 WO2017091320A1 (en) 2015-11-24 2016-10-28 Changing cyclic prefix (cp) length based on precoder mode selection

Publications (3)

Publication Number Publication Date
JP2018536350A true JP2018536350A (en) 2018-12-06
JP2018536350A5 JP2018536350A5 (en) 2019-11-21
JP6882283B2 JP6882283B2 (en) 2021-06-02

Family

ID=58719880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018523443A Active JP6882283B2 (en) 2015-11-24 2016-10-28 Change cyclic prefix (CP) length based on precoder mode selection

Country Status (7)

Country Link
US (1) US10237103B2 (en)
EP (1) EP3381164B1 (en)
JP (1) JP6882283B2 (en)
KR (1) KR102635622B1 (en)
CN (1) CN108353064B (en)
BR (1) BR112018010454A8 (en)
WO (1) WO2017091320A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410661B1 (en) 2016-01-26 2021-09-01 Sony Group Corporation Device and method
US10411782B2 (en) * 2016-03-31 2019-09-10 Qualcomm Incorporated Channel estimation for per-tone continuous precoding in downlink MIMO transmission
US10326558B2 (en) * 2016-07-20 2019-06-18 Intel Corporation Apparatus, system and method of communicating a single carrier (SC) transmission
US11153781B2 (en) * 2018-08-24 2021-10-19 Qualcomm Incorporated Variable cyclic prefix (CP) within a transmission slot in millimeter wave band
EP3902330A4 (en) 2018-12-20 2022-11-23 Beijing Xiaomi Mobile Software Co., Ltd. Uplink transmission method and apparatus
US12003353B2 (en) * 2019-02-06 2024-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Coverage enhanced reciprocity-based precoding scheme
CN112583751B (en) * 2019-09-27 2021-11-19 华为技术有限公司 Communication method, device and equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266350A (en) * 2003-02-06 2004-09-24 Matsushita Electric Ind Co Ltd Transmitter and transmission method
JP2006180321A (en) * 2004-12-24 2006-07-06 Toshiba Corp System and equipment for radio communication, and method for modifying guard interval length in the equipment
JP2008160774A (en) * 2006-12-26 2008-07-10 Toshiba Corp Communication apparatus and its method
JP2014527754A (en) * 2011-08-11 2014-10-16 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for mixed analog / digital beamforming

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176966A1 (en) * 2005-02-07 2006-08-10 Stewart Kenneth A Variable cyclic prefix in mixed-mode wireless communication systems
UA97824C2 (en) * 2007-01-10 2012-03-26 Квелкомм Інкорпорейтед Pilot signal structure with multiplexed unicast and sfn transmissions
KR20090133064A (en) * 2008-06-23 2009-12-31 엘지전자 주식회사 Method of control signaling for multi-user mimo
CN101702703A (en) * 2009-11-25 2010-05-05 南京邮电大学 Vandermonde frequency-division multiplexing method based on multi-carrier modulation technology
WO2011078752A1 (en) * 2009-12-21 2011-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Data modulation
CN102823155B (en) * 2010-04-07 2016-07-13 瑞典爱立信有限公司 For the method and apparatus controlling precoder selection feedback in wireless communications
US20110255483A1 (en) * 2010-04-16 2011-10-20 Research In Motion Limited Signaling of Precoding Granularity for LTE and LTE-A
CA2799974C (en) * 2011-12-29 2018-05-22 The University Of Western Ontario Method and apparatus for wireless security enhancement using multiple attributes monitoring, continuous and interleaved authentication, and system adaption
TWI446770B (en) * 2012-01-20 2014-07-21 Nat Univ Tsing Hua Communication system having data-dependent superimposed training mechanism and communication method thereof
WO2014015501A1 (en) * 2012-07-26 2014-01-30 华为终端有限公司 Control channel transmission method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266350A (en) * 2003-02-06 2004-09-24 Matsushita Electric Ind Co Ltd Transmitter and transmission method
JP2006180321A (en) * 2004-12-24 2006-07-06 Toshiba Corp System and equipment for radio communication, and method for modifying guard interval length in the equipment
JP2008160774A (en) * 2006-12-26 2008-07-10 Toshiba Corp Communication apparatus and its method
JP2014527754A (en) * 2011-08-11 2014-10-16 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for mixed analog / digital beamforming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM EUROPE: "Precoding Structure for DL MIMO . Further Aspects[online]", 3GPP TSG-RAN WG1 #47 R1-063438, JPN6020048885, 8 November 2006 (2006-11-08), ISSN: 0004411481 *

Also Published As

Publication number Publication date
US20170149591A1 (en) 2017-05-25
KR20180087257A (en) 2018-08-01
US10237103B2 (en) 2019-03-19
CN108353064A (en) 2018-07-31
WO2017091320A1 (en) 2017-06-01
CN108353064B (en) 2020-07-28
EP3381164B1 (en) 2020-01-01
BR112018010454A2 (en) 2018-11-21
BR112018010454A8 (en) 2019-02-26
JP6882283B2 (en) 2021-06-02
EP3381164A1 (en) 2018-10-03
KR102635622B1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP6694075B2 (en) Method and procedure for improving physical layer efficiency using Unique Word (UW) Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing (DFT-s-OFDM)
JP6882283B2 (en) Change cyclic prefix (CP) length based on precoder mode selection
US11743894B2 (en) Subframe structure with embedded control signaling
JP5905484B2 (en) Apparatus and method for periodic channel state reporting in a wireless network
US9392607B2 (en) Two-dimensional UE pairing in MIMO systems
JP2019503112A (en) Waveforms based on DFT-s OFDM and OFDM zero-tail and unique words
JP2012525056A (en) Reference signal transmitting apparatus and method in wireless communication system
JP7066611B2 (en) Multi-length ZT DFT-S-OFDM transmission
TW201722180A (en) Uplink (UL) frequency-division duplex (FDD) subframe
CN108352977B (en) Method and apparatus for dynamic subframe structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6882283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250