JP2018535745A5 - - Google Patents

Download PDF

Info

Publication number
JP2018535745A5
JP2018535745A5 JP2018521537A JP2018521537A JP2018535745A5 JP 2018535745 A5 JP2018535745 A5 JP 2018535745A5 JP 2018521537 A JP2018521537 A JP 2018521537A JP 2018521537 A JP2018521537 A JP 2018521537A JP 2018535745 A5 JP2018535745 A5 JP 2018535745A5
Authority
JP
Japan
Prior art keywords
bsrd
signal
subject
scattered light
optical response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018521537A
Other languages
English (en)
Japanese (ja)
Other versions
JP6872758B2 (ja
JP2018535745A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2016/001240 external-priority patent/WO2017072568A1/en
Publication of JP2018535745A publication Critical patent/JP2018535745A/ja
Publication of JP2018535745A5 publication Critical patent/JP2018535745A5/ja
Application granted granted Critical
Publication of JP6872758B2 publication Critical patent/JP6872758B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2018521537A 2015-11-01 2016-08-15 動的光散乱(dls)による神経学的状態又は適合性状態の血行力学的特徴付けのための方法及び装置 Active JP6872758B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562249303P 2015-11-01 2015-11-01
US62/249,303 2015-11-01
US201662295138P 2016-02-14 2016-02-14
US62/295,138 2016-02-14
PCT/IB2016/001240 WO2017072568A1 (en) 2015-11-01 2016-08-15 Method and apparatus for hemodynamically characterizing a neurological or fitness state by dynamic light scattering (dls)

Publications (3)

Publication Number Publication Date
JP2018535745A JP2018535745A (ja) 2018-12-06
JP2018535745A5 true JP2018535745A5 (enExample) 2021-03-25
JP6872758B2 JP6872758B2 (ja) 2021-05-19

Family

ID=58629842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018521537A Active JP6872758B2 (ja) 2015-11-01 2016-08-15 動的光散乱(dls)による神経学的状態又は適合性状態の血行力学的特徴付けのための方法及び装置

Country Status (4)

Country Link
US (2) US10952622B2 (enExample)
EP (1) EP3367893B1 (enExample)
JP (1) JP6872758B2 (enExample)
WO (1) WO2017072568A1 (enExample)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6872758B2 (ja) 2015-11-01 2021-05-19 エルフィ−テック エルティーディー.Elfi−Tech Ltd. 動的光散乱(dls)による神経学的状態又は適合性状態の血行力学的特徴付けのための方法及び装置
CN107348832B (zh) * 2017-07-20 2020-03-20 吴联凯 一种基于最小蒸煮量的电饭锅以及其加热控制方法
EP4292520A3 (en) * 2017-10-16 2024-07-10 Massachusetts Institute of Technology Systems, devices and methods for non-invasive hematological measurements
CN108186018B (zh) * 2017-11-23 2020-11-20 苏州朗开医疗技术有限公司 一种呼吸数据处理方法及装置
US11647918B2 (en) 2018-06-22 2023-05-16 Siemens Healtchare GmbH Method and diagnostic examination device for estimating an examination duration that is tolerable by a patient
US11617536B1 (en) * 2019-01-31 2023-04-04 Dartmouth-Hitchcock Clinic System and method to measure pain levels of patients following surgery
WO2021015843A1 (en) 2019-07-24 2021-01-28 Massachusetts Institute Of Technology Finger inserts for a nailfold imaging device
US11521715B2 (en) * 2021-02-24 2022-12-06 Alexandria Brown SKALTSOUNIS System and method for promoting, tracking, and assessing mental wellness
US20230053198A1 (en) * 2021-02-24 2023-02-16 Alexandria Brown SKALTSOUNIS System and method for promoting, tracking, and assessing mental wellness
US20230420111A1 (en) * 2022-06-27 2023-12-28 Izzy Justice Computer device aided selection and administration of neurohacks

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805673B2 (en) * 2002-02-22 2004-10-19 Datex-Ohmeda, Inc. Monitoring mayer wave effects based on a photoplethysmographic signal
US20040082842A1 (en) * 2002-10-28 2004-04-29 Lumba Vijay K. System for monitoring fetal status
US7020506B2 (en) 2003-11-06 2006-03-28 Orsense Ltd. Method and system for non-invasive determination of blood-related parameters
US7758505B2 (en) 2006-04-03 2010-07-20 Elfi-Tech Ltd. Methods and apparatus for non-invasive determination of patient's blood conditions
CA2655782A1 (en) 2006-06-13 2007-12-21 Elfi-Tech Ltd. System and method for measurement of biological parameters of a subject
JP2010508056A (ja) * 2006-10-30 2010-03-18 エルフィ−テック リミテッド 生物学的パラメータの体内での測定のためのシステム及び方法
US20140094666A1 (en) * 2012-09-28 2014-04-03 Elfi-Tech Ltd. System and method for in vivo measurement of biological parameters
WO2009008933A2 (en) * 2007-04-11 2009-01-15 The Board Of Regents Of The University Of Texas System Optoacoustic monitoring of multiple parameters
US8708907B2 (en) 2009-05-06 2014-04-29 Elfi-Tech Method and apparatus for determining one or more blood parameters from analog electrical signals
US20110082355A1 (en) * 2009-07-30 2011-04-07 Oxitone Medical Ltd. Photoplethysmography device and method
US8868149B2 (en) * 2009-07-30 2014-10-21 Oxitone Medical Ltd. Photoplethysmography device and method
US20120130215A1 (en) 2010-05-05 2012-05-24 Ilya Fine Optical measurement of parameters related to motion of light-scattering particles within a fluid by manipulating analog electrical signals
GB2494622A (en) 2011-08-30 2013-03-20 Oxitone Medical Ltd Wearable pulse oximetry device
US9636025B2 (en) * 2012-08-15 2017-05-02 Nanyang Technological University Systems and methods for pedal revascularization assessment
RU2016108615A (ru) 2013-08-14 2017-09-18 Наньян Текнолоджикал Юниверсити Системы и способы оценки реваскуляризации
US20150141766A1 (en) 2013-09-30 2015-05-21 Flfi-Tfch Ltd. Apparatus and method for optical measurement of cardiovascular recovery and/or repiration rate
US20180153420A1 (en) * 2013-09-30 2018-06-07 Elfi-Tech Ltd. Apparatus and method for optical measurement of cardiovascular fitness, stress and physiological parameters
JP6872758B2 (ja) 2015-11-01 2021-05-19 エルフィ−テック エルティーディー.Elfi−Tech Ltd. 動的光散乱(dls)による神経学的状態又は適合性状態の血行力学的特徴付けのための方法及び装置
US11350837B2 (en) 2016-03-30 2022-06-07 Elfi-Tech Ltd. Method and apparatus for optically measuring blood pressure
US11134901B2 (en) 2016-03-30 2021-10-05 Elfi-Tech Ltd. Method and apparatus for optically measuring blood pressure
US10720755B2 (en) 2018-02-07 2020-07-21 Elfi-Tech Ltd. Ensemble-averaged measurement of stochastic motion by current-modulating of VCSEL wavelength

Similar Documents

Publication Publication Date Title
JP2018535745A5 (enExample)
JP7293050B2 (ja) 軽度認知障害判定システム
CN107466222B (zh) 生命体征监测系统
CN109452935B (zh) 使用统计后处理从血管容积图估计血压的无创方法和系统
JP2015062817A5 (ja) 脳活動解析装置、脳活動解析方法、判別器生成装置、判別器生成方法、バイオマーカー装置およびプログラム、健康管理装置およびプログラム、ならびに判別器のプログラム
US20210085191A1 (en) Electronic device and method of estimating physiological signal
JP2019120684A (ja) 生体成分測定装置及び方法
KR102315880B1 (ko) 운동 관리 방법 및 장치
Arpaia et al. Conceptual design of a machine learning-based wearable soft sensor for non-invasive cardiovascular risk assessment
Chen et al. Edge2Analysis: a novel AIoT platform for atrial fibrillation recognition and detection
CN107405091A (zh) 使用动态心率预测模型的生物激励动作补偿及实时生理负荷估计
RU2741934C2 (ru) Устройство для выявления намерения, способ выявления намерения и программа для выявления намерения
CA3014574C (en) Estimation method, estimation program, estimation device, and estimation system
JP7083195B1 (ja) 生体情報演算システム
Aich et al. Auto detection of Parkinson’s disease based on objective measurement of gait parameters using wearable sensors
JP7264375B2 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
US10463260B1 (en) Heart disease risk assessment
US20220008019A1 (en) Heart Rate Correction Using External Data
CN115496105A (zh) 睡眠预测模型训练方法、睡眠状况预测方法及相关装置
JP7507984B1 (ja) 体調検出装置、体調検出システム、体調検出方法、及び体調検出プログラム
Naseri et al. Heart disease detection using an acceleration-deceleration curve-based neural network with consumer-grade smartwatch data
EP3988031A1 (en) Information processing device, information processing method, and program
KR20160136685A (ko) 심박수를 이용하여 운동 능력을 평가하는 방법 및 장치
CN116018088A (zh) 生物体信息运算系统
Abrisham et al. Neural network models for predicting vascular age from PPG signals: A comparative study