JP2018533337A - 電磁流体発電機 - Google Patents

電磁流体発電機 Download PDF

Info

Publication number
JP2018533337A
JP2018533337A JP2018511667A JP2018511667A JP2018533337A JP 2018533337 A JP2018533337 A JP 2018533337A JP 2018511667 A JP2018511667 A JP 2018511667A JP 2018511667 A JP2018511667 A JP 2018511667A JP 2018533337 A JP2018533337 A JP 2018533337A
Authority
JP
Japan
Prior art keywords
pair
working fluid
arms
wall
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018511667A
Other languages
English (en)
Other versions
JP6802262B2 (ja
JP2018533337A5 (ja
Inventor
セルギーヌ カメル
セルギーヌ カメル
クロノフスキ トマ
クロノフスキ トマ
ベドク ステファーヌ
ベドク ステファーヌ
リシャール ステファーヌ
リシャール ステファーヌ
Original Assignee
サフラン ヘリコプター エンジンズ
サフラン ヘリコプター エンジンズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サフラン ヘリコプター エンジンズ, サフラン ヘリコプター エンジンズ filed Critical サフラン ヘリコプター エンジンズ
Publication of JP2018533337A publication Critical patent/JP2018533337A/ja
Publication of JP2018533337A5 publication Critical patent/JP2018533337A5/ja
Application granted granted Critical
Publication of JP6802262B2 publication Critical patent/JP6802262B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/08Magnetohydrodynamic [MHD] generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/08Magnetohydrodynamic [MHD] generators
    • H02K44/10Constructional details of electrodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/08Magnetohydrodynamic [MHD] generators
    • H02K44/12Constructional details of fluid channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/28Association of MHD generators with conventional generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本発明は、第1と第2の壁によって画定された作用流体流路と、作用流体をイオン化するイオン化装置と、1対のアームで、流路内で該アームと該壁と間の通路を画定するために、該イオン化装置から下流で第1と第2の壁を各々が連結し、該通路が作用流体がイオン化され終わった後に作用流体の一部分に横断されるように配置された、1対のアームと、該アームと該壁によって画定された通路の中を通過する作用流体の流れに対して垂直な方向に方向付けられている磁場を発生させるための磁石と、少なくとも1対の電極で、各対の電極の各々は、該1対のアームと該壁に画定された通路の各側部上に配置され、各対の電極は、該磁場に対して垂直で、且つ、該1対のアームと該壁によって画定される通路の中を通る作用流体の流れ方向に対して垂直な方向に互いから間隔を開けられた、少なくとも1対の電極を備える電磁流体発電機に関する。【選択図】図3B

Description

本発明は、電磁流体力学の分野に関し、特に、タービンの作用流体内の残留エネルギーの少なくとも一部分を回収するためのその使用に関する。
用語「タービン」は、回転シャフトが回転することを生じさせるために作用流体のエネルギーを使用するように設計されている回転装置を表すために使用されている。したがって、作用流体の速度及びエンタルピーによって特徴付けられる作用流体のエネルギーが、回転シャフトによって取り出されることが可能である機械的エネルギーの形に部分的に変換される。しかし、タービンの下流において、この作用流体は、通常は、多量の残留エネルギーを保持する。以下の説明では、用語「上流」及び「下流」は、作用流体の通常の流れ方向に関して定義される。
ある特許文献によって、タービンの作用流体内に含まれているエネルギーを回収するために、タービンに加えて電磁流体発電機を使用することをすでに提案している(例えば、特許文献1参照。)。このような電磁流体発電機では、イオン化された流体の流れが、そのイオン化された流体の流れに対して垂直である方向に磁場を受ける時に、イオン化流体の流れと磁場との両方に対して垂直である別の方向において、互いに間隔を開けられている2つの電極の間に電流を発生させる。
しかし、実際には、タービン内にこうした電磁流体発電機を一体化することは、特に電極の配置に関して、及び、タービンの作用流体のための流路の中に磁場を発生させるための手段に関して、欠点がないというわけではない。
仏国特許出願公開第2085190号明細書
本開示は、同一の作用流体によって駆動されるタービンを含むアセンブリの中により簡単に一体化されることが可能である電磁流体発電機を提案することによって、こうした欠点を改善することを目的とする。
少なくとも1つの実施態様では、この目的が、電磁流体発電機が、第1の壁と第2の壁とによって画定されている作用流体通路と、この作用流体をイオン化するためのイオン化装置との両方を有することによって実現され、この電磁流体発電機は、さらに、少なくとも1対のアームであって、作用流体通路内にそのアームと上記壁と間の通路を画定するように上記イオン化装置から下流において第1の壁と第2の壁とを各々のアームが連結し、且つ、作用流体がイオン化され終わった後に作用流体の一部分によって横断されるように上記通路が配置されている、少なくとも1対のアームと、1対のアームと上記壁とによって画定されている通路を通過する作用流体の流れに対して垂直である方向に方向付けられている磁場を発生させるための磁石と、少なくとも1対の電極であって、この各対の電極の各々は、1対のアームと上記壁とによって画定されている通路のそれぞれの側部上に配置されており、及び、各対の電極が、上記磁場に対して垂直な方向において、且つ、1対のアームと上記壁とによって画定されている通路の中を通る作用流体の流れ方向に対して垂直である方向において、互いから間隔を開けられている、少なくとも1対の電極とを備えることによって実現される。この磁石は、導体のコアの中にカーボンナノチューブを一体化することによって又は実際には超伝導性であることによって増強されている導電率を有利に有するソレノイドを採用随意に有する、電磁石であってもよいが、永久磁石であることも可能である。この磁石は、どちらの状況においても、積層された磁心を有することが可能である。
これらの条件によって、概ね互いに垂直であり且つ作用流体の流れに対して垂直である2つの軸線に沿って電極と磁石の磁極とを配置することが、より容易にされる。これに加えて、例えばタービンが相対的に大量の機械的動力を供給しなければならない場合に望ましいように、タービンの作用流体の一部分だけから電気を発生させることが可能であり、これと同時に、この電磁流体発電機は、補助的な目的のために、著しくより少量の電力を供給するためのものである。
特に、各対の電極の各々の電極は、上記1対のアームのそれぞれのアーム上に配置されてもよい。この状態では、電極が互いに間隔を開けられている方向において作用流体の流れに対して垂直である磁場を発生させるために、磁石は、1つの上記アームの内側に収容されている磁心を含んでもよい。しかし、流路を画定する壁のそれぞれ1つの上に各対の各電極が配置され、且つ、この場合に、アームが互いに間隔を開けられている方向に方向付けられている磁場を発生させるように磁石が配置されている、代替案の構成を想定することも可能である。
壁とアームによって画定されている通路内の流体の流れを加速し、これによって電磁流体発電機の効率を増大させるために、第1及び第2の壁は、上記1対のアームから上流に位置している流路の少なくとも第1の部分上において、燃焼ガスの流れ方向において互いに向かって収斂してもよい。こうした状況において、及び、特に、ターボシャフトエンジン、特に回転翼航空機のターボシャフトエンジンの出口ノズル内に電磁流体発電機が設置されている時に、多量の反作用スラストを回避するために、第1及び第2の壁は、流速を再度減少させるために、上記1対のアームから下流に位置している流路の少なくとも1つの第2の部分上で、作用流体の流れ方向において互いから分岐してもよい。
作用流体、特に気体である作用流体の効果的なイオン化を確実なものにするために、上記イオン化装置は、プラズマトーチの形態であってもよい。こうしたプラズマトーチは、特に、1対の電極の間の直流(DC)又は交流(AC)電位を発生させるための装置に接続されている1対の電極を備えてもよく、及び、この電位は作用流体のイオン化電位よりも高いか又はこのイオン化電位に等しい。しかし、例えばマイクロ波を注入することによる、ヘリコン放電による、又は、電磁結合による、他のタイプのイオン化装置も想定可能である。さらに、作用流体のイオン化を容易にするために、電磁流体発電機は、採用随意に、低いイオン化電位の元素を回収するためのフィルターと共に、上記イオン化装置から上流に、低いイオン化電位の元素を注入するための装置を含んでもよい。
一対のアームと壁とによって画定される通路の中において互いに反対側に位置する磁極及び電極の相互間の相対的に短い距離が、電磁流体発電機の収率(yield)と効率とに関して有利だろう。寸法を制限しながら、電磁流体発電のために使用される作用流体の量を増大させるために、発電機は、上記イオン化装置から下流において第1及び第2の壁を互いに各々が連結する複数対のアームを含んでもよく、及び、アームの各対毎に、それぞれの磁石と1対の電極とを含んでもよい。複数の通路の間で電磁流体発電を分割することによって、電力を増大させると同時に、各通路のための小さい流れ断面(flow section)を維持することが可能である。各通路内の複数の対の電極が、直列に又は並列に電気的に互いに接続されてもよい。
電磁流体発電機をより容易にタービンに適合させるために、流路は環状であってもよく、及び、上記第1及び第2の壁は、流路の中央軸線に対して同軸であってもよく、及び、上記アームは半径方向である。
本開示は、さらに、こうした電磁流体発電機を含むタービンエンジンと、電磁流体発電機と同じ作用流体によって駆動されるように構成されている少なくとも1つのタービンとに関連する。例えば、この電磁流体発電機は、タービンによって使用されることが不可能である作用流体の残留エネルギーの少なくとも一部分を回収するために使用されてもよい。タービンの作用流体とタービンの下流の電磁流体発電機の作用流体とを形成し、且つ、イオン化を容易化する高温度を有する、高エンタルピーの燃焼ガスを生じさせるために、このタービンエンジンは、タービンから且つ電磁流体発電機から上流において燃焼室を特に含む。さらに、燃焼ガスのエンタルピーを増大させ、且つ、燃焼ガスの流れを駆動するために、タービンエンジンは、燃焼室から上流に位置する少なくとも1つの圧縮機と、この圧縮機を駆動するために第1の回転シャフトを経由して上記圧縮機に連結されている第1のタービンとを含んでもよい。このタービンエンジンは第2のタービンも含んでよい。こうした状況においては、特に、第1のタービンから下流に位置していてもよく、且つ、さらには電磁流体発電機から上流にも位置していてもよい、第2のタービンが、例えば回転翼航空機のためのターボシャフトエンジンのようなターボシャフトエンジンを形成するように、出口シャフトに連結されてもよい。
タービンによって使用されることが不可能である作用流体の残留エネルギーのより適切な使用が可能であるように、電磁流体発電機は、タービンから下流において出口ノズル内に配置されてもよい。
本開示は、さらに、電磁流体力学的な発電方法を提供し、この方法では、作用流体が、第1の壁と第2の壁とによって画定されている流路の中でイオン化装置によって少なくとも部分的にイオン化され、及び、作用流体のイオン化部分が、上記壁によって及び1対のアームによって流路内に画定されている通路の中を通って進み、この1対のアームの各々は、上記イオン化装置から下流において第1及び第2の壁を互いに連結し、及び、作用流体のイオン化部分は、磁石によって発生させられる磁場を受け、及び、この磁場は、少なくとも1対の電極の電極相互間に電流を発生させるために、作用流体の流れに対して垂直な方向に通路内を延び、各対の電極の各々は、1対のアームと上記壁とによって画定されている通路のそれぞれの側部上に配置されており、及び、各対の電極は、上記磁場と通路内の燃焼ガスの流れの両方に対して垂直である方向において、互いから間隔を開けられている。この電磁流体力学的な発電方法は、特に、少なくとも1つのタービンを駆動するために従来において使用されてきた作用流体の残留エネルギーを回収するために、使用されてもよい。特に、タービンエンジンによって推進される乗物上では、この電磁流体力学的方法は、タービンエンジン以外のその乗物の補助装置に給電するために使用される電気を発生させる役割を果たすだろう。
非限定的な具体例として示されている以下の実施形態の詳細な説明を読解することによって、本発明が適切に理解され、且つ、その利点がより明瞭になる。この詳細な説明は添付図面に関連している。
電磁流体発電機の一実施形態を有するターボシャフトエンジンを備える回転翼航空機の概略的な斜視図である。 図1のエンジンの1つの概略的な縦断面図である。 図2のエンジンの電磁流体発電機の一部分の概略的な斜視図である。 図3Aの詳細を示す。 第2の実施形態における電磁流体発電機の概略的な斜視図である。 第3の実施形態における電磁流体発電機の概略的な斜視図である。 第4の実施形態におけるターボシャフトエンジンの概略的な縦断面図である。 第5の実施形態におけるターボシャフトエンジンの略図である。
図1が、メインローター102とテイルローター103とを伝動装置を経由して駆動するためのターボシャフトエンジン101を有する、航空機、さらに具体的にはヘリコプター100を示す。エンジン101は、ヘリコプター1上の様々な電気消費装置の部品に電気を供給するための電磁流体発電機10の一実施形態を含む。
図2にさらに詳細に示されているように、エンジン101は、空気流方向に、圧縮機201と、点火装置と燃料供給システム(図示されていない)とに連結されている噴射装置とを有する燃焼室202と、第1の回転シャフト204を介して圧縮機201に連結されている第1のタービン203とを有する、ガス発生器を備える。この第2のタービン203の下流では、エンジン101が、第2の回転シャフト206に連結されている第2のタービン205を有し、この第2の回転シャフト206は、ヘリコプター1内において、ローター102、103を駆動するための伝動装置104に連結されることに適している。最後に、第2のタービン205の下流において、エンジンが燃焼ガス出口ノズル207を含む。
この第1の実施形態では、電磁流体発電機10は、タービン203、205から下流においてノズル206内に一体化されている。この電磁流体発電機10内では、この実施形態ではタービン203、205と電磁流体発電機10との作用流体を含む、燃焼ガスのための環状流路11が、エンジン101の中心軸線Xを中心として第1の壁12の周りで同軸である内側の第1の壁12と外側の第2の壁13とによって画定されている。電磁流体発電機10は、さらに、燃焼ガスをイオン化するための装置14を有する。例えば、このイオン化装置14は、その2つの電極の間に電場を生じさせるように構成されている2つの電極を有するプラズマトーチであってもよく、この電場は、導電性低温プラズマを生じさせるために環状流路11の中を通って高温度且つ高速度で流れる燃焼ガスをイオン化することが可能であるのに十分なだけ強力である。この強力な電場はDC電場又はAC電場であってよく、及び、AC電場は、低温プラズマ内の熱の不均衡を防止する働きをする。燃焼ガスをイオン化することを容易にするために、エンジン101は、さらに、カリウムのような低いイオン化電位を有する元素を注入するための装置を、そのイオン化装置の上流において含んでもよい。低いイオン化電位を有する元素を注入するためのこの装置は、特に、低いイオン化電位を有する元素が燃料と共に燃焼室202内に注入されるように、燃料供給回路内に一体化されてもよい。
電磁流体発電機10の中を通る環状の燃焼ガス流路11の第1の部分11a上において、壁12と壁13とが、燃焼ガス流を加速するように、燃焼ガス流方向に収斂し、一方、第2の部分11b上において、これらの壁12、13は、燃焼ガス流がノズル207を出て行く前にその流速を減少させるように、燃焼ガス流方向において再び分岐する。収斂区域11aと分岐区域11bとの間において、複数対の半径方向アーム15が、流路11内に通路16を形成するように、壁12と壁13とを連結し、及び、各々の通路16は、壁12,13と1対のアーム15とによって画定されている。上流において注入され終わった低いイオン化電位を有する元素がその後で外側に排出されないことを確実なものにするために、発電機10は、さらに、通路16から下流において、低いイオン化電位の元素を回収するためのフィルター(図示されていない)を含んでもよい。
図3Aと図3Bとにより詳細に示されている実施形態では、電磁流体発電機10は、各々の通路16毎に、通路16を通過するイオン化燃焼ガスに対して露出されるように、通路16を画定するアーム16の各々の内側表面上に取り付けられている少なくとも1つの電極17と、さらには、通路16の互いに反対側の側部上に内側壁12と外側壁13によってそれぞれに覆われており、且つ、アーム15の一方の内に収容されている磁心18cによって互いに連結されている、半径方向に互いに反対側に位置する磁極18a、18bを有する電磁石18とを備え、この磁心は、積層されており、及び、半径方向に方向配置されており且つしたがって通路16内のイオン化燃焼ガスの流れに対して概ね垂直に方向付けられている、通路16内の磁場Bを生じさせるように、ソレノイド18dによって取り囲まれている。特に強力な磁場を発生させるために、ソレノイド18dは、特に超伝導性であってもよい。
したがって、この実施形態では、電磁石18によって生じさせられる磁場Bを受ける各々の通路16の中を通るイオン化燃焼ガスの流れが、通路16のどちらか一方の側部上に位置しており且つ流れ方向と磁場Bの方向との両方に対して垂直である方向において互いに対向している電極の相互間において起電力としたがって電流とを生じさせることが可能である。
代替案の実施形態では、図4に示されているように、壁12、13と、アーム15と、さらには通路16との配置が同一である。しかし、各通路16に対応する電極17は、アーム15上には取り付けられず、通路16に対して露出されるように壁12、13の内側表面上に取り付けられており、互いに半径方向に反対側に位置しており、これと同時に、電磁石18は、半径方向とイオン化燃焼ガスの流れ方向とに対して概ね垂直である方向に方向付けられている磁場Bを発生させるように配置されている。電磁流体発電機10のその他の要素は第1の実施形態の要素に類似しており、及び、図面で同一の照合番号を与えられている。
エンジン101内の電磁流体発電機10の一体化を容易にするために、流路11がこれら2つの実施形態において環状であるが、例えば電磁流体発電機10を平らなノズル内に一体化するために、他の形状を想定することが可能である。したがって、図5に示されている別の代替案の実施形態では、流路11の断面が長方形であるが、この第3の実施形態における電磁流体発電機は、他のすべての点では第1の実施形態の電磁流体発電機に類似しおり、及び、この図では、同等の要素が同じ照合番号を与えられている。
第1の実施形態では、電磁流体発電機10は、2つのタービン203、205から下流に位置しているが、図6に示されている第4の実施形態の場合のように、2つのタービン203、205の間に、又は、図7に示されている第5の実施形態の場合にように、実際には、燃焼室202から直ぐ下流に、2つのタービン203、205から上流に、それらを配置することを想定することが可能である。両方の構成において、電磁流体発電機10の要素は、第1の実施形態のこうした要素に類似したままであり、及び、これらの要素は、これらの図面において同一の照合番号を与えられている。
これらの実施形態の各々における電磁流体発電機10の動作が同様に類似している。各々の構成において、燃焼室202からの燃焼ガスが、イオン化装置14によって少なくとも部分的にイオン化され、各対のアーム15によって画定されている通路16の中に侵入する前に流路11内の収斂部分を通して加速され、及び、この場合に、この燃焼ガスは、電極17の相互間に電流を発生させるために、各々の通路16内において、イオン化燃焼ガスの流れ方向に対して概ね垂直である方向において、電磁石18によって発生させられる磁場Bを受け、及び、この電流は、特にヘリコプター1上の様々な装置に給電するために使用されてもよい。通路18から出て行く時に、燃焼の流れは分岐部分11b内で減速させられる。
本発明が特定の実施形態に関して説明されているが、特許請求項によって定義されている本発明の全般的な範囲から逸脱することなしに、こうした実施形態に対して様々な変更と変化とが加えられてもよいということが明らかである。例えば、示されている実施形態の各々において、各々の通路10が1対だけの電極17を有するが、各々の通路内に複数対の電極を配置することを想定することも可能であり、及び、こうした複数対の電極は、おそらくは、例えば作用流体の流れ方向に互いに連続する。さらに、電磁流体発電機は、示されているターボシャフトエンジン以外の他のタイプのタービンエンジンで使用されることも可能である。さらに、上述した様々な実施形態の個別的な特徴が、追加の実施形態において組み合わされてもよい。したがって、本説明と図面は、限定的なものではなく例示的なものとして理解されることが可能である。
電磁流体発電機の一実施形態を有するターボシャフトエンジンを備える回転翼航空機の概略的な斜視図である。 図1のエンジンの概略的な縦断面図である。 図2のエンジンの電磁流体発電機の一部分の概略的な斜視図である。 図3Aの詳細を示す。 第2の実施形態における電磁流体発電機の概略的な斜視図である。 第3の実施形態における電磁流体発電機の概略的な斜視図である。 第4の実施形態におけるターボシャフトエンジンの概略的な縦断面図である。 第5の実施形態におけるターボシャフトエンジンの略図である。
図2にさらに詳細に示されているように、エンジン101は、空気流方向に、圧縮機201と、点火装置と燃料供給システム(図示されていない)とに連結されている噴射装置とを有する燃焼室202と、第1の回転シャフト204を介して圧縮機201に連結されている第1のタービン203とを有する、ガス発生器を備える。この第のタービン203の下流では、エンジン101が、第2の回転シャフト206に連結されている第2のタービン205を有し、この第2の回転シャフト206は、ヘリコプター1内において、ローター102、103を駆動するための伝動装置104に連結されることに適している。最後に、第2のタービン205の下流において、エンジンが燃焼ガス出口ノズル207を含む。
これらの実施形態の各々における電磁流体発電機10の動作が同様に類似している。各々の構成において、燃焼室202からの燃焼ガスが、イオン化装置14によって少なくとも部分的にイオン化され、各対のアーム15によって画定されている通路16の中に侵入する前に流路11内の収斂部分を通して加速され、及び、この場合に、この燃焼ガスは、電極17の相互間に電流を発生させるために、各々の通路16内において、イオン化燃焼ガスの流れ方向に対して概ね垂直である方向において、電磁石18によって発生させられる磁場Bを受け、及び、この電流は、特にヘリコプター1上の様々な装置に給電するために使用されてもよい。通路1から出て行く時に、燃焼の流れは分岐部分11b内で減速させられる。
本発明が特定の実施形態に関して説明されているが、特許請求項によって定義されている本発明の全般的な範囲から逸脱することなしに、こうした実施形態に対して様々な変更と変化とが加えられてもよいということが明らかである。例えば、示されている実施形態の各々において、各々の通路1が1対だけの電極17を有するが、各々の通路内に複数対の電極を配置することを想定することも可能であり、及び、こうした複数対の電極は、おそらくは、例えば作用流体の流れ方向に互いに連続する。さらに、電磁流体発電機は、示されているターボシャフトエンジン以外の他のタイプのタービンエンジンで使用されることも可能である。さらに、上述した様々な実施形態の個別的な特徴が、追加の実施形態において組み合わされてもよい。したがって、本説明と図面は、限定的なものではなく例示的なものとして理解されることが可能である。

Claims (15)

  1. 電磁流体発電機(10)において、
    前記電磁流体発電機(10)は、
    第1の壁(12)と第2の壁(13)とによって画定されている作用流体流路(11)と、
    作用流体をイオン化するためのイオン化装置(14)と、
    1対のアーム(15)であって、前記流路(11)内にこれらのアーム(15)と前記壁(12、13)と間の通路(16)を画定するために、前記イオン化装置(14)から下流において前記第1の壁(12)と前記第2の壁(13)とを各々が連結し、且つ、前記通路(16)は、前記作用流体がイオン化され終わった後に前記作用流体の一部分によって横断されるように配置されている、少なくとも1対のアーム(15)と、
    前記1対のアーム(15)と前記壁(12、13)とによって画定されている前記通路(16)の中を通過する前記作用流体の流れに対して垂直である方向に方向付けられている磁場(B)を発生させるための磁石と、
    少なくとも1対の電極(17)であって、これらの電極(17)の各々は、前記1対のアーム(15)と前記壁(12、13)とによって画定されている前記通路(16)のそれぞれの側部上に配置されており、前記各対の電極(17)は、前記磁場(B)に対して垂直であり、且つ、前記1対のアーム(15)によって及び前記壁(12、13)によって画定されている前記通路(16)の中を通る前記作用流体の流れ方向に対して垂直である方向において、互いから間隔を開けられている、少なくとも1対の電極(17)とを少なくとも備える、電磁流体発電機(10)。
  2. 各対の電極(17)の各電極(17)は、前記1対のアーム(15)のそれぞれのアーム(15)上に配置されている、請求項1に記載の電磁流体発電機(10)。
  3. 前記磁石は、一方の前記アーム(15)の内側に収容されている磁心(18c)を含む、請求項2に記載の電磁流体発電機(10)。
  4. 前記第1の壁(12)及び前記第2の壁(13)は、前記1対のアーム(15)から上流に位置している前記流路(11)の少なくとも第1の部分(11a)上で前記作用流体の流れ方向において互いに向かって収斂する請求項1〜3のいずれか一項に記載の電磁流体発電機(10)。
  5. 前記第1の壁(12)及び前記第2の壁(13)は、前記1対のアームから下流に位置している前記流路の少なくとも第2の部分上で前記作用流体の流れ方向において互いから分岐する請求項4に記載の電磁流体発電機(10)。
  6. 前記イオン化装置(14)はプラズマトーチの形態である請求項1〜5のいずれか一項に記載の電磁流体発電機(10)。
  7. 前記イオン化装置(14)から上流において、低イオン化電位の元素を注入するための装置を含む請求項1〜6のいずれか一項に記載の電磁流体発電機(10)。
  8. 前記イオン化装置(14)から下流において前記第1の壁(12)及び前記第2の壁(13)を互いに各々が連結する、複数対のアーム(15)を含み、前記各対のアーム(15)毎に、それぞれの磁石と少なくとも1対の電極(17)とを含む請求項1〜7のいずれか一項に記載の電磁流体発電機(10)。
  9. 前記流路(11)は環状であり、前記第1の壁(12)及び前記第2の壁(13)は、前記流路(11)の中心軸線(X)を中心として同軸であり、前記アーム(15)は半径方向にある請求項1〜8のいずれか一項に記載の電磁流体発電機(10)。
  10. 請求項1〜9のいずれか一項に記載の少なくとも1つの電磁流体発電機(10)と、前記電磁流体発電機(10)と同一の作用流体によって駆動されるように構成されている少なくとも1つのタービン(203、205)とを含む、タービンエンジン。
  11. 前記タービン(203、205)から上流において、且つ、前記電磁流体発電機(10)から上流において、燃焼室(202)を含む、請求項10に記載のタービンエンジン。
  12. 前記燃焼室(202)から上流の少なくとも1つの圧縮機(201)と、前記圧縮機(201)を駆動するために第1の回転シャフト(204)を経由して前記圧縮機(201)に連結されている第1のタービン(203)とを含む、請求項11に記載のタービンエンジン。
  13. 第2のタービン(205)を含む、請求項12に記載のタービンエンジン。
  14. 前記電磁流体発電機(10)は、前記タービン(203)から下流において出口ノズル(207)内に配置されている、請求項1〜13のいずれか一項に記載のタービンエンジン。
  15. 電磁流体力学的な発電方法であって、
    作用流体が、第1の壁(12)及び第2の壁(13)によって画定されている流路(11)の中のイオン化装置(14)によって少なくとも部分的にイオン化され、
    前記作用流体のイオン化部分が、前記壁(12、13)によって及び1対のアーム(15)によって前記流路(11)内に画定されている通路(16)の中を通って進み、この1対のアーム(15)の各々は、前記イオン化装置(14)から下流において前記第1の壁(12)及び前記第2の壁(13)を互いに連結し、前記作用流体のイオン化部分は、磁石によって発生させられる磁場(B)を受け、前記磁場は、少なくとも1対の電極(17)の中の電極(17)の相互間に電流を発生させるように、前記作用流体の流れに対して垂直な方向において前記通路(16)の中を延び、各対の前記電極(17)の各々は、前記1対のアームと前記壁(12、13)とによって画定されている前記通路(16)のそれぞれの側部上に配置されており、各対の前記電極(17)は、前記磁場(B)と前記通路(16)内の燃焼ガスの流れとの両方に対して垂直である方向において、互いから間隔を開けられている、電磁流体力学的な発電方法。
JP2018511667A 2015-09-04 2016-09-01 電磁流体発電機 Active JP6802262B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1558232 2015-09-04
FR1558232A FR3040838B1 (fr) 2015-09-04 2015-09-04 Generateur magnetohydrodynamique
PCT/FR2016/052163 WO2017037388A1 (fr) 2015-09-04 2016-09-01 Generateur magnetohydrodynamique.

Publications (3)

Publication Number Publication Date
JP2018533337A true JP2018533337A (ja) 2018-11-08
JP2018533337A5 JP2018533337A5 (ja) 2019-09-26
JP6802262B2 JP6802262B2 (ja) 2020-12-16

Family

ID=55236477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511667A Active JP6802262B2 (ja) 2015-09-04 2016-09-01 電磁流体発電機

Country Status (10)

Country Link
US (1) US10686358B2 (ja)
EP (1) EP3345290B1 (ja)
JP (1) JP6802262B2 (ja)
KR (1) KR20180050361A (ja)
CN (1) CN108028595B (ja)
CA (1) CA2997164C (ja)
FR (1) FR3040838B1 (ja)
PL (1) PL3345290T3 (ja)
RU (1) RU2708386C2 (ja)
WO (1) WO2017037388A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040838B1 (fr) * 2015-09-04 2017-09-22 Turbomeca Generateur magnetohydrodynamique
FR3070548B1 (fr) * 2017-08-30 2019-09-13 Zodiac Data Systems Procede et dispositif d'estimation du depointage d'une antenne et procede et dispositif de poursuite du pointage d'une antenne mettant en oeuvre de tels procede et dispositif, fondes sur une analyse harmonique
CN111692060A (zh) * 2020-06-19 2020-09-22 狄晓牛 一种环流等离子燃料发电机
CN113037052B (zh) * 2021-03-11 2022-04-22 中国科学院理化技术研究所 多相热声磁流体发电机
DE102022112269A1 (de) 2021-05-18 2022-11-24 Quantum Technologies UG (haftungsbeschränkt) Quanten-Computer-Stack für einen NV-Zentren basierenden Quantencomputer und PQC-Kommunikation von Quantencomputern
US11757446B2 (en) * 2021-07-14 2023-09-12 Northrop Grumman Systems Corporation Superconducting DC switch system
US11722135B2 (en) * 2021-07-14 2023-08-08 Northrop Grumman Systems Corporation Superconducting AC switch system
WO2023009086A2 (en) * 2021-07-28 2023-02-02 Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi An air thrust system
DE102022112677A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem
DE102022105464A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem
DE102023104158A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Drehbar gelagerter Quantencomputer auf NV-Zentren-Basis für mobile Anwendungen
DE202023101056U1 (de) 2022-03-08 2023-03-21 Quantum Technologies Gmbh Diamant-Chip für einen mobilen NV-Zentren-Quantencomputer mit einem Kryostaten
DE102022004989A1 (de) 2022-03-08 2023-09-14 Quantum Technologies Gmbh Fahrzeug mit einem verlegbaren Quantencomputer und zugehöriges, verlegbares Quantencomputersystem mit Schutz vor transienten Störungen der Energieversorgung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102224A (en) * 1960-02-17 1963-08-27 Paul Levinger Magnetohydrodynamic a.c. generator
GB1078332A (en) * 1963-10-23 1967-08-09 Westinghouse Electric Corp Magnetohydrodynamic generating system
FR2085190B1 (ja) * 1970-01-15 1973-12-07 Snecma
US3660700A (en) * 1970-06-10 1972-05-02 Space Sciences Inc Magnetohydrodynamic generator
US4450361A (en) * 1982-08-26 1984-05-22 Holt James F Coupling of MHD generator to gas turbine
BR8607100A (pt) * 1985-04-17 1988-02-09 Garrett Michael Sainsbury Gerador magnetohidrodinamico alternado de metal liquido
US5219672A (en) * 1991-08-12 1993-06-15 Tacticon Corporation Metal/air battery cell and assembly therefor
US6644014B2 (en) * 2000-09-30 2003-11-11 Anthony Italo Provitola Electric thruster and thrust augmenter
CN1126868C (zh) * 2001-01-03 2003-11-05 龚忆军 磁流体加速器和使用磁流体加速器的磁流体喷气发动机
RU2198461C2 (ru) * 2001-02-12 2003-02-10 Красноярский государственный технический университет Способ получения электроэнергии на борту гиперзвуковых самолетов с помощью магнитогидродинамического генератора энергии
US7166927B2 (en) * 2004-01-05 2007-01-23 Scientific Applications & Research Associates, Inc. Modular liquid-metal magnetohydrodynamic (LMMHD) power generation cell
EP1934457A2 (en) * 2005-09-09 2008-06-25 Richard H. Lugg Advanced hypersonic magnetic jet/electric turbine engine
JP4487914B2 (ja) * 2005-11-30 2010-06-23 トヨタ自動車株式会社 カセットコイルおよびカセットコイルを備える回転電機
ES2370949T3 (es) * 2008-07-16 2011-12-26 Siemens Aktiengesellschaft Válvula controlada por fluído para una turbina de gas y para una cámara de combustión.
CN103117640A (zh) * 2013-03-14 2013-05-22 周华 磁流体交直流发电机
US10056817B2 (en) * 2013-11-21 2018-08-21 Saeid Sirous Fluid ferfereh
EP2963241B1 (fr) * 2014-06-30 2019-03-06 Safran Aero Boosters SA Élément de guidage de flux gazeux de turbomachine
FR3040838B1 (fr) * 2015-09-04 2017-09-22 Turbomeca Generateur magnetohydrodynamique

Also Published As

Publication number Publication date
CA2997164C (fr) 2023-09-05
CA2997164A1 (fr) 2017-03-09
EP3345290B1 (fr) 2019-07-10
EP3345290A1 (fr) 2018-07-11
CN108028595A (zh) 2018-05-11
FR3040838B1 (fr) 2017-09-22
WO2017037388A1 (fr) 2017-03-09
RU2018111981A (ru) 2019-10-07
PL3345290T3 (pl) 2019-12-31
CN108028595B (zh) 2020-03-20
RU2018111981A3 (ja) 2019-10-15
JP6802262B2 (ja) 2020-12-16
US20180254693A1 (en) 2018-09-06
FR3040838A1 (fr) 2017-03-10
KR20180050361A (ko) 2018-05-14
US10686358B2 (en) 2020-06-16
RU2708386C2 (ru) 2019-12-06

Similar Documents

Publication Publication Date Title
JP6802262B2 (ja) 電磁流体発電機
US7984614B2 (en) Plasma flow controlled diffuser system
CN102235246B (zh) 具有起动机/发电机的附件传动箱
CN105993118A (zh) 用于航空器的发电机
US10700579B2 (en) Method and assembly of a generator
JP2018533337A5 (ja)
US10033236B2 (en) Vacuum gap generators and motors
CN107701312A (zh) 一种高超声速发动机
US10344613B2 (en) Hyperjet superconducting turbine blisk propulsion and power generation
CN107842442A (zh) 一种航空发动机
Jaatinen-Värri et al. Design of a 400 kW gas turbine prototype
EP3306793B1 (en) Multiple coil electric generator in turbine engine
JP2022514074A (ja) 永久磁石を強制的に消磁するための装置を含む電気機械
US11070101B2 (en) Method and apparatus for cooling an rotor assembly
US11788428B2 (en) Integrated hybrid propulsion system
CN105189936B (zh) 用于燃气轮机的冷却装置
US20150050123A1 (en) Switched reluctance, fully superconducting, integrated ring turbine motor, generator gas turbine, engine stage (ssrgts)
US20230133959A1 (en) Electric jet engine
US20240178731A1 (en) Electric jet engine
US20190190336A1 (en) Method and apparatus for cooling a rotor assembly
KR200325794Y1 (ko) 연료 고준위 이온화 장치
KR20040108458A (ko) 연료 고준위 이온화 장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201126

R150 Certificate of patent or registration of utility model

Ref document number: 6802262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150