JP2018532249A - Capacitor-type instrument transformer for transient overvoltage monitoring system - Google Patents

Capacitor-type instrument transformer for transient overvoltage monitoring system Download PDF

Info

Publication number
JP2018532249A
JP2018532249A JP2017564669A JP2017564669A JP2018532249A JP 2018532249 A JP2018532249 A JP 2018532249A JP 2017564669 A JP2017564669 A JP 2017564669A JP 2017564669 A JP2017564669 A JP 2017564669A JP 2018532249 A JP2018532249 A JP 2018532249A
Authority
JP
Japan
Prior art keywords
capacitor
transient overvoltage
overvoltage monitoring
voltage
monitoring unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017564669A
Other languages
Japanese (ja)
Other versions
JP6547217B2 (en
Inventor
儉 鄒
儉 鄒
洪波 叶
洪波 叶
駿 李
駿 李
▲はん▼ 金
▲はん▼ 金
文栄 司
文栄 司
文彬 趙
文彬 趙
丹丹 趙
丹丹 趙
行星 周
行星 周
華 黄
華 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Shanghai Electric Power Co Ltd filed Critical State Grid Shanghai Electric Power Co Ltd
Publication of JP2018532249A publication Critical patent/JP2018532249A/en
Application granted granted Critical
Publication of JP6547217B2 publication Critical patent/JP6547217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values

Abstract

【課題】過渡過電圧監視システム用のコンデンサ形計器用変圧器。【解決手段】第1のコンデンサ、第2のコンデンサ、第3のコンデンサ、過渡過電圧監視ユニット、接地ナイフスイッチ、補償リアクトル、及び第1の避雷器を備え、前記第1のコンデンサは、一端が送電網に接続され、他端が第2コンデンサの一端と中間変圧器における一次巻線の一端にそれぞれ接続され、前記第2のコンデンサの他端は過渡過電圧監視ユニットの一端と補償リアクトルの一端にそれぞれ接続され、前記中間変圧器における一次巻線の他端は補償リアクトルの他端と第1の避雷器の一端にそれぞれ接続され、前記過渡過電圧監視ユニットの他端と第1の避雷器の他端はいずれも接地し、前記接地ナイフスイッチは過渡過電圧監視ユニットの両端に並列接続され、前記第3のコンデンサは、一端が前記第2のコンデンサの他端に接続されて、他端が接地し、前記第1のコンデンサの耐電圧が前記第2のコンデンサの耐電圧より大きく、前記第2のコンデンサの耐電圧が前記第3のコンデンサの耐電圧より大きい。A capacitor-type instrument transformer for a transient overvoltage monitoring system. A first capacitor, a second capacitor, a third capacitor, a transient overvoltage monitoring unit, a ground knife switch, a compensation reactor, and a first lightning arrester, the first capacitor having one end at a power transmission network. And the other end is connected to one end of the second capacitor and one end of the primary winding of the intermediate transformer, respectively, and the other end of the second capacitor is connected to one end of the transient overvoltage monitoring unit and one end of the compensation reactor, respectively. The other end of the primary winding in the intermediate transformer is connected to the other end of the compensation reactor and one end of the first lightning arrester, respectively, and the other end of the transient overvoltage monitoring unit and the other end of the first lightning arrester are both The grounding knife switch is connected in parallel to both ends of the transient overvoltage monitoring unit, and the third capacitor has one end in addition to the second capacitor. And the other capacitor is grounded, the withstand voltage of the first capacitor is greater than the withstand voltage of the second capacitor, and the withstand voltage of the second capacitor is greater than the withstand voltage of the third capacitor. .

Description

本開示は電気工学分野に関し、たとえば過渡過電圧監視システム用のコンデンサ形計器用変圧器に関する。   The present disclosure relates to the field of electrical engineering, for example, a capacitor-type instrument transformer for a transient overvoltage monitoring system.

送電網過渡過程は送電網運転状態における重要な特徴であり、送電網における過渡過電圧(動作過電圧、直流送電システムによる一時的な過電圧、電圧不足)については、国内外においての有効な測定・監視手段が欠如している。新設装置において、中国では、500kVシステムの正式な運営前に、動作過電圧をテストする電力会社は一部しかない。一般的には、無負荷回線、主変圧器、低電圧リアクトル又はコンデンサをスイッチングする時に、過渡測定を、新装置の荷電評価として行う。   The power grid transient process is an important feature of the power grid operating state. Transient overvoltages (operating overvoltage, temporary overvoltage by DC power transmission system, voltage shortage) in the power grid are effective measurement and monitoring means in Japan and overseas. Is lacking. In new equipment, there are only a few power companies in China that test operating overvoltages prior to the formal operation of the 500 kV system. In general, when switching a no-load line, main transformer, low-voltage reactor or capacitor, transient measurements are performed as a charge assessment for new equipment.

運転中の装置において、通常の保護及びオシログラフ装置は商用周波過電圧情報のみしか記録できず、システムの過渡過程を記録できない。スケジューリング部門に既に使用されている監視システム、インテリジェント監視・早期警報システム及び送電網広域リアルタイム動的監視システムは主に送電網全体の動的安定性と静的安定性から、送電網運転の特徴量をリアルタイムにモニタリングし、更に未来の時点での送電網の安定状態を予測するものであり、サンプリング周波数は高いが、一次信号がコンデンサ形計器用変圧器(capacitor voltage transformer、CVT)の強磁性ユニットの後に収集されるため、高周波信号が大幅にゆがみ、システムにおける電圧の迅速な変化過程を本格的に示すことができず、電力システムの運転状態を全面的に監視することも実現できない。   In a running device, normal protection and oscillograph devices can only record commercial frequency overvoltage information and not system transients. The monitoring system, intelligent monitoring / early warning system, and wide-area real-time dynamic monitoring system that are already used in the scheduling department are mainly characterized by the dynamic stability and static stability of the entire transmission network. In addition, the stable state of the power grid at a future time is predicted, and the sampling frequency is high, but the primary signal is a ferromagnetic unit of a capacitor voltage transformer (CVT). Therefore, the high-frequency signal is greatly distorted, and the rapid change process of the voltage in the system cannot be shown in earnest, and it is impossible to fully monitor the operating state of the power system.

過渡過電圧監視システム用のコンデンサ形計器用変圧器は、交流・直流ハイブリッド送電網とインテリジェント送電網の情報化による機能の要求を満たすことを目的とし、過電圧と絶縁の複合技術の発展に合致する新型電気装置である。   Capacitor-type instrument transformer for transient overvoltage monitoring system is a new type that meets the development of combined technology of overvoltage and insulation with the aim of satisfying the functional requirements by computerization of AC / DC hybrid transmission network and intelligent transmission network It is an electrical device.

本開示は、動作周波数が高く、測定データの精度が高く、適用範囲が広い過渡過電圧監視システム用のコンデンサ形計器用変圧器を提供する。   The present disclosure provides a capacitor-type instrument transformer for a transient overvoltage monitoring system having a high operating frequency, high accuracy of measurement data, and wide application range.

本開示は、第1のコンデンサ、第2のコンデンサ、第3のコンデンサ、過渡過電圧監視ユニット、中間変圧器、接地ナイフスイッチ、補償リアクトル、及び第1の避雷器を備え、前記第1のコンデンサは、一端が送電網に接続され、他端が第2のコンデンサの一端と中間変圧器における一次巻線の一端にそれぞれ接続され、前記第2のコンデンサの他端は過渡過電圧監視ユニットの一端と補償リアクトルの一端にそれぞれ接続され、前記中間変圧器における一次巻線の他端は補償リアクトルの他端と第1の避雷器の一端にそれぞれ接続され、前記過渡過電圧監視ユニットの他端と第1の避雷器の他端はいずれも接地し、前記接地ナイフスイッチは過渡過電圧監視ユニットの両端に並列接続され、前記第3のコンデンサは、一端が前記第2のコンデンサの他端に接続されて、他端が接地し、前記第1のコンデンサの耐電圧が前記第2のコンデンサの耐電圧より大きく、前記第2のコンデンサの耐電圧が前記第3のコンデンサの耐電圧より大きい、過渡過電圧監視システム用のコンデンサ形計器用変圧器を提供する。   The present disclosure includes a first capacitor, a second capacitor, a third capacitor, a transient overvoltage monitoring unit, an intermediate transformer, a ground knife switch, a compensation reactor, and a first lightning arrester, wherein the first capacitor includes: One end is connected to the power grid, the other end is connected to one end of the second capacitor and one end of the primary winding in the intermediate transformer, and the other end of the second capacitor is connected to one end of the transient overvoltage monitoring unit and the compensation reactor. The other end of the primary winding in the intermediate transformer is connected to the other end of the compensation reactor and one end of the first lightning arrester, respectively, and the other end of the transient overvoltage monitoring unit and the first lightning arrester The other end is grounded, the ground knife switch is connected in parallel to both ends of the transient overvoltage monitoring unit, and the third capacitor has one end connected to the second connection. The other end of the capacitor is connected, the other end is grounded, the withstand voltage of the first capacitor is greater than the withstand voltage of the second capacitor, and the withstand voltage of the second capacitor is greater than that of the third capacitor. A capacitor-type instrument transformer for a transient overvoltage monitoring system that is greater than a withstand voltage is provided.

好ましくは、過渡過電圧監視ユニットの両端に並列接続される第2の避雷器をさらに備
える。
Preferably, it further includes a second lightning arrester connected in parallel to both ends of the transient overvoltage monitoring unit.

好ましくは、前記補償リアクトルはリアクタンス値を調整可能な抵抗である。   Preferably, the compensation reactor is a resistor capable of adjusting a reactance value.

好ましくは、中間変圧器における二次巻線に設けられるダンパをさらに備える。   Preferably, a damper provided in the secondary winding in the intermediate transformer is further provided.

好ましくは、過渡過電圧監視ユニットの両端に並列接続される保護隙間をさらに備える。   Preferably, it further includes a protective gap connected in parallel to both ends of the transient overvoltage monitoring unit.

関連技術に比べて、本開示に係る過渡過電圧監視システム用のコンデンサ形計器用変圧器には、以下の利点がある。   Compared to the related art, the capacitor-type instrument transformer for the transient overvoltage monitoring system according to the present disclosure has the following advantages.

1)高動作周波数、測定データの高精度
通常のコンデンサ形計器用変圧器の、たとえば電圧計量及びリレー保護機能を有するとともに、高電圧及び超高電圧送電網における高調波を測定したり、送電網電圧波形をリアルタイムに観測して測定したりすることもできる。第1の避雷器と第2の避雷器を設置することによって、過電圧に起因する破損を防止し、過渡過電圧監視ユニットを保護することができ、過渡過電圧監視システムにおいて500kV送電回線過電圧と結合するためのセンサとすることもできる。
1) High operating frequency, high precision of measurement data For example, it has voltage metering and relay protection functions for ordinary capacitor-type instrument transformers, and measures harmonics in high-voltage and ultra-high-voltage transmission networks, The voltage waveform can also be observed and measured in real time. By installing the first lightning arrester and the second lightning arrester, damage due to overvoltage can be prevented, the transient overvoltage monitoring unit can be protected, and the sensor for coupling with the 500 kV transmission line overvoltage in the transient overvoltage monitoring system It can also be.

2)高動作安定性
常設型室外装置の設計アイデアを用いるため、本開示で示されるCVTは、一時的な施設や対策でなく、送電網において長期的に動作できる装置である。
2) High operational stability Since the design idea of the permanent outdoor device is used, the CVT shown in the present disclosure is not a temporary facility or countermeasure, but a device that can operate in the power transmission network for a long period of time.

図1は本実施例におけるコンデンサ形計器用変圧器の回路構造模式図である。FIG. 1 is a schematic diagram of a circuit structure of a capacitor-type instrument transformer in the present embodiment. 図2Aは本実施例における第3のコンデンサC3の下部底板の構造模式図である。FIG. 2A is a schematic diagram of the structure of the lower bottom plate of the third capacitor C3 in this embodiment. 図2Bは本実施例における第3のコンデンサC3の上部底板の構造上面模式図である。FIG. 2B is a schematic top view of the structure of the upper bottom plate of the third capacitor C3 in this embodiment. 図3は本実施例における過渡過電圧監視システムの構造模式図である。FIG. 3 is a structural schematic diagram of the transient overvoltage monitoring system in this embodiment.

以下、図面と実施例を参照しながら本開示について説明する。衝突がない限り、以下の実施例と実施例における特徴は互いに組み合わせることができる。   Hereinafter, the present disclosure will be described with reference to the drawings and examples. As long as there is no collision, the features in the following examples and examples can be combined with each other.

図1に示すように、過渡過電圧監視システム用のコンデンサ形計器用変圧器2は、第1のコンデンサC1、第2のコンデンサC2、第3のコンデンサC3、中間変圧器T、過渡過電圧監視ユニットM、接地ナイフスイッチK、補償リアクトルL、ダンパZD、保護隙間P、第1の避雷器BL1及び第2の避雷器BL2を備え、第1のコンデンサC1は、一端が送電網1に接続され、他端が第2のコンデンサC2の一端と中間変圧器Tにおける一次巻線の一端にそれぞれ接続され、第2のコンデンサC2の他端は過渡過電圧監視ユニットMの一端と補償リアクトルLの一端にそれぞれ接続され、中間変圧器Tにおける一次巻線の他端は補償リアクトルLの他端と第1の避雷器BL1の一端にそれぞれ接続され、過渡過電圧監視ユニットMの他端と第1の避雷器BL1の他端はいずれも接地し、接地ナイフスイッチK、保護隙間P及び第2避雷器BL2は過渡過電圧監視ユニットMの両端にそれぞれ並列接続され、ダンパZDは中間変圧器Tにおける二次巻線に設けられ、U1は送電網1の電圧であり、補償リアクトルLはリアクタンス値を調整可能な抵抗であってもよく、異なる二次負荷で一次電圧(第1のコンデンサC1に接続された高電圧端の電圧)と
二次電圧(第3のコンデンサC3の両端の電圧又は中間変圧器Tから出力された電圧)との間に正確な位相と変圧比を取得できるように、補償リアクトルLのリアクタンス値はコンデンサ形計器用変圧器2の等価容量の定格周波数での容量性リアクタンスと同じである。校正しやすくするために、位相差及び変圧比は安定しているべきであり、電圧変化とともにドリフトすることがなく、位相差はゼロであるのが最適で、又は一定に保たれるのが良い。図1のうち、Nは第2のコンデンサC2の低電圧端、1a、1n、2a、2n、da1、da2、danは中間変圧器Tの二次巻線の出力端子である。第2避雷器BL2、保護隙間P及びダンパZDは好ましいデバイスであり、コンデンサ形計器用変圧器2に存在しなくてもよい。
As shown in FIG. 1, a capacitor-type instrument transformer 2 for a transient overvoltage monitoring system includes a first capacitor C1, a second capacitor C2, a third capacitor C3, an intermediate transformer T, and a transient overvoltage monitoring unit M. , A grounding knife switch K, a compensation reactor L, a damper ZD, a protective gap P, a first lightning arrester BL1 and a second lightning arrester BL2, and the first capacitor C1 has one end connected to the power grid 1 and the other end One end of the second capacitor C2 is connected to one end of the primary winding in the intermediate transformer T, and the other end of the second capacitor C2 is connected to one end of the transient overvoltage monitoring unit M and one end of the compensation reactor L, The other end of the primary winding in the intermediate transformer T is connected to the other end of the compensation reactor L and one end of the first lightning arrester BL1, respectively, and the other end of the transient overvoltage monitoring unit M. The other end of the first lightning arrester BL1 is grounded, the grounding knife switch K, the protective gap P and the second lightning arrester BL2 are connected in parallel to both ends of the transient overvoltage monitoring unit M, respectively, and the damper ZD is connected to the two in the intermediate transformer T. Provided in the secondary winding, U1 is the voltage of the power grid 1, the compensation reactor L may be a resistor whose reactance value can be adjusted, and the primary voltage (connected to the first capacitor C1) with a different secondary load. Compensation voltage so that an accurate phase and transformation ratio can be obtained between the secondary voltage (the voltage across the third capacitor C3 or the voltage output from the intermediate transformer T) and the secondary voltage. The reactance value of L is the same as the capacitive reactance at the rated frequency of the equivalent capacity of the capacitor-type instrument transformer 2. For ease of calibration, the phase difference and transformation ratio should be stable, do not drift with voltage changes, and should be zero or optimally kept constant. . In FIG. 1, N is the low voltage end of the second capacitor C2, 1a, 1n, 2a, 2n, da1, da2, and dan are output terminals of the secondary winding of the intermediate transformer T. The second lightning arrester BL2, the protective gap P, and the damper ZD are preferable devices and may not be present in the capacitor-type instrument transformer 2.

第1のコンデンサC1、第2のコンデンサC2及び第3のコンデンサC3が直列接続される場合、第1のコンデンサC1(高電圧アームとも呼称される)が高電圧端に接続され、第3のコンデンサC3(低電圧アームとも呼称される)が地面に接続される。本実施例のコンデンサ形計器用変圧器は異なる電圧等級の送電網に適用できるため、第1のコンデンサC1、第2のコンデンサC2及び第3のコンデンサC3の受ける電圧は同じでなく、一般的に、第1のコンデンサC1>第2のコンデンサC2>第3のコンデンサC3である。たとえば500kV電圧等級システムでは、第1のコンデンサC1(高電圧アーム)が大部分の電圧降下を受け、第3のコンデンサC3(低電圧アーム)は約万分の1〜2の電圧だけを受け、35kV電圧等級システムでは、低電圧アームが約千分の2〜3の電圧降下を受け、工学応用では、通常、第3のコンデンサC3の値を微調整することで、C3両端の最大動作電圧を約100Vに安定化させる。   When the first capacitor C1, the second capacitor C2, and the third capacitor C3 are connected in series, the first capacitor C1 (also referred to as a high voltage arm) is connected to the high voltage end, and the third capacitor C3 (also called low voltage arm) is connected to the ground. Since the capacitor-type instrument transformer according to the present embodiment can be applied to transmission networks of different voltage grades, the voltages received by the first capacitor C1, the second capacitor C2, and the third capacitor C3 are not the same. First capacitor C1> second capacitor C2> third capacitor C3. For example, in a 500 kV voltage grade system, the first capacitor C1 (high voltage arm) is subjected to the majority of the voltage drop, and the third capacitor C3 (low voltage arm) receives only about 1 / 10,000 of the voltage, and 35 kV. In a voltage grade system, the low voltage arm experiences a voltage drop of about a few thousandths, and in engineering applications, the maximum operating voltage across C3 is usually reduced by fine-tuning the value of the third capacitor C3. Stabilize to 100V.

好ましくは、図2Aと図2Bに示すように、第3のコンデンサC3は相互に並列接続され、すべて同軸円周構造として配列された複数の無誘導コンデンサ素子9からなる。過渡過電圧監視ユニットMは第3のコンデンサC3に並列接続される。過渡過電圧監視ユニットMの高電圧端がCVT内部の第2のコンデンサC2の低電圧端Nに直列接続され、第3のコンデンサC3の接地端子が銅シート又は銅帯により接地し、第3のコンデンサC3の測定端子が標準コネクタを用いて同軸ケーブルを介してC3両端の電圧信号をデジタル収集装置(すなわち過渡過電圧監視ユニットM)に送信する。   Preferably, as shown in FIGS. 2A and 2B, the third capacitor C3 includes a plurality of non-inductive capacitor elements 9 connected in parallel to each other and all arranged in a coaxial circumferential structure. The transient overvoltage monitoring unit M is connected in parallel to the third capacitor C3. The high voltage end of the transient overvoltage monitoring unit M is connected in series to the low voltage end N of the second capacitor C2 inside the CVT, the ground terminal of the third capacitor C3 is grounded by a copper sheet or a copper strip, and the third capacitor The measurement terminal of C3 transmits the voltage signal at both ends of C3 to the digital collector (that is, the transient overvoltage monitoring unit M) through the coaxial cable using the standard connector.

図3に示すように、本実施例は、電力システムの運転装置に発生した複数種の形式の過渡電圧(商用周波過電圧、操作過電圧及び雷過電圧等を含む)を監視する過渡過電圧監視システムを提供する。過渡過電圧監視システムは、コンデンサ形計器用変圧器2、保護器4、過渡電圧収集装置6及び産業用コンピュータ8を備え、コンデンサ形計器用変圧器2は送電網1の送電回線又はバスに接続され、伝送ケーブル3を介して保護器4に接続され、保護器4は通信光ケーブル5により過渡電圧収集装置6に接続され、過渡電圧収集装置6は通信ケーブル7により産業用コンピュータ8に接続される。過渡過電圧オンライン監視とは、分圧センサによって、信号収集技術を用い、送電網システムの電圧外乱をリアルタイムに監視し、過渡過電圧が発生した場合の各種の相電圧の振幅、故障前後の波形及び各種のパラメータを記録・記憶し、信号処理とパラメータ抽出、使用と分析(たとえば、警報、履歴データ問い合わせ及び統計等)の機能を有する。   As shown in FIG. 3, the present embodiment provides a transient overvoltage monitoring system that monitors a plurality of types of transient voltages (including commercial frequency overvoltage, operation overvoltage, lightning overvoltage, etc.) generated in a power system operating device. To do. The transient overvoltage monitoring system includes a capacitor-type instrument transformer 2, a protector 4, a transient voltage collection device 6, and an industrial computer 8, and the capacitor-type instrument transformer 2 is connected to a transmission line or bus of the power transmission network 1. Are connected to a protector 4 via a transmission cable 3, and the protector 4 is connected to a transient voltage collector 6 via a communication optical cable 5, and the transient voltage collector 6 is connected to an industrial computer 8 via a communication cable 7. Transient overvoltage online monitoring is a signal collection technology that uses a voltage dividing sensor to monitor voltage disturbances in the power grid system in real time. When transient overvoltage occurs, the amplitude of various phase voltages, waveforms before and after the failure, and various Parameters are recorded and stored, and have functions of signal processing, parameter extraction, use and analysis (for example, alarm, historical data inquiry and statistics).

本開示は、動作周波数が高く、測定データの精度が高く、適用範囲が広く、インテリジェント送電網の情報化と自動化の機能による要求を満たし、過電圧と絶縁の複合技術の発展による要求を満たすことができる過渡過電圧監視システム用のコンデンサ形計器用変圧器を提供する。   This disclosure has a high operating frequency, high accuracy of measurement data, wide application range, satisfies the requirements of intelligent power grid information and automation functions, and meets the requirements of the development of combined technology of overvoltage and insulation. Provided is a capacitor-type instrument transformer for a transient overvoltage monitoring system.

図中:1、送電網、2、コンデンサ形計器用変圧器、3、伝送ケーブル、4、保護器、
5、通信光ケーブル、6、過渡電圧収集装置、7、通信ケーブル、8、産業用コンピュータ、9、無誘導コンデンサ素子、C1、第1のコンデンサ、C2、第2のコンデンサ、C3、第3のコンデンサ、M、過渡過電圧監視ユニット、T、中間変圧器、K、接地ナイフスイッチ、L、補償リアクトル、ZD、ダンパ、P、保護隙間、BL1、第1の避雷器、BL2、第2の避雷器。
In the figure: 1, power transmission network, 2, capacitor-type instrument transformer, 3, transmission cable, 4, protector,
5, communication optical cable, 6, transient voltage collector, 7, communication cable, 8, industrial computer, 9, non-inductive capacitor element, C1, first capacitor, C2, second capacitor, C3, third capacitor , M, transient overvoltage monitoring unit, T, intermediate transformer, K, ground knife switch, L, compensating reactor, ZD, damper, P, protective gap, BL1, first lightning arrester, BL2, second lightning arrester.

Claims (5)

第1のコンデンサ、第2のコンデンサ、第3のコンデンサ、過渡過電圧監視ユニット、中間変圧器、接地ナイフスイッチ、補償リアクトル、及び第1の避雷器を備え、前記第1のコンデンサは、一端が送電網に接続され、他端が第2コンデンサの一端と中間変圧器における一次巻線の一端にそれぞれ接続され、前記第2のコンデンサの他端は過渡過電圧監視ユニットの一端と補償リアクトルの一端にそれぞれ接続され、前記中間変圧器における一次巻線の他端は補償リアクトルの他端と第1の避雷器の一端にそれぞれ接続され、前記過渡過電圧監視ユニットの他端と第1の避雷器の他端はいずれも接地し、前記接地ナイフスイッチは過渡過電圧監視ユニットの両端に並列接続され、前記第3のコンデンサは、一端が前記第2のコンデンサの他端に接続されて、他端が接地し、前記第1のコンデンサの耐えられる電圧が前記第2のコンデンサの耐えられる電圧より大きく、前記第2のコンデンサの耐えられる電圧が前記第3のコンデンサの耐えられる電圧より大きい過渡過電圧監視システム用のコンデンサ形計器用変圧器。   A first capacitor, a second capacitor, a third capacitor, a transient overvoltage monitoring unit, an intermediate transformer, a ground knife switch, a compensation reactor, and a first lightning arrester, the first capacitor having one end at a power grid And the other end is connected to one end of the second capacitor and one end of the primary winding of the intermediate transformer, respectively, and the other end of the second capacitor is connected to one end of the transient overvoltage monitoring unit and one end of the compensation reactor, respectively. The other end of the primary winding in the intermediate transformer is connected to the other end of the compensation reactor and one end of the first lightning arrester, respectively, and the other end of the transient overvoltage monitoring unit and the other end of the first lightning arrester are both The grounding knife switch is connected in parallel to both ends of the transient overvoltage monitoring unit, and the third capacitor has one end in addition to the second capacitor. The other end is grounded, the voltage that the first capacitor can withstand is greater than the voltage that the second capacitor can withstand, and the voltage that the second capacitor can withstand is the endurance of the third capacitor. Capacitor-type instrument transformer for transient overvoltage monitoring systems that are greater than the required voltage. 過渡過電圧監視ユニットの両端に並列接続される第2の避雷器をさらに備える請求項1に記載のコンデンサ形計器用変圧器。   The capacitor-type instrument transformer according to claim 1, further comprising a second lightning arrester connected in parallel to both ends of the transient overvoltage monitoring unit. 前記補償リアクトルはリアクタンス値を調整可能な抵抗である請求項1に記載のコンデンサ形計器用変圧器。   The capacitor-type instrument transformer according to claim 1, wherein the compensation reactor is a resistor capable of adjusting a reactance value. 中間変圧器における二次巻線に設けられるダンパをさらに備える請求項1に記載のコンデンサ形計器用変圧器。   The capacitor-type instrument transformer according to claim 1, further comprising a damper provided in a secondary winding in the intermediate transformer. 過渡過電圧監視ユニットの両端に並列接続される保護隙間をさらに備える請求項1に記載のコンデンサ形計器用変圧器。   The capacitor-type instrument transformer according to claim 1, further comprising a protective gap connected in parallel to both ends of the transient overvoltage monitoring unit.
JP2017564669A 2016-07-08 2017-07-07 Capacitor-type instrument transformer for transient overvoltage monitoring system Active JP6547217B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610533651.6A CN106199121B (en) 2016-07-08 2016-07-08 A kind of capacitance type potential transformer for transient overvoltage monitoring system
CN201610533651.6 2016-07-08
PCT/CN2017/092280 WO2018006876A1 (en) 2016-07-08 2017-07-07 Capacitive voltage mutual inductor for transient over-voltage monitoring system

Publications (2)

Publication Number Publication Date
JP2018532249A true JP2018532249A (en) 2018-11-01
JP6547217B2 JP6547217B2 (en) 2019-07-24

Family

ID=57473341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017564669A Active JP6547217B2 (en) 2016-07-08 2017-07-07 Capacitor-type instrument transformer for transient overvoltage monitoring system

Country Status (3)

Country Link
JP (1) JP6547217B2 (en)
CN (1) CN106199121B (en)
WO (1) WO2018006876A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199121B (en) * 2016-07-08 2019-03-08 国网上海市电力公司 A kind of capacitance type potential transformer for transient overvoltage monitoring system
CN106970268B (en) * 2017-02-28 2019-07-16 上海交通大学 Single-phase overhead transmission line of electricity phase voltage method for self-calibrating based on shunt capacitance
WO2019194754A1 (en) * 2018-04-04 2019-10-10 Em Elektri̇k Malzemeleri̇ Yükleni̇m Sanayi̇ Ti̇caret Anoni̇m Şi̇rketi̇ Link box with built-in insulator type voltage divider and inductive partial discharge sensor
CN111029118A (en) * 2020-01-16 2020-04-17 郑州三晖互感器有限公司 High-voltage electromagnetic voltage proportion standard error compensation method
CN111239666A (en) * 2020-02-07 2020-06-05 云南电网有限责任公司电力科学研究院 Transient characteristic test system of far-end module box
CN112180162A (en) * 2020-09-27 2021-01-05 江苏思源赫兹互感器有限公司 Harmonic detection system based on capacitive voltage transformer
CN112285411B (en) * 2020-10-22 2023-05-02 国网四川省电力公司电力科学研究院 CVT nonlinear model, model-based system and method for measuring voltage
CN112834808B (en) * 2020-12-31 2023-02-17 广东电网有限责任公司电力科学研究院 Lightning invasion wave monitoring method and system
CN112986667B (en) * 2021-02-22 2024-02-23 国网陕西省电力公司电力科学研究院 Voltage digital signal measuring method and system for CVT voltage quality measurement
CN113410035B (en) * 2021-06-25 2023-06-23 河北旭辉电气股份有限公司 Anti-resonance voltage transformer with grounding compensation function based on Y-shaped wiring
CN113759159B (en) * 2021-09-29 2023-12-29 国网陕西省电力公司电力科学研究院 Capacitive voltage transformer with function of outputting capacitive current signals

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477915U (en) * 1977-11-14 1979-06-02
JPS60205980A (en) * 1984-03-28 1985-10-17 松下電器産業株式会社 Chip type surge absorber
JPH0714633U (en) * 1993-08-09 1995-03-10 日新電機株式会社 Capacitor type voltage transformer
CN102737828A (en) * 2011-04-13 2012-10-17 华东电力试验研究院有限公司 Capacitor voltage transformer provided with transient overvoltage monitoring unit
JP2013019753A (en) * 2011-07-11 2013-01-31 Otowa Denki Kogyo Kk Direct lightning stroke detector
CN103344821A (en) * 2013-06-25 2013-10-09 国家电网公司 Transient overvoltage on-line monitoring system based on CVT and provided with built-in low-voltage capacitor
CN104749411A (en) * 2013-12-27 2015-07-01 华北电力大学(保定) Capacitor voltage transformer with improved carrier function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433557B1 (en) * 2000-12-21 2002-08-13 Eaton Corporation Electrical system with capacitance tap and sensor for on-line monitoring the state of high-voltage insulation and remote monitoring device
CN2526854Y (en) * 2002-02-05 2002-12-18 周友东 Voltage sensor
CN202042351U (en) * 2011-04-14 2011-11-16 华东电力试验研究院有限公司 Capacitor voltage transformer component system with transient overvoltage monitoring unit
CN103035393A (en) * 2012-12-27 2013-04-10 中国西电电气股份有限公司 Electromagnetic unit and capacitor voltage transformer including electromagnetic unit
CN104749408A (en) * 2013-12-27 2015-07-01 华北电力大学(保定) Capacitor voltage transformer applied to harmonic measurement
CN204142946U (en) * 2014-08-12 2015-02-04 国家电网公司 A kind of CVT dynamic model model experimental systems
CN104502880B (en) * 2014-12-12 2018-03-30 国家电网公司 A kind of equivalent test circuit of can type capacitor voltage mutual inductor transient characterisitics
CN106199121B (en) * 2016-07-08 2019-03-08 国网上海市电力公司 A kind of capacitance type potential transformer for transient overvoltage monitoring system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477915U (en) * 1977-11-14 1979-06-02
JPS60205980A (en) * 1984-03-28 1985-10-17 松下電器産業株式会社 Chip type surge absorber
JPH0714633U (en) * 1993-08-09 1995-03-10 日新電機株式会社 Capacitor type voltage transformer
CN102737828A (en) * 2011-04-13 2012-10-17 华东电力试验研究院有限公司 Capacitor voltage transformer provided with transient overvoltage monitoring unit
JP2013019753A (en) * 2011-07-11 2013-01-31 Otowa Denki Kogyo Kk Direct lightning stroke detector
CN103344821A (en) * 2013-06-25 2013-10-09 国家电网公司 Transient overvoltage on-line monitoring system based on CVT and provided with built-in low-voltage capacitor
CN104749411A (en) * 2013-12-27 2015-07-01 华北电力大学(保定) Capacitor voltage transformer with improved carrier function

Also Published As

Publication number Publication date
CN106199121B (en) 2019-03-08
CN106199121A (en) 2016-12-07
JP6547217B2 (en) 2019-07-24
WO2018006876A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6547217B2 (en) Capacitor-type instrument transformer for transient overvoltage monitoring system
CA2925370C (en) A high voltage divider
CN203551641U (en) Broadband voltage collector
CN100371722C (en) Three-phase lightning protector early fault on-line monitoring method and apparatus thereof
CN103592497A (en) Broadband voltage collector
CN104330615A (en) Multi-phase measuring device of lightning arrester and transformer based on FFT algorithm and method thereof
CN106483360A (en) Method using 220V power supply on-line monitoring arrester resistance current
Jurisic et al. Statistical analysis of non-standard overvoltage waveforms measured at 220 kV terminals of a power transformer
CN203504192U (en) High-voltage step voltage and capacitance regulating reactive compensation complete equipment
Nie et al. Overview of voltage transformers suitable for high voltage levels
Yang et al. Lightning invaded overvoltage monitoring technology in substation based on the principle of ZnO lightning arrester block voltage dividing
Schei Diagnostics techniques for surge arresters with main reference to on-line measurement of resistive leakage current of metal-oxide arresters
CN105572489A (en) Live-line tester for lightning arrester
CN104820148A (en) Over-voltage measurement and simulation test platform of power transmission line
Li et al. Substation lightning invaded over-voltage monitoring system based on arrester valve divider
CN209055594U (en) A kind of lightning arrester monitoring device and system
Chatrefou et al. Application of optical sensors for measurement of high frequency overvoltages in power transformers
CN202330523U (en) Capacitive sampling voltage box for voltage quality monitoring of 220kV power system
Purwadi et al. Harmonic characteristics on 20 kV-medium voltage distribution and low voltage network in PT. PLN distribution West Java and Banten
Sandler et al. Measurement Systems for High Voltage Transients in Power Networks
Sun et al. Design and Test of Overvoltage Monitoring Device for 500kV Smart Substation
CN113013829B (en) Safety control method and device for lightning arrester
CN2854615Y (en) On-line monitoring device for early fault of three-phase lightning protector
Regnier et al. Measurement Transducers for LCC and VSC HVDC Converter Stations
Dedović et al. Experimental investigation of Ferro-resonance and mitigation measured in 35 kV isolated network

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190606

R150 Certificate of patent or registration of utility model

Ref document number: 6547217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250