JP2018530292A - フレキシブルネットワークトポロジ及び双方向電力フロー - Google Patents

フレキシブルネットワークトポロジ及び双方向電力フロー Download PDF

Info

Publication number
JP2018530292A
JP2018530292A JP2018513329A JP2018513329A JP2018530292A JP 2018530292 A JP2018530292 A JP 2018530292A JP 2018513329 A JP2018513329 A JP 2018513329A JP 2018513329 A JP2018513329 A JP 2018513329A JP 2018530292 A JP2018530292 A JP 2018530292A
Authority
JP
Japan
Prior art keywords
power
power system
coil
conductive medium
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018513329A
Other languages
English (en)
Other versions
JP2018530292A5 (ja
Inventor
ジェームス, エフ. コルム,
ジェームス, エフ. コルム,
ケネス, エル. コルム,
ケネス, エル. コルム,
ジェームス, ディー. リリー,
ジェームス, ディー. リリー,
バジル, エフ., ジュニア. ピンゾーン,
バジル, エフ., ジュニア. ピンゾーン,
ジョセフ, エフ. ピンゾーン,
ジョセフ, エフ. ピンゾーン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPG Technologies LLC
Original Assignee
CPG Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPG Technologies LLC filed Critical CPG Technologies LLC
Publication of JP2018530292A publication Critical patent/JP2018530292A/ja
Publication of JP2018530292A5 publication Critical patent/JP2018530292A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/52Systems for transmission between fixed stations via waveguides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

電力系間の電気エネルギの双方向交換を確立するための各種実施形態が開示される。実施形態は、1つ以上の電力系内の余剰電力を電力不足状態の電力系に振り向けることができることを確実にする電力系のネットワークとして構成することができる。一実施形態では、電力系は、損失性導電媒体に沿った誘導表面波を送出するように構成することができる。コントローラは、余剰電力の利用可能性を通信し、余剰電力を伝送する要求を受信し、電力をリモート系に伝送するように構成することができる。別の実施形態では、電力系の電力不足のインジケーションをリモートコントローラに送信するステップと、リモートコントローラからの利用可能な電力のオファーを受信するステップと、第2の電力系からエネルギを受信するステップと、エネルギを電力系に結合された負荷に振り向けるステップと、を含む方法が提供される。

Description

[関連出願の相互参照]
本出願は、2015年9月10日に出願された米国特許出願第14/849,897号の優先権及び利益を主張し、その出願は、参照によりその全体が本明細書に組み込まれる。
本出願は、2013年3月7日に出願され出願番号第13/789,538号が付与され、公開番号第2014/0252886(A1)号として2014年9月11日に公開された「Excitation and Use of Guided Surface Wave Modes on Lossy Media」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願はまた、2013年3月7日に出願され出願番号第13/789,525号が付与され、公開番号第2014/0252865(A1)号として2014年9月11日に公開された「Excitation and Use of Guided Surface Wave Modes on Lossy Media」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願は更に、2014年9月10日に出願され出願番号第14/483,089号が付与された「Excitation and Use of Guided Surface Wave Modes on Lossy Media」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願は更に、2015年6月2日に出願され出願番号第14/728,507号が付与された「Excitation and Use of Guided Surface Waves」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願は更に、2015年6月2日に出願され出願番号第14/728,492号が付与された「Excitation and Use of Guided Surface Waves」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。
一世紀以上にわたり、電波によって伝送される信号は、従来のアンテナ構造を使用して送出される放射電磁界を伴っていた。無線科学とは対照的に、前世紀の電力分配システムは、導電体に沿って誘導されたエネルギの伝送を伴った。無線周波数(radio frequency)(RF)と送電との間のこの差異の理解は、1900年代初頭から存在していた。
本開示の実施形態は、リモート電力系との電気エネルギの双方向交換を確立するように構成された電力系に関する。
一実施形態によれば、とりわけ、発電源及び電気的負荷を含むローカライズ電力系に関連付けられた、損失性導電媒体に沿った誘導表面波を送出するように構成された誘導表面導波プローブと、少なくとも、ローカライズ電力系内の余剰電力の利用可能性を第2のコントローラに通信し、余剰電力をリモート系に伝送する要求を受信し、損失性導電媒体に沿った誘導表面波を送出することにより、電気エネルギをリモート系に伝送するように構成された第1のコントローラと、を備える装置が提供される。各種実施形態では、誘導表面導波プローブは、損失性導電媒体の上に持ち上げられた、損失性導電媒体の複素ブルースター入射角(θi,B)で入射する波面を合成する、結果として生じる少なくとも1つの電界を生成するように構成された帯電端子を含む。各種実施形態では、帯電端子は、複数の帯電端子のうちの1つである。また、各種実施形態では、帯電端子は、損失性導電媒体の複素ブルースター入射角(θi,B)に関連付けられたウェーブチルト角(Ψ)に整合する位相遅延(Φ)を有する電圧によって励起される。
加えて、本開示の各種実施形態では、リモート系は、誘導表面波受信構造を含む。各種実施形態では、要求は、伝送周波数を指定し、要求は、受信されることになる電力量を指定する。各種実施形態では、電池は、ローカライズ電力系に関連付けられ、余剰電力は、電池が少なくとも既定の充電レベル閾値を有するときのみ利用可能と見なされる。
加えて、本開示の各種実施形態では、発電源は、ソーラーパネルシステム、風力タービンシステム、水力発電システム、地熱システム、及びディーゼルシステムのうちの少なくとも1つを含む。
一実施形態によれば、とりわけ、第1のコントローラを使用して第1の電力系に関連付けられた電力不足のインジケーションを第2のコントローラに送信するステップと、第1のコントローラを使用して第2の電力系からの利用可能な電力のオファーを受信するステップと、第1の電力系に関連付けられた誘導表面波受信構造を使用して第2の電力系から誘導表面波の形態で電気エネルギを受信するステップと、電気エネルギを誘導表面波受信構造に結合された電気的負荷に振り向けるステップと、を含む、方法が提供される。
各種実施形態では、電力不足のインジケーションは、必要な電力量を示すデータを含む。また、各種実施形態では、電力不足のインジケーションは、所望の伝送周波数を示すデータを含む。各種実施形態では、方法は、第1のコントローラを使用して、誘導表面波受信構造を使用して第2の電力系から受信した電気エネルギの測定値を監視することを更に含む。各種実施形態では、第2のコントローラは、電力源を含む複数の構造のうちの少なくとも1つに関連付けられた電力系状態を監視するように構成されている。
本開示の他のシステム、方法、特徴、及び利点は、以下の図面及び「発明を実施するための形態」を精査することで当業者には明らかである又は明らかになるであろう。すべてのそのような追加のシステム、方法、特徴、及び利点は、本明細書に含まれ、本開示の範囲内であり、添付の「特許請求の範囲」により保護されることが意図されている。
加えて、説明する実施形態のすべての任意選択かつ好ましい特徴及び改良は、本明細書で教示される開示全体のすべての態様に使用可能である。更に、従属請求項の個別の特徴、並びに説明する実施形態のすべての任意選択かつ好ましい特徴及び改良は、互いに組合せ可能かつ交換可能である。
本開示の多くの態様は、以下の図面を参照することにより、より良好に理解することができる。図面内の構成要素は、必ずしも正しい縮尺ではなく、本開示の原理を明確に例示することに重点が置かれている。更に、図面中で、同じ参照数字は、いくつかの図を通して対応する部分を指す。
誘導電磁界及び放射電磁界に関して、距離の関数として電界強度を示すグラフである。
本開示の各種実施形態に係る、誘導表面波の伝送のために用いられる2つの領域を有する伝搬境界面を示す図である。
本開示の各種実施形態に係る、図2の伝搬境界面に対して配置された誘導表面導波プローブを示す図である。
本開示の各種実施形態に係る、一次ハンケル関数の近接漸近線及び遠方漸近線の大きさの例のグラフである。
本開示の各種実施形態に係る、誘導表面導波プローブによって合成された電界の複素入射角を示す図である。 本開示の各種実施形態に係る、誘導表面導波プローブによって合成された電界の複素入射角を示す図である。
本開示の各種実施形態に係る、図5Aの電界が損失性導電媒体とブルースター角で交差する位置上の帯電端子の高度の効果を示すグラフ表示である。
本開示の各種実施形態に係る、誘導表面導波プローブの例のグラフ表示である。
本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブの等価影像平面モデルの例を示すグラフ表示である。 本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブの等価影像平面モデルの例を示すグラフ表示である。 本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブの等価影像平面モデルの例を示すグラフ表示である。
本開示の各種実施形態に係る、図8B及び8Cの等価影像平面モデルの単線伝送線及び古典的伝送線のモデルの例を示すグラフ表示である。 本開示の各種実施形態に係る、図8B及び8Cの等価影像平面モデルの単線伝送線及び古典的伝送線のモデルの例を示すグラフ表示である。
本開示の各種実施形態に係る、損失性導電媒体の表面に沿って誘導表面波を送出するために図3及び図7の誘導表面導波プローブを調整する例を示す流れ図である。
本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブのウェーブチルト角と位相遅延との間の関係の例を示すグラフである。
本開示の各種実施形態に係る、誘導表面導波プローブの例を示す図である。
本開示の各種実施形態に係る、ハンケル交差距離で誘導表面導波モードに整合する複素ブルースター角での合成された電界の入射を示すグラフ表示である。
本開示の各種実施形態に係る、図12の誘導表面導波プローブの例のグラフ表示である。
本開示の各種実施形態に係る、誘導表面導波プローブの帯電端子Tの位相遅延(Φ)の虚部及び実部の例のグラフを含む。
本開示の各種実施形態に係る、図14の誘導表面導波プローブの模式図である。
本開示の各種実施形態に係る、誘導表面導波プローブの例を示す図である。
本開示の各種実施形態に係る、図16の誘導表面導波プローブの例のグラフ表示である。
本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる受信構造の例を示す。 本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる受信構造の例を示す。 本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる受信構造の例を示す。
本開示の各種実施形態に係る、受信構造を調整する例を示す流れ図である。
本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる追加の受信構造の例を示す。
本開示の各種実施形態に係る、誘導表面導波プローブ及び誘導表面波受信構造の様々な概略図記号の例である。 本開示の各種実施形態に係る、誘導表面導波プローブ及び誘導表面波受信構造の様々な概略図記号の例である。 本開示の各種実施形態に係る、誘導表面導波プローブ及び誘導表面波受信構造の様々な概略図記号の例である。 本開示の各種実施形態に係る、誘導表面導波プローブ及び誘導表面波受信構造の様々な概略図記号の例である。 本開示の各種実施形態に係る、誘導表面導波プローブ及び誘導表面波受信構造の様々な概略図記号の例である。
本開示の各種実施形態に係る、電力フローの双方向交換を確立するように構成された例示的な電力系を示す。
本開示の各種実施形態に係る、誘導表面導波プローブ及び誘導表面波受信構造に結合された地域用の例示的な電力分配グリッドを示す。
本開示の各種実施形態に係る電力フローの双方向交換を確立するためのネットワークに接続された複数のローカル交換システムを含む、電力ネットワークシステムの例を示す。
本開示の各種実施形態に係る、電力系間の電力交換を促進することができる、コントローラ、ローカル交換システム、及び中央交換システムを表す概略ブロック図を示す。
本開示の各種実施形態に係る、図24に示すコントローラアプリケーションの一部として実装された機能の例を示す流れ図である。 本開示の各種実施形態に係る、図24に示すコントローラアプリケーションの一部として実装された機能の例を示す流れ図である。
本開示の各種実施形態に係る、図24に示すローカル交換システム内で実行されるローカル交換アプリケーションの一部として実装された機能の例を示す流れ図である。 本開示の各種実施形態に係る、図24に示すローカル交換システム内で実行されるローカル交換アプリケーションの一部として実装された機能の例を示す流れ図である。
本開示の各種実施形態に係る、図24に示す中央交換システム内で実行される中央交換アプリケーションの一部として実装された機能の例を示す流れ図である。 本開示の各種実施形態に係る、図24に示す中央交換システム内で実行される中央交換アプリケーションの一部として実装された機能の例を示す流れ図である。
初めに、以下の概念の説明における明瞭さを提供するために、いくつかの専門用語を規定する。最初に、本明細書で意図されるように、放射電磁界と誘導電磁界との間に形式的区別がなされる。
本明細書で意図されるように、放射電磁界は、導波路に拘束されていない波動の形態で発生源の構造から放出された電磁エネルギを含む。例えば、放射電磁界は、一般的に、アンテナなどの電気的構造を出て、大気又は他の媒体を介して伝搬する電界であり、なんらの導波路構造に拘束されていない。放射された電磁波は、アンテナなどの電気的構造を離れると、発生源が動作し続けるか否かに関わらず、消散するまで、その発生源と無関係に伝搬の媒体(空気などの)内を伝搬し続ける。電磁波は、放射されると、遮断されない限り回収できず、遮断されない場合、放射された電磁波に固有のエネルギは、永久に失われる。アンテナなどの電気構造は、放射抵抗と構造損失抵抗の比を最大化することにより、電磁界を放射するように設計される。放射されたエネルギは、空間に広がって、受信器が存在するか否かに関わらず、失われる。放射された電界のエネルギ密度は、幾何学的拡大に起因する距離の関数である。したがって、本明細書で使用するとき、そのすべての形態における「放射する」という用語は、電磁伝搬のこの形態を指す。
誘導電磁界は、異なる電磁特性を有する媒体の間の境界内又はその付近にエネルギが集中した、伝搬する電磁波である。この意味で、誘導電磁界は、導波路に拘束されたものであり、導波路内を流れる電流によって搬送されるとして特徴付けることができる。誘導電磁波内で搬送されるエネルギを受信及び/又は消散する負荷が存在しない場合、誘導媒体の導電率で消散したエネルギ以外は、エネルギは失われない。別の言い方をすれば、誘導電磁波に対して負荷が存在しない場合、エネルギは消費されない。したがって、誘導電磁界を生成する発生器又は他の発生源は、抵抗負荷が存在しない限り、実際の電力を送出しない。そのため、そのような発生器又は他の発生源は、負荷が提示されるまで、本質的に空転する。これは、電気的負荷が存在しない電力線にわたって伝送される60ヘルツの電磁波を生成するように発生器を動作させることに類似している。誘導電磁界又は誘導電磁波は、「伝送線モード」と呼ばれるものと等価であることに留意されたい。これは、放射波を生成するために常に実際の電力が供給される放射電磁波と対照的である。放射電磁波とは異なり、誘導電磁エネルギは、エネルギ源がオフにされた後で、有限の長さの導波路に沿って伝搬し続けない。したがって、本明細書で使用するとき、そのすべての形態における「誘導する」という用語は、電磁伝搬のこの伝送モードを指す。
ここで図1を参照して、放射電磁界と誘導電磁界との間の差異を更に示すために、対数dBグラフ上のキロメートルでの距離の関数として、1メートル当たりのボルトでの任意指示を上回るデシベル(dB)での電界強度のグラフ100を示す。図1のグラフ100は、距離の関数として誘導電磁界の電界強度を示す誘導電界強度曲線103を示す。この誘導電界強度曲線103は、伝送線モードと本質的に同じである。また、図1のグラフ100は、距離の関数として放射電磁界の電界強度を示す放射電界強度曲線106を示す。
誘導波及び放射伝搬それぞれに対する曲線103及び106の形状が興味深い。放射電界強度曲線106は、幾何級数的に低下(1/d、式中dは距離である)し、これは、両対数目盛上で直線として示されている。一方、誘導電界強度曲線103は、
Figure 2018530292
の特徴的な指数関数的減衰を有し、両対数目盛上で独特の屈曲部109を呈する。誘導電界強度曲線103及び放射電界強度曲線106は、点112で交差し、これは交差距離で発生する。交差点112での交差距離未満の距離で、誘導電磁界の電界強度は、放射電磁界の電界強度より、大部分の位置で著しく大きい。交差距離より大きな距離では、その反対となる。したがって、誘導電界強度曲線及び放射電界強度曲線103及び106は、誘導電磁界と放射電磁界との間の根本的な伝搬の差異を更に示している。誘導電磁界と放射電磁界との間の差異の非公式な説明のために、Milligan,T.のModern Antenna Design(McGraw−Hill,1st Edition,1985,8〜9ページ)が参照され、この文献は、参照によりその全体が本明細書に組み込まれる。
上述した放射電磁波と誘導電磁波との間の差異は、公式に容易に表現され、厳密な基準で示されている。そのような2つの異なる解は、1つの同じ線形偏微分方程式から明らかにすることができ、この波動方程式は、問題に課された境界条件に解析的に従う。波動方程式に関するグリーン関数は、それ自体、放射波の性質と誘導波の性質との間の差異を含む。
空の空間において、波動方程式は、固有関数が複素波数平面上で固有値の連続スペクトルを保有する微分演算子である。この横電磁(transverse electro−magnetic)(TEM)界は、放射電磁界と呼ばれ、それらの伝搬電界は、「ヘルツ波」と呼ばれる。しかし、導電境界の存在において、波動方程式に境界条件を加えると、数学的に、連続スペクトルに加えて離散スペクトルの合計からなる波数のスペクトル表現となる。このために、Sommerfeld,A.の「Uber die Ausbreitung der Wellen in der Drahtlosen Telegraphie」(Annalen der Physik,Vol.28,1909,665〜736ページ)を参照する。また、「Partial Differential Equations in Physics−Lectures on Theoretical Physics:Volume VI」(Academic Press,1949,236〜289ページ,295〜296ページ)の第6章として刊行されたSommerfeld,A.の「Problems of Radio」、Collin、R.E.の「Hertzian Dipole Radiating Over a Lossy Earth or Sea:Some Early and Late 20th Century Controversies」(IEEE Antennas and Propagation Magazine,Vol.46,No.2,April 2004,64〜79ページ)、並びにReich,H.J.、Ordnung,P.F、Krauss,H.L.及びSkalnik,J.G.の「Microwave Theory and Techniques」(Van Nostrand,1953,291〜293ページ)を参照されたい。これらの参考文献のそれぞれは、その全体が参照により本明細書に組み込まれる。
「地上波」及び「表面波」という用語は、2つの明確に異なる物理的伝搬現象を識別する。表面波は、別個の極から解析的に発生して、平面波スペクトルにおける離散成分を生じる。例えば、Cullen,A.L.による「The Excitation of Plane Surface Waves」(Proceedings of the IEE(British),Vol.101,Part IV,August 1954,225〜235ページ)を参照されたい。この文脈では、表面波は、誘導表面波であると考えられる。表面波(Zenneck−Sommerfeld誘導波の意味における)は、無線放送から現在とてもよく知られている地上波(Weyl−Norton−FCCの意味における)と物理的かつ数学的に同じではない。これら2つの伝搬機構は、複素平面上の異なる種類の固有値スペクトル(連続又は離散)の励起から発生する。球状に伝搬し、固有値の連続性を保有し、図1の曲線106により示すように幾何級数的に低下して、分岐線法積分の結果から得られる古典的な地上波のヘルツ放射とは反対に、誘導表面波の電界強度は、図1の曲線103により示すように距離と共に指数関数的に減衰し(損失性の導波路内の伝搬に酷似する)、放射伝送線内の伝搬に似ている。「The Surface Wave in Radio Propagation over Plane Earth」(Proceedings of the IRE,Vol.25,No.2,February,1937,219〜229ページ)及び「The Surface Wave in Radio Transmission」(Bell Laboratories Record,Vol.15,June 1937,321〜324ページ)においてC.R.Burrowsによって実験的に実証されたように、垂直アンテナは、地上波を放射するが、誘導表面波を送出しない。
上記を要約すると、第1に、分岐線法積分に対応する波数固有値スペクトルの連続部分は、放射電磁界を生成し、第2に、離散スペクトル、及び積分の輪郭線により囲まれた極から発生する対応する残りの合計は、結果として、伝搬を横断する方向に指数関数的に減衰した非TEMの進行表面波となる。そのような表面波は、誘導伝送線モードである。更なる説明のために、Friedman,B.の「Principles and Techniques of Applied Mathematics」(Wiley,1956,214,283〜286,290,298〜300ページ)を参照する。
自由空間では、アンテナは、波動方程式の連続固有値を励起し、これは放射電磁界であり、E及び同相のHφを有する外向きに伝搬するRFエネルギは、永久に失われる。一方で、導波プローブは、離散固有値を励起し、これは、結果として伝送線伝搬となる。Collin,R.E.の「Field Theory of Guided Waves」(McGraw−Hill,1960,453,474〜477ページ)を参照されたい。そのような理論的解析が、損失性均質媒体の平面又は球面にわたる開表面誘導波を送出する仮定的な可能性を提供してきたが、一世紀を越える間、なんらかの実用的効率を有してこれを実現する工学技術における既知の構造は、存在していない。残念なことに、1900年代初頭に出現したために、上述した理論的解析は、基本的に理論に留まり、損失性均質媒体の平面又は球面にわたる開表面誘導波の送出を実用的に実現する既知の構造は存在していない。
本開示の各種実施形態によれば、損失性導電媒体の表面に沿って誘導表面導波モードに結合する電界を励起するように構成された、様々な誘導表面導波プローブが説明される。そのような誘導電磁界は、損失性導電媒体の表面上の誘導表面波モードに、大きさ及び位相において実質的にモード整合している。そのような誘導表面波モードはまた、Zenneck導波モードと呼ぶことができる。本明細書で説明する誘導表面導波プローブによって励起された結果として生じる電界が、損失性導電媒体の表面上の誘導表面導波モードに実質的にモード整合しているという事実によって、誘導表面波の形態での誘導電磁界が、損失性導電媒体の表面に沿って送出される。一実施形態によれば、損失性導電媒体は、地球などのテレストリアル媒体を含む。
図2を参照して、1907年にJonathan Zenneckによって、彼の論文、Zenneck,J.の「On the Propagation of Plane Electromagnetic Waves Along a Flat Conducting Surface and their Relation to Wireless Telegraphy」(Annalen der Physik,Serial 4,Vol.23,September 20,1907,846〜866ページ)に記載されたように導出されたマクスウェル方程式に対する境界値解の検討のために提供する伝搬境界面を示す。図2は、領域1として示された損失性導電媒体と領域2として示された絶縁体との間の境界面に沿って放射状に伝搬する波動に対する円筒座標を示す。領域1は、例えば、任意の損失性導電媒体を含むことができる。一例では、そのような損失性導電媒体は、地球又は他の媒体などのテレストリアル媒体を含むことができる。領域2は、領域1と境界界面を共有する第2の媒体であり、領域1に対して異なる構造パラメータを有する。領域2は、例えば、大気又は他の媒体などの任意の絶縁体を含むことができる。そのような境界界面に対する反射係数は、複素ブルースター角での入射に対してのみゼロとなる。Stratton,J.A.の「Electromagnetic Theory」(McGraw−Hill,1941,516ページ)を参照されたい。
各種実施形態によれば、本開示は、領域1を含む損失性導電媒体の表面上の誘導表面導波モードに実質的にモード整合した電磁界を生成する、様々な誘導表面導波プローブを説明する。各種実施形態によれば、そのような電磁界は、結果としてゼロ反射とすることができる損失性導電媒体の複素ブルースター角で入射する波面を実質的に合成する。
更に説明するために、ejωtの電界変化が仮定され、かつρ≠0及びz≧0(式中、zは領域1の表面に垂直な垂直座標であり、ρは円筒座標における半径寸法である)である領域2において、境界面に沿った境界条件を満たすZenneckのマクスウェル方程式の閉形式厳密解は、以下の電界及び磁界成分によって表現される。
Figure 2018530292
jωtの電界変化が仮定され、かつρ≠0及びz≦0である領域1において、境界面に沿った境界条件を満たすZenneckのマクスウェル方程式の閉形式厳密解は、以下の電界及び磁界成分によって表現される。
Figure 2018530292
これらの表現において、zは、領域1の表面に垂直な垂直座標であり、ρは、半径座標であり、
Figure 2018530292
は、第2種及びn次の複素引数ハンケル関数であり、uは、領域1の正の垂直(z)方向の伝搬定数であり、uは、領域2の垂直(z)方向の伝搬定数であり、σは、領域1の導電率であり、ωは、2πf(式中、fは励起の周波数である)に等しく、εは、自由空間の誘電率であり、εは、領域1の誘電率であり、Aは、発生源によって課される発生源定数であり、γは、表面波の放射伝搬定数である。
±z方向の伝搬定数は、領域1と領域2との間の境界面の上及び下に波動方程式を分離して、境界条件を課すことにより決定される。これを実行することにより、領域2では、以下の式が得られ、
Figure 2018530292
領域1では、以下の式が得られる。
Figure 2018530292
放射伝搬定数γは、以下の式により得られ、
Figure 2018530292
これは、複素表現であり、式中、nは、複素屈折率であり、以下の式により得られる。
Figure 2018530292
上記の式のすべてにおいて、
Figure 2018530292
であり、式中、εは、領域1の比誘電率を含み、σは、領域1の導電率であり、εは、自由空間の誘電率であり、μは、自由空間の透磁率を含む。したがって、生成された表面波は、境界面に平行に伝搬し、境界面に垂直に指数関数的に減衰する。これは、消散として既知である。
したがって、式(1)〜(3)は、円筒状に対称な放射状に伝搬する導波モードであると考えることができる。Barlow,H.M.及びBrown,J.の「Radio Surface Waves」(Oxford University Press,1962,10〜12ページ,29〜33ページ)を参照されたい。本開示は、この「開境界」導波モードを励起する構造を詳述する。具体的には、各種実施形態によれば、誘導表面導波プローブは、電圧及び/又は電流が供給され、領域2と領域1との間の境界界面に対して配置された、適切なサイズの帯電端子を備える。これは、図3を参照することにより、より良好に理解することができる。図3は、損失性導電媒体203によって提示された平面に垂直な垂直軸zに沿って損失性導電媒体203(例えば、地球)の上に持ち上げられた帯電端子Tを含む、誘導表面導波プローブ200aの例を示す。損失性導電媒体203は、領域1を構成し、第2の媒体206は、領域2を構成して、損失性導電媒体203と境界界面を共有する。
一実施形態によれば、損失性導電媒体203は、地球などのテレストリアル媒体を含むことができる。このために、そのようなテレストリアル媒体は、天然であろうと人工であろうと、すべての構造又はその上に含まれる形成物を含む。例えば、そのようなテレストリアル媒体は、岩、土、砂、淡水、海水、木、植物、及び我々の惑星を構成する他のすべての自然要素などの、自然要素を含むことができる。加えて、そのようなテレストリアル媒体は、コンクリート、アスファルト、建築材料、及び他の人工材料などの、人工要素を含むことができる。他の実施形態では、損失性導電媒体203は、天然に存在するものであろうと人工であろうと、地球以外のなんらかの媒体を含むことができる。他の実施形態では、損失性導電媒体203は、人工表面などの他の媒体、及び自動車、航空機、人工材料(合板、プラスチックシート、又は他の材料などの)又は他の媒体などの構造を含むことができる。
損失性導電媒体203がテレストリアル媒体又は地球を含む場合では、第2の媒体206は、地表の上の大気を含むことができる。そのように、大気は、空気及び地球の大気を構成する他の要素を含む「大気媒体」と呼ぶことができる。加えて、第2の媒体206が、損失性導電媒体203に対して他の媒体を含むことができることが可能である。
誘導表面導波プローブ200aは、例えば、垂直給電線導体を介して励起源212を帯電端子Tに結合する給電ネットワーク209を含む。各種実施形態によれば、任意の所与の時点で端子Tに印加される電圧に基づく電界を合成するために、電荷Qが帯電端子Tに課される。電界(E)の入射角(θ)に依存して、電界を、領域1を含む損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合することが可能である。
式(1)〜(6)のZenneck閉形式の解を考慮することにより、領域1と領域2との間のLeontovichインピーダンス境界条件は、以下の式のように表すことができる。
Figure 2018530292
式中、
Figure 2018530292
は、正の垂直(+z)方向の単位法線であり、
Figure 2018530292
は、上記の式(1)により表現される領域2の磁界強度である。式(13)は、式(1)〜(3)で示される電界及び磁界が結果として境界界面に沿った放射表面電流密度となることができることを意味し、放射表面電流密度は、以下の式により示すことができる。
Figure 2018530292
式中、Aは、定数である。更に、誘導表面導波プローブ200に近接すると(ρ≪λに対して)、上記の式(14)は、以下のような挙動を有することを留意されたい。
Figure 2018530292
負号は、電源電流(I)が図3に示すように上向きに垂直に流れるときに、「近接(close−in)」グラウンド電流は径方向内向きに流れることを意味する。「近接」のHφに場を整合することにより、以下の式であることを決定することができる。
Figure 2018530292
式中、式(1)〜(6)及び(14)において、q=Cである。したがって、式(14)の放射表面電流密度は、以下の式のように言い換えることができる。
Figure 2018530292
式(1)〜(6)及び(17)によって表現される電界は、地上波の伝搬に関連付けられた放射電磁界ではなく、損失性の境界面に拘束される伝送線モードの性質を有する。Barlow,H.M.及びBrown,J.の「Radio Surface Waves」(Oxford University Press,1962,1〜5ページ)を参照されたい。
この時点では、式(1)〜(6)及び(17)に使用されるハンケル関数の性質のレビューが、波動方程式のこれらの解に対して提供される。第1種及び第2種かつn次のハンケル関数は、第1種及び第2種の標準ベッセル関数の複素の組合せとして定義されることがわかる。
Figure 2018530292
これらの関数は、それぞれ、径方向内向きに
Figure 2018530292
及び外向きに
Figure 2018530292
伝搬する円筒状の波を表す。この定義は、e±jx=cos x±j sin xの関係に類似している。例えば、Harrington,R.F.の「Time−Harmonic Fields」(McGraw−Hill,1961,460〜463ページ)を参照されたい。
その
Figure 2018530292
が外向き波であることは、J(x)及びN(x)の級数定義から直接得られる、その独立変数を大きくした場合に漸近特性から認識することができる。誘導表面導波プローブから遠方では、
Figure 2018530292
これは、ejωtを乗じると、
Figure 2018530292
の空間的変動を有するej(ωt−kρ)の形態の外向きに伝搬する円筒状の波である。一次(n=1)解は、式(20a)から、以下の式のように決定することができる。
Figure 2018530292
誘導表面導波プローブに近接すると(ρ≪λに対して)、一次かつ第2種のハンケル関数は、以下の式のようにふるまう。
Figure 2018530292
これらの漸近表現は、複素量であることを留意されたい。xが実数量であるとき、式(20b)及び(21)は、
Figure 2018530292
だけ位相が異なり、これは、45°又は等価的にλ/8の追加の位相前進又は「位相増加」に対応する。第2種の一次ハンケル関数の近接及び遠方の漸近線は、それらがρ=Rの距離で等しい大きさである、ハンケル「交差」又は遷移点を有する。
したがって、ハンケル交差点を越えると、「遠方」表現は、ハンケル関数の「近接」表現に対して優位である。ハンケル交差点までの距離(又はハンケル交差距離)は、式(20b)及び(21)を−jγρに対して等しくして、Rについて解くことにより見出すことができる。x=σ/ωεで、遠方及び近接のハンケル関数漸近線は、周波数が低下するとハンケル交差点が外側に移動して、周波数依存であることを理解することができる。損失性導電媒体の導電率(σ)が変化すると、ハンケル関数漸近線もまた変化し得ることも留意されたい。例えば、土の導電率は、気象条件の変化と共に変化し得る。
図4を参照して、1850kHzの動作周波数でのσ=0.010mhos/mの導電率及びε=15の比誘電率の領域1に対する式(20b)及び(21)の一次ハンケル関数の大きさのグラフの例を示す。曲線115は、式(20b)の遠方漸近線の大きさであり、曲線118は、式(21)の近接漸近線の大きさであり、ハンケル交差点121がR=54フィートの距離で生じている。大きさは等しいが、ハンケル交差点121で、2つの漸近線の間に位相オフセットが存在する。ハンケル交差距離は、動作周波数の波長より相当小さいこともまた理解することができる。
領域2のZenneck閉形式解の式(2)及び(3)により得られる電界成分を考慮して、EとEρの比は、漸近的に以下の式になる。
Figure 2018530292
式中、nは、式(10)の複素屈折率であり、θは、電界の入射角である。加えて、式(3)のモード整合した電界の垂直成分は、漸近的に以下の式になる。
Figure 2018530292
これは、端子電圧において上げられた帯電端子の静電容量の絶縁されたコンポーネント上の自由電荷qfree=Cfree×Vに線形に比例する。
例えば、図3の持ち上げられた帯電端子Tの高さHは、帯電端子T上の自由電荷の量に影響を及ぼす。帯電端子Tが領域1のグラウンド平面付近にある場合、端子上の電荷Qの大部分は、「拘束」されている。帯電端子Tが上げられるにつれて、拘束電荷は、実質的にすべての絶縁された電荷が開放される高さに帯電端子Tが到達するまで少なくなる。
帯電端子Tに対する容量上昇の増大の利点は、持ち上げられた帯電端子T上の電荷がグラウンド平面から更に除去されて、結果として自由電荷の量qfreeの増大となり、エネルギを誘導表面導波モードに結合することである。帯電端子Tがグラウンド平面から離れて移動すると、電荷分布は、端子の表面により均一に分布するようになる。自由電荷の量は、帯電端子Tの自己容量に関係する。
例えば、球形端子の静電容量は、グラウンド平面の上の物理的高さの関数として表現することができる。完全なグラウンドの上のhの物理的高さでの球の静電容量は、以下の式により得られる。
Figure 2018530292
式中、球の直径は、2aであり、M=a/2hであって、hは、球形端子の高さである。これで理解することができるように、端子高さhの増大により、帯電端子の静電容量Cは、低減する。直径の約4倍(4D=8a)以上の高さの帯電端子Tの高度に対して、電荷分布は、球形端子回りでほぼ均一であり、これは、誘導表面導波モードへの結合を向上することができることを示すことができる。
十分に絶縁された端子の場合では、導体球の自己容量は、C=4πεaにより近似することができ、式中、aは、メートルでの球の半径である。円盤の自己容量は、C=8εaにより近似することができ、式中、aは、メートルでの円盤の半径である。帯電端子Tは、球、円盤、円筒、円錐、トーラス、フード、1つ以上のリング、又は任意の他のランダム化形状若しくは形状の組合せなどの、任意の形状を含むことができる。帯電端子Tの位置に対して、等価球直径を決定して使用することができる。
これは、帯電端子Tが損失性導電媒体203の上にh=Hの物理的高さに上げられた図3の例を参照して更に理解することができる。「拘束」電荷の影響を低減するために、帯電端子Tは、少なくとも帯電端子Tの球直径(又は等価な球の直径)の4倍の物理的高さに配置して、拘束された電荷の影響を低減することができる。
次に図5Aを参照して、図3の帯電端子T上の上げられた電荷Qにより生成された電界の光線光学の解釈を示す。光学におけるように、入射電界の反射を最小化することにより、損失性導電媒体203の誘導表面導波モードに結合されたエネルギを向上及び/又は最大化することができる。入射面(境界界面ではない)に平行に偏波された電界(E)に対して、入射電界の反射の量は、フレネル反射係数を使用して決定することができる。フレネル反射係数は、以下の式のように表現することができる。
Figure 2018530292
式中、θは、面法線に対して測定した従来の入射角である。
図5Aの例では、光線光学の解釈は、面法線
Figure 2018530292
に対して測定したθの入射角を有する入射面に平行に偏波された入射電界を示す。Γ(θ)=0である場合、入射電界の反射は存在しないことになり、したがって、入射電界は、損失性導電媒体203の表面に沿った誘導表面導波モードに完全に結合されることになる。入射角が以下の式であるとき、式(25)の分子は、ゼロになることを理解することができる。
Figure 2018530292
式中、x=σ/ωεである。この複素入射角(θi,B)は、ブルースター角と呼ばれる。式(22)に戻って、式(22)及び(26)の両方において同じ複素ブルースター角(θi,B)の関係が存在することを理解することができる。
図5Aに示すように、電界ベクトルEは、入射面に平行に偏波された入射する不均一平面波として示すことができる。電界ベクトルEは、独立した水平及び垂直成分から、以下の式のように生成することができる。
Figure 2018530292
幾何学的に、図5Aの例示は、電界ベクトルEを以下の式により得ることができることを示唆する。
Figure 2018530292
場の比は以下の式であることを意味する。
Figure 2018530292
「ウェーブチルト(wave tilt)」と呼ばれる一般化パラメータWは、本明細書では、以下の式により得られる、水平電界成分と垂直電界成分の比として表される。
Figure 2018530292
これは、複素数であり、大きさ及び位相の両方を有する。領域2内の電磁波に対して、ウェーブチルト角(Ψ)は、領域1との境界界面での波面の法線と境界界面の接線との間の角度に等しい。これは、放射状の円筒状の誘導表面波に関する電磁波の等位相面及びそれらの法線を示す、図5Bでより容易に理解することができる。完全導体との境界界面(z=0)において、波面法線は、境界界面の接線に平行であり、結果としてW=0となる。しかし、損失性誘電体の場合では、波面法線がz=0で境界界面の接線に平行ではないため、ウェーブチルトWは存在する。
式(30b)を誘導表面波に適用することにより、以下の式が得られる。
Figure 2018530292
複素ブルースター角(θi,B)に等しい入射角で、式(25)のフレネル反射係数は、以下の式により示すように、ゼロになる。
Figure 2018530292
式(22)の複素数の場の比を調整することにより、入射電界を、反射が低減又は除去される複素角で入射するように合成することができる。この比を
Figure 2018530292
として確立することにより、結果として複素ブルースター角で入射する合成された電界となり、反射をゼロにする。
電気的実効高の概念は、複素入射角を有する電界を誘導表面導波プローブ200と合成することに更なる洞察を提供することができる。電気的実効高(heff)は、以下の式のように定義されている。
Figure 2018530292
これは、hの物理高(又は長さ)を有するモノポールに対するものである。この表現は、構造に沿った波源分布の大きさ及び位相に依存するため、実効高(又は長さ)は、一般的に複素数である。構造の分布電流I(z)の積分は、構造の物理高(h)にわたって実行され、構造の底部(又は入力)を介して上向きに流れるグラウンド電流(I)に対して正規化される。構造に沿って分配された電流は、以下の式により表現することができる。
Figure 2018530292
式中、βは、構造上を伝搬する電流に対する伝搬係数である。図3の例では、Iは、誘導表面導波プローブ200aの垂直構造に沿って分配される電流である。
例えば、構造の底部の低損失コイル(例えば、ヘリカルコイル)、及びこのコイルと帯電端子Tとの間に接続された垂直給電線導体を含む給電ネットワーク209を考えてみる。コイル(又はヘリカル遅延線)に起因する位相遅延は、θ=βであり、式中、lは、物理的長さであり、以下の式は、伝搬係数である。
Figure 2018530292
式中、Vは、構造上の速度係数であり、λは、供給される周波数での波長であり、λは、速度係数Vから結果として生じる伝搬波長である。位相遅延は、グラウンド(杭)電流Iに対して測定される。
加えて、垂直給電線導体の長さlに沿った空間位相遅延は、θ=βにより得ることができ、式中、βは、垂直給電線導体に対する伝搬位相定数である。いくつかの実装形態では、誘導表面導波プローブ200aの物理的高さhと垂直給電線導体の長さlとの間の差は、供給周波数での波長(λ)より相当小さいため、空間位相遅延は、θ=βにより近似することができる。結果として、コイル及び垂直給電線導体を介した全位相遅延は、Φ=θ+θであり、物理的構造の底部からコイルの上部に供給される電流は、以下の式である。
Figure 2018530292
式中、Φは、グラウンド(杭)電流Iに対して測定された全位相遅延である。その結果として、誘導表面導波プローブ200の電気的実効高は、以下の式により近似することができる。
Figure 2018530292
この式は、物理的高さh≪λである場合に対するものである。Φの角度(又は位相シフト)でのモノポールの複素実効高heff=hは、ソース電界を誘導表面導波モードに整合させ、誘導表面波を損失性導電媒体203上に送出させるように、調整することができる。
図5Aの例では、光線光学を使用して、ハンケル交差距離(R)121で複素ブルースター入射角(θi,B)を有する入射電界(E)の複素角三角法を例示している。式(26)から、損失性導電媒体に対して、ブルースター角は、複素数であり、以下の式により規定されることを思い出されたい。
Figure 2018530292
電気的に、幾何学的パラメータは、帯電端子Tの電気的な実効高(heff)によって、以下の式により関連付けられる。
Figure 2018530292
式中、Ψi,B=(π/2)−θi,Bは、損失性導電媒体の表面から測定されたブルースター角である。誘導表面導波モードに結合するために、ハンケル交差距離での電界のウェーブチルトは、電気的な実効高とハンケル交差距離の比として表現することができる。
Figure 2018530292
物理的高さ(h)及びハンケル交差距離(R)の両方が実数量であるため、ハンケル交差距離(R)での所望の誘導表面ウェーブチルト角(Ψ)は、複素実効高(heff)の位相(Φ)に等しい。これは、コイルの供給点での位相、したがって、式(37)の位相シフトを変更することにより、複素実効高の位相Φを操作して、ハンケル交差点121での誘導表面導波モードのウェーブチルト角Ψに整合させることができる(Φ=Ψ)ことを意味する。
図5Aで、損失性導電媒体表面に沿った長さRの隣接する辺、及び、Rでのハンケル交差点121と帯電端子Tの中心との間に延びる光線124と、ハンケル交差点121と帯電端子Tとの間の損失性導電媒体表面127との間で測定された複素ブルースター角Ψi,Bを有する、直角三角形が示されている。帯電端子Tを物理的高さhに配置して、適切な位相遅延Φを有する電荷で励起して、結果として生じる電界は、ハンケル交差距離Rで、かつブルースター角で、損失性導電媒体の境界界面に入射する。これらの条件下で、反射なしに又は実質的に無視できる反射で、誘導表面導波モードを励起することができる。
実効高(heff)の位相シフトΦを変更することなく帯電端子Tの物理的高さが低減される場合、結果として生じる電界は、誘導表面導波プローブ200から低減した距離においてブルースター角で損失性導電媒体203と交差する。図6は、電界がブルースター角で入射する距離についての帯電端子Tの物理的高さを低減する効果をグラフで示す。高さがhからhを経てhまで低減されると、電界が損失性導電媒体(例えば、地球)とブルースター角で交差する点は、帯電端子位置に近づいて移動する。しかし、式(39)が示すように、帯電端子Tの高さH(図3)は、ハンケル関数の遠方コンポーネントを励起するために、物理的高さ(h)以上でなければならない。帯電端子Tを実効高(heff)以上に配置して、損失性導電媒体203を、図5Aに示すように、ハンケル交差距離(R)121以上でブルースター入射角(Ψi,B=(π/2)−θi,B)で照射することができる。帯電端子T上の拘束電荷を低減又は最小化するために、上述したように、高さは、少なくとも帯電端子Tの球直径(又は等価な球体直径)の4倍でなければならない。
誘導表面導波プローブ200は、複素ブルースター角で損失性導電媒体203の表面を照射して、それによって、Rのハンケル交差点121で(又はその向こうの)誘導表面波モードに実質的にモード整合することにより径方向の表面電流を励起する波動に対応するウェーブチルトを有する電界を確立するように構成することができる。
図7を参照して、帯電端子Tを含む誘導表面導波プローブ200bの例のグラフ表示を示す。AC源212は、例えば、ヘリカルコイルなどのコイル215を含む給電ネットワーク209(図3)を介して誘導表面導波プローブ200bに結合される帯電端子Tに対する励起源として機能する。他の実装形態では、AC源212は、一次コイルを介してコイル215に誘導結合することができる。いくつかの実施形態では、AC源212のコイル215への結合を向上及び/又は最大化するために、インピーダンス整合ネットワークを含めることができる。
図7に示すように、誘導表面導波プローブ200bは、損失性導電媒体203によって提示された平面に実質的に垂直な垂直軸zに沿って配置された上部帯電端子T(例えば、高さhにある球)を含むことができる。第2の媒体206は、損失性導電媒体203の上に配置されている。帯電端子Tは、自己容量Cを有する。動作中、任意の所与の時点での端子Tに印加される電圧に依存して、電荷Qが端子Tに課される。
図7の例では、コイル215は、第1の端部で接地杭218に、かつ垂直給電線導体221を介して帯電端子Tに結合される。いくつかの実装形態では、帯電端子Tへのコイル接続は、図7に示すように、コイル215のタップ224を使用して調整することができる。コイル215は、コイル215の下側部分のタップ227を介してAC源212によって、動作周波数で励振させることができる。他の実装形態では、AC源212は、一次コイルを介してコイル215に誘導結合することができる。
誘導表面導波プローブ200の構造及び調整は、伝送周波数、損失性導電媒体の条件(例えば、土の導電率σ及び比誘電率ε)、及び帯電端子Tのサイズなどの、様々な動作条件に基づく。屈折率は、式(10)及び(11)から、以下の式のように計算することができる。
Figure 2018530292
式中、x=σ/ωεであり、ω=2πfである。導電率σ及び比誘電率εは、損失性導電媒体203の試験測定値により決定することができる。面法線から測定される複素ブルースター角(θi,B)もまた、式(26)から、以下の式のように決定することができる。
Figure 2018530292
又は、以下の式のように図5Aに示すように表面から測定される。
Figure 2018530292
ハンケル交差距離(WRx)でのウェーブチルトもまた、式(40)を使用して見出すことができる。
ハンケル交差距離もまた、図4により示すように、−jγρに対する式(20b)及び(21)の大きさを等しくして、Rについて解くことにより、見出すことができる。次に、ハンケル交差距離及び複素ブルースター角を使用して式(39)から、電気的な実効高を、以下の式のように決定することができる。
Figure 2018530292
式(44)から理解することができるように、複素実効高(heff)は、帯電端子Tの物理的高さ(h)に関連付けられた大きさ、及びハンケル交差距離(R)でのウェーブチルト角(Ψ)に関連付けられた位相遅延(Φ)を含む。これらの変数及び選択された帯電端子Tの構成を用いて、誘導表面導波プローブ200の構成を決定することが可能である。
物理的高さ(h)以上に配置された帯電端子Tを用いて、給電ネットワーク209(図3)及び/又は給電ネットワークを帯電端子Tに接続する垂直給電線を調整して、帯電端子T上の電荷Qの位相(Φ)をウェーブチルト(W)の角度(Ψ)に整合することができる。帯電端子Tのサイズは、端子に課される電荷Qのための十分大きな表面を提供するように選択することができる。一般的に、帯電端子Tを実用的な限り大きくすることが望ましい。帯電端子Tのサイズは、結果として帯電端子周囲の放電又はスパークとなり得る周辺の空気のイオン化を回避するために、十分大きくすべきである。
ヘリカル巻線コイルの位相遅延θは、Corum,K.L.及びJ.F.Corumの「RF Coils,Helical Resonators and Voltage Magnification by Coherent Spatial Modes」(Microwave Review,Vol.7,No.2,September 2001,36〜45ページ)により説明されているように、マクスウェル方程式から決定することができ、この文献は、その全体が参照により本明細書に組み込まれる。H/D>1のヘリカルコイルに対して、コイルの縦軸に沿った波動の伝搬速度(υ)と光速(c)の比、又は「速度係数」は、以下の式により得られる。
Figure 2018530292
式中、Hは、ソレノイドコイルの軸方向長さであり、Dは、コイル直径であり、Nは、コイルの巻数であり、s=H/Nは、コイルの巻線間隔(又はらせんピッチ)であり、λは、自由空間の波長である。この関係に基づいて、ヘリカルコイルの電気長又は位相遅延は、以下の式により得られる。
Figure 2018530292
らせんがらせん状に巻かれている、又は短くかつ太い場合、原理は同じであるが、V及びθは、試験的測定により得る方がより容易である。ヘリカル伝送線の特性(波動)インピーダンスに対する表現もまた、以下の式のように導出されている。
Figure 2018530292
構造の空間位相遅延θは、垂直給電線導体221(図7)の進行波の位相遅延を使用して決定することができる。完全グラウンド平面の上の円筒形垂直導体の静電容量は、以下の式のように表現することができる。
Figure 2018530292
式中、hは、導体の垂直長さ(又は高さ)であり、aは、半径である(mks単位での)。ヘリカルコイルと同様に、垂直給電線導体の進行波の位相遅延は、以下の式により得ることができる。
Figure 2018530292
式中、βは、垂直給電線導体に対する伝搬位相定数であり、hは、垂直給電線導体の垂直長さ(又は高さ)であり、Vは、ワイヤ上の速度係数であり、λは、供給周波数での波長であり、λは、速度係数Vから結果として生じる伝搬波長である。均一な円筒形導体に対して、速度係数は、V≒0.94又は約0.93〜約0.98の範囲の定数である。支柱が均一な伝送線であると考えられる場合、その平均特性インピーダンスは、以下の式により近似することができる。
Figure 2018530292
式中、均一な円筒形導体に対してV≒0.94であり、aは、導体の半径である。単線給電線の特性インピーダンスに対するアマチュア無線文献で用いられてきた代替的表現は、以下の式により得ることができる。
Figure 2018530292
式(51)は、単線フィーダに対するZが周波数と共に変化することを意味する。位相遅延は、静電容量及び特性インピーダンスに基づいて決定することができる。
帯電端子Tを図3に示すように損失性導電媒体203の上方に配置して、給電ネットワーク209は、ハンケル交差距離でのウェーブチルト角(Ψ)に等しい複素実効高(heff)の位相シフト(Φ)、又はΦ=Ψで帯電端子Tを励起するように調整することができる。この条件が満たされるとき、帯電端子T上のQを振動させる電荷によって生成される電界は、損失性導電媒体203の表面に沿って進行する誘導表面導波モードに結合される。例えば、ブルースター角(θi,B)、垂直給電線導体221(図7)に関連付けられた位相遅延(θ)、及びコイル215(図7)の構成が既知である場合、振動する電荷Qを位相Φ=Ψで帯電端子Tに課すように、タップ224(図7)の位置を決定して調整することができる。タップ224の位置を調整して、進行表面波の誘導表面導波モードへの結合を最大化することができる。タップ224の位置を越える余分なコイル長さを除去して、容量効果を低減することができる。垂直線の高さ及び/又はヘリカルコイルの幾何学的パラメータもまた、変更することができる。
損失性導電媒体203の表面上の誘導表面導波モードへの結合は、帯電端子T上の電荷Qに関連付けられた複素影像平面に関する定在波の共振のために誘導表面導波プローブ200を同調させることにより、向上及び/又は最適化することができる。これを行なうことにより、帯電端子T上の増大した及び/又は最大の電圧(したがって、電荷Q)に対して、誘導表面導波プローブ200の特性を調整することができる。図3に戻って、領域1の損失性導電媒体203の影響は、影像法の分析を使用して確認することができる。
物理的に、完全導体平面の上方配置された持ち上げられた電荷Qは、完全導体平面上の自由電荷を誘引し、この自由電荷は、次に、持ち上げられた電荷Qの下の領域内に「集積する」。結果として生じる完全導体平面上の「拘束」電気の分布は、ベル型曲線に類似している。持ち上げられた電荷Qの電位にその下の誘導された「集積」電荷の電位を加えた重ね合わせは、完全導体平面に対するゼロ等電位面を強制する。完全導体平面の上の領域内の電界を説明する境界値問題の解は、持ち上げられた電荷からの電界が完全導体平面の下の対応する「影像」電荷からの電界と重ね合わされる、影像電荷の古典的概念を使用して得ることができる。
この解析はまた、誘導表面導波プローブ200の下の実効影像電荷Q'の存在を仮定することにより、損失性導電媒体203に対しても使用することができる。実効影像電荷Q'は、図3に示すように、導電性影像グラウンド平面130回りに帯電端子T上の電荷Qと同時に発生する。しかし、影像電荷Q'は、完全導体の場合になるように、単になんらかの実数の深さに配置され、かつ帯電端子T上の一次ソース電荷Qと180°位相がずれているのではない。むしろ、損失性導電媒体203(例えば、テレストリアル媒体)は、位相シフトした影像を提示する。すなわち、影像電荷Q'は、損失性導電媒体203の表面(又は物理的境界)の下の複素深さにある。複素像深さの説明のために、Wait,J.R.の「Complex Image Theory−Revisited」(IEEE Antennas and Propagation Magazine,Vol.33,No.4,August 1991,27〜29ページ)を参照し、この文献は、その全体が参照により本明細書に組み込まれる。
電荷Qの物理的高さ(H)に等しい深さにある影像電荷Q'の代わりに、導電性影像グラウンド平面130(完全導体を表す)が、z=−d/2の複素深さに配置されて、影像電荷Q'は、−D=−(d/2+d/2+H)≠Hにより得られる複素深さ(すなわち、「深さ」は大きさ及び位相の両方を有する)に見える。地球の上に垂直に偏波されたソースに対して、
Figure 2018530292
であり、式中、
Figure 2018530292
であり、式(12)に示すようである。次に、影像電荷の複素数の間隔は、境界面が誘電体又は完全導体のいずれかである場合には発生しない追加の位相シフトに、外部電界が遭遇することを意味する。損失性導電媒体では、波面法線は、領域1と領域2との間の境界界面ではなくz=−d/2の導電性影像グラウンド平面130の接線に平行である。
損失性導電媒体203が物理的境界136を有する有限導体の地球133である、図8Aに示す場合を考えてみる。有限導体の地球133は、物理的境界136の下の複素数の深さzに配置された、図8Bに示すような完全導電性影像グラウンド平面139により置換えることができる。この等価表現は、物理的境界136で境界面を見下ろすとき、同じインピーダンスを有する。図8Bの等価表現は、図8Cに示すような等価伝送線としてモデル化することができる。等価構造の断面は、完全導電性影像平面のインピーダンスを短絡(z=0)とした(z方向の)端部負荷伝送線として表される。深さzは、地球を見下ろすTEM波のインピーダンスを図8Cの伝送線路を見て見た影像グラウンド平面のインピーダンスzinに等しくすることにより決定することができる。
図8Aの場合では、上部領域(空気)142内の伝搬定数及び波動の特性インピーダンスは、以下の式である。
Figure 2018530292
損失性の地球133では、伝搬定数及び波動の特性インピーダンスは、以下の式である。
Figure 2018530292
法線入射に対して、図8Bの等価表現は、特性インピーダンスが空気のもので(z)、γの伝搬定数を有し、長さがzであるTEM伝送線と等価である。そのようにして、図8Cの短絡した伝送線に対して境界面で見た影像グラウンド平面のインピーダンスZinは、以下の式により得られる。
Figure 2018530292
図8Cの等価モデルに関連付けられた影像グラウンド平面のインピーダンスZinを図8Aの法線入射波のインピーダンスに等しくして、zについて解くことにより、短絡(完全導電性影像グラウンド平面139)までの距離が、以下の式のように得られる。
Figure 2018530292
式中、逆双曲線正接に対する級数展開の第一項のみがこの近似に関して考慮されている。空気領域142内では、伝搬定数は、γ=jβであるので、Zin=jZtanβ(これは実数zに対する単なる虚数である)であるが、zは、σ≠0である場合に複素数値である。したがって、zが複素距離である場合のみ、Zin=Zである。
図8Bの等価表現が完全導電性影像グラウンド平面139を含むため、地球の表面(物理的境界136)にある電荷又は電流に対する影像深さは、像グラウンド平面139の反対側の距離z、又は地球の表面(z=0に配置された)の下のd=2×zに等しい。したがって、完全導電性影像グラウンド平面139までの距離は、以下の式により近似することができる。
Figure 2018530292
加えて、「影像電荷」は、実電荷に「等しくかつ反対」であることになるので、深さz=−d/2での完全導電性影像グラウンド平面139の電位は、ゼロであることになる。
電荷Qが図3に示すように地球の表面の上の距離Hに持ち上げられた場合、影像電荷Q'は、表面の下のD=d+Hの複素距離、又は影像グラウンド平面130の下のd/2+Hの複素距離にある。図7の誘導表面導波プローブ200bは、図8Bの完全導電性影像グラウンド平面139に基づくことができる等価単線伝送線路の影像平面モデルとしてモデル化することができる。図9Aは、等価単線伝送線路の影像平面モデルの例を示し、図9Bは、図8Cの短絡した伝送線を含む古典的等価伝送線路モデルの例を示す。
図9A及び9Bの等価影像平面モデルでは、Φ=θ+θは、地球133(又は損失性導電媒体203)を基準にした誘導表面導波プローブ200の進行波の位相遅延であり、θ=βHは、度で表現した物理的長さHのコイル215(図7)の電気長であり、θ=βは、度で表現した物理的長さhの垂直給電線導体221(図7)の電気長であり、θ=βd/2は、影像グラウンド平面139と地球133(又は損失性導電媒体203)の物理的境界136との間の位相シフトである。図9A及び9Bの例では、Zは、オームでの持ち上げられた垂直給電線導体221の特性インピーダンスであり、Zは、オームでのコイル215の特性インピーダンスであり、Zは、自由空間の特性インピーダンスである。
誘導表面導波プローブ200の底部で、構造を「見上げて」見たインピーダンスは、Z=Zbaseである。以下の式の負荷インピーダンスで、
Figure 2018530292
(式中、Cは、帯電端子Tの自己容量である)、垂直給電線導体221(図7)を「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018530292
コイル215(図7)を「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018530292
誘導表面導波プローブ200の底部で、損失性導電媒体203を「見下して」見たインピーダンスは、Z=Zinであり、これは以下の式により得られる。
Figure 2018530292
式中、Z=0である。
損失を無視して、等価影像平面モデルは、物理的境界136でZ+Z=0である場合、共振に同調することができる。又は、低損失の場合では、物理的境界136でX+X=0であり、式中、Xは、対応するリアクタンス成分である。したがって、誘導表面導波プローブ200を「見上げた」物理的境界136でのインピーダンスは、損失性導電媒体203を「見下ろした」物理的境界136でのインピーダンスの共役である。プローブの電界の損失性導電媒体203(例えば、地球)の表面に沿った誘導表面導波モードへの結合を向上及び/又は最大化するΦ=Ψであるように、媒体のウェーブチルトΨの角度に等しい進行波の位相遅延Φを維持しながら、帯電端子Tの負荷インピーダンスZを調整することにより、図9A及び9Bの等価影像平面モデルを、影像グラウンド平面139に対する共振に調整することができる。この方法で、等価複素影像平面モデルのインピーダンスは、単に抵抗性であり、これは、電圧及び端子T上の持ち上げられた電荷を最大化するプローブ構造上の重ね合わせた定在波を維持し、式(1)〜(3)及び(16)により、伝搬する表面波を最大化する。
ハンケル解に従って、誘導表面導波プローブ200によって励起される誘導表面波は、外向きに伝搬する進行波である。誘導表面導波プローブ200(図3及び図7)の帯電端子Tと接地杭218との間の給電ネットワーク209に沿ったソース分布は、実際には、構造上の進行波に定在波を加えた重ね合わせで構成される。帯電端子Tを物理的高さh以上に配置して、給電ネットワーク209を通って移動する進行波の位相遅延は、損失性導電媒体203に関連付けられたウェーブチルト角に整合される。このモード整合により、進行波を損失性導電媒体203に沿って送出することができる。進行波に対して位相遅延が確立されたら、帯電端子Tの負荷インピーダンスZは、プローブ構造を−d/2の複素深さにある影像グラウンド平面(図3の130、又は図8の139)に対して定在波の共振に至らせるように調整される。この場合では、影像グラウンド平面から見たインピーダンスは、ゼロのリアクタンスを有し、帯電端子T上の電荷は、最大化される。
進行波現象と定在波現象との間の差異は、(1)長さdの伝送線の区間(「遅延線」と呼ばれることもある)上の進行波の位相遅延(θ=βd)は、伝搬時間遅延に起因するのに対して、(2)定在波(前方及び後方に伝搬する波からなる)の位置依存性の位相は、線長さの伝搬時間遅延及び異なる特性インピーダンスの線区間の間の境界面でのインピーダンス遷移の両方に依存することである。正弦波定常状態で動作する伝送線の区間の物理的長さに起因して発生する位相遅延に加えて、Zoa/Zobの比に起因するインピーダンスの不連続点での追加の反射係数位相が存在する。式中、Zoa及びZobは、例えば、特性インピーダンスZoa=Z(図9B)のヘリカルコイル区間の区間及び特性インピーダンスZob=Z(図9B)の垂直給電線導体の直線区間などの、伝送線の2つの区間の特性インピーダンスである。
この現象の結果として、大いに異なる特性インピーダンスの2つの相対的に短い伝送線区間を使用して、非常に大きな位相シフトを提供することができる。例えば、低インピーダンス及び高インピーダンスの、合わせて例えば0.05λの物理的長さになる、伝送線の2つの区間からなるプローブ構造を作製して、0.25λ共振と等価である90°の位相シフトを提供することができる。これは、特性インピーダンスの大きなジャンプに起因する。この方法で、物理的に短いプローブ構造を、2つの物理的長さを組み合わせたより電気的に長くすることができる。これを、インピーダンス比の不連続点が位相の大きなジャンプを提供する図9A及び9Bに示す。区間が一体に接合されたインピーダンスの不連続点は、実質的な位相シフトを提供する。
図10を参照して、損失性導電媒体203(図3)の表面に沿って誘導表面進行波を送出する、誘導表面導波プローブ200(図3及び図7)を損失性導電媒体の表面上の誘導表面導波モードに実質的にモード整合するように調整する例を示す流れ図150を示す。153で開始して、誘導表面導波プローブ200の帯電端子Tは、損失性導電媒体203の上の定義された高さに配置される。損失性導電媒体203の特性及び誘導表面導波プローブ200の動作周波数を利用して、ハンケル交差距離はまた、図4により示すように−jγρに対する式(20b)及び(21)の大きさを等しくして、Rについて解くことにより見出すことができる。複素屈折率(n)は、式(41)を使用して決定することができ、次に、複素ブルースター角(θi,B)は、式(42)から決定することができる。次に、帯電端子Tの物理的高さ(h)は、式(44)から決定することができる。帯電端子Tは、ハンケル関数の遠方成分を励起するために、物理的高さ(h)以上でなければならない。この高さの関係は、表面波を送出するときに最初に考慮される。帯電端子T上の拘束電荷を低減又は最小化するために、高さは、少なくとも帯電端子Tの球直径(又は等価な球体直径)の4倍でなければならない。
156で、帯電端子T上の持ち上げられた電荷Qの電気的位相遅延Φは、複素ウェーブチルト角Ψに整合される。ヘリカルコイルの位相遅延(θ)及び/又は垂直給電線導体の位相遅延(θ)は、Φをウェーブチルト(W)の角度(Ψ)に等しくするように調整することができる。式(31)に基づいて、ウェーブチルト角(Ψ)は、以下の式から決定することができる。
Figure 2018530292
次に、電気的位相Φは、ウェーブチルト角に整合することができる。この角度(又は位相)の関係は、表面波を送出するときに次に考慮される。例えば、電気的位相遅延Φ=θ+θは、コイル215(図7)の幾何学的パラメータ及び/又は垂直給電線導体221(図7)の長さ(又は高さ)を変更することにより調整することができる。Φ=Ψに整合することにより、境界界面で複素ブルースター角を有するハンケル交差距離(R)以上で電界を確立して、表面導波モードを励起して損失性導電媒体203に沿って進行波を送出することができる。
次に159で、帯電端子Tの負荷インピーダンスは、誘導表面導波プローブ200の等価影像平面モデルを共振させるように調整される。図9A及び9Bの導電性影像グラウンド平面139(又は図3の130)の深さ(d/2)は、式(52)、(53)及び(54)、並びに測定することができる損失性導電媒体203(例えば、地球)の値を使用して決定することができる。その深さを使用して、像グラウンド平面139と損失性導電媒体203の物理的境界136との間の位相シフト(θ)は、θ=βd/2を使用して決定することができる。次に、損失性導電媒体203を「見下ろして」見たようなインピーダンス(Zin)は、式(65)を使用して決定することができる。この共振関係は、送出される表面波を最大化すると考えることができる。
コイル215の調整されたパラメータ及び垂直給電線導体221の長さに基づいて、速度係数、位相遅延、並びにコイル215及び垂直給電線導体221のインピーダンスは、式(45)〜(51)を使用して決定することができる。加えて、帯電端子Tの自己容量(C)は、例えば、式(24)を使用して決定することができる。コイル215の伝搬係数(β)は、式(35)を使用して決定することができ、垂直給電線導体221に対する伝搬位相定数(β)は、式(49)を使用して決定することができる。自己容量並びにコイル215及び垂直給電線導体221の決定された値を使用して、コイル215を「見上げて」見たような誘導表面導波プローブ200のインピーダンス(Zbase)は、式(62)、(63)及び(64)を使用して決定することができる。
誘導表面導波プローブ200の等価影像平面モデルは、Zbaseのリアクタンス成分XbaseがZinのリアクタンス成分Xinを相殺するように、又はXbase+Xin=0であるように、負荷インピーダンスZを調整することにより、共振するよう整調することができる。したがって、誘導表面導波プローブ200を「見上げた」物理的境界136でのインピーダンスは、損失性導電媒体203を「見下ろした」物理的境界136でのインピーダンスの共役である。負荷インピーダンスZは、帯電端子Tの電気的位相遅延Φ=θ+θを変更することなく帯電端子Tの静電容量(C)を変更することにより、調整することができる。反復的手法を採用して、導電性影像グラウンド平面139(又は130)に対する等価影像平面モデルの共振のために負荷インピーダンスZを整調することができる。この方法で、損失性導電媒体203(例えば、地球)の表面に沿った誘導表面導波モードへの電界の結合を、向上及び/又は最大化することができる。
これは、数値例を有する状況を例示することにより、より良好に理解することができる。1.85MHzの動作周波数(f)でヘリカルコイル及び垂直給電線導体を介して励起される帯電端子Tを上部に有する、物理的高さhの上部装荷垂直スタブを含む誘導表面導波プローブ200を考えてみる。16フィートの高さ(H)、並びにε=15の比誘電率及びσ=0.010mhos/mの導電率を有する損失性導電媒体203(例えば、地球)を用いて、いくつかの表面波伝搬パラメータを、f=1.850MHzに対して計算することができる。これらの条件下で、ハンケル交差距離は、h=5.5フィートの物理的高さでR=54.5フィートであることを見出すことができ、これは、帯電端子Tの実際の高さより相当低い。H=5.5フィートの帯電端子高さを使用することができたが、より高いプローブ構造は、拘束静電容量を低減して、帯電端子T上のより大きな割合の自由電荷を可能にし、より大きな電界強度及び進行波の励起を提供した。
波長は、以下の式のように決定することができる。
Figure 2018530292
式中、cは光速である。複素屈折率は、以下の式である。
Figure 2018530292
これは式(41)から得られ、式中、x=σ/ωεであり、ω=2πfである。複素ブルースター角は、以下の式である。
Figure 2018530292
これは式(42)から得られる。式(66)を使用して、ウェーブチルトの値は、以下の式として決定することができる。
Figure 2018530292
したがって、ヘリカルコイルは、Φ=Ψ=40.614°に整合するように調整することができる。
垂直給電線導体(0.27インチの直径を有する均一な円筒状の導体として近似される)の速度係数は、V≒0.93として得ることができる。h≪λであるため、垂直給電線導体に対する伝搬位相定数は、以下の式のように近似することができる。
Figure 2018530292
式(49)から、垂直給電線導体の位相遅延は、以下の式である。
Figure 2018530292
θ=28.974°=40.614°−11.640°であるようにヘリカルコイルの位相遅延を調整することにより、Φは、Ψに等しいことになり、誘導表面導波モードに整合する。ΦとΨとの間の関係を示すために、図11は、周波数の範囲にわたる両方のグラフを示す。Φ及びΨの両方が周波数依存であるため、それらの対応する曲線が約1.85MHzで互いに交差することがわかる。
0.0881インチの導体直径、30インチのコイル直径(D)、及び4インチの巻きの間の間隔(s)を有するヘリカルコイルに対して、コイルに対する速度係数は、式(45)を使用して、以下の式のように決定することができる。
Figure 2018530292
式(35)からの伝搬係数は、以下の式である。
Figure 2018530292
θ=28.974°で、ソレノイドコイルの軸方向長さ(H)は、式(46)を使用して、以下の式のように決定することができる。
Figure 2018530292
この高さは、垂直給電線導体が接続されるヘリカルコイル上の位置を決定し、結果として、8.818巻(N=H/s)のコイルとなる。
ウェーブチルト角(Φ=θ+θ=Ψ)に整合するように調整されたコイル及び垂直給電線導体の進行波の位相遅延で、帯電端子Tの負荷インピーダンス(Z)は、誘導表面波プローブ200の等価影像平面モデルの定在波共振のために調整することができる。測定された地球の誘電率、導電率、及び透磁率から、放射伝搬定数は、式(57)を使用して決定することができる。
Figure 2018530292
導電性影像グラウンド平面の複素深さは、式(52)から、以下の式のように近似することができる。
Figure 2018530292
導電性影像グラウンド平面と地球の物理的境界との間の対応する位相シフトは、以下の式により得られる。
Figure 2018530292
式(65)を使用して、損失性導電媒体203(すなわち、地球)を「見下ろして」見たインピーダンスは、以下の式のように決定することができる。
Figure 2018530292
損失性導電媒体203を「見下ろして」見たリアクタンス成分(Xin)を誘導表面波プローブ200を「見上げて」見たリアクタンス成分(Xbase)と整合することにより、誘導表面導波モードへの結合を最大化することができる。これは、コイル及び垂直給電線導体の進行波の位相遅延を変更することなく帯電端子Tの静電容量を調整することにより、実現することができる。例えば、帯電端子の静電容量(C)を61.8126pFに調整することにより、式(62)からの負荷インピーダンスは、以下の式となる。
Figure 2018530292
そして境界でのリアクタンス成分は整合される。
式(51)を使用して、垂直給電線導体(0.27インチの直径(2a)を有する)のインピーダンスは、以下の式のように得られる。
Figure 2018530292
垂直給電線導体を「見上げて」見たインピーダンスは、式(63)により、以下の式のように得られる。
Figure 2018530292
式(47)を使用して、ヘリカルコイルの特性インピーダンスは、以下の式のように得られる。
Figure 2018530292
コイルを「見上げて」見たインピーダンスは、式(64)により、以下の式のように得られる。
Figure 2018530292
式(79)の解と比較すると、リアクタンス成分が反対かつおおよそ等しく、したがって、互いの共役であることを理解することができる。したがって、完全導電性影像グラウンド平面から図9A及び9Bの等価影像平面モデルを「見上げて」見たインピーダンス(Zip)は、抵抗のみ、又はZip=R+j0である。
誘導表面導波プローブ200(図3)によって生成される電界が、給電ネットワークの進行波の位相遅延をウェーブチルト角に整合することにより確立され、かつプローブ構造が複素深さz=−d/2の完全導電性影像グラウンド平面に対して共振されるとき、電界は、損失性導電媒体上の表面上の誘導表面導波モードに実質的にモード整合され、誘導表面進行波が損失性導電媒体の表面に沿って送出される。図1に示すように、誘導電磁界の誘導電界強度曲線103は、
Figure 2018530292
の特徴的な指数関数的減衰を有し、両対数目盛上で独特の屈曲部109を呈する。
要約すれば、解析的に及び実験的にの両方で、誘導表面導波プローブ200の構造上の進行波成分は、表面進行波のウェーブチルト角(Ψ)に整合する(Φ=Ψ)、その上部端子での位相遅延(Φ)を有する。この条件下で、表面導波路は、「モード整合」していると考えることができる。更に、誘導表面導波プローブ200の構造上の共振定在波成分は、帯電端子TでVMAXを有し、損失性導電媒体203の物理的境界136(図8B)での接続部ではなく、z=−d/2の複素深さでZip=Rip+j0である下の影像平面139(図8B)でVMINを有する。最後に、帯電端子Tは、複素ブルースター角で損失性導電媒体203に入射する電磁波が
Figure 2018530292
の項が優位である距離(≧R)で入射するように、図3の十分な高さH(h≧RtanΨi,B)である。無線伝送及び/又は電力供給系に役立つように、1つ以上の誘導表面導波プローブと共に、受信回路を用いることができる。
図3に戻って、誘導表面導波プローブ200の動作は、誘導表面導波プローブ200に関連付けられた動作条件の変化に対して調整するように制御することができる。例えば、適応プローブ制御システム230を使用して、誘導表面導波プローブ200の動作を制御するように、給電ネットワーク209及び/又は帯電端子Tを制御することができる。動作条件としては、損失性導電媒体203の特性(例えば、導電率σ及び比誘電率ε)の変化、電界強度の変化、及び/又は誘導表面導波プローブ200の負荷の変化を挙げることができるが、これらに限定されない。式(31)、(41)及び(42)から理解することができるように、屈折率(n)、複素ブルースター角(θi,B)、及びウェーブチルト(|W|ejΨ)は、例えば、気象条件から結果として生じる土の導電率及び誘電率の変化により影響を受けることがある。
例えば、導電率測定プローブ、誘電率センサ、グラウンド・パラメータ計、電界計、電流モニタ、及び/又は負荷受信器などの装置を使用して、動作条件の変化をモニタして、適応プローブ制御システム230に現在の動作条件に関する情報を提供することができる。次に、プローブ制御システム230は、誘導表面導波プローブ200に1つ以上の調整を行なって、誘導表面導波プローブ200に対する指定された動作条件を維持することができる。例えば、湿度及び温度が変化すると、土の導電率もまた、変化することになる。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置に配置することができる。一般的に、動作周波数に対するハンケル交差距離R又はその付近の導電率及び/又は誘電率をモニタすることが望ましいであろう。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置(例えば、それぞれの象限内の)に配置することができる。
導電率測定プローブ及び/又は誘電率センサは、周期的に導電率及び/又は誘電率を評価して、その情報をプローブ制御システム230に通信するように構成することができる。この情報は、LAN、WLAN、セルラーネットワーク、又は他の適切な有線又は無線通信ネットワークなどだがこれらに限定されない、ネットワークを介してプローブ制御システム230に通信することができる。モニタした導電率及び/又は誘電率に基づいて、プローブ制御システム230は、屈折率(n)、複素ブルースター角(θi,B)、及び/又はウェーブチルト(|W|ejΨ)の変化を評価し、誘導表面導波プローブ200を調整して、ウェーブチルト角(Ψ)に等しい給電ネットワーク209の位相遅延(Φ)を維持する、かつ/又は誘導表面導波プローブ200の等価影像平面モデルの共振を維持することができる。これは、例えば、θ、θ、及び/又はCを調整することにより、実現することができる。例えば、プローブ制御システム230は、帯電端子Tの自己容量、及び/又は帯電端子Tに適用される位相遅延(θ、θ)を調整して、誘導表面波の電気的送出効率をその最大又は最大付近に維持することができる。例えば、帯電端子Tの自己容量は、端子のサイズを変更することにより、変更することができる。電荷分布もまた、帯電端子Tのサイズを増大させることにより向上することができ、これにより、帯電端子Tからの放電の可能性を低減することができる。他の実施形態では、帯電端子Tは、負荷インピーダンスZを変更するように調整することができる、可変インダクタンスを含むことができる。帯電端子Tに適用される位相は、送出効率を最大化するように、コイル215(図7)上のタップ位置を変更することにより、及び/又はコイル215に沿った複数の既定のタップを含めて異なる既定のタップ位置の間で切換えることにより、調整することができる。
電界計又は電界強度(field strength)(FS)計もまた、誘導表面導波プローブ200回りに分布させて、誘導表面波に関連付けられた電界の電界強度を測定することができる。電界計又はFS計は、電界強度及び/又は電界強度(例えば、電界の強度)の変化を検出して、その情報をプローブ制御システム230に通信するように構成することができる。この情報は、LAN、WLAN、セルラーネットワーク、又は他の適切な通信ネットワークなどだがこれらに限定されない、ネットワークを介してプローブ制御システム230に通信することができる。動作中に負荷及び/又は環境条件が変化する又は異なると、誘導表面導波プローブ200を調整して、FS計の位置での指定された電界強度(単数又は複数)を維持し、供給している受信器及び負荷への適切な送電を確実にすることができる。
例えば、帯電端子Tに適用される位相遅延(Φ=θ+θ)を調整して、ウェーブチルト角(Ψ)に整合することができる。1つ又は両方の位相遅延を調整することにより、誘導表面導波プローブ200を調整して、ウェーブチルトが複素ブルースター角に対応することを確実にすることができる。これは、コイル215(図7)のタップ位置を調整して、帯電端子Tに適用される位相遅延を変更することにより、実現することができる。帯電端子Tに供給される電圧レベルもまた、電界強度を調整するために増大又は減少させることができる。これは、励起源212の出力電圧を調整することにより、又は給電ネットワーク209を調整若しくは再構成することにより、実現することができる。例えば、AC源212に対するタップ227(図7)の位置を調整して、帯電端子Tから見た電圧を増大させることができる。電界強度レベルを既定の範囲内に維持することにより、受信器による結合を向上し、グラウンド電流損失を低減して、他の誘導表面導波プローブ200からの伝送との干渉を回避することができる。
プローブ制御システム230は、ハードウェア、ファームウェア、ハードウェアによって実行されるソフトウェア、又はそれらの組合せで実装することができる。例えば、プローブ制御システム230は、当業者によって理解され得るように、共に例えば付随する制御/アドレスバスを有するデータバスなどのローカルインターフェースに結合することができるプロセッサ及びメモリを含む、処理回路を含むことができる。プローブ制御のアプリケーションは、モニタされた条件に基づいて誘導表面導波プローブ200の動作を調整するように、プロセッサによって実行することができる。プローブ制御システム230はまた、様々なモニタ装置と通信するための1つ以上のネットワークインターフェースを含むことができる。通信は、LAN、WLAN、セルラーネットワーク、又は他の適切な通信ネットワークなどだがこれらに限定されない、ネットワークを介することができる。プローブ制御システム230は、例えば、サーバ、デスクトップコンピュータ、ラップトップ、又は同様な能力を有する他のシステムなどのコンピュータシステムを備えることができる。
図5Aの例に戻って、ハンケル交差距離(R)で複素ブルースター角(θi,B)を有する帯電端子Tの入射電界(E)の光線光学の解釈に関する複素角三角法を示す。損失性導電媒体に対して、ブルースター角は、複素数であり、式(38)により規定されることを思い出されたい。電気的に、幾何学的パラメータは、式(39)により、帯電端子Tの電気的実効高(heff)によって関連付けられる。物理的高さ(h)及びハンケル交差距離(R)の両方が実量であるため、ハンケル交差距離での所望の誘導表面ウェーブチルト角(WRx)は、複素実効高(heff)の位相(Φ)に等しい。帯電端子Tを物理的高さhに配置して、適切な位相Φを有する電荷で励起して、結果として生じる電界は、ハンケル交差距離Rで、かつブルースター角で、損失性導電媒体の境界界面に入射する。これらの条件下で、反射なしに又は実質的に無視できる反射で、誘導表面導波モードを励起することができる。
しかし、式(39)は、誘導表面導波プローブ200の物理的高さが相対的に低くてよいことを意味する。これが誘導表面導波モードを励起することになるが、これは、結果としてほとんど自由電荷を有さないで過度に大きな拘束電荷となる。補償するために、帯電端子Tを適切な高度に上げて、自由電荷の量を増大することができる。1つの例示的な経験則として、帯電端子Tは、帯電端子Tの実効直径の約4〜5倍(又はそれより大きい)の高度に配置することができる。図6は、図5Aに示す物理的高さ(h)の上に帯電端子Tを上げることの効果を示す。増大した高度は、ウェーブチルトが損失性導電媒体に入射する距離をハンケル交差点121(図5A)を越えて移動させる。誘導表面導波モードでの結合を向上し、したがって、誘導表面波のより大きな送出効率を提供するために、より小さな補償端子Tを使用して、ハンケル交差距離でのウェーブチルトがブルースター角にあるように、帯電端子Tの全実効高(hTE)を調整することができる。
図12を参照して、損失性導電媒体203により提示された平面に垂直な垂直軸zに沿って配置された、持ち上げられた帯電端子T及びより低い補償端子Tを含む、誘導表面導波プローブ200cの例を示す。これに関して、帯電端子Tは、補償端子Tの真上に配置されているが、2つ以上の帯電端子及び/又は補償端子Tのなんらかの他の配置を使用することができることが可能である。本開示の実施形態によれば、誘導表面導波プローブ200cは、損失性導電媒体203の上に配置されている。損失性導電媒体203は、領域1を構成し、領域2を構成する第2の媒体206は、損失性導電媒体203と境界界面を共有する。
誘導表面導波プローブ200cは、励起源212を帯電端子T及び補償端子Tに結合する結合回路209を含む。各種実施形態によれば、電荷Q及びQを、任意の所与の時点に端子T及びTに印加される電圧に依存して、対応する帯電端子及び補償端子T及びTに課すことができる。Iは、端子リードを介して帯電端子T上の電荷Qを供給する誘導電流であり、Iは、端子リードを介して補償端子T上の電荷Qを供給する誘導電流である。
図12の実施形態によれば、帯電端子Tは、物理的高さHで損失性導電媒体203の上に配置され、補償端子Tは、物理的高さHで垂直軸zに沿ってTの真下に配置され、Hは、H未満である。伝送構造の高さhは、h=H−Hとして計算することができる。帯電端子Tは、絶縁(又は自己)静電容量Cを有し、補償端子Tは、絶縁(又は自己)静電容量Cを有する。相互静電容量Cもまた、端子TとTとの間に、その間の距離に依存して存在し得る。動作中、電荷Q及びQが、任意の所与の時点に帯電端子T及び補償端子Tに印加される電圧に依存して、それぞれ帯電端子T及び補償端子T上に課される。
次に図13を参照して、図12の帯電端子T上の持ち上げられた電荷Q及び補償端子Tにより生成される効果の光線光学の解釈を示す。線163により示すように光線がハンケル交差点121より大きな距離でブルースター角で損失性導電媒体と交差する高さに持ち上げた帯電端子Tと共に、補償端子Tを使用して、増大した高さを補償することにより、hTEを調整することができる。補償端子Tの効果は、線166により示すようにハンケル交差距離でのウェーブチルトがブルースター角にあるように、誘導表面導波プローブの電気的実効高を低減する(又は損失性媒体の境界面を効果的に上げる)ことである。
全実効高は、帯電端子Tに関連付けられた上側実効高(hUE)及び補償端子Tに関連付けられた下側実効高(hLE)の重ね合わせとして、以下の式のように書くことができる。
Figure 2018530292
式中、Φは、上側帯電端子Tに適用される位相遅延であり、Φは、下側補償端子Tに適用される位相遅延であり、β=2π/λは、式(35)からの伝搬係数であり、hは、帯電端子Tの物理的高さであり、hは、補償端子Tの物理的高さである。追加のリード長さを考慮する場合、それらは、帯電端子リード長さzを帯電端子Tの物理的高さhに、及び補償端子リード長さyを補償端子Tの物理的高さhに加えることにより、以下の式に示すように考慮することができる。
Figure 2018530292
より低い実効高を使用して、全実効高(hTE)を調整し、図5Aの複素実効高(heff)に等しくすることができる。
式(85)又は(86)を使用して、ハンケル交差距離での所望のウェーブチルトを得るために、補償端子Tの下側円盤の物理的高さ、及び端子に給電する位相角度を決定することができる。例えば、式(86)は、補償端子高さ(h)の関数としての帯電端子Tに適用される位相シフトとして書き換えることができ、以下の式が得られる。
Figure 2018530292
補償端子Tの位置を決定するために、上述した関係を利用することができる。最初に、全実効高(hTE)は、式(86)で表現されるように、上側帯電端子Tの複素実効高(hUE)及び下側補償端子Tの複素実効高(hLE)の重ね合わせである。次に、入射角の正接は、幾何学的に以下の式のように表現することができる。
Figure 2018530292
これは、ウェーブチルトWの定義に等しい。最後に、所望のハンケル交差距離Rであるとして、hTEを調整して、入射光線のウェーブチルトをハンケル交差点121で複素ブルースター角に整合させることができる。これは、h、Φ、及び/又はhを調整することにより、実現することができる。
これらの概念は、誘導表面導波プローブの例の文脈で説明すると、より良好に理解することができる。図14を参照して、損失性導電媒体203によって提示された平面に実質的に垂直な垂直軸zに沿って配置された、上側帯電端子T(例えば、高さhの球)及び下側補償端子T(例えば、高さhの円盤)を含む誘導表面導波プローブ200dの例のグラフ表示を示す。動作中、電荷Q及びQが、任意の所与の時点に端子T及びTに印加される電圧に依存して、それぞれ帯電端子T及び補償端子T上に課される。
AC源212は、例えばヘリカルコイルなどのコイル215を含む結合回路209を介して誘導表面導波プローブ200dに結合された、帯電端子T用の励起源として機能する。AC源212は、図14に示すようにタップ227を介してコイル215の下側部分にわたって接続することができる、又は一次コイルを経由してコイル215に誘導結合することができる。コイル215は、第1の端部で接地杭218に、及び第2の端部で帯電端子Tに結合することができる。いくつかの実装形態では、帯電端子Tへの接続は、コイル215の第2の端部でタップ224を使用して調整することができる。補償端子Tは、損失性導電媒体203(例えば、グラウンド又は地球)の上に、かつそれに実質的に平行に配置され、コイル215に結合されたタップ233を介して励振される。コイル215と接地杭218との間に配置された電流計236を使用して、誘導表面導波プローブの底部での電流フローの大きさ(I)の表示を提供することができる。あるいは、電流クランプを接地杭218に結合された導体の周囲に使用して、電流フローの大きさ(I)の表示を得ることができる。
図14の例では、コイル215は、第1の端部で接地杭218に、かつ垂直給電線導体221を介して第2の端部で帯電端子Tに結合される。いくつかの実装形態では、帯電端子Tへの接続は、図14に示すように、コイル215の第2の端部でタップ224を使用して調整することができる。コイル215は、コイル215の下側部分のタップ227を介してAC源212によって、動作周波数で励振することができる。他の実装形態では、AC源212は、一次コイルを介してコイル215に誘導結合することができる。補償端子Tは、コイル215に結合されたタップ233を介して励振される。コイル215と接地杭218との間に配置された電流計236を使用して、誘導表面導波プローブ200dの底部での電流フローの大きさの表示を提供することができる。あるいは、電流クランプを接地杭218に結合された導体の周囲に使用して、電流フローの大きさの表示を得ることができる。補償端子Tは、損失性導電媒体203(例えば、グラウンド)の上方に、かつそれに実質的に平行に配置される。
図14の例では、帯電端子Tへの接続は、補償端子T用のタップ233の接続点の上のコイル215上に配置された。そのような調整により、増大した電圧(したがってより高い電荷Q)を上側帯電端子Tに印加することができる。他の実施形態では、帯電端子T及び補償端子T用の接続点は、反転することができる。誘導表面導波プローブ200dの全実効高(hTE)を調整して、ハンケル交差距離Rで誘導表面ウェーブチルトを有する電界を励起することが可能である。ハンケル交差距離もまた、図4により示すように、−jγρに対する式(20b)及び(21)の大きさを等しくして、Rについて解くことにより、見出すことができる。屈折率(n)、複素ブルースター角(θi,B及びΨi,B)、ウェーブチルト(|W|ejΨ)、及び複素実効高(heff=hjΦ)は、式(41)〜(44)に関して上述したように決定することができる。
選択された帯電端子Tの構成を用いて、球体直径(又は実効球体直径)を決定することができる。例えば、帯電端子Tが球として構成されない場合、端子構成は、実効球体直径を有する球体のキャパシタンスとしてモデル化することができる。帯電端子Tのサイズは、端子に課される電荷Qのための十分大きな表面を提供するように選択することができる。一般的に、帯電端子Tを実用的な限り大きくすることが望ましい。帯電端子Tのサイズは、結果として帯電端子周囲の放電又はスパークとなり得る周囲空気のイオン化を回避するために、十分大きくすべきである。帯電端子T上の拘束電荷の量を低減するために、誘導表面波を送出するために帯電端子T上に自由電荷を提供するための所望の高度は、少なくとも損失性導電媒体(例えば、地球)の上の実効球直径の4〜5倍でなければならない。補償端子Tを使用して、誘導表面導波プローブ200dの全実効高(hTE)を調整し、Rで誘導表面ウェーブチルトを有する電界を励起することができる。補償端子Tは、h=h−hで帯電端子Tの下に配置することができ、式中、hは、帯電端子Tの全物理的高さである。補償端子Tの位置を固定し、かつ位相遅延Φを上側帯電端子Tに適用して、下側補償端子Tに適用される位相遅延Φは、式(86)の関係を使用して、以下の式のように決定することができる。
Figure 2018530292
代替の実施形態では、補償端子Tは、高さhに配置することができ、ここで、Im{Φ}=0である。これを、図15Aにグラフで示し、この図は、Φの虚部及び実部のグラフ、それぞれ172及び175を示す。補償端子Tは、高さhに配置され、ここで、グラフ172で図示するようにIm{Φ}=0である。この固定した高さで、コイルの位相Φは、グラフ175で図示するようにRe{Φ}から決定することができる。
AC源212をコイル215に(例えば、結合を最大化する50Ωの点に)結合して、動作周波数でのコイルの少なくとも一部分と補償端子Tの並列共振のために、タップ233の位置を調整することができる。図15Bは、図14の一般的電気接続の模式図を示し、図中、Vは、タップ227を介してAC源212からコイル215の下側部分に印加される電圧であり、Vは、上側帯電端子Tに供給されるタップ224での電圧であり、Vは、タップ233を介して下側補償端子Tに印加される電圧である。抵抗R及びRは、それぞれ帯電端子T及び補償端子Tのグラウンド帰路抵抗を表す。帯電端子T及び補償端子Tは、球、円筒、トロイド、リング、フード、又は容量構造の任意の他の組合せとして構成することができる。帯電端子T及び補償端子Tのサイズは、端子に課される電荷Q及びQのための十分大きな表面を提供するように選択することができる。一般的に、帯電端子Tを実用的な限り大きくすることが望ましい。帯電端子Tのサイズは、結果として帯電端子周囲の放電又はスパークとなり得る周囲空気のイオン化を回避するために、十分大きくすべきである。帯電端子T及び補償端子Tそれぞれの自己容量C及びCは、例えば、式(24)を使用して決定することができる。
図15Bで理解することができるように、共振回路は、コイル215のインダクタンスの少なくとも一部分、補償端子Tの自己容量C、及び補償端子Tに関連付けられたグラウンド帰路抵抗Rにより形成される。並列共振は、Cを調整するために、補償端子Tに印加される電圧Vを調整することにより(例えば、コイル215上のタップ233の位置を調整することにより)、又は補償端子Tの高さ及び/又はサイズを調整することにより、確立することができる。コイルのタップ233の位置は、並列共振のために調整することができ、並列共振の結果として、接地杭218及び電流計236を通るグランド電流が最大点に到達することになる。補償端子Tの並列共振が確立された後で、AC源212用のタップ227の位置は、コイル215上の50Ωの点に調整することができる。
コイル215からの電圧Vは、帯電端子Tに印加することができ、タップ224の位置は、全実効高(hTE)の位相(Φ)がハンケル交差距離(R)での誘導表面ウェーブチルト角(WRx)とほぼ等しいように、調整することができる。コイルのタップ224の位置は、この動作点に到達するまで調整することができ、この結果として、電流計236を通るグラウンド電流が最大に増大することになる。この時点で、結果として生じる誘導表面導波プローブ200dによって励起された電界が、損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合しており、結果として、損失性導電媒体203の表面に沿った誘導表面波の送出となる。これは、誘導表面導波プローブ200から延びる放射に沿って電界強度を測定することにより、検証することができる。
補償端子Tを含む回路の共振は、帯電端子Tの取り付け、及び/又はタップ224を介して帯電端子Tに印加される電圧の調整で変化することがある。共振のために補償端子回路を調整することは、帯電端子の接続のその後の調整を助成するが、ハンケル交差距離(R)での誘導表面ウェーブチルト(WRx)を確立することが必要ではない。システムを更に調整して、AC源212用のタップ227の位置をコイル215上の50Ωの点になるように繰り返して調整し、電流計236を通るグラウンド電流を最大化するようにタップ233の位置を調整することにより、結合を向上することができる。補償端子Tを含む回路の共振は、タップ227及び233の位置が調整されると、又は他の構成要素がコイル215に取り付けられると、ドリフトすることがある。
他の実装形態では、コイル215からの電圧Vは、帯電端子Tに印加することができ、タップ233の位置は、全実効高(hTE)の位相(Φ)がRでの誘導表面ウェーブチルト角(Ψ)とほぼ等しいように、調整することができる。コイルのタップ224の位置は、動作点に到達するまで調整することができ、結果として、電流計236を通るグラウンド電流が実質的に最大に到達することになる。結果として生じる電界は、損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合しており、損失性導電媒体203の表面に沿って誘導表面波が送出される。これは、誘導表面導波プローブ200から延びる径方向に沿って電界強度を測定することにより、検証することができる。システムを更に調整して、AC源212用のタップ227の位置をコイル215上の50Ωの点になるように繰り返して調整し、電流計236を通るグラウンド電流を最大化するようにタップ224及び/又は233の位置を調整することにより、結合を向上することができる。
図12に戻って、誘導表面導波プローブ200の動作は、誘導表面導波プローブ200に関連付けられた動作条件の変化に対して調整するように制御することができる。例えば、プローブ制御システム230を使用して、結合回路209並びに/又は帯電端子T及び/若しくは補償端子Tの配置を制御し、誘導表面導波プローブ200の動作を制御することができる。動作条件としては、損失性導電媒体203の特性(例えば、導電率σ及び比誘電率ε)の変化、電界強度の変化、及び/又は誘導表面導波プローブ200の負荷の変化を挙げることができるが、これらに限定されない。式(41)〜(44)から理解することができるように、屈折率(n)、複素ブルースター角(θi,B及びΨi,B)、ウェーブチルト(|W|ejΨ)、及び複素実効高(heff=hjΦ)は、例えば、気象条件から結果として生じる土の導電率及び誘電率の変化により影響を受けることがある。
例えば、導電率測定プローブ、誘電率センサ、グラウンド・パラメータ・メータ、電界計、電流モニタ、及び/又は負荷受信器などの装置を使用して、動作条件の変化をモニタして、プローブ制御システム230に現在の動作条件に関する情報を提供することができる。次に、プローブ制御システム230は、誘導表面導波プローブ200に1つ以上の調整を行なって、誘導表面導波プローブ200に対する指定された動作条件を維持することができる。例えば、湿度及び温度が変化すると、土の導電率もまた、変化することになる。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置に配置することができる。一般的に、動作周波数に対するハンケル交差距離R又はその付近の導電率及び/又は誘電率をモニタすることが望ましいであろう。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置(例えば、それぞれの象限内の)に配置することができる。
図16を参照して、垂直軸zに沿って配置された帯電端子T及び帯電端子Tを含む誘導表面導波プローブ200eの例を示す。誘導表面導波プローブ200eは、領域1を構成する損失性導電媒体203の上に配置されている。加えて、第2の媒体206は、損失性導電媒体203と境界界面を共有し、領域2を構成する。帯電端子T及びTは、損失性導電媒体203の上に配置される。帯電端子Tは、物理的高さHに配置され、帯電端子Tは、高さHで垂直軸zに沿ってTの真下に配置され、Hは、H未満である。誘導表面導波プローブ200eによって提示される伝送構造の高さhは、h=H−Hである。誘導表面導波プローブ200eは、励起源212を帯電端子T及びTに結合するプローブ結合回路209を含む。
帯電端子T及び/又はTは、実用的に可能な限り多くの電荷を保持するサイズにすることができる、電荷を保持することができる導体塊を含む。帯電端子Tは、自己容量Cを有し、帯電端子Tは、自己容量Cを有し、それらは、例えば、式(24)を使用して決定することができる。帯電端子Tの真上の帯電端子Tの配置によって、帯電端子TとTとの間に、相互静電容量Cが生成される。帯電端子T及びTは、同一である必要はなく、それぞれが、別個のサイズ及び形状を有することができ、異なる導電材料を含むことができることに留意されたい。最終的に、誘導表面導波プローブ200eによって送出される誘導表面波の電界強度は、端子T上の電荷の量に正比例する。次に、電荷Qは、Q=CVであるため、帯電端子Tに関連付けられた自己容量Cに比例し、式中、Vは、帯電端子Tに課される電圧である。
既定の動作周波数で動作するように適切に調整されると、誘導表面導波プローブ200eは、損失性導電媒体203の表面に沿った誘導表面波を生成する。励起源212は、構造を励起するために誘導表面導波プローブ200eに印加される既定の周波数の電気エネルギを生成することができる。誘導表面導波プローブ200eによって生成された電磁界が、損失性導電媒体203と実質的にモード整合される場合、電磁界は、結果としてほとんど反射しない又は反射しない複素ブルースター角で入射する波面を実質的に合成する。したがって、表面導波プローブ200eは、放射波を生成しないが、損失性導電媒体203の表面に沿った誘導表面進行波を送出する。励起源212からのエネルギは、Zenneck表面電流として誘導表面導波プローブ200eの実効伝送範囲内に配置された1つ以上の受信器に伝送することができる。
損失性導電媒体203の表面上の放射Zenneck表面電流Jρ(ρ)の漸近線を近接でJ(ρ)かつ遠方でJ(ρ)となるように、以下の式のように決定することができる。
Figure 2018530292
式中、Iは、第1の帯電端子T上の電荷Qを供給する誘導電流であり、Iは、第2の帯電端子T上の電荷Qを供給する誘導電流である。上側帯電端子T上の電荷Qは、Q=Cにより決定され、式中、Cは、帯電端子Tの絶縁静電容量である。Leontovich境界条件に従い、第1の帯電端子上の持ち上げられた振動する電荷Qの準静的電界により注入された損失性導電媒体203内の放射電流寄与である、
Figure 2018530292
により得られる上述したJに対する第3の成分が存在することに留意されたい。量Zρ=jωμ/γは、損失性導電媒体の放射インピーダンスであり、式中、γ=(jωμσ−ωμε1/2である。
式(90)及び(91)により上述したような近接及び遠方の放射電流を表す漸近線は、複素量である。各種実施形態によれば、物理的表面電流J(ρ)は、大きさ及び位相において電流の漸近線に可能な限り近く整合するように合成される。すなわち、近接で、|J(ρ)|は、|J|に対して接線となることになり、遠方で、|J(ρ)|は、|J|に対して接線となることになる。また、各種実施形態によれば、J(ρ)の位相は、近接のJの位相から遠方のJの位相に遷移しなければならない。
誘導表面波を送出するように伝送の場所で誘導表面波モードに整合するために、遠方の表面電流|J|の位相は、e−jβ(ρ2−ρ1)に対応する伝搬位相に約45度又は225度の定数を加えただけ、近接の表面電流|J|の位相とは異ならなければならない。これは、
Figure 2018530292
に対して、π/4付近に1つ及び5π/4付近に1つの、2つの根が存在するためである。適切に調整された合成放射表面電流は、以下の式である。
Figure 2018530292
これは式(17)と一致していることに留意されたい。マクスウェル方程式により、そのようなJ(ρ)の表面電流は、自動的に、以下の式に従う電界を生成する。
Figure 2018530292
したがって、整合されることになる誘導表面波モードに対する遠方の表面電流|J|と近接の表面電流|J|との間の位相の差は、式(1)〜(3)と一致する式(93)〜(95)のハンケル関数の特性に起因する。式(1)〜(6)及び(17)並びに式(92)〜(95)によって表現される電界は、地上波の伝搬に関連付けられた放射電磁界ではなく、損失性の境界面に拘束された伝送線モードの性質を有することを認識することは重要である。
所与の位置での誘導表面導波プローブ200eの所与の設計に対する適切な電圧の大きさ及び位相を得るために、反復的手法を使用することができる。具体的には、生成される放射表面電流密度を決定するために、端子T及びTへの給電電流、帯電端子T及びT上の電荷、並びに損失性導電媒体203内のそれらの影像を考慮して、誘導表面導波プローブ200eの所与の励起及び構成の解析を実行することができる。このプロセスは、所望のパラメータに基づいて所与の誘導表面導波プローブ200eの最適な構成及び励起が決定されるまで、繰り返して実行することができる。所与の誘導表面導波プローブ200eが最適なレベルで動作しているか否かを判定するのを助成するために、誘導表面導波プローブ200eの位置での領域1の導電率(σ)及び領域1の誘電率(ε)に対する値に基づいて式(1)〜(12)を使用して、誘導電界強度曲線103(図1)を生成することができる。そのような誘導電界強度曲線103は、測定された電界強度を誘導電界強度曲線103により示される大きさと比較して、最適な伝送が実現されているか否かを判定することができるように、動作に対する基準を提供することができる。
最適化された条件に到達するために、誘導表面導波プローブ200eに関連付けられた様々なパラメータを調整することができる。誘導表面導波プローブ200eを調整するために変更することができる1つのパラメータは、損失性導電媒体203の表面に対する帯電端子T及び/又はTの1つ又は両方の高さである。加えて、帯電端子TとTとの間の距離又は間隔もまた、調整することができる。そのようにすることで、理解することができるように、帯電端子T及びTと損失性導電媒体203との間の相互静電容量C又はなんらかの拘束電荷を最小化する又は別の方法で変更することができる。それぞれの帯電端子T及び/又はTのサイズもまた、調整することができる。帯電端子T及び/又はTのサイズを変更することにより、理解することができるように、対応する自己容量C及び/又はC、並びに相互静電容量Cを変更することになる。
また更に、調整することができる別のパラメータは、誘導表面導波プローブ200eに関連付けられたプローブ結合回路209である。これは、プローブ結合回路209を構成する誘導リアクタンス及び/又は容量リアクタンスのサイズを調整することにより、実現することができる。例えば、そのような誘導リアクタンスがコイルを含む場合、そのようなコイルの巻数を調整することができる。最終的に、プローブ結合回路209に対する調整を行なって、プローブ結合回路209の電気的長さを変更し、それによって、帯電端子T及びT上の電圧の大きさ及び位相に影響を及ぼすことができる。
理解することができるように、様々な調整を行うことにより実行される伝送の反復は、コンピュータモデルを使用することにより、又は物理的構造を調整することにより、実施することができることを留意されたい。上述の調整を行なうことにより、上述した式(90)及び(91)で規定される誘導表面波モードの同じ電流J(ρ)を近似する、対応する「近接」表面電流J及び「遠方」表面電流Jを生成することができる。そうすることにより、結果として生じる電磁界は、損失性導電媒体203の表面上の誘導表面波モードに実質的に又は近似的にモード整合されることになる。
図16の例に示さないが、誘導表面導波プローブ200eの動作は、誘導表面導波プローブ200に関連付けられた動作条件の変化に対して調整するように制御することができる。例えば、図12に示すプローブ制御システム230を使用して、結合回路209並びに/又は帯電端子T及び/若しくはTの配置及び/若しくはサイズを制御し、誘導表面導波プローブ200eの動作を制御することができる。動作条件としては、損失性導電媒体203の特性(例えば、導電率σ及び比誘電率ε)の変化、電界強度の変化、及び/又は誘導表面導波プローブ200eの負荷の変化を挙げることができるが、これらに限定されない。
ここで図17を参照して、誘導表面導波プローブ200fとして本明細書で表記された、図16の誘導表面導波プローブ200eの例を示す。誘導表面導波プローブ200fは、損失性導電媒体203(例えば、地球)によって提示された平面に実質的に垂直な垂直軸zに沿って配置された帯電端子T及びTを含む。第2の媒体206は、損失性導電媒体203の上にある。帯電端子Tは、自己容量Cを有し、帯電端子Tは、自己容量Cを有する。動作中、電荷Q及びQが、任意の所与の時点に帯電端子T及びTに印加される電圧に依存して、それぞれ帯電端子T及びT上に課される。相互静電容量Cは、帯電端子TとTとの間に、その間の距離に依存して存在し得る。加えて、拘束静電容量は、損失性導電媒体203に対するそれぞれの帯電端子T及びTの高さに依存して、それぞれの帯電端子T及びTと損失性導電媒体203との間に存在し得る。
誘導表面導波プローブ200fは、帯電端子T及びTのそれぞれ1つに結合された一対のリードを有するコイルL1aを含む誘導インピーダンスを含むプローブ結合回路209を含む。一実施形態では、コイルL1aは、誘導表面導波プローブ200fの動作周波数での波長の半分(1/2)の電気的長さを有するように規定される。
コイルL1aの電気的長さは、動作周波数での波長の約半分(1/2)として規定されるが、コイルL1aは、他の値での電気長で規定することができることが理解される。一実施形態によれば、コイルL1aが動作周波数での波長の約半分の電気長を有するという事実は、帯電端子T及びT上に最大電圧差が生成されるという利点を提供する。それにもかかわらず、誘導表面導波プローブ200fを調整して誘導表面波モードの最適な励起を得るときに、コイルL1aの長さ又は直径は、増大又は減少させることができる。コイル長の調整は、コイルの1つ又は両方の端部に配置されたタップにより提供することができる。一実施形態では、誘導インピーダンスは、誘導表面導波プローブ200fの動作周波数での波長の1/2より著しく短い又は長い電気長を有するように規定される場合とすることができる。
励起源212は、磁気結合によりプローブ結合回路209に結合することができる。具体的には、励起源212は、コイルL1aに誘導結合されたコイルLに結合される。これは、理解することができるように、リンク結合、タップ付きコイル、可変リアクタンス、又は他の結合手法により行うことができる。このために、理解することができるように、コイルLは、一次コイルとして機能し、コイルL1aは、二次コイルとして機能する。
所望の誘導表面波の伝送のために誘導表面導波プローブ200fを調整するために、それぞれの帯電端子T及びTの高さは、損失性導電媒体203に対して、及び互いに対して、変更することができる。また、帯電端子T及びTのサイズを変更することができる。加えて、巻きを追加若しくは除去することにより、又はコイルL1aのなんらかの他の寸法を変更することにより、コイルL1aのサイズを変更することができる。コイルL1aはまた、図17に示すように、電気長を調整するための1つ以上のタップを含むことができる。帯電端子T又はTのいずれかに接続されたタップの位置もまた、調整することができる。
次に図18A、18B、18C、及び図19を参照して、無線電力供給システムに表面誘導波を使用するための、一般化した受信回路の例を示す。図18A及び18B〜18Cは、それぞれ、線状プローブ303及び同調共振器306を含む。図19は、本開示の各種実施形態に係る、磁気コイル309である。各種実施形態によれば、線状プローブ303、同調共振器306、及び磁気コイル309のうちのそれぞれ1つを用いて、各種実施形態による損失性導電媒体203の表面上の誘導表面波の形態で伝送された電力を受信することができる。上述したように、一実施形態では、損失性導電媒体203は、テレストリアル媒体(又は地球)を含む。
具体的に図18Aを参照して、線状プローブ303の出力端子312での開回路端子電圧は、線状プローブ303の実効高に依存する。このために、端子点の電圧は、以下の式のように計算することができる。
Figure 2018530292
式中、Eincは、1V/mでの線状プローブ303上に誘導された入射電界の強度であり、dlは、線状プローブ303の方向に沿った積分の要素であり、hは、線状プローブ303の実効高である。電気的負荷315は、インピーダンス整合ネットワーク318を介して出力端子312に結合される。
線状プローブ303が上述したように誘導表面波を受けるとき、場合によって、共役インピーダンス整合ネットワーク318を介して電気的負荷315に印加することができる電圧が、出力端子312にわたって生じる。電気的負荷315への電力の流れを促進するために、後述するように、電気的負荷315は、線状プローブ303に実質的にインピーダンス整合されていなければならない。
図18Bを参照して、誘導表面波のウェーブチルトに等しい位相シフトを保有するグラウンド電流励起コイル306aは、損失性導電媒体203の上に持ち上げられた(又はつり下げられた)帯電端子Tを含む。帯電端子Tは、自己容量Cを有する。加えて、損失性導電媒体203の上の帯電端子Tの高さに依存して、帯電端子Tと損失性導電媒体203との間に、拘束された静電容量(図示せず)もまた存在する。拘束された静電容量は、好ましくは実行可能な限り最小化されなければならないが、これは、すべての場合において全面的に必要でなくてもよい。
同調共振器306aもまた、位相シフトΦを有するコイルLを含む受信器ネットワークを含む。コイルLの1つの端部は、帯電端子Tに結合され、コイルLの他方の端部は、損失性導電媒体203に結合される。受信器ネットワークは、コイルLを帯電端子Tに結合する垂直供給線導体を含むことができる。このために、コイルL(同調共振器L−Cと呼ばれる場合もある)は、帯電端子C及びコイルLが直列に配置されるとき、直列調整された共振器を含む。コイルLの位相遅延は、帯電端子Tのサイズ及び/若しくは高さを変更することにより、並びに/又は構造の位相Φがウェーブチルト角Ψに実質的に等しくなるようにコイルLのサイズを調整することにより、調整することができる。垂直供給線の位相遅延もまた、例えば、導体長を変更することにより、調整することができる。
例えば、自己容量Cにより提示されるリアクタンスは、1/jωCとして計算される。理解することができるように、構造306aの全静電容量はまた、帯電端子Tと損失性導電媒体203との間の静電容量を含むことができ、構造306aの全静電容量は、自己容量C及びなんらかの拘束された静電容量の両方から計算することができることに留意されたい。一実施形態によれば、帯電端子Tは、なんらかの拘束された静電容量を実質的に低減又は除去するような高さに上げることができる。拘束された静電容量の存在は、上述したように帯電端子Tと損失性導電媒体203との間の静電容量の測定値から判定することができる。
別個の要素のコイルLにより提示される誘導リアクタンスは、jωLとして計算することができ、式中、Lは、コイルLの集中素子インダクタンスである。コイルLが分布素子である場合、その等価な端子点の誘導リアクタンスは、従来の手法によって決定することができる。構造306aを整調するために、動作周波数での表面導波路へのモード整合のために位相遅延がウェーブチルトに等しいように、調整を行なうことになる。この条件下で、受信構造は、表面導波路に「モード整合」していると考えることができる。電力を負荷に結合するために、プローブと電気的負荷327との間に、構造周囲の変圧器リンク及び/又はインピーダンス整合ネットワーク324を挿入することができる。プローブ端子321と電気的負荷327との間にインピーダンス整合ネットワーク324を挿入することにより、電気的負荷327への最大電力伝送のための共役整合条件に影響を及ぼすことができる。
動作周波数での表面電流の存在下に置かれた場合、電力は、表面誘導波から電気的負荷327に送出されることになる。このために、電気的負荷327は、磁気結合、容量結合、又は導電(直接タップ)結合によって、構造306aに結合することができる。結合ネットワークの素子は、理解することができるように、集中素子又は分布素子とすることができる。
図18Bに示す実施形態では、磁気結合が用いられており、トランス一次コイルとして機能するコイルLに対する二次コイルとして、コイルLが配置されている。理解することができるように、コイルLは、同じコア構造の周囲に幾何学的に巻いて、結合した磁束を調整することにより、コイルLにリンク結合することができる。加えて、受信構造306aは、直列同調した共振器を含むが、適切な位相遅延の並列同調共振器又は更に分布素子共振器もまた、使用することができる。
電磁界に浸漬された受信構造は、電界からのエネルギを結合することができるが、偏波整合した構造は、結合を最大化することにより、最も良好に機能し、導波モードへのプローブ結合に関する従来の規則を遵守しなければならないことを理解することができる。例えば、TE20(横電気モード)導波プローブは、TE20モードで励起された従来の導波路からエネルギを抽出するために最適にすることができる。同様に、これらの場合では、モード整合及び位相整合した受信構造は、表面誘導波からの電力を結合するために最適化することができる。損失性導電媒体203の表面上の誘導表面導波プローブ200によって励起された誘導表面波は、開放導波路の導波モードと考えることができる。導波路損失を除いて、ソースエネルギは、完全に回収することができる。有用な受信構造は、電界(E-field)結合、磁界(H-field)結合、又は表面電流で励起することができる。
受信構造を調整して、受信構造の近傍の損失性導電媒体203の局所的な特性に基づいて、誘導表面波との結合を増大又は最大化することができる。これを実現するために、受信構造の位相遅延(Φ)を調整して、受信構造での表面進行波のウェーブチルト角(Ψ)を整合することができる。適切に構成された場合、受信構造は、次に、複素深さz=−d/2での完全導電性影像グラウンド平面に対する共振のために同調することができる。
例えば、コイルL及びコイルLと帯電端子Tとの間に接続された垂直供給線を含む、図18Bの同調した共振器306aを含む受信構造を考えてみる。帯電端子Tを損失性導電媒体203の上の規定された高さに配置して、コイルL及び垂直供給線の全位相シフトΦは、同調した共振器306aの位置でのウェーブチルト角(Ψ)に整合することができる。式(22)から、ウェーブチルトは、漸近的に以下の式になることを理解することができる。
Figure 2018530292
式中、εは、比誘電率を含み、σは、受信構造の位置での損失性導電媒体203の導電率であり、εは、自由空間の誘電率であり、ω=2πfであり、fは、励起の周波数である。したがって、ウェーブチルト角(Ψ)は、式(97)から決定することができる。
同調共振器306aの全位相遅延(Φ=θ+θ)は、コイルLによる位相遅延(θ)及び垂直供給線の位相遅延(θ)の両方を含む。垂直供給線の長さlに沿った空間位相遅延は、θ=βにより得ることができ、式中、βは、垂直供給線導体に対する伝搬位相定数である。コイル(又はヘリカル遅延線)に起因する位相遅延は、θ=βであり、式中、lは、物理的長さであり、以下の式は、伝搬係数である。
Figure 2018530292
式中、Vは、構造上の速度係数であり、λは、供給される周波数での波長であり、λは、速度係数Vから結果として生じる伝搬波長である。位相遅延(θ+θ)のうちの1つ又は両方を調整して、位相シフトΦをウェーブチルト角(Ψ)に整合することができる。例えば、図18BのコイルL上のタップ位置を調整して、コイルの位相遅延(θ)を調整し、全位相シフトをウェーブチルト角に整合する(Φ=Ψ)ことができる。例えば、コイルの一部分を、図18Bに示すようにタップ接続により回避することができる。垂直供給線導体もまた、タップを介してコイルLに接続することができ、コイル上のタップの位置を調整して、全位相シフトをウェーブチルト角に整合することができる。
同調した共振器306aの位相遅延(Φ)が調整されたら、次に、帯電端子Tのインピーダンスを調整して、複素深さz=−d/2での完全導電性影像グラウンド平面に対して共振するよう同調することができる。これは、コイルL及び垂直供給線の進行波の位相遅延を変更することなく帯電端子Tの静電容量を調整することにより、実現することができる。この調整は、図9A及び9Bに関して説明したものと同様である。
複素影像平面に対する損失性導電媒体203を「見下ろして」見たインピーダンスは、以下の式により得られる。
Figure 2018530292
式中、
Figure 2018530292
である。地球の上の垂直に偏波したソースに対して、複素影像平面の深さは、以下の式により得られる。
Figure 2018530292
式中、μは、損失性導電媒体203の透磁率であり、ε=εεである。
同調共振器306aの底部で、受信構造を「見上げて」見たインピーダンスは、図9Aに示すようにZ=Zbaseである。以下の式の端子インピーダンスで、
Figure 2018530292
(式中、Cは、帯電端子Tの自己容量である)、同調共振器306aの垂直供給線導体を「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018530292
同調共振器306aのコイルLを「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018530292
損失性導電媒体203を「見下ろして」見たリアクタンス成分(Xin)を同調共振器306aを「見上げて」見たリアクタンス成分(Xbase)と整合することにより、誘導表面導波モードへの結合を最大化することができる。
次に図18Cを参照して、受信構造の上部に帯電端子Tを含まない同調共振器306bの例を示す。この実施形態では、同調共振器306bは、コイルLと帯電端子Tとの間に結合された垂直供給線を含まない。したがって、同調共振器306bの全位相シフト(Φ)は、コイルLによる位相遅延(θ)のみを含む。図18Bの同調共振器306aと同様に、コイルの位相遅延θを調整して、式(97)から決定されたウェーブチルト角(Ψ)を整合することができ、これにより、結果としてΦ=Ψとなる。表面導波モードに結合された受信構造を用いて電力抽出が可能であるが、受信構造を調整して、帯電端子Tによって提供される可変リアクタンス負荷なしに誘導表面波との結合を最大化することは困難である。
図18Dを参照して、受信構造を調整して、損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合する例を示す流れ図180を示す。181で開始して、受信構造が(図18Bの同調共振器306aの)帯電端子Tを含む場合、184で、帯電端子Tは、損失性導電媒体203の上の定義された高さに配置される。誘導表面導波プローブ200によって表面誘導波が確立されたら、帯電端子Tの物理的高さ(h)は、実効高より低いものとすることができる。物理的高さを選択して、帯電端子T上の拘束電荷を低減又は最小化することができる(例えば、帯電端子の球直径の4倍)。受信構造が(例えば、図18Cの同調共振器306bの)帯電端子Tを含まない場合、流れは、187に進む。
187で、受信構造の電気的位相遅延Φは、損失性導電媒体203の局所的な特性によって定義された複素ウェーブチルト角Ψに整合される。ヘリカルコイルの位相遅延(θ)及び/又は垂直供給線の位相遅延(θ)は、Φをウェーブチルト(W)の角度(Ψ)に等しくするように調整することができる。ウェーブチルト角(Ψ)は、式(86)から決定することができる。次に、電気的位相Φは、ウェーブチルト角に整合することができる。例えば、電気的位相遅延Φ=θ+θは、コイルLの幾何学的パラメータ及び/又は垂直供給線導体の長さ(又は高さ)を変更することにより調整することができる。
次に190で、帯電端子Tの負荷インピーダンスは、同調共振器306aの等価影像平面モデルを共振させるように整調させることができる。受信構造の下の導電性影像グラウンド平面139(図9A)の深さ(d/2)は、式(100)、及び局所的に測定することができる受信構造での損失性導電媒体203(例えば、地球)の値を使用して決定することができる。その複素深さを使用して、影像グラウンド平面139と損失性導電媒体203の物理的境界136(図9A)との間の位相シフト(θ)は、θ=βd/2を使用して決定することができる。次に、損失性導電媒体203を「見下ろして」見たようなインピーダンス(Zin)は、式(99)を使用して決定することができる。この共振関係は、誘導表面波との結合を最大化すると考えることができる。
コイルLの調整されたパラメータ及び垂直供給線導体の長さに基づいて、速度係数、位相遅延、並びにコイルL及び垂直供給線のインピーダンスを決定することができる。加えて、帯電端子Tの自己容量(C)は、例えば、式(24)を使用して決定することができる。コイルLの伝搬係数(β)は、式(98)を使用して決定することができ、垂直供給線に対する伝搬位相定数(β)は、式(49)を使用して決定することができる。自己容量並びにコイルL及び垂直供給線の決定された値を使用して、コイルLを「見上げて」見たような同調共振器306aのインピーダンス(Zbase)は、式(101)、(102)及び(103)を使用して決定することができる。
図9Aの等価影像平面モデルはまた、図18Bの同調共振器306aにも適用される。同調共振器306aを同調して、Zbaseのリアクタンス成分XbaseがZinのXinのリアクタンス成分を相殺する、又はXbase+Xin=0であるように、帯電端子Tの負荷インピーダンスZを調整することにより、複素影像平面に対して共振させることができる。したがって、同調共振器306aのコイルを「見上げた」物理的境界136(図9A)でのインピーダンスは、損失性導電媒体203を「見下ろした」物理的境界136でのインピーダンスの共役である。負荷インピーダンスZは、帯電端子Tから見た電気的位相遅延Φ=θ+θを変更することなく帯電端子Tの静電容量(C)を変更することにより、調整することができる。反復的手法を採用して、導電性影像グラウンド平面139に対する等価影像平面モデルの共振のために負荷インピーダンスZを同調することができる。この方法で、損失性導電媒体203(例えば、地球)の表面に沿った誘導表面導波モードへの電界の結合を、向上及び/又は最大化することができる。
図19を参照して、磁気コイル309は、電気的負荷336にインピーダンス整合ネットワーク333を介して結合された受信回路を含む。誘導表面波からの電力の受信及び/又は抽出を促進するために、磁気コイル309は、誘導表面波の磁束Hφが磁気コイル309を通り、それによって、磁気コイル309内に電流を誘導して、その出力端子330で端子点電圧を生成するように、配置することができる。単一の巻きのコイルに結合された誘導表面波の磁束は、以下の式により表現される。
Figure 2018530292
式中、Fは、結合した磁束であり、μは、磁気コイル309のコアの実効比透磁率であり、μは、自由空間の透磁率であり、
Figure 2018530292
は、入射磁界強度ベクトルであり、
Figure 2018530292
は、巻きの断面区間に垂直な単位ベクトルであり、ACSは、それぞれのループによって囲まれた区間である。磁気コイル309の断面区間にわたって均一な入射磁界への最大結合に向けたN巻きの磁気コイル309に対して、磁気コイル309の出力端子330で発生する開回路で誘導された電圧は、以下の式である。
Figure 2018530292
式中、これらの変数は、上記で定義されている。磁気コイル309は、場合によって、分布した共振器として、又はその出力端子330にわたる外部コンデンサを有してのいずれかで、誘導表面波の周波数に同調して、次に、共役インピーダンス整合ネットワーク333を介して外部電気的負荷336にインピーダンス整合することができる。
磁気コイル309によって提示された結果として生じる回路及び電気的負荷336が適切に調整され、インピーダンス整合ネットワーク333を介して共役インピーダンス整合されることを仮定して、次に、磁気コイル309内に誘導された電流を用いて、電気的負荷336に最適に電力を供給することができる。磁気コイル309によって提示された受信回路は、グラウンドに物理的に接続する必要がないという利点を提供する。
図18A、18B、18C、及び図19を参照して、線状プローブ303によって提示された受信回路、モード整合した構造306、及び磁気コイル309はそれぞれ、上述した誘導表面導波プローブ200の実施形態のいずれか1つから伝送される電力の受信を促進する。このために、理解することができるように、受信したエネルギを使用して、共役整合ネットワークを介して電気的負荷315/327/336に電力を供給することができる。これは、放射された電磁界の形態で伝送されて受信器に受信することができる信号と対照的である。そのような信号は、非常に低い利用可能な電力を有し、そのような信号の受信器は、送信器に負荷を加えない。
線状プローブ303によって提示された受信回路、モード整合した構造306、及び磁気コイル309は、誘導表面導波プローブ200に適用され、それによって、そのような受信回路が受ける誘導表面波を生成する励起源212(例えば、図3、図12、及び図16)に負荷を加えることになることもまた、上述した誘導表面導波プローブ200を使用して生成される本誘導表面波の特性である。これは、上述した所与の誘導表面導波プローブ200によって生成される誘導表面波が伝送線モードを含むという事実を反映している。対照として、放射電磁波を生成する放射アンテナを駆動する電源は、用いられる受信器の数に関わらず、受信器によって負荷を加えられない。
したがって、1つ以上の誘導表面導波プローブ200、並びに線状プローブ303、同調したモード整合した構造306、及び/又は磁気コイル309の形態の1つ以上の受信回路は、ともに、無線分配システムを構成することができる。上述したような誘導表面導波プローブ200を使用した誘導表面波の伝送の距離が周波数に依存することを考えると、広いエリアにわたって、かつグローバルにでも、無線電力分配を実現することが可能である。
今日幅広く研究された従来の無線送電/分配系は、放射電磁界からの「環境発電(energy harvesting)」、及び誘導又はリアクタンス性の近接場に結合するセンサをも含む。対照的に、本無線電力系は、遮断されない場合には永久に失われる放射の形態で電力を浪費しない。また、本開示の無線電力系は、従来の相互リアクタンス結合した近接場系と同様の非常に短い範囲に限定されない。本明細書で開示する無線電力系は、新規の表面誘導伝送線モードにプローブ結合し、これは、導波路により負荷に、又は遠方の発電機に直接結線された負荷に、電力を送出することと等価である。60Hzでの従来の高圧電力線における伝送損失に対して、非常に低周波数では小さな、伝送電界強度を維持するのに必要とされる電力に加えて表面導波路内で消散する電力を考慮しないで、発電機の電力のすべては、所望の電気的負荷のみに行く。電気的負荷の需要が終了すると、ソースの発電は、相対的に空いている。
次に、図20A〜Eを参照して、以下の説明に関連して使用される様々な概略図記号の例を示す。図20Aを具体的に参照して、誘導表面導波プローブ200a、200b、200c、200e、200d、若しくは200f、又はそれらの任意の変形のいずれか1つを表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面導波プローブPと呼ばれることになる。以下の説明を簡単にするために、誘導表面導波プローブPのあらゆる参照は、誘導表面導波プローブ200a、200b、200c、200e、200d、若しくは200f、又はそれらの変形のいずれか1つの参照である。
同様に、図20Bを参照して、線状プローブ303(図18A)、同調した共振器306(図18B〜18C)、又は磁気コイル309(図19)のいずれか1つを含むことができる、誘導表面波受信構造を表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、線状プローブ303、同調した共振器306、若しくは磁気コイル309、又はそれらの変形のいずれか1つの参照である。
更に、図20Cを参照して、線状プローブ303(図18A)を具体的に表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、線状プローブ303又はその変形の参照である。
更に、図20Dを参照して、同調した共振器306(図18B〜18C)を具体的に表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、同調した共振器306又はその変形の参照である。
更に、図20Eを参照して、磁気コイル309(図19)を具体的に表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、磁気コイル309又はその変形の参照である。
図21を参照して、各種実施形態による、リモート電力系との電気エネルギの双方向交換を確立するように構成された例示的な電力系400を示す。例示した電力系400は、用いることができる様々な異なる種類の電力系の一例である。
例示した実施形態では、電力系400は、構造403に関連付けられる。構造403は、居住者用の住居などの住宅構造、企業若しくは組織用の建造物などの商業構造、又は他の種類の構造とすることができる。構造403は、ローカル電気的負荷405を含む。構造403が住宅構造である場合では、ローカル電気的負荷405は、冷蔵庫、コンピュータ、ストーブ、ヒータ、エアコン、ヘアドライヤ、テレビ、電灯、電話、又は電力を消費する他の品目を含むことができる。構造403が商業構造を含む場合では、ローカル電気的負荷405は、事務用設備、ヒータ、エアコン、複写機、電話、又は電力を消費する他の品目を含むことができる。
ローカル電気的負荷405は、電力系400内の様々な構成要素に電力を分配する電気バス407に結合される。電気バス407は、直流(Direct Current)(DC)バス又は交流(Alternating Current)(AC)バスを含むことができる。電気バス407は、パネルの一部、建造物の配線、及び潜在的に他の構成要素を含むことができる。単一の電気バスを示しているが、そのような表現は、用いることができる様々な異なる種類の電気バスの例として示されていることが理解される。例えば、いくつかの実施形態では、電力系400は、異なる電圧及び電流の複数の電気バス407を含むことができる。
加えて、電力系400は、電気エネルギを生成する電力源409を含む。図21に示す実施形態では、電力源409は、スイッチ413に結合され、それは、次に電気バス407に結合される。スイッチ413は、いつ電力源409からの電力が電気バス407に印加されるかを判定する。電力源409はまた、電力源409によって生成されている電力に関連付けられた電力の測定値を提供する電力計416に結合される。
図21でソーラーパネルを電力源409として示しているが、そのような表現は、電力源409の例として示されていることが理解される。電力源409は、例えば、ソーラーパネル(図示するような)、発電機、又は他の電力源409を含むことができる。電力源409が発電機である場合では、それは、風力タービンシステム、水力発電システム、地熱システム、バイオエネルギシステム、ガソリンシステム、ディーゼルシステム、又は他のシステムに用いることができる。
電力系400はまた、充電/放電回路422に結合された電池419を含み、充電/放電回路422は、次に、電気バス407に結合される。電池419は、充電可能であり、生成された電力が電力系400内の現在の電力の消費を上回るときに、又は説明するような他の時に、電力を貯蔵する。電池419は、リチウムイオン、リチウムイオンポリマー、ニッケル水素、鉛酸、又は他の種類の電池化学などの、様々な電池化学からなることができる。図21で電池を示しているが、圧縮空気エネルギ貯蔵システム、ウルトラキャパシタ、又は他のシステムなどの、他のエネルギ貯蔵ソリューションを使用して、エネルギを貯蔵することができる。
電力系400はまた、電気バス407に結合された電力変換器424を含む。電力変換器424の出力は、電力をリモート電力系に伝送することができる誘導表面導波プローブPに結合される。電力変換器424を用いて、電気バス407からのDC電圧を伝送用の所望の周波数のAC電圧に変換することができる。あるいは、電力変換器424は、ACバス(電気バス407がACバスであると仮定して)からのAC電力の周波数を伝送用の所望の周波数に変換するAC−AC変換器を含むことができる。電力変換器424は、コントローラ426からの制御信号を受信して、電力を変換する適切な時間及び周波数を判定する。誘導表面導波プローブPは、上述したように、誘導表面波の形態で電気エネルギをリモート電力系に伝送するように構成されている。
例示した実施形態では、電力系400はまた、電力を受信することができる誘導表面波受信構造Rを含む。誘導表面波受信構造Rは、上述したように、誘導表面波の形態で具現化された電気エネルギを取得する。誘導表面波受信構造Rの出力は、インピーダンス整合ネットワーク428に結合される。インピーダンス整合ネットワーク428は、誘導表面波受信構造Rを変圧器に電気的に結合して、電力系400内の反射を最小化又は除去し、かつ最大電力伝送を提供する。インピーダンス整合ネットワーク428の出力は、変圧器430に結合される。変圧器430は、AC電圧のレベルを調整する。いくつかの実施形態では、電圧レベルを増大又は減少する必要がない場合、変圧器430は、必要でなくてもよい。変圧器430の出力は、AC電圧を安定化したDC電圧に変換する、又は第1の周波数のAC電圧を第2の周波数のAC電圧に変換する、電力変換器432に結合される。電力変換器432は、電圧調整器、整流器、コンデンサ、DCチョーク、又はAC−DC変換器として機能する他の好適な回路構成要素を含むことができる。あるいは、電気バス407がAC電気バスである場合、電力変換器432は、1つの周波数の入力AC電圧を異なる周波数でのAC電圧に変換するためのAC−AC変換器を含むことができる。入力AC電圧の周波数を変換する必要がない場合、電力変換器432を回避することができる。電力変換器432の出力は、受信した電力が電気バス407に印加されるか否かを制御するスイッチ434に結合される。
電力系400はまた、電力系400の動作を制御するコントローラ426を含む。例示した実施形態では、コントローラ426は、電気バス407に結合されて、電力を受信する。コントローラ426は、電力系400の様々な構成要素とデータ通信する。例えば、コントローラ426は、スイッチ413及びスイッチ434に結合されて、いつ電力が電気バス407に印加されるかを制御する。コントローラ426はまた、電池419に関連付けられた充電/放電回路422、ローカル電気的負荷405、電力計416、誘導表面波受信構造R、及び電力変換器424に結合されて、これらの構成要素の動作を制御する。
コントローラ426は、1つ以上のコンピューティングリソースを含むことができる。1つ以上のコンピューティングリソースとしては、例えば、プロセッサ、コンピューティングデバイス、サーバコンピュータ、又はコンピューティング能力若しくはリソースを提供する任意の他のシステムを挙げることができる。いくつかの実施形態では、例えば、1つ以上のサーババンク若しくはコンピュータバンク、又は他の配置に配置された、複数のコンピューティングデバイスを用いることができる。簡便にするために、コントローラ426は、本明細書で単数形で呼ばれる。コントローラ426が単数形で呼ばれていても、上述したように様々な配置で、複数のコンピューティングデバイス又はコントローラを用いることができることが理解される。
コントローラ426はまた、コントローラ426とリモート電力系との間のデータ通信を促進するネットワーク450に結合される。ネットワーク450としては、例えば、インターネット、イントラネット、エクストラネット、広域ネットワーク(wide area networks)(WAN)、ローカルエリアネットワーク(local area networks)(LAN)、有線ネットワーク、無線ネットワーク、若しくは他の好適なネットワークなど、又は2つ以上のそのようなネットワークの任意の組合せを挙げることができる。
次に、電力系400の様々な構成要素の動作の概要を提供する。最初に、互いに相互作用することができる多くの異なる電力系400が存在していることを仮定する。それぞれの電力系400は、所与の構造403に電力を供給する。すなわち、それぞれの構造403は、電力を生成して生成された電力をローカル電気的負荷405に印加する能力を含む。時々、ローカル電気的負荷405によって消費される電力量は、生成される電力量未満であることがある。そのような状況では、電力系400は、なんらかの過剰に生成された電力をリモート構造に関連付けられたリモート電力系に伝送することを促進する。余剰電力は、電池419から、又は電力源409から、発生させることができる。
また、時々、ローカル電気的負荷405によって消費される電力は、電力源409によって生成することができる電力より大きいことがある。そのような状況では、電力系400は、リモート構造に関連付けられたリモート電力系から電力を受信して、電力源409によって生成された電力を補完することができ、電力はまた、電池419から取得することもできる。
一実施形態では、図21に示すように、太陽は、電力源409のソーラーパネルによって吸収される太陽エネルギを提供する。電力源409は、太陽エネルギを電気エネルギ、すなわちDC電圧に変換する。コントローラ426を電力計416に結合して、コントローラ426は、電力源409によって生成されているDC電力のリアルタイムの測定値を受信することができる。次に、コントローラ426は、DC電力を送る適切な位置を判定することができる。非限定的な一実施例として、コントローラ426は、スイッチ413を設定して、電力源409を電気バス419に結合する。次に、コントローラ426は、電気バス407から電力を受信するようにローカル電気的負荷405に通信する。したがって、ローカル電気的負荷405は、電力源409によって生成されているDC電力によって電力を供給される。いくつかの実施形態では、コントローラ426は、ローカル電気的負荷405の様々な要素をオン若しくはオフにさせる、休止状態にさせる、又は他の電力モードにさせることができる。
あるいは、別の非限定的な実施例では、コントローラ426は、スイッチ413を設定して、電力源409を電気バス407に結合し、かつ電気バス407からDC電力を受信するように充電/放電回路422を設定する。次に、充電/放電回路422は、DC電力を電池419に印加することにより、電池419の再充電を促進する。電池419に印加される電力は、電力源409から生成された電力の一部又はすべてとすることができる。この実施例では、生成される電力は、ローカル電気的負荷405によって消費されている電力より大きい。そのように、後の使用のために電池419に貯蔵することができる余剰電力が存在することがある。
異なる非限定的な実施例では、電力系400は、余剰電力をリモート電力系に伝送するように構成されている。具体的には、コントローラ426は、電力源409から誘導表面導波プローブPに余剰電力を送ることができる。この文脈では、余剰電力は、電力源409から電気バス407に印加される。次に、電力は、電気バス407から電力変換器424に流れる。電力変換器424は、DC電圧を所望の周波数のAC電圧に変換し、AC電圧は、リモート電力系への伝送用に誘導表面導波プローブPに印加される。電力分配グリッド520がACグリッドである場合では、電力変換器424は、第1の周波数の電力分配グリッドからのAC電力を伝送用の第2の周波数に変換することができる。誘導表面導波プローブPは、所望の周波数の誘導表面波の形態で電気エネルギを伝送することができる。コントローラ426は、所望の周波数を電力変換器424に通信することができる。
更に、異なる実施形態では、電力系400に関連付けられた電池419は、完全に充電する、又は閾値充電量を上回って十分に充電することができる。この実施例では、閾値を上回る充電量は、利用可能な余剰電力と見なすことができる。一実施形態では、コントローラ426は、動的に調整することができる閾値を設定するように構成されている。充電が閾値を上回っているとき、コントローラ426は、利用可能な余剰電力をリモート電力系への伝送用に誘導表面導波プローブPに送ることを促進することができる。具体的には、コントローラ426は、制御信号を充電/放電回路422に送信して、電池419内の充電の一部を電気バス407に放電することを促進する。コントローラ426は、電気バス407からの電力にアクセスする信号を電力変換器424に送信する。電力は、電力変換器424に流れ、次に、電力は、リモート電力系への伝送用に誘導表面導波プローブPに流れる。
別の非限定的な実施例では、電力系400は、誘導表面波受信構造Rを使用して電力を受信する。この実施例では、コントローラ426は、電力がその位置に伝送されることになるというインジケーションを受信することができる。電力は、誘導表面波の形態でリモート電力系によって伝送される。誘導表面波受信構造Rは、AC電圧の形態で誘導表面波から電気エネルギを取得する。図21に示す実施形態では、誘導表面波受信構造Rは、インピーダンス整合ネットワーク428に電気的に結合されて、電力系400に対する反射を最小化又は除去し、かつ最大電力伝送を提供する。
インピーダンス整合ネットワーク428の出力は、変圧器430に印加されるAC電圧である。変圧器430は、電力変換器432に備えて、AC電圧のレベルを調整することができる。このために、変圧器430は、変圧器430用の適切な巻数比を指定することにより、適切と見なされるように電圧を増大又は減少させることができる。電気バス407がDC電気バスを含む場合、電力変換器432は、AC/DC変換器である。あるいは、電気バス407がAC電気バスである場合、電力変換器432は、必要な場合に電圧の周波数を変換するためのAC/AC変換器である。そのような実施形態では、変圧器の出力は、電気バス407に直接印加することができる。電力変換器432の出力は、スイッチ434によって有効にされると、電気バス407に印加される。
変圧器430の出力は、電力変換器432に印加される。電力変換器432は、AC電圧をDC電圧に変換する、又は入力AC電圧を異なる周波数の出力AC電圧に変換する。適切な時間に、コントローラ426は、スイッチ434を設定して、電力変換器432を電気バス407に結合することになる。次に、DC又はAC電力は、電気バス407に印加される。電気バス407がDCバスである場合に電圧を平滑化するために、電気バス407に対してDCチョーク及び他の回路を用いることができることに留意されたい。電気バス407から、ローカル電気的負荷405にDC又はAC電力を印加することができる。
一実施形態によれば、コントローラ426は、電気バス407から電力を受信するための電力系400の様々な構成要素に対する適切な時間を規定する動作条件の組を有することができる。したがって、コントローラ426は、電流、電圧、及び負荷の測定値を受信すると、どのように入力電力を振り向けるかを判定することができる。例えば、ローカル電気的負荷405によって消費される電力が電池419内の利用可能な電力及び/又は電力源409によって生成されている電力より大きい場合、コントローラ426は、ネットワーク450を介して電力に対する要求をリモート電力系に送信することができる。受信した電力が電気バス407に印加されると、コントローラ426は、ローカル電気的負荷405に電力を供給することを第1に優先することができる。したがって、コントローラ426は、電気バス407から電力を受信するようにローカル電気的負荷405に制御信号を送信することになる。電力の消費は、ローカル電気的負荷405の需要が減少すると経時的に減少することがある。これに応じて、コントローラ426は、充電/放電回路422を有効にして、電力を受信し、電池419を再充電することができる。したがって、電力系400は、協力して、様々な電力系内のなんらかの余剰電力を電力を必要とする電力系に振り向けて、負荷に電力を供給すること又は電池を充電することのいずれかをすることができることを確実にすることができる。
図22を参照して、各種実施形態による、リモート電力系との電力の双方向交換を確立するように構成された例示的な電力分配システム500を示す。例示した電力分配システム500は、用いることができる様々な異なる種類の電力分配システムの一例である。
例示した実施形態では、電力分配システム500は、複数の電力系502を含むことができる。それぞれの電力系502は、構造503に関連付けられる。上述したように、構造503は、住宅構造、商業構造、又は他の種類の構造とすることができる。構造503は、負荷505を含むことができる。構造503が住宅構造である場合では、負荷505は、冷蔵庫、コンピュータ、ストーブ、ヒータ、エアコン、ヘアドライヤ、テレビ、電灯、電話、又は電力を消費する他の品目を含むことができる。構造503が商業構造である場合では、負荷505は、事務用設備、ヒータ、エアコン、複写機、電話、又は電力を消費する他の品目を含むことができる。
加えて、負荷505は、構造503に関連付けられた様々な構成要素に電力を分配する電気バス508に結合される。電力系502はまた、電気バス508に結合された電池511を含む。いくつかの実施形態では、電池511は、充電/放電回路に結合され、それは、次に電気バス508に結合される。本開示の目的のために、図22に示す電池511は、電池及び付随する充電/放電回路を含む。
それぞれの電力系502はまた、スイッチ515に結合された電力源514を含み、スイッチ515は、電気バス508に結合される。電力系502はまた、電力系502に関連付けられた様々な構成要素の動作を制御するコントローラ517を含む。コントローラ503は、電気バス508に結合されて、電力を受信する。加えて、コントローラ503は、電池511、負荷505、及び構造503に関連付けられた他の構成要素とデータ通信する。
例示した実施形態では、ぞれぞれの電力系502は、電力分配グリッド520に結合される。このために、電力分配グリッド520に結合された任意の数の電力系502が存在することができる。例えば、電力系502は、分譲地又は自治体内の家庭に関連付けることができる。電力系502に関連付けられた電気バス508は、スイッチ522に結合され、それは、次に電力分配グリッド520に結合される。電力分配グリッド520は、地域全体にわたってDC電力又はAC電力を分配する電気グリッドとすることができる。地域は、地区、分譲地、地域社会、都市、サービスエリア、又は他の地理的エリアを含むことができる。
例示した実施形態では、電力分配システム500は、リモート電力系から電力を受信することができる誘導表面波受信構造Rを含む。誘導表面波受信構造Rは、誘導表面波の形態で具現化された電気エネルギを取得するように構成することができる。
誘導表面波受信構造Rの出力は、インピーダンス整合ネットワーク525に結合される。インピーダンス整合ネットワーク525は、電圧のレベルを調整する変圧器528に結合されるが、変圧器528は、電圧レベルを増大又は減少する必要がない場合には必要でなくてもよい。変圧器の出力は、電力変換器531に結合され、それは、次に電力分配グリッド520に結合される。電力分配グリッド520がDCグリッドである場合、電力変換器531は、AC−DC変換器を含む。あるいは、電力分配グリッド520は、AC電力を分配することができる。そのような実施形態では、電力変換器531は、分配に備えて必要な場合には、電圧の周波数を変換するAC−AC変換器を含むことができる。あるいは、変圧器528又はインピーダンス整合ネットワーク525からの入力AC電圧が電力分配グリッド520上の電圧と同じである場合、電力変換器531を、回避することができる、又は回路から省略することができる。
電力分配システム500はまた、電力分配グリッド520から離れたリモート電力系への電力の伝送を促進する。このために、スイッチ537は、電力分配グリッド520に結合され、それは、次に電力フロー調整器535に結合される。電力フロー調整器535は、伝送することができる電力量を制御して、電力分配グリッド520の他の構成要素に過負荷をかける又は悪影響を与えることを防止する。電力フロー調整器535の出力は、電力変換器540に結合される。電力変換器535は、DC電圧を所望の周波数のAC電圧に変換する。あるいは、電力変換器540は、上述したように電力分配グリッド520がACグリッドである場合に、入力周波数から出力周波数に電圧の周波数を変換するAC−AC変換器を含むことができる。電力変換器540は、電力がリモート電力系に伝送される誘導表面導波プローブPに結合される。誘導表面導波プローブPは、上述したように、誘導表面波の形態で具現化された電気エネルギを伝送するように構成されている。いくつかの実施形態では、誘導表面導波プローブPは、地域用のリモート電力系に電力を伝送する変電所に結合される。
例示した実施形態では、電力分配システム500は、ローカル交換システム545を含む。ローカル交換システム545は、電力分配システム500の様々な構成要素に結合することができる。例えば、ローカル交換システム545は、動作するための電力を受信するために電力分配グリッド520に結合される。加えて、地域交換システム545は、構造503、スイッチ537、電力フロー調整器535、電力変換器540、及び誘導表面波受信構造Rに関連付けられたコントローラ517とデータ通信して、これらの構成要素の動作を制御する。いくつかの実施形態では、ローカル交換システム545は、電力系502との間の電力のフローを制御するスイッチ522に結合される。加えて、ローカル交換システム545は、構造503に関連付けられた電力系502の電力系状態を監視して、電気エネルギの双方向交換を確立するように構成されている。いくつかの場合では、ローカル交換システム545は、電力分配グリッド520上の構造503間の電力伝送を確立することができる。他の場合では、ローカル交換システムは、誘導表面導波プローブP及び誘導表面波受信構造Rを経由して、電力分配グリッド520上の1つ以上の構造503と電力分配グリッドの外側のリモート電力系との間の電力伝送を確立することができる。
ローカル交換システム545としては、コンピューティングデバイス、サーバコンピュータ、又はコンピューティング能力若しくはリソースを提供する任意の他のシステムを挙げることができる。あるいは、例えば、1つ以上のサーババンク若しくはコンピュータバンク、又は他の配置に配置された、複数のコンピューティングデバイスを用いることができる。例えば、複数のコンピューティングデバイスは共に、例えば、クラウドコンピューティングリソース、グリッドコンピューティングリソース、及び/又は任意の他の分散コンピューティング装置を含むことができる。そのようなコンピューティングデバイスは、単一の設備内に配置することができる、又は多くの異なる地理的位置の間で分散させることができる。加えて、ローカル交換システム545上で動作するいくつかの構成要素は、1つの設備内で動作させることができ、他の構成要素は、別の設備内で動作させることができる。簡便にするために、ローカル交換システム545は、本明細書で単数形で呼ばれる。ローカル交換システム545が単数形で呼ばれていても、上述したように様々な配置で、複数のコンピューティングデバイス又はコントローラを用いることができることが理解される。
次に、電力分配システム500の様々な構成要素の動作の概要を提供する。最初に、地域全体にわたって電力を伝送するために用いることができる多くの異なる種類の電力分配システムが存在することを仮定する。電力分配システム500は、地域内の複数の電力系502に電力を分配する。それぞれの電力系502は、所与の構造503に関連付けられる。すなわち、それぞれの電力系502は、電力を生成して生成された電力を負荷505に印加する能力を含む。いくつかの状況では、負荷505によって消費される電力量は、生成される電力量未満であることがある。そのような状況では、電力系502は、電力分配グリッド520上又は電力分配グリッドの外側のいずれかの別の電力系に余剰電力を伝送することを促進する。加えて、他の状況では、負荷505によって消費される電力は、電力源514によって生成することができる電力より大きいことがある。これらの状況では、電力系502は、電力分配グリッド520上の別の電力系から電力を受信することができる、又は誘導表面波受信構造Rを経由して、リモート電力系から電力を取得することができる。
具体的には、電力分配グリッド520は、第1の構造503に関連付けられた第1の電力系502から第2の構造503に関連付けられた第2の電力系502に電力が流れることができるようにする。また、電力分配グリッド520は、1つ以上の電力系502から誘導表面導波プローブPに電力が流れることができるようにする。加えて、電力分配グリッド520は、誘導表面波受信構造Rから1つ以上の電力系502に受信した電力が流れることができるようにする。
いくつかの実施形態では、ローカル交換システム545は、電力分配グリッド520上で行われる電力伝送を調和させる。非限定的な一実施例では、ローカル交換システム545は、第1の構造503に関連付けられた第1の電力系502と第2の構造503に関連付けられた第2の電力系502との間の電力伝送を確立することができる。この実施形態では、ローカル交換システム545は、ネットワーク450を介してコントローラ517とデータ通信して、それぞれの電力系502の状態をそれらのコントローラ517から受信する。
電力系状態は、電力不足、利用可能な余剰電力のインジケーション、利用可能な余剰電力量、要求されている電力量、特定の構造に対して電力を交換するための基準、電池容量、電池511に関連付けられた充電量、電力源514によって生成されている電力量、電力系の位置、又は電力系502に関連する他の要因を示すことができる。電力系状態は、設定された時間周期でローカル交換システム545に送信する、又は可変間隔進度で送信することができる。いくつかの実施形態では、ローカル交換システム545は、それぞれの構造503にその対応する電力系502の状態を返信するコマンドを発行することができる。
非限定的な一実施例では、第1の構造503に関連付けられた第1の電力系502は、利用可能な余剰電力を有していること及び電力伝送用に利用可能な余剰電力量を示すその状態を送信することができる。第2の構造503に関連付けられた第2の電力系502は、電力不足を示し、かつその位置に伝送されることになる特定の電力量を要求するその状態を送信することができる。ローカル交換システム545は、電力分配グリッド520上のそれぞれの構造503に関連付けられたコントローラ517から電力系状態を受信する。
次に、ローカル交換システム545は、第1の構造503に関連付けられた第1の電力系502、及び第2の構造503に関連付けられた第2の電力系502を電力伝送用の潜在的な終点として識別する。次に、ローカル交換システム545は、電力伝送用の動作パラメータを判定する。その後、ローカル交換システム545は、電力伝送情報を終点の電力系502のそれぞれのコントローラ517に通信する。次に、第1の電力系502は、電力伝送要求を第2の電力系502に送信することができる。第2の電力系502が要求を受け付けた後で、2つの電力系502は、電力分配グリッド520を介して電力伝送を確立することができる。伝送が完了した後で、2つの電力系502は、電力伝送完了メッセージをローカル交換システム545に通信することができる。ローカル交換システム545は、それぞれの対応する電力系502の間で伝送されている電力を監視することができる。
加えて、ローカル交換システム545は、誘導表面導波プローブP又は誘導表面波受信構造Rを経由して、電力分配グリッド520上の1つ以上の電力系502と電力分配グリッド520の外側のリモート電力系との間の電力伝送を確立することができる。例えば、1つ以上の電力系502は、電力分配グリッド520上の電力系502のいずれの中でも電力不足なしに、利用可能な余剰電力を有することができる。この非限定的な実施例では、ローカル交換システム545は、そのピアの電力系状態テーブルを調査することにより、電力分配グリッド520の外側の電力不足を有するリモート電力系を識別することができる。電力系状態テーブルは、電力系及びそれらの対応する電力系状態のリストを含むことができる。
ローカル交換システム545は、リモート電力系を識別した後で、識別したリモート電力系と通信して、電力伝送を確立することができる。伝送の実行において、ローカル交換システム545は、誘導表面導波プローブPを経由して、電源514又は電池511のいずれかからの電力分配グリッド520上の余剰電力をリモート電力系に伝送させることができる。次に、電力は、電力分配バス520を離れて、スイッチ537、電力フロー調整器540、及び電力変換器540などの伝送ステージを介して流れることができる。電力変換器540は、誘導表面導波プローブPに備えて、DC電圧をAC電圧に変換する。電力変換器540はまた、伝送の前に、電力分配グリッド520から取得したAC電圧の周波数を変換する。次に、AC電圧は、誘導表面導波プローブPを使用して、リモート電力系に伝送される。
このプロセスの間、それぞれのコントローラ517及びローカル交換システム545は、リモート電力系への伝送のための誘導表面導波プローブPへの電力分配システム500全体にわたる電力フローを調和させる。いくつかの実施形態では、コントローラ517は、それぞれのスイッチ522を制御して、電気バス508を電力分配グリッド520に結合することができる。次に、ローカル交換システム545は、スイッチ537を制御して、いつ電力が電力フロー調整器535に印加されて誘導表面導波プローブPを介して伝送されるかを制御することができる。次に、ローカル交換システム545は、電力フロー調整器535を制御して、電力変換器535に印加される電力量を制御することができる。加えて、ローカル交換システム545は、電力変換器535を制御して、DC電力を所望の周波数のAC電力に変換する、又は1つの周波数から別の周波数にAC電力を変換することができる。
別の非限定的な実施例では、リモート電力系は、電力分配システム500に電力を伝送することができ、そのような電力は、誘導表面導波路受信構造Rを経由して受信される。次に、受信した電力は、電力分配グリッド520を使用して、1つ以上の電力系502に分配することができる。ローカル交換システム545及び1つ以上のコントローラ517は、誘導表面波受信構造Rから適切な電力系(単数又は複数)502への電力フローを調和させることができる。
いくつかの実施形態では、ローカル交換システム545は、ローカル電力分配プランを生成することにより、地域内の電力の交換を調和させることができる。構造503から電力系状態を受信した後で、ローカル交換システム545は、電力分配プランを生成することができる。次に、ローカル交換システム545は、電力分配プランを電力系502に関連付けられたコントローラ517に送信することができる。電力分配プランは、例えば、第1の電力系502が所与の利用可能な余剰電力量を電力不足を有する第2の電力系502に伝送する命令を含むことができる。電力分配プランが実施された後で、ローカル交換システム545は、余剰電力又は電力不足を有する任意の残りの電力系502を識別することができる。そうである場合、ローカル交換システム545は、所与の電力系502との電力伝送用の潜在的な終点として1つ以上のリモート電力系を判定することができ、所与の電力系502は、余剰電力又は電力不足のいずれかを有する。
別の実施形態では、電力分配システム500は、より長い距離にわたって電力を中継する中継局として構成することができる。この非限定的な実施例では、それぞれの電力系502は、対応する誘導表面導波プローブに直接結合される。それぞれの電力系502は、誘導表面波受信構造Rを使用して電力分配システム500に電力を伝送することができる。次に、電力分配システム500は、誘導表面導波プローブPを使用して、より長い距離にわたってリモート電力系に電力を伝送することができる。この文脈では、より長い距離の電力伝送は、より低い周波数で行われるように構成することができ、より短い距離の交換は、高い周波数で行われるように構成することができる。したがって、電力系502は、電力分配システム500に関連付けられた構成要素を使用して、電力分配グリッド520上の他の電力系502、及び電力分配グリッド520の外側のリモート電力系に電力を伝送することができる。
図23を参照して、各種実施形態による、互いに対して遠隔の電力系の間の電気エネルギの双方向交換を確立するように構成された電力ネットワークシステム550の例を示す。例示した電力ネットワークシステム550は、用いることができる様々な異なる種類の電力ネットワークシステム550の一例である。
電力ネットワークシステム550は、図21及び図22に示す実施形態と同様な複数の電力系を含むことができる。図23に示す実施形態では、1つ以上の電力系は、図22に示すような地域552に関連付けることができる。また、図22に関して上述したように、地域は、地区、分譲地、地域社会、都市、サービスエリア、又は他の種類の地理的エリアを含むことができる。それぞれの地域552は、1つ以上の構造403、503、及び本明細書でローカル交換システム545a〜dと表記されたローカル交換システム545を含むことができる。図23に示さないが、それぞれの地域は、電力を伝送するための1つ以上の誘導表面導波プローブP、及び/又は電力を受信するための1つ以上の誘導表面波構造Rを含むことができることが理解される。
電力ネットワークシステム550はまた、ネットワーク450に結合された中央交換システム553を含むことができる。中央交換システム553は、ローカル交換システム545、及びローカル交換システム545に関連付けられていない構造403のコントローラ426(図21)から電力系状態を受信するように構成されている。ローカル交換システム545は、周期的に電力系状態のバッチを一括して送信することができる。あるいは、中央交換システム553は、特定のローカル交換システム545にその電力分配グリッド520(図22)上の構造503の電力系状態に関する更新を返信するように命令することができる。すなわち、中央交換システム553は、異なる地域552内に配置された様々な電力系の電力系状態に関する最新の情報を有するリソースとして機能することができる。
中央交換システム553は、異なる地域552内の電力系間の電力の双方向交換を確立するように構成された、1つ以上のコンピューティングリソースを含むことができる。1つ以上のコンピューティングリソースとしては、例えば、プロセッサ、コンピューティングデバイス、サーバコンピュータ、又はコンピューティング能力若しくはリソースを提供する任意の他のシステムを挙げることができる。いくつかの実施形態では、例えば、1つ以上のサーババンク若しくはコンピュータバンク、又は他の配置に配置された、複数のコンピューティングデバイスを用いることができる。
次に、電力ネットワークシステム550の様々な構成要素の動作の概要を提供する。最初に、異なる地域552内の電力系間の電力伝送を調和させるために用いることができる、多くの異なる電力ネットワークシステム550が存在することを仮定する。ピアツーピアネットワークシステムなどのいくつかの状況では、ローカル交換システム545は、それらの地域552内の電力系の電力系状態を監視して、それらのピアのローカル交換システム545と通信し、電力系状態を交換し、かつ潜在的な電力伝送用のリモート電力系を識別する。そのようなピアツーピアネットワークでは、多くの異なる電力系の状態は、ネットワーク上のピア全体にわたって拡散することになり、それぞれのピアは、他のピアの状態を記録する。中央ネットワークシステムなどの他の状況では、中央交換システム553は、異なる地域552にわたる電力の分配を促進する。すなわち、中央交換システム553は、電力伝送用の異なる地域内の潜在的な終点を識別することになる。
ピアツーピアネットワークシステムの非限定的な一実施例として、ローカル交換システム545aは、その地域552内の電力系と異なる地域552内に配置されたリモート電力系との間の電力伝送を統率することができる。具体的には、時々、所与のローカル交換システム545は、その地域552内の電力系の電力系状態テーブルを他のローカル交換システム545に送信することになる。所与の電力系状態テーブルは、地域内の電力系及びそれぞれの電力系に対する対応する電力系状態のリストを含むことができる。複数のローカル交換システム545から電力系状態テーブルを受信することにより、所与のローカル交換システム545は、その既存の電力系状態テーブルを補完して、異なる地域552内の電力系及びそれらの対応する電力系状態のリストを生成することができる。
したがって、所与のローカル交換システム545は、そのピアからの電力系の状態をリストアップしたその対応する電力系状態テーブルを調査することにより、電力伝送を確立するための別の地域552内のリモート電力系を識別することができる。リモート電力系を識別した後で、所与のローカル交換システム545は、交換情報を交換の終点に送信することができる。次に、終点は、電力交換を調和させることになる。
中央ネットワークシステムの非限定的な一実施例として、中央交換システム553は、周期的に、可変間隔進度で、需要に応じて、又は他の時間周期で、ローカル交換システム545から電力系状態テーブルを受信する。中央交換システム553は、電力系状態のそのデータベースを調査することにより、潜在的な交換の終点を識別する。潜在的な交換の終点を識別した後で、中央交換システム553は、交換情報を終点に送信することができる。次に、終点は、電力交換を調和させることができる。したがって、電力系は、電力ネットワークシステム550に参加して、異なる地域552内の電力不足状態にある様々な電力系に余剰電力を伝送することができる。
図24を参照して、本開示の実施形態による、コントローラ426、ローカル交換システム545、及び中央交換システム553の概略ブロック図を示す。コントローラ426、ローカル交換システム545、及び中央交換システム553は、例えば、ローカルインターフェース472、572、579に共に結合されたプロセッサ463、563、583及びメモリ466、566、586を有する、少なくとも1つのプロセッサ回路を含む。このために、コントローラ426、ローカル交換システム545、及び中央交換システム553は、例えば、少なくとも1つのサーバコンピュータ、又は同様な装置を含むことができる。ローカルインターフェース472、572、592は、理解することができるように、例えば、付随するアドレス/制御バス又は他のバス構造を有するデータバスを含むことができる。
データ及びプロセッサ463、563、583によって実行可能ないくつかの構成要素の両方が、メモリ466、566、586に記憶される。具体的には、AMIアプリケーション115及び潜在的に他のアプリケーションが、メモリ466、566、586に記憶されて、プロセッサ463、563、583によって実行可能である。また、交換データベース469、569、589、及び他のデータも、メモリ466、566、586に記憶することができる。加えて、オペレーティングシステムをメモリ466、566、586に記憶して、プロセッサ463、563、583によって実行可能にすることができる。
理解することができるように、メモリ466、566、586に記憶されて、プロセッサ463、563、583によって実行可能な他のアプリケーションが存在してよいことが理解される。本明細書で説明するいずれかの構成要素がソフトウェアの形態で実装される場合、例えば、C、C++、C#、オブジェクティブC、Java、Javascript、Perl、PHP、Visual Basic、Python、Ruby、Delphi、Flash、又は他のプログラミング言語などの、多数のプログラミング言語のうちの任意の1つを用いることができる。
多数のソフトウェア構成要素が、メモリ466、566、586に記憶されて、プロセッサ463、563、583によって実行可能である。これに関して、用語「実行可能な」は、最終的にプロセッサ463、563、583によって実行することができる形態のプログラムファイルを意味する。実行可能なプログラムの例としては、例えば、メモリ466、566、586のランダムアクセス部分にロードしてプロセッサ463、563、583によって実行することができる形式の機械コードに翻訳することができるコンパイルされたプログラム、メモリ466、566、586のランダムアクセス部分にロードしてプロセッサ463、563、583によって実行することができるオブジェクトコードなどの適切な形式に表現することができるソースコード、又はメモリ466、566、586のランダムアクセス部分内に命令を生成してプロセッサ463、563、583によって実行するための別の実行可能なプログラムによって解釈することができるソースコードなどであってよい。実行可能なプログラムは、例えば、ランダムアクセスメモリ(random access memory)(RAM)、読出し専用メモリ(read-only memory)(ROM)、ハードドライブ、ソリッドステートドライブ、USBフラッシュドライブ、メモリカード、コンパクトディスク(compact disc)(CD)若しくはデジタル多用途ディスク(digital versatile disc)(DVD)などの光ディスク、フロッピィディスク、磁気テープ、又は他のメモリ構成要素を含む、メモリ466、566、586の任意の部分又は構成要素に記憶することができる。
メモリ466、566、586は、本明細書で、揮発性及び不揮発性のメモリ並びにデータ記憶構成要素の両方を含むとして定義される。揮発性構成要素は、電源喪失でデータ値を保持しない構成要素である。不揮発性構成要素は、電源喪失でデータ値を保持する構成要素である。したがって、メモリ466、566、586は、例えば、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、ハードディスクドライブ、ソリッドステートドライブ、USBフラッシュドライブ、メモリカード読取装置を介してアクセスされるメモリカード、関連付けられたフロッピィディスクドライブを介してアクセスされるフロッピィディスク、光ディスクドライブを介してアクセスされる光ディスク、適切なテープドライブを介してアクセスされる磁気テープ、及び/若しくは他のメモリ構成要素、又はこれらのメモリ構成要素の任意の2つ以上の組合せを含むことができる。加えて、RAMは、例えば、スタティックランダムアクセスメモリ(static random access memory)(SRAM)、ダイナミックランダムアクセスメモリ(dynamic random access memory)(DRAM)、又は磁気ランダムアクセスメモリ(magnetic random access memory)(MRAM)、及び他のそのようなデバイスを含むことができる。ROMは、例えば、プログラマブル読出し専用メモリ(programmable read-only memory)(PROM)、消去可能プログラマブル読出し専用メモリ(erasable programmable read-only memory)(EPROM)、電気的消去可能プログラマブル読出し専用メモリ(electrically erasable programmable read-only memory)(EEPROM)、又は他の同様なメモリデバイスを含むことができる。
また、プロセッサ463、563、583は、複数のプロセッサ463、563、583を表すことができ、メモリ466、566、586は、それぞれ並列処理回路内で動作する複数のメモリ466、566、586を表すことができる。そのような場合では、ローカルインターフェース472、572、592は、複数のプロセッサ463、563、583の任意の2つの間、任意のプロセッサ463、563、583とメモリ466、566、586の任意のものとの間、又はメモリ466、566、586の任意の2つの間などの通信を促進する適切なネットワークとすることができる。ローカルインターフェース472、572、592は、例えば、負荷バランシングを実行することを含めて、この通信を調和させるように設計された追加のシステムを含むことができる。プロセッサ463、563、583は、電気的な又はなんらかの他の利用可能な構造のものとすることができる。
コントローラ426、ローカル交換システム545、及び中央交換システム553、並びに本明細書で説明する他の様々なシステムは、上述したような汎用のハードウェアによって実行されるソフトウェア又はコードで具現化することができるが、代替的な同じものが、専用のハードウェア、又はソフトウェア/汎用ハードウェア及び専用ハードウェアの組合せでも具現化することができる。専用のハードウェアで具現化された場合、それぞれは、多数の技術の任意の1つ又はそれらの組合せを用いる回路又は状態機械として実装することができる。これらの技術としては、1つ以上のデータ信号の印加で様々な論理機能を実施するための論理ゲートを有する個別論理回路、適切な論理ゲートを有する特定用途向け集積回路、又は他の構成要素などを挙げることができるが、これらに限定されない。そのような技術は、当業者に一般的に周知であり、したがって、本明細書で詳細に説明しない。
図25、図26、及び図27の流れ図は、コントローラ426、ローカル交換システム545、及び中央交換システム553の一部の実装形態の機能及び動作を示す。ソフトウェアで具現化された場合、それぞれのブロックは、特定の論理機能(単数又は複数)を実施するプログラム命令を含むコードのモジュール、セグメント、又は一部を表すことができる。プログラム命令は、プログラミング言語で書かれた人間が読める命令文を含むソースコード、又はコンピュータシステム若しくは他のシステム内のプロセッサ703などの好適な実行システムによって認識できる数値命令を含む機械コードの形態で具現化することができる。機械コードは、ソースコードなどから変換することができる。ハードウェアで具現化された場合、それぞれのブロックは、特定の論理機能(単数又は複数)を実施する回路又は多数の相互接続した回路を表すことができる。
図25、図26、及び図27の流れ図は、特定の実行の順序を示すが、実行の順序は、示されているものと異なることができることが理解される。例えば、2つ以上のブロックの実行の順序は、示された順序に対して変更することができる。また、図25、図26、及び図27で連続して示される2つ以上のブロックは、同時に、又は部分的に同時に実行することができる。更に、いくつかの実施形態では、図25、図26、及び図27に示すブロックのうちの1つ以上は、抜かす又は省略することができる。加えて、有用性の強化、課金、性能測定、又はトラブルシューティング支援を提供することなどのために、任意の数のカウンタ、状態変数、警告信号、又はメッセージを、本明細書で説明する論理フローに追加することができる。すべてのそのような変形は、本開示の範囲内であることが理解される。
また、コントローラ426、ローカル交換システム545、及び中央交換システム553に含まれる、ソフトウェア又はコードを含む本明細書で説明する任意の論理又はアプリケーションは、例えば、コンピュータシステム又は他のシステム内のプロセッサ463、563、583などの命令実行システムによって又はそれに関連して使用するための、任意の非一次的コンピュータ可読媒体に具現化することができる。この意味において、論理は、例えば、コンピュータ可読媒体からフェッチして、命令実行システムによって実行することができる命令及び宣言を含む命令文を含むことができる。本開示の文脈では、「コンピュータ可読媒体」は、命令実行システムによって又はそれに関連して使用するための、本明細書で説明する論理又はアプリケーションを含む、記憶する、又は維持することができる任意の媒体とすることができる。コンピュータ可読媒体は、例えば、磁気媒体、光学媒体、又は半導体媒体などの、多くの物理的媒体の任意の1つを含むことができる。好適なコンピュータ可読媒体のより具体的な例としては、磁気テープ、磁気フロッピィディスケット、磁気ハードドライブ、メモリカード、ソリッドステートドライブ、USBフラッシュドライブ、又は光ディスクが挙げられるであろうが、これらに限定されない。また、コンピュータ可読媒体は、例えば、スタティックランダムアクセスメモリ(SRAM)及びダイナミックランダムアクセスメモリ(DRAM)、又は磁気ランダムアクセスメモリ(MRAM)を含む、ランダムアクセスメモリ(RAM)とすることができる。加えて、コンピュータ可読媒体は、読出し専用メモリ(ROM)、プログラマブル読出し専用メモリ(PROM)、消去可能プログラマブル読出し専用メモリ(EPROM)、電気的消去可能プログラマブル読出し専用メモリ(EEPROM)、又は他の種類のメモリデバイスとすることができる。
図25Aを参照して、コントローラアプリケーション460の一部として実装される機能の一実施例を示す流れ図を示す。より具体的には、流れ図は、図21に示すような電力系400とリモート電力系との間の電気エネルギの交換を確立する、コントローラアプリケーション460の一実施例を示す。
ボックス601で開始して、コントローラアプリケーション460は、その対応する電力系400(図21)の状態を判定する。コントローラアプリケーション460は、電力系400が余剰電力、電力不足を有する、又は実質的平衡の状態にあるかを判定する。
いくつかの実施形態では、コントローラアプリケーション460は、その対応する電力系400の状態を判定するのに、電池419の充電量、ローカル電気的負荷405によって消費されている電力量、電力源409によって生成されている電力量、電力源409が電力を生成し続けることができる可能性、又は電力系403に関連する他の要因などの、様々な要因を考慮することができる。コントローラアプリケーション460は、電力系400の電力系状態を判定するために、電力共有基準の一部として、これらの要因を比較検討することができる。非限定的な一実施例として、電力共有基準は、電池419が既定の期間(例えば、24時間)ローカル電気的負荷405に供給するために十分な充電を有するとき電力系400が余剰電力を有すると考えられることなどの条件を含むことができる。この実施例では、事業者は、構造403に関連付けられたエリアが概して24時間以内に、更なる24時間の間ローカル電気的負荷405に電力を供給するために十分な太陽エネルギを受け取っているという事実に基づいて、この条件を生成することができる。
別の非限定的な実施例では、構造403は、太陽光発電施設、例えば、太陽光発電所とすることができる。この実施例では、電力共有基準は、電池403が電池419の少なくとも10%を充電されている場合に電力系400が余剰電力を有するように設定することができる。この閾値条件は、施設の目的が大きな電力量を生成して他の構造に提供することであるという概念に基づくことができる。他の条件を指定することができることに留意されたい。
次に、ボックス604で、コントローラアプリケーション460は、ネットワーク450を介してその電力系の状態を示すメッセージをローカル交換システム545又はなんらかの他の電力系に送信することができる。コントローラアプリケーション460は、周期的に、可変間隔で、又はローカル交換システム545からの要求に応じて、又はなんらかの他の基準で、その電力系の状態を送信することができる。
ボックス607で、コントローラアプリケーション460は、ローカル交換システム545又はリモート電力系からの命令を受信する。命令は、電力伝送用の潜在的な終点、終点の電力系の位置、伝送されることになる電力量、受信されることになる電力量、動作周波数、通信プロトコル、及び/又は他のパラメータを含むことができる。命令は、第1の電力系が余剰電力を有し、第2の電力系が電力不足を有することを示すことができる。ボックス610で、例えば、コントローラアプリケーション460は、電力系400が余剰電力をリモート電力系に伝送する要求を命令が含むか否かを判定する。そうである場合、ボックス614で、電力系400は、リモート電力系との通信を開始することができる。
その後、ボックス617で、コントローラアプリケーション460は、誘導表面導波プローブPを介して判定された動作周波数で受信する電力系に電力の伝送を実施することに進む。非限定的な一実施例として、電力を伝送するプロセスは、電池419から電気バス407に電力を放電することを伴うことができる。電力変換器424は、DC電力をAC電力に変換することができ、次にAC電力を、誘導表面導波プローブPを使用して伝送することができる。あるいは、電力変換器424は、伝送の前に、電気バス407からのAC電圧の周波数を変換することができる。その後、コントローラアプリケーション460は、図示するように終了する。
ボックス610で、命令が電力系400に電力を伝送するように要求しない場合、次に、コントローラアプリケーション460は、ボックス620に進み、コントローラアプリケーション460は、命令がリモート電力系から電力系400に伝送される電力のオファーを含むか否かを判定する。すなわち、電力系400は、リモート電力系からそのような送電を受信することになる。命令が電力を受信するオファーを含まない場合、次に、コントローラアプリケーション460は、ボックス601に進む。
命令が電力を伝送するオファーを含む場合、コントローラアプリケーション460は、ボックス624に移動する。ボックス624で、コントローラアプリケーション460は、リモート電力系との通信に参加することができる。いくつかの実施形態では、通信は、利用可能な電力のオファーの承認又は受諾を含むことができる。ボックス627で、コントローラアプリケーション460は、誘導表面波受信構造Rを経由して入力電力を受信するように、電力系400の様々な構成要素を設定する。例えば、コントローラアプリケーション460は、誘導表面波受信構造Rに結合されたインピーダンス整合ネットワーク428(図21)を同調して、所望の周波数の誘導表面波の形態で電力を受信することを促進することができる。加えて、コントローラアプリケーション460は、電気バス407から電力を受信するように、電力系400内の適切な回路と通信することができる。その後、コントローラアプリケーション460は、図示するように終了する。
図25Bを参照して、コントローラ426内で実行されるコントローラアプリケーション460の一部として実装される機能の一実施例を示す流れ図を示す。より具体的には、図25Bは、リモート電力系との進行中の電力伝送を終了させる、コントローラアプリケーション460の一実施例を示す。
最初に、ボックス650で、コントローラアプリケーション460は、進行中の電力伝送を終了させるか否かを判定する。コントローラアプリケーション460は、様々な要因を分析して、伝送を終了するか否かを判定することができる。非限定的な一実施例として、構造403は、リモート電力系に電力を伝送していることができる。伝送が進行中である間に、コントローラアプリケーション460は、1つ以上の緊急条件が満たされたことを判定することができる。これらの条件に基づいて、コントローラアプリケーション460は、伝送を早期に終了させる必要があることがある。緊急条件は、ローカル電気的負荷405が著しく増大して、したがって、利用可能な余剰電力量を低減することを含むことができる。コントローラアプリケーション460が伝送を終了する必要が存在しないと判定する場合、次に、コントローラアプリケーション460は、ステップ650の実行を繰り返す。
コントローラアプリケーション460が伝送を終了すると判定する場合、次に、コントローラアプリケーション460は、ボックス653に進む。ボックス653で、コントローラアプリケーション460は、反対側の終点と通信して、伝送を終了する。その後、ボックス656で、コントローラアプリケーション460は、その電力系状態テーブルを更新することができる。すなわち、コントローラアプリケーション460は、その新しい電力系状態をその電力系状態テーブルに記憶することができる。ボックス659で、コントローラアプリケーション460は、その更新された電力系状態テーブルをピア構造503及びローカル交換システム545に送信することができる。
図26Aを参照して、ローカル交換システム内で実行されるローカル交換アプリケーション560の一部として実装される機能の一実施例を示す流れ図を示す。具体的には、図26Aは、その対応する電力分配グリッド520(図22)上の電力系502から電力系状態を受信して、電力分配グリッド520内及びその外側への電力伝送を促進する、ローカル交換システム545の一実施例を示す。
ボックス703で開始して、ローカル交換アプリケーション560は、電力分配グリッド520上の電力系502から電力系状態を受信する。第1の電力系502は、例えば、それが利用可能な余剰電力、電力不足を有する、又は実質的平衡の状態にあることのインジケーションを提供する、電力系状態を送信することができる。ローカル交換アプリケーション560は、電力系状態テーブル又は他のデータ構造に、それぞれの電力系502の状態を記憶する。次に、ボックス706で、ローカル交換アプリケーション560は、電力系状態テーブルをそのピアに送信する。電力系状態テーブルをピアのローカル交換システム545に送信することにより、他のローカル交換システム545が対応する地域の外側のリモート電力系の情報を常に入手していることができるようになる。あるいは、同じものを、中央交換システム553(図23)に送信することができる。
ボックス709で、ローカル交換アプリケーション560は、その電力分配グリッド520上の1つ以上の電力系502の状態を分析して、最適なローカル分配プランを判定する。ローカル分配プランは、電力不足を有する電力系502に余剰電力を分配する1つ以上の方法を識別する。ローカル交換アプリケーション560は、それぞれの電力系502に命令の形態で最適なローカル分配プランを送信する。例えば、最適なローカル分配プランの一部として、電力系502のうちの1つは、その余剰電力を別の電力系502に伝送する命令を受信することができ、その逆もまた同様である。
ボックス712で、ローカル交換アプリケーション560は、ローカル電力分配プランを実施した後で電力分配グリッド520上に総合の電力不足又は利用可能な余剰電力が存在するか否かを判定する。不足又は利用可能な余剰電力が存在しない場合、ローカル交換アプリケーション560は、図示するように終了する。
電力系502で不足又は利用可能な余剰電力が存在する場合、ローカル交換アプリケーション560は、ボックス715に進む。ボックス715で、ローカル交換アプリケーション560は、電力交換を確立するための電力分配グリッド520の外側の少なくとも1つの終点の電力系を識別する。ローカル交換アプリケーション560は、その電力系状態テーブルを調査することにより、リモート電力系を識別することができる。ボックス718で、ローカル交換アプリケーション560は、電力伝送用の動作パラメータを判定することができる。ローカル交換アプリケーション560は、伝送周波数、伝送されることになる電力量、タイミング要因、位置座標、又は電力を伝送することに関連する他の要因を判定することができる。ボックス721で、ローカル交換アプリケーション560は、他の終点との電力の交換を実施する。その後、ローカル交換アプリケーション560は、図示するように終了する。
図26Bを参照して、ローカル交換システム545内で実行されるローカル交換アプリケーション560の一部として実装される機能の一実施例を示す流れ図を示す。具体的には、図26Bは、ピアのローカル交換システム545から電力系状態の更新を受信する、ローカル交換システム545の一実施例を示す。最初に、ボックス725で、ローカル交換アプリケーション560は、ピアのローカル交換システム545から電力系状態テーブルを受信することができる。これらの電力系状態テーブルは、ローカル交換システム545の対応する地域内の構造に対する状態の更新を提供する。ボックス728で、ローカル交換アプリケーション560は、その既存の電力系状態テーブルを更新する。その後、ローカル交換アプリケーション560は、図示するように終了する。
図27Aを参照して、中央交換システム553内で実行される中央交換アプリケーション580の一部として実装される機能の一実施例を示す流れ図を示す。具体的には、図27Aは、ローカル交換システム545から電力系状態テーブルを受信する、中央交換システム553の一実施例を示す。
ボックス803で開始して、中央交換アプリケーション580は、ローカル交換システム545から電力系状態テーブルを受信することができる。これらの電力系状態テーブルは、ローカル交換システム545の対応する地域内の電力系に対する現在の状態の更新を提供する。ボックス806で、中央交換アプリケーション580は、その既存の電力系状態テーブルを更新する。一実施形態では、中央交換アプリケーション580は、電力系状態テーブルをデータベース589に記憶して更新することができる。他の実施形態では、中央交換アプリケーション580は、構造403に関連付けられた電力系から電力系状態テーブルを受信することができる。その後、ボックス809で、中央交換アプリケーション580は、ローカル交換システム545に、それらの電力系状態テーブルが受信されたという確認メッセージを送信する。その後、ローカル交換アプリケーション560は、図示するように終了する。
図27Bを参照して、中央交換システム553内で実行される中央交換アプリケーション580の一部として実装される機能の一実施例を示す流れ図を示す。具体的には、図27Bは、異なる地域552内に配置された電力系間の電力伝送を促進する、中央交換システム553の一実施例を示す。
ボックス850で、中央交換アプリケーション580は、終点の電力系間の潜在的なエネルギ交換のために、電力系状態テーブルのデータベース589を調査する。ボックス853で、実施することになるエネルギ交換が存在する場合、中央交換アプリケーション580は、ボックス856に進む。そうでなければ、中央交換アプリケーション580は、ボックス850に戻る。
ボックス856で、中央交換アプリケーション580は、交換用の動作パラメータを判定することができる。例えば、中央交換アプリケーション580は、伝送周波数、伝送されることになる電力量、タイミング要因、位置座標、及び伝送を確立することに関連する他の要因を判定することができる。ボックス859で、中央交換アプリケーション580は、交換情報を終点の電力系のすべてに送信する。次に、ボックス862で、中央交換アプリケーション580は、中央交換データベース859を更新して、進行中又は保留中の交換を含める。その後、ローカル交換アプリケーション560は、図示するように終了する。
上記に加えて、本開示の各種実施形態は、以下の箇条に記載した実施形態を含むが、これらに限定されない。
箇条1.発電源及び電気的負荷を含むローカライズ電力系に関連付けられた、損失性導電媒体に沿った誘導表面波を送出するように構成された誘導表面導波プローブと、少なくとも、ローカライズ電力系内の余剰電力の利用可能性を第2のコントローラに通信し、余剰電力をリモート系に伝送する要求を受信し、損失性導電媒体に沿った誘導表面波を送出することにより、電気エネルギをリモート系に伝送するように構成された第1のコントローラと、を備える装置。
箇条2.誘導表面導波プローブは、損失性導電媒体の上に持ち上げられた、損失性導電媒体の複素ブルースター入射角(θi,B)で入射する波面を合成する、結果として生じる少なくとも1つの電界を生成するように構成された帯電端子を含む、箇条1の装置。
箇条3.帯電端子は、複数の帯電端子のうちの1つである、箇条2の装置。
箇条4.帯電端子は、更に、損失性導電媒体の複素ブルースター入射角(θi,B)に関連付けられたウェーブチルト角(Ψ)に整合する位相遅延(Φ)を有する電圧によって励起される、箇条2の装置。
箇条5.帯電端子は、複数の帯電端子のうちの1つである、箇条4の装置。
箇条6.リモート系は、誘導表面波受信構造を含む、箇条1〜5のいずれか1つの装置。
箇条7.要求は、伝送周波数を指定する、箇条1〜6のいずれか1つの装置。
箇条8.要求は、受信されることになる電力量を指定する、箇条1〜7のいずれか1つの装置。
箇条9.電池は、ローカライズ電力系に関連付けられ、余剰電力は、電池が少なくとも既定の充電レベル閾値を有するときのみ利用可能と見なされる、箇条1〜8のいずれか1つの装置。
箇条10.電力源及び電気的負荷を含む第1の電力系と、テレストリアル媒体に沿った第1の誘導表面波を送出するように構成された誘導表面導波プローブと、テレストリアル媒体に沿って進行する第2の誘導表面波内に具現化されたエネルギを受信するように構成された誘導表面波受信構造と、少なくとも第2の電力系との電気エネルギのエネルギ交換を確立するように構成された、第1の電力系に結合されたコントローラと、を備えるシステム。
箇条11.コントローラは、誘導表面導波プローブを使用して第1の誘導表面波を送出することによって第2の電力系に電気エネルギを伝送することにより、エネルギ交換を確立するように更に構成された、箇条10のシステム。
箇条12.誘導表面導波プローブは、第1の誘導表面導波プローブを含み、コントローラは、第2の電力系から第2の誘導表面波の形態で電気エネルギを受信する誘導表面波受信構造を使用することによりエネルギ交換を確立するように更に構成されており、電気的負荷は、第2の誘導表面波を生成する第2の誘導表面導波プローブに結合された励起源で負荷として経験され、第2の誘導表面導波プローブは、第2の電力系に関連付けられた、箇条10又は11のいずれか1つのシステム。
箇条13.電力源は、第1の電力源を含み、システムは、電力分配グリッドに結合された第1の電力系及び電力分配グリッドに結合された複数の構造を更に含み、複数の構造のうちの少なくとも1つは、第2の電力源を含む、箇条10〜12のいずれか1つのシステム。
箇条14.コントローラは、ネットワークを介して複数の構造のうちの少なくとも1つから利用可能な余剰電力のインジケーションを受信し、電力分配グリッドを介して複数の構造のうちの少なくとも1つに関連付けられた第2の電力源からの電力を誘導表面波プローブに振り向け、誘導表面波プローブを使用してテレストリアル媒体に沿った第1の誘導表面波を送出することによって第2の電力系に電力を伝送することにより、エネルギ交換を確立するように更に構成された、箇条13のシステム。
箇条15.誘導表面導波プローブは、第1の誘導表面導波プローブを含み、電気的負荷は、第1の電気的負荷を含み、コントローラは、ネットワークを介して複数の構造のうちの少なくとも1つから電力不足のインジケーションを受信し、第2の電力系から第2の誘導表面波内に具現化された電気エネルギを受信する誘導表面波受信構造を使用して、電力分配グリッドを介して誘導表面波受信構造からの電力を複数の構造のうちの少なくとも1つに関連付けられた第2の電気的負荷に振り向けることにより、エネルギ交換を確立するように更に構成されており、第2の電気的負荷は、第2の誘導表面波を生成する第2の誘導表面導波プローブに結合された励起源で負荷として経験される、箇条13又は14のいずれか1つのシステム。
箇条16.第1のコントローラを使用して第1の電力系に関連付けられた電力不足のインジケーションを第2のコントローラに送信することと、第1のコントローラを使用して第2の電力系からの利用可能な電力のオファーを受信することと、第1の電力系に関連付けられた誘導表面波受信構造を使用して第2の電力系から誘導表面波の形態で電気エネルギを受信することと、電気エネルギを誘導表面波受信構造に結合された電気的負荷に振り向けることと、を含む、方法。
箇条17.電力不足のインジケーションは、必要な電力量を示すデータを含む、箇条16の方法。
箇条18.電力不足のインジケーションは、所望の伝送周波数を示すデータを含む、箇条16又は17のいずれか1つの方法。
箇条19.第1のコントローラを使用して、誘導表面波受信構造を使用して第2の電力系から受信した電気エネルギの測定値を監視することを更に含む、箇条16〜18のいずれか1つの方法。
箇条20.第2のコントローラは、電力源を含む複数の構造のうちの少なくとも1つに関連付けられた電力系状態を監視するように構成された、箇条16〜19のいずれか1つの方法。
上述した本開示の実施形態は、本開示の原理の明瞭な理解のために説明した実装形態の可能な例に過ぎないことを強調しなければならない。上述した実施形態(単数又は複数)に対して、本開示の趣旨及び原理から実質的に逸脱することなく、多くの変形及び改良を行なうことができる。そのような改良及び変形のすべては、本開示の範囲内として本明細書に含まれ、以下の特許請求の範囲によって保護されることを意図している。加えて、説明した実施形態の任意選択のかつ好ましい特徴及び改良のすべて、並びに従属請求項は、本明細書で教示した本開示のすべての態様に利用可能である。更に、従属請求項の個別の特徴、並びに説明した実施形態の任意選択のかつ好ましい特徴及び改良のすべては、互いに組合せ可能かつ交換可能である。

Claims (15)

  1. 発電源及び電気的負荷を含むローカライズ電力系に関連付けられた、損失性導電媒体に沿った誘導表面波を送出するように構成された誘導表面導波プローブと、
    第1のコントローラであって、少なくとも、
    前記ローカライズ電力系内の余剰電力の利用可能性を第2のコントローラに通信し、
    前記余剰電力をリモート系に伝送する要求を受信し、
    前記損失性導電媒体に沿った前記誘導表面波を送出することにより、電気エネルギを前記リモート系に伝送する、
    ように構成された、第1のコントローラと、
    を備える装置。
  2. 前記誘導表面導波プローブは、前記損失性導電媒体の上に持ち上げられた、前記損失性導電媒体の複素ブルースター入射角(θi,B)で入射する波面を合成する、結果として生じる少なくとも1つの電界を生成するように構成された帯電端子を含む、請求項1に記載の装置。
  3. 前記帯電端子は、複数の帯電端子のうちの1つである、請求項2に記載の装置。
  4. 前記帯電端子は、更に、前記損失性導電媒体の複素ブルースター入射角(θi,B)に関連付けられたウェーブチルト角(Ψ)に整合する位相遅延(Φ)を有する電圧によって励起される、請求項2に記載の装置。
  5. 前記帯電端子は、複数の帯電端子のうちの1つである、請求項4に記載の装置。
  6. 前記リモート系は、誘導表面波受信構造を含む、請求項1〜5のいずれか一項に記載の装置。
  7. 前記要求は、伝送周波数を指定する、請求項1〜6のいずれか一項に記載の装置。
  8. 前記要求は、受信されることになる電力量を指定する、請求項1〜7のいずれか一項に記載の装置。
  9. 電池は、前記ローカライズ電力系に関連付けられ、前記余剰電力は、前記電池が少なくとも既定の充電レベル閾値を有するときのみ利用可能と見なされる、請求項1〜8のいずれか一項に記載の装置。
  10. 前記発電源は、ソーラーパネルシステム、風力タービンシステム、水力発電システム、地熱システム、及びディーゼルシステムのうちの少なくとも1つを含む、請求項1〜8のいずれか一項に記載の装置。
  11. 第1のコントローラを使用して、第1の電力系に関連付けられた電力不足のインジケーションを第2のコントローラに送信することと、
    前記第1のコントローラを使用して、第2の電力系からの利用可能な電力のオファーを受信することと、
    前記第1の電力系に関連付けられた誘導表面波受信構造を使用して、前記第2の電力系から誘導表面波の形態で電気エネルギを受信することと、
    前記電気エネルギを前記誘導表面波受信構造に結合された電気的負荷に振り向けることと、
    を含む方法。
  12. 前記電力不足の前記インジケーションは、必要な電力量を示すデータを含む、請求項11に記載の方法。
  13. 前記電力不足の前記インジケーションは、所望の伝送周波数を示すデータを含む、請求項11又は12に記載の方法。
  14. 前記第1のコントローラを使用して、前記誘導表面波受信構造を使用して前記第2の電力系から受信した前記電気エネルギの測定値を監視することを更に含む、請求項11〜13のいずれか一項に記載の方法。
  15. 前記第2のコントローラは、電力源を含む複数の構造のうちの少なくとも1つに関連付けられた電力系状態を監視するように構成された、請求項11〜14のいずれか一項に記載の方法。
JP2018513329A 2015-09-10 2016-08-19 フレキシブルネットワークトポロジ及び双方向電力フロー Pending JP2018530292A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/849,897 US20170077714A1 (en) 2015-09-10 2015-09-10 Flexible network topology and bidirectional power flow
US14/849,897 2015-09-10
PCT/US2016/047677 WO2017044289A1 (en) 2015-09-10 2016-08-19 Flexible network topology and bidirectional power flow

Publications (2)

Publication Number Publication Date
JP2018530292A true JP2018530292A (ja) 2018-10-11
JP2018530292A5 JP2018530292A5 (ja) 2019-09-19

Family

ID=56855818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018513329A Pending JP2018530292A (ja) 2015-09-10 2016-08-19 フレキシブルネットワークトポロジ及び双方向電力フロー

Country Status (9)

Country Link
US (1) US20170077714A1 (ja)
EP (1) EP3347970A1 (ja)
JP (1) JP2018530292A (ja)
KR (1) KR20180052692A (ja)
CN (1) CN108352726A (ja)
EA (1) EA201890690A1 (ja)
HK (1) HK1252587A1 (ja)
TW (1) TW201714344A (ja)
WO (1) WO2017044289A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365049B (zh) * 2019-07-25 2023-03-28 天津大学 一种有源配电系统馈线灵活性的静态量化分析方法
US11705727B2 (en) 2021-09-08 2023-07-18 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
US11404871B1 (en) * 2021-09-08 2022-08-02 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
CN114113898B (zh) * 2021-11-29 2023-11-14 大连海事大学 一种基于多源量测数据的配电网网损分析方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156494A1 (en) * 2008-08-25 2011-06-30 Governing Dynamics Llc Wireless Energy Transfer System
JP2012139007A (ja) * 2010-12-24 2012-07-19 Chugoku Electric Power Co Inc:The 電力供給システムの制御方法、及び電力供給システム
JP2012213252A (ja) * 2011-03-30 2012-11-01 Toshiba Corp 送電装置及び電力伝送システム
JP2013138526A (ja) * 2011-12-27 2013-07-11 Toshiba Corp 送電装置、受電装置及び電力伝送システム
JP2014003839A (ja) * 2012-06-20 2014-01-09 Hitachi Ltd 電力系統内送電状態制御方法
JP2014516244A (ja) * 2011-06-07 2014-07-07 サムスン エレクトロニクス カンパニー リミテッド 無線電力送受信システムにおける受信器の無線電力制御方法及び装置
US20140252886A1 (en) * 2013-03-07 2014-09-11 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
JP2016509468A (ja) * 2013-03-07 2016-03-24 シーピージー テクノロジーズ、 エルエルシー 損失性媒体上での誘導表面波モードの励起および使用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2292342A (en) * 1940-02-28 1942-08-04 Bell Telephone Labor Inc Reflecting system for antennas
US5173690A (en) * 1990-02-23 1992-12-22 Viz Manufacturing Company Passive ranging system utilizing range tone signals
US7929908B2 (en) * 2006-05-24 2011-04-19 The Boeing Company Method and system for controlling a network for power beam transmission
US8401708B2 (en) * 2007-03-26 2013-03-19 Vpec, Inc. Electric power system
US8401709B2 (en) * 2009-11-03 2013-03-19 Spirae, Inc. Dynamic distributed power grid control system
US20120029720A1 (en) * 2010-07-29 2012-02-02 Spirae, Inc. Dynamic distributed power grid control system
WO2012015508A1 (en) * 2010-07-29 2012-02-02 Spirae, Inc. Dynamic distributed power grid control system
US9871293B2 (en) * 2010-11-03 2018-01-16 The Boeing Company Two-dimensionally electronically-steerable artificial impedance surface antenna
US9455495B2 (en) * 2010-11-03 2016-09-27 The Boeing Company Two-dimensionally electronically-steerable artificial impedance surface antenna
US8773302B2 (en) * 2011-07-07 2014-07-08 Rosemount Tank Radar Ab Multi-channel radar level gauge
GB2494435B (en) * 2011-09-08 2018-10-03 Roke Manor Res Limited Apparatus for the transmission of electromagnetic waves
JP6187463B2 (ja) * 2012-07-30 2017-08-30 日本電気株式会社 グリッド統合制御装置、グリッド制御システム、グリッド制御装置、プログラム、及び制御方法
WO2014057304A1 (en) * 2012-10-10 2014-04-17 New Jersey Institute Of Technology Decentralized controls and communications for autonomous distribution networks in smart grid
EP2818649B1 (de) * 2013-06-27 2017-09-06 Enrichment Technology Company Ltd. Kombinationskraftwerk
GB2521414B (en) * 2013-12-19 2016-01-27 Univ Cape Town Optimal currents for power injection or extraction in a power network
EP2916464A1 (en) * 2014-03-05 2015-09-09 Thomson Licensing Electrical activity sensor device for detecting electrical activity and electrical activity monitoring apparatus
JPWO2016013191A1 (ja) * 2014-07-23 2017-04-27 日本電気株式会社 電力ルータ、電力送受電システム、電力送受電方法、および電力送受電用プログラムが記憶された記憶媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156494A1 (en) * 2008-08-25 2011-06-30 Governing Dynamics Llc Wireless Energy Transfer System
JP2012139007A (ja) * 2010-12-24 2012-07-19 Chugoku Electric Power Co Inc:The 電力供給システムの制御方法、及び電力供給システム
JP2012213252A (ja) * 2011-03-30 2012-11-01 Toshiba Corp 送電装置及び電力伝送システム
JP2014516244A (ja) * 2011-06-07 2014-07-07 サムスン エレクトロニクス カンパニー リミテッド 無線電力送受信システムにおける受信器の無線電力制御方法及び装置
JP2013138526A (ja) * 2011-12-27 2013-07-11 Toshiba Corp 送電装置、受電装置及び電力伝送システム
JP2014003839A (ja) * 2012-06-20 2014-01-09 Hitachi Ltd 電力系統内送電状態制御方法
US20140252886A1 (en) * 2013-03-07 2014-09-11 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
JP2016509468A (ja) * 2013-03-07 2016-03-24 シーピージー テクノロジーズ、 エルエルシー 損失性媒体上での誘導表面波モードの励起および使用

Also Published As

Publication number Publication date
WO2017044289A1 (en) 2017-03-16
CN108352726A (zh) 2018-07-31
HK1252587A1 (zh) 2019-05-31
US20170077714A1 (en) 2017-03-16
EP3347970A1 (en) 2018-07-18
KR20180052692A (ko) 2018-05-18
TW201714344A (en) 2017-04-16
EA201890690A1 (ru) 2018-09-28

Similar Documents

Publication Publication Date Title
AU2015314931B2 (en) Frequency division multiplexing for wireless power providers
US10381843B2 (en) Hierarchical power distribution
US9859707B2 (en) Simultaneous multifrequency receive circuits
JP2018528750A (ja) ハイブリッドフェーズドアレイ伝送
JP2018530231A (ja) 強化された誘導表面導波プローブ
JP2018530293A (ja) 誘導表面導波プローブ
JP2018530292A (ja) フレキシブルネットワークトポロジ及び双方向電力フロー
JP2018528429A (ja) 最適性能のための電界強度監視
US10536037B2 (en) Load shedding in a guided surface wave power delivery system
US20180337535A1 (en) Classification of transmission
WO2017044288A1 (en) Changing guided surface wave transmissions to follow load conditions
JP2018527876A (ja) 有線電力分配と無線電力分配との共存
JP2018532363A (ja) エネルギ消費ノードの誘導表面波受信への適応
US10401404B2 (en) Measuring and reporting power received from guided surface waves
JP2018528752A (ja) 帰路結合無線送電
JP2018530232A (ja) 画定された領域を照射する誘導表面波伝送
JP2018530291A (ja) 誘導表面波を用いたグローバル時刻同期
JP2018530983A (ja) 無線電力システムの窃盗抑止

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210531