JP2018529456A - Method for producing hollow porous microspheres - Google Patents

Method for producing hollow porous microspheres Download PDF

Info

Publication number
JP2018529456A
JP2018529456A JP2018516508A JP2018516508A JP2018529456A JP 2018529456 A JP2018529456 A JP 2018529456A JP 2018516508 A JP2018516508 A JP 2018516508A JP 2018516508 A JP2018516508 A JP 2018516508A JP 2018529456 A JP2018529456 A JP 2018529456A
Authority
JP
Japan
Prior art keywords
oil
hollow porous
microspheres
phase
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018516508A
Other languages
Japanese (ja)
Other versions
JP6573716B2 (en
Inventor
ヒョク キム,
ヒョク キム,
ヨン チャン ア,
ヨン チャン ア,
ソン ウク チェ,
ソン ウク チェ,
スン クヮン ムン,
スン クヮン ムン,
ウォン ソク パク,
ウォン ソク パク,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pharmaresearch Products Co Ltd
Original Assignee
Pharmaresearch Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmaresearch Products Co Ltd filed Critical Pharmaresearch Products Co Ltd
Publication of JP2018529456A publication Critical patent/JP2018529456A/en
Application granted granted Critical
Publication of JP6573716B2 publication Critical patent/JP6573716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Abstract

本発明は、気孔形成誘導物質と疎水性の生分解性高分子を揮発性溶媒に溶解させることを含む高分子溶液の製造段階;前記高分子溶液を水又は相安定化剤を含む水溶液に分散させてO/W(Oil in Water)型のエマルジョン(emulsion)を形成する段階;前記高分子溶液が分散された水溶液上で揮発性溶媒を揮発させて前記疎水性の生分解性高分子を固形化して、疎水性の生分解性高分子と前記気孔形成誘導物質との間の自発的相分離を発生させて、O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させることを含む中空多孔性微小球の製造段階;及び前記中空多孔性微小球に含まれた気孔形成誘導物質を除去する段階を含む中空多孔性微小球の製造方法を提供する。The present invention relates to a production step of a polymer solution comprising dissolving a pore formation inducing substance and a hydrophobic biodegradable polymer in a volatile solvent; and dispersing the polymer solution in water or an aqueous solution containing a phase stabilizer. Forming an O / W (oil in water) type emulsion; evaporating a volatile solvent on an aqueous solution in which the polymer solution is dispersed to solidify the hydrophobic biodegradable polymer To generate a spontaneous phase separation between the hydrophobic biodegradable polymer and the pore formation inducer, and an oil phase contained in an oil in water (O / W) type emulsion (emulsion) A step of producing hollow porous microspheres comprising converting a polymer solution into O / S (Oil in Solid) microspheres; and a step of removing pore formation inducing substances contained in the hollow porous microspheres To provide a method of manufacturing a hollow porous microspheres containing.

Description

本発明は、皮膚組織のような生体組織内に伝達できる組織工学用足場を製造する方法に関する。   The present invention relates to a method of manufacturing a tissue engineering scaffold that can be transferred into living tissue such as skin tissue.

美容施術を目的として販売されている美容施術用医療機器のうちのフィラー(filler)は、しわや陥没部位の皮膚組織に注入するといった方式で用いられる。大半のフィラーは皮膚組織に注入され、該物質自体の体積によって皮膚組織の体積を増大させる方式で皮膚のしわや陥没部位を改善する。現在最も多用されるフィラーとしては、ヒアルロン酸とコラーゲンなどのゲル状の無形物質があるが、経時的に皮膚組織内に吸収されるために、その美容施術の効果が長期に亘り保持されないという問題がある。   Of the medical devices for cosmetic treatment sold for the purpose of cosmetic treatment, a filler is used in such a manner that it is injected into the skin tissue of a wrinkle or depression. Most fillers are injected into the skin tissue to improve skin wrinkles and depressions in a manner that increases the volume of the skin tissue by the volume of the material itself. Currently, the most frequently used fillers are gel-like intangible substances such as hyaluronic acid and collagen. However, since they are absorbed into the skin tissue over time, the effect of the cosmetic treatment is not maintained for a long time. There is.

また、美容施術用医療機器として幅広い使用範囲を有するためには、注射によって伝達されなければならないが、既存開発のフィラー成分である多孔性材料は、その大きさが数十mm以上であったため、注射によっては皮膚組織への移植が不可能であり、専ら皮膚組織を切開する手術によって皮膚組織内に移植しなければならないという短所があった。   In addition, in order to have a wide range of use as a medical device for cosmetic treatment, it must be transmitted by injection, but the porous material that is an already developed filler component has a size of several tens of mm or more, There is a disadvantage that transplantation into skin tissue is impossible by injection, and it must be transplanted into the skin tissue exclusively by an operation incising the skin tissue.

従来の多孔性材料の製造方法としては、疎水性の生分解性高分子微小球に空隙を形成するためのポロゲン(porogen)としてアルジネート(alginate)、コラーゲン(collagen)、ゼラチン(gelatin)といった水溶性高分子物質を適用して、O/W(Oil in Water)、W/O(Water in Oil)、W/O/W(Water in Oil in Water)、またはO/W/O(Oil in Water in Oil)といった多相エマルジョン(multi emulsion)を形成する技術がある。しかし、O/W型の工程では大きな気孔を有する微小球を形成し難い。W/O、W/O/W及びO/W/O型の工程の場合、二相乳化工程が必要となり、二相乳化を安定化するための内相安定剤と外相安定化剤の双方が要求される。また、製造される微粒子の比重が水より重いことから、沈殿した微粒子を収得するためには、フィルターリング工程が別途に必要となるという短所がある。さらには、製造工程が複雑で且つ制御する因子が多いことから、回分式反応工程によって製造が行われるため、生産効率が低下すると共に、微小球に形成される空隙の均一性に劣り、且つ工程中の損失率が高いため、産業的応用が難しいという問題がある。   As a conventional method for producing a porous material, as a porogen for forming voids in hydrophobic biodegradable polymer microspheres, water-soluble materials such as alginate, collagen, and gelatin are used. Applying a polymer material, O / W (Oil in Water), W / O (Water in Oil), W / O / W (Water in Oil in Water), or O / W / O (Oil in Water in) There is a technique for forming a multi-phase emulsion (Oil). However, it is difficult to form microspheres having large pores in the O / W type process. In the case of W / O, W / O / W and O / W / O type processes, a two-phase emulsification process is required, and both an inner-phase stabilizer and an outer-phase stabilizer for stabilizing the two-phase emulsification Required. In addition, since the specific gravity of the produced fine particles is heavier than that of water, there is a disadvantage in that a filtering step is separately required to obtain the precipitated fine particles. Furthermore, since the manufacturing process is complicated and there are many factors to control, the production is performed by a batch reaction process, so that the production efficiency is lowered and the uniformity of the voids formed in the microspheres is inferior. There is a problem that industrial application is difficult because of the high loss rate.

大韓民国公開特許公報第2011−0075618号Korean Published Patent Publication No. 2011-0075618

本発明の目的は、皮膚組織のような生体組織内に伝達することができる組織工学用足場を製造する方法を提供することにある。具体的に、工程が単純且つ多孔性微小球の空隙率及び空隙の形態を容易に調節することができるため、注射によって皮膚組織内に注入することができると共に、前記多孔性微小球内で細胞を増殖させて皮膚組織の体積を増大させることができる多孔性微小球の製造方法を提供することにある。   It is an object of the present invention to provide a method for manufacturing a tissue engineering scaffold that can be transferred into living tissue such as skin tissue. Specifically, since the porosity and shape of the porous microspheres are simple and the process can be easily adjusted, the porous microspheres can be injected into the skin tissue by injection, and the cells are contained in the porous microspheres. An object of the present invention is to provide a method for producing porous microspheres that can increase the volume of skin tissue by increasing the volume of the skin.

前記したような目的を解決するために、本発明の一観点は、中空多孔性微小球の製造方法であって、
気孔形成誘導物質と疎水性の生分解性高分子を揮発性溶媒に溶解させることを含む高分子溶液の製造段階;
前記高分子溶液を水又は相安定化剤を含む水溶液に分散させてO/W(Oil in Water)型のエマルジョン(emulsion)を形成する段階;
前記高分子溶液が分散された水溶液上で揮発性溶媒を揮発させて前記疎水性の生分解性高分子を固形化して、疎水性の生分解性高分子と前記気孔形成誘導物質との間の自発的相分離を発生させて、前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる中空多孔性微小球の製造段階;及び
前記中空多孔性微小球に含まれた気孔形成誘導物質を除去する段階を含む、
中空多孔性微小球の製造方法を提供する。
In order to solve the above-described object, one aspect of the present invention is a method for producing hollow porous microspheres,
Producing a polymer solution comprising dissolving a pore formation inducer and a hydrophobic biodegradable polymer in a volatile solvent;
Dispersing the polymer solution in water or an aqueous solution containing a phase stabilizer to form an oil in water (O / W) type emulsion;
Volatile solvent is volatilized on the aqueous solution in which the polymer solution is dispersed to solidify the hydrophobic biodegradable polymer, so that the hydrophobic biodegradable polymer and the pore formation inducing substance are between. Hollow porosity that generates spontaneous phase separation and converts oil phase polymer solution contained in the O / W (oil in water) type emulsion into O / S (oil in solid) microspheres A step of producing microspheres; and a step of removing pore formation inducers contained in the hollow porous microspheres,
A method for producing hollow porous microspheres is provided.

本発明の製造方法は、多孔性微小球に含まれる疎水性の生分解性高分子と気孔形成誘導物質との自発的相分離によってO/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球形態の構造に容易に具現することができ、二相乳化型の微小球製造の際に求められる内相安定化剤を添加することなく製造することができ、これによる内相安定化剤の除去のための洗浄工程を考慮する必要がない。したがって、従来の親水性気孔形成誘導物質を用いて、別途の一次及び二次乳化工程によってW/O/WやO/W/O型に製造していた技術よりも生産工程を単純化させることができる。   The production method of the present invention is contained in an O / W (oil in water) type emulsion by spontaneous phase separation of a hydrophobic biodegradable polymer contained in porous microspheres and a pore formation inducer. The oil phase polymer solution can be easily realized in the structure of O / S (Oil in Solid) microspheres, and an internal phase stabilizer required for the production of two-phase emulsion type microspheres is added. Therefore, it is not necessary to consider a washing step for removing the internal phase stabilizer. Therefore, using a conventional hydrophilic pore formation inducing substance, the production process can be simplified compared to the technique of manufacturing W / O / W and O / W / O types by separate primary and secondary emulsification processes. Can do.

本発明は、微小球内空隙率及び空隙の形態及び大きさを容易に調節することができ、微小球内皮膚組織細胞が増殖することができる中空及びこれを取り囲む隔壁に含まれる微細気孔を製造することが可能となり、気孔均一度に優れる。   The present invention can easily adjust the void ratio and the shape and size of the voids in the microsphere, and produce the micropores included in the hollow and the partition wall surrounding the hollow in which the skin tissue cells in the microsphere can grow. And is excellent in pore uniformity.

このように、前記本発明の製造方法によれば、中空多孔性微小球は粒子内の中央に形成された巨大空洞と微細気孔を含む隔壁を含む二重構造を有するので、生体内皮膚組織細胞がチャンネルとして前記微細気孔を用いて前記中空多孔性微小球内に容易に移動することができ、前記巨大空洞内で前記移動した皮膚組織細胞が効果的に増殖することができる。   As described above, according to the production method of the present invention, the hollow porous microsphere has a double structure including a large cavity formed in the center of the particle and a partition wall including fine pores, so that skin tissue cells in vivo Can easily move into the hollow porous microspheres using the micropores as channels, and the moved skin tissue cells can effectively proliferate in the giant cavity.

本発明の一実施例に従って中空多孔性微小球を製造する方法に関する概略的な図である。1 is a schematic diagram relating to a method of manufacturing hollow porous microspheres according to one embodiment of the present invention. FIG. 本発明の一実施例に係る中空多孔性微小球の製造時のポロゲンの種類及び含量による粒子表面と切片の電子走査顕微鏡写真を示した図である。It is the figure which showed the electron scanning micrograph of the particle | grain surface by the kind and content of the porogen at the time of manufacture of the hollow porous microsphere based on one Example of this invention, and a content | section. 本発明の一実施例に係る中空多孔性微小球で線維芽細胞を培養したLive/dead染色共焦点顕微鏡写真を示した図である。It is the figure which showed the Live / dead staining confocal microscope picture which cultured the fibroblast with the hollow porous microsphere which concerns on one Example of this invention. 本発明の一実施例に係る中空多孔性微小球で線維芽細胞を培養した後にMTT assayによって細胞成長率を示した図である。It is the figure which showed the cell growth rate by MTT assay after culturing the fibroblast with the hollow porous microsphere which concerns on one Example of this invention.

本明細書において「平均径」とは、対象の横断面の両端を結ぶ線分である径を平均した値を意味し、例えば、本発明の空洞の場合、中空多孔性微小球内に形成される空洞が真球状ではないときに前記空洞自体が持つ径の平均値を意味していてよい。または、複数の微小球内に存在する各空洞の径の平均値を意味していてもよい。微細気孔の場合、微細気孔自体が真球状ではないときに前記微細気孔自体が持つ径の平均値または複数の微細気孔の径の平均値を意味していてよい。   In the present specification, the “average diameter” means a value obtained by averaging the diameters that are line segments connecting both ends of the cross section of the object. For example, in the case of the cavity of the present invention, the average diameter is formed in the hollow porous microsphere. It may mean an average value of the diameters of the cavities themselves when the cavities are not spherical. Or you may mean the average value of the diameter of each cavity which exists in a some microsphere. In the case of fine pores, it may mean the average value of the diameters of the fine pores themselves or the average value of the diameters of a plurality of fine pores when the fine pores themselves are not spherical.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

本発明は、気孔形成誘導物質と疎水性の生分解性高分子を揮発性溶媒に溶解させることを含む高分子溶液の製造段階;前記高分子溶液を水又は相安定化剤(phase stabilizer)を含む水溶液に分散させてO/W(Oil in Water)型のエマルジョン(emulsion)を形成する段階;前記高分子溶液が分散された水溶液上で揮発性溶媒を揮発させて前記疎水性の生分解性高分子を固形化して、疎水性の生分解性高分子と前記気孔形成誘導物質との間の自発的相分離を発生させて、前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる中空多孔性微小球の製造段階;及び前記中空多孔性微小球に含まれた気孔形成誘導物質を除去する段階を含む、中空多孔性微小球の製造方法を提供する。   The present invention relates to a production process of a polymer solution comprising dissolving a pore formation inducer and a hydrophobic biodegradable polymer in a volatile solvent; the polymer solution is mixed with water or a phase stabilizer. Dispersing in an aqueous solution to form an O / W (oil in water) type emulsion; volatilizing a volatile solvent on the aqueous solution in which the polymer solution is dispersed to form the hydrophobic biodegradable material The polymer is solidified to generate a spontaneous phase separation between the hydrophobic biodegradable polymer and the pore formation inducer to form an oil-in-water (O / W) type emulsion. A step of producing hollow porous microspheres for converting the contained oil phase polymer solution into O / S (Oil in Solid) microspheres; and included in the hollow porous microspheres And comprising removing the pore-inducing agent, to provide a method of manufacturing a hollow porous microspheres.

従来の多孔性微小球を製造するための技術として適用されてきた多相エマルジョン形成技術、すなわち多相乳化技術では、疎水性の生分解性高分子を含む油相を連続相にし、空隙を形成するための気孔形成誘導物質を含む水相を不連続相で適用して一次エマルジョンを形成しなければならない。この際に製造される一次エマルジョン内の不連続相の大きさや分布を均一にさせるためには、持続的な撹拌と温度調節が必須であった。しかし、本発明の一実施例によれば、疎水性の生分解性高分子と空隙及び気孔形成誘導物質が同一の溶媒に溶解されるので、別途の操作を行うことなく組成均一性と組成安定性を確保することができる。   In multi-phase emulsion formation technology that has been applied as a conventional technology for producing porous microspheres, that is, multi-phase emulsification technology, an oil phase containing a hydrophobic biodegradable polymer is made into a continuous phase to form voids. The aqueous phase containing the pore formation inducer to be applied must be applied in a discontinuous phase to form a primary emulsion. In order to make the size and distribution of the discontinuous phase in the primary emulsion produced at this time uniform, continuous stirring and temperature control were essential. However, according to one embodiment of the present invention, since the hydrophobic biodegradable polymer and the void and pore formation inducer are dissolved in the same solvent, the composition uniformity and composition stability can be achieved without performing separate operations. Sex can be secured.

また、従来の多相エマルジョン形成技術では、二次エマルジョンを形成させた後に二次エマルジョン内の不連続相の大きさと形態均一性を維持するための撹拌と温度維持は可能であるが、二次エマルジョン内に形成された不連続相内の不連続相、すなわち水溶性高分子のような気孔形成誘導物質を含む水溶液の大きさや分布を、疎水性の生分解性高分子が固形化して安定化するまでに制御し得る手段がないという問題がある。一方、本発明の一実施例によれば、気孔形成誘導物質として疎水性の生分解性高分子と相溶性がなく、且つ密度が水よりも低い疎水性流体を用いるので、高分子溶液内の揮発性溶媒が除去されると疎水性の生分解性高分子は固形化し、疎水性の生分解性高分子と相溶性のない疎水性で液状の気孔形成誘導物質は自然に相分離して、疎水性の生分解性高分子からなる微小球内に空隙を形成するようになる。したがって、別途の操作を行うことがなくても疎水性の生分解性高分子が固形化する前の溶液相を維持するため組成均一性を確保することができ、疎水性の生分解性高分子が固形化すると、疎水性の生分解性高分子が持つ強度によって空隙均一性と安定性を確保することができる。   In addition, in the conventional multi-phase emulsion formation technique, after the secondary emulsion is formed, stirring and temperature maintenance are possible to maintain the size and shape uniformity of the discontinuous phase in the secondary emulsion. Hydrophobic biodegradable polymer solidifies and stabilizes the size and distribution of the discontinuous phase within the discontinuous phase formed within the emulsion, that is, the aqueous solution containing pore formation inducers such as water-soluble polymers There is a problem that there is no means that can be controlled by the time. On the other hand, according to one embodiment of the present invention, a hydrophobic fluid that is not compatible with a hydrophobic biodegradable polymer and has a lower density than water is used as a pore formation inducing substance. When the volatile solvent is removed, the hydrophobic biodegradable polymer is solidified, and the hydrophobic and liquid pore-forming inducer that is not compatible with the hydrophobic biodegradable polymer spontaneously phase-separates, Voids are formed in microspheres made of a hydrophobic biodegradable polymer. Therefore, the hydrophobic biodegradable polymer can maintain the solution phase before the hydrophobic biodegradable polymer is solidified without performing a separate operation, and can ensure composition uniformity. When solidified, the uniformity and stability of the voids can be ensured by the strength of the hydrophobic biodegradable polymer.

一実施例として、前記気孔形成誘導物質は、疎水性の生分解性高分子と相溶性がなく、且つ密度が水よりも低い疎水性流体を含んでいてよい。前記気孔形成誘導物質は、ポロゲン(porogen)ともいう。前記気孔形成誘導物質は、疎水性の生分解性高分子と相溶性がなく、且つ密度が水よりも低い疎水性流体であればその種類は特に制限されない。具体的に、前記気孔形成誘導物質は、1atm、250℃以下で沸点を有する物質であればよく、1atm、30〜150℃で液状の物質であればよい。例えば、前記気孔形成誘導物質は、アルカン(alkane)類、植物性油及びこれらの混合物からなる群より選択された一つ以上であってよい。一実施例として、前記アルカン類は、オクタン(Octane)、ウンデカン(Undecane)、トリデカン(Tridecane)、ペンタデカン(Pentadecane)及びこれらの混合物からなる群より選択された一つ以上であり、前記植物性油は、大豆油、とうもろこし油、綿実油、オリーブ油、ブドウ種子油、くるみ油、ゴマ油、エゴマ油及びこれらの混合物からなる群より選択された一つ以上を含んでいてよい。本発明は、前記具体的な物質以外に他の物質を適用して気孔を形成することもでき、一実施例として、本発明は、前記中空多孔性微小球の製造の際に気孔を形成するポロゲンの濃度及び種類によって中空及び微細気孔の大きさや形態を調節することができ、且つ気孔均一度も増加させることができる。例えば、前記気孔形成誘導物質は、高分子溶液の総質量に対して0.1〜50質量%、より具体的には1〜10質量%で含まれていてよい。   As an example, the pore formation inducing substance may include a hydrophobic fluid that is not compatible with a hydrophobic biodegradable polymer and has a density lower than that of water. The pore formation inducing substance is also referred to as porogen. The type of pore formation inducer is not particularly limited as long as it is not compatible with a hydrophobic biodegradable polymer and has a lower density than water. Specifically, the pore formation inducing substance may be a substance having a boiling point at 1 atm and 250 ° C. or lower, and may be a liquid substance at 1 atm and 30 to 150 ° C. For example, the pore formation inducer may be one or more selected from the group consisting of alkanes, vegetable oils, and mixtures thereof. In one embodiment, the alkane is one or more selected from the group consisting of octane, undecane, tridecane, pentadecane, and mixtures thereof, and the vegetable oil May include one or more selected from the group consisting of soybean oil, corn oil, cottonseed oil, olive oil, grape seed oil, walnut oil, sesame oil, sesame oil, and mixtures thereof. In the present invention, pores can be formed by applying other substances in addition to the specific substance. As an example, the present invention forms pores during the production of the hollow porous microspheres. Depending on the concentration and type of porogen, the size and shape of the hollow and fine pores can be adjusted, and the pore uniformity can be increased. For example, the pore formation inducing substance may be contained in an amount of 0.1 to 50% by mass, more specifically 1 to 10% by mass with respect to the total mass of the polymer solution.

また、本発明の一実施例に係る前記疎水性の生分解性高分子は、ポリ乳酸(Poly−L−Lactic Acid、PLLA)、ポリグリコール酸(polyglycolic acid、PGA)、ポリ乳酸−グリコール酸共重合体(poly(lactic−co−glycolic acid)、PLGA)、ポリ−ε−(カプロラクトン)(Polycaprolactone、PCL)、ポリ無水物(polyanhydrides)、ポリオルトエステル(polyorthoester)、ポリビニルアルコール(polyviniyalcohol)、ポリエチレングリコール(polyethyleneglycol)、ポリウレタン(polyurethane)、ポリアクリル酸(polyacrylic acid)、ポリ−N−イソプロピルアクリルアミド(Poly−N−isopropyl acrylamide)、ポリ(エチレンオキサイド)−ポリ(プロピレンオキサイド)−ポリ(エチレンオキサイド)共重合体(poly ethylene oxide)−poly propylene oxide−poly ethylene oxide copolymer)、これらの共重合体、及びこれらの混合物からなる群より選択された一つ以上を含んでいてよいが、皮膚組織内に注入されたときに安全且つ分解可能なものであれば、必ずしもこれらに制限されものではない。   In addition, the hydrophobic biodegradable polymer according to an embodiment of the present invention includes polylactic acid (Poly-L-Lactic Acid, PLLA), polyglycolic acid (PGA), and polylactic acid-glycolic acid. Polymer (poly-co-glycic acid, PLGA), poly-ε- (caprolactone) (Polycaprolactone, PCL), polyanhydrides, polyorthoester, polyvinyl alcohol, polyvinyl, polyethylene Glycol (polyethyleneglycol), polyurethane (polyurethane), polyacrylic acid (polyacrylic acid) , Poly-N-isopropylacrylamide, poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) -polypropylene oxide-polyethylene ester ), A copolymer thereof, and one or more selected from the group consisting of a mixture thereof, as long as it is safe and degradable when injected into the skin tissue. It is not limited to.

本発明の一実施例に係る前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる段階は、前記水又は相安定化剤(phase stabilizer)を含む水溶液を連続相(continuous phase)にして前記水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相(discontinuous phase)で供給する段階を含んでいてよい。このとき、前記相安定化剤を含む水溶液は、界面を安定化させる物質を含む水溶液であって、例えば、ポリビニルアルコール(Polyvinyl alcohol、PVA)、ポリビニルピロリドン(Polyvinyl pirrolidone)、ポリエチレングリコール−co−ポリプロピレングリコール(polyethylene glycol−co−polyproplene glycol)、ポリエチレングリコール−co−ポリプロピレングリコール−co−ポリエチレングリコール(polyethylene glycol−co−polyproplene glycol−co−polyethylene glycol)、ポリエチレングリコール−co−ポリ乳酸(polyethylene glycol−co−polylactic acid)及びポリエチレングリコール−co−ポリ乳酸-ポリエチレングリコール(polyethylene glycol−co−polylactic acid−co−polyethylene glycol)などからなる群より選択された一つ以上の相安定化剤が溶解された水溶液である。   The step of converting the oil phase polymer solution contained in the O / W (Oil in Water) type emulsion according to an embodiment of the present invention into O / S (Oil in Solid) microspheres includes the steps of: Supplying an aqueous solution containing water or a phase stabilizer to a continuous phase and supplying the polymer solution to the aqueous solution containing the water or the phase stabilizer in a discontinuous phase. May contain. At this time, the aqueous solution containing the phase stabilizer is an aqueous solution containing a substance that stabilizes the interface. For example, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, polyethylene glycol-co-polypropylene. Glycol (polyethylene glycol-co-polypropylene glycol), polyethylene glycol-co-polypropylene glycol-co-polyethylene glycol (polyethylene glycol-co-polypropylene glycol, polyethylene glycol-co-polypropylene glycol (polyethylene glycol-co-polypropylene glycol) One or more phase stabilizers selected from the group consisting of co-polylactic acid and polyethylene glycol-co-polylactic acid-polyethylene glycol were dissolved. It is an aqueous solution.

具体的に、前記高分子溶液を水又は相安定化剤を含む水溶液に分散させる段階は、一実施例として、微細流体デバイスに前記水又は相安定化剤を含む水溶液を連続相で供給し、前記連続相で供給される水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相で供給する段階を含んでいてよい。このとき、前記段階は、前記連続相を移送する微細導管内に前記高分子溶液を不連続相で供給する速度を調節して、中空多孔性微小球の粒子並びに、中空及び微細気孔のような気孔のうちの一つ以上の大きさ及び形態を調節する段階をさらに含んでいてよい。   Specifically, the step of dispersing the polymer solution in an aqueous solution containing water or a phase stabilizer, as an example, supplying the aqueous solution containing the water or phase stabilizer to a microfluidic device in a continuous phase, The method may include a step of supplying the polymer solution in a discontinuous phase to an aqueous solution containing water or a phase stabilizer supplied in the continuous phase. At this time, the step adjusts the rate at which the polymer solution is supplied in a discontinuous phase into the microconduit that transports the continuous phase, so that particles of hollow porous microspheres and hollow and micropores The method may further include adjusting the size and shape of one or more of the pores.

または、本発明の一実施例に係る前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる段階は、膜(membrane)乳化装置に前記水溶性溶液を連続相で供給し、前記連続相で供給される水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相で供給する段階を含んでいてよい。微細流体デバイスで用いる微細導管の代わりに空隙の大きさが一定の膜(membrane)を通じて不連続相を連続相が流れる導管に移送し、このとき、前記段階は、前記膜乳化装置の膜に形成された空隙の大きさを調節して、中空多孔性微小球の粒子並びに、中空及び微細気孔のような気孔のうちの一つ以上の大きさ及び形態を調節する段階をさらに含んでいてよい。   Alternatively, the step of converting an oil phase polymer solution contained in the O / W (Oil in Water) type emulsion according to an embodiment of the present invention into O / S (Oil in Solid) microspheres may include: Supplying the aqueous solution to a membrane emulsifier in a continuous phase, and supplying the polymer solution in a discontinuous phase to an aqueous solution containing water or a phase stabilizer supplied in the continuous phase. You can leave. Instead of the microconduit used in the microfluidic device, the discontinuous phase is transferred to the conduit through which the continuous phase flows through a membrane having a constant void size. At this time, the step is formed in the membrane of the membrane emulsification apparatus. The method may further include adjusting the size of the formed voids to adjust the size and shape of one or more of the hollow porous microsphere particles and the pores, such as hollow and fine pores.

前記微細流体デバイスまたは膜乳化装置を用いると、微小球の製造の際に微小球の大きさや形態、中空及び気孔の粒度分布を制御することができる。   When the microfluidic device or the membrane emulsification apparatus is used, the size and shape of the microspheres, the particle size distribution of the hollows and pores can be controlled during the production of the microspheres.

一実施例として、前記中空多孔性微小球の中央に形成された空洞は5〜150μmの平均径を有していてよい。前記空洞の径が5μm未満であると細胞の成長が困難となり、また150μmを超えると微小球の強度が弱すぎて生体内注入の際に破壊され得る。具体的に、前記空洞の平均径は、5μm以上、10μm以上、13μm以上、15μm以上、17μm以上、20μm以上、23μm以上、25μm以上、27μm以上、30μm以上、33μm以上、35μm以上、37μm以上、40μm以上、43μm以上、45μm以上、48μm以上、50μm以上、60μm以上、70μm以上、80μm以上、90μm以上、100μm以上、110μm以上、120μm以上、130μm以上、140μm以上または150μmであってよい。また、前記空洞の平均径は、150μm以下、140μm以下、130μm以下、120μm以下、110μm以下、100μm以下、90μm以下、80μm以下、70μm以下、60μm以下、50μm以下、47μm以下、45μm以下、43μm以下、40μm以下、37μm以下、35μm以下、33μm以下、30μm以下、28μm以下、25μm以下、23μm以下、20μm以下、18μm以下、15μm以下、13μm以下、10μm以下または5μm以下であってよいが、皮膚組織細胞の増殖が可能な大きさであれば必ずしも前記した大きさに制限されるものではない。   As an example, the cavity formed in the center of the hollow porous microsphere may have an average diameter of 5 to 150 μm. If the diameter of the cavity is less than 5 μm, cell growth becomes difficult, and if it exceeds 150 μm, the strength of the microsphere is too weak and can be destroyed during in vivo injection. Specifically, the average diameter of the cavity is 5 μm or more, 10 μm or more, 13 μm or more, 15 μm or more, 17 μm or more, 20 μm or more, 23 μm or more, 25 μm or more, 27 μm or more, 30 μm or more, 33 μm or more, 35 μm or more, 37 μm or more, It may be 40 μm or more, 43 μm or more, 45 μm or more, 48 μm or more, 50 μm or more, 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, 100 μm or more, 110 μm or more, 120 μm or more, 130 μm or more, 140 μm or more. The average diameter of the cavity is 150 μm or less, 140 μm or less, 130 μm or less, 120 μm or less, 110 μm or less, 100 μm or less, 90 μm or less, 80 μm or less, 70 μm or less, 60 μm or less, 50 μm or less, 47 μm or less, 45 μm or less, 43 μm or less. 40 μm or less, 37 μm or less, 35 μm or less, 33 μm or less, 30 μm or less, 28 μm or less, 25 μm or less, 23 μm or less, 20 μm or less, 18 μm or less, 15 μm or less, 13 μm or less, 10 μm or less, or 5 μm or less. The size is not necessarily limited to the above as long as the cell can grow.

一実施例として、本発明に係る組成物に含まれる前記中空多孔性微小球の粒子は、50〜200μmの平均径を有していてよいが、注射によって皮膚組織内注入が可能であり、且つ皮膚組織細胞の増殖が可能であれば必ずしも前記範囲に制限されるものではない。前記中空多孔性微小球は、前記したような範囲の小さい粒子サイズを有することで、皮膚組織内に300μm以下の内径を有する注射針を介して投与することができ、既存の多孔性材料は大きい粒子サイズにより皮膚組織を切開して移植する必要があったという短所を解決することができる。前記中空多孔性微小球の径が50μm未満であれる皮膚組織細胞の増殖が困難となり、また200μmを超えると注射針を用いた施術が容易ではない。具体的に、前記中空多孔性微小球粒子の平均径は、50μm以上、60μm以上、70μm以上、80μm以上、90μm以上、100μm以上、110μm以上、120μm以上、130μm以上、140μm以上、150μm以上、160μm以上、170μm以上、180μm以上、190μm以上または200μmであってよい。また、前記中空多孔性微小球粒子の平均径は、200μm以下、190μm以下、180μm以下、170μm以下、160μm以下、150μm以下、140μm以下、130μm以下、120μm以下、110μm以下、100μm以下、90μm以下、80μm以下、70μm以下、60μm以下または50μmであってよい。   As an example, the hollow porous microsphere particles contained in the composition according to the present invention may have an average diameter of 50 to 200 μm, but can be injected into skin tissue by injection, and If the proliferation of skin tissue cells is possible, it is not necessarily limited to the above range. Since the hollow porous microspheres have a small particle size in the above-described range, they can be administered into the skin tissue via an injection needle having an inner diameter of 300 μm or less, and existing porous materials are large. The disadvantage of having to cut and transplant skin tissue according to the particle size can be solved. When the diameter of the hollow porous microsphere is less than 50 μm, it is difficult to grow skin tissue cells, and when it exceeds 200 μm, it is not easy to perform a treatment using an injection needle. Specifically, the average diameter of the hollow porous microsphere particles is 50 μm or more, 60 μm or more, 70 μm or more, 80 μm or more, 90 μm or more, 100 μm or more, 110 μm or more, 120 μm or more, 130 μm or more, 140 μm or more, 150 μm or more, 160 μm. As described above, it may be 170 μm or more, 180 μm or more, 190 μm or more, or 200 μm. The average diameter of the hollow porous microsphere particles is 200 μm or less, 190 μm or less, 180 μm or less, 170 μm or less, 160 μm or less, 150 μm or less, 140 μm or less, 130 μm or less, 120 μm or less, 110 μm or less, 100 μm or less, 90 μm or less, It may be 80 μm or less, 70 μm or less, 60 μm or less, or 50 μm.

一実施例として、前記中空多孔性微小球の空洞の体積は、前記中空多孔性微小球の全体積に対して20〜80体積%であってよい。前記体積が20体積%未満であると皮膚組織細胞が増殖する空間が十分ではなく、また80体積%を超えると、隔壁の厚みが薄すぎるようになるため微小球の形態が保持できずに崩れ得る。一実施例として、前記隔壁の厚みは、前記中空多孔性微小球の全径の1/5〜1/2であってよい。   As an example, the volume of the hollow of the hollow porous microsphere may be 20 to 80% by volume with respect to the total volume of the hollow porous microsphere. When the volume is less than 20% by volume, there is not enough space for the skin tissue cells to proliferate. When the volume exceeds 80% by volume, the partition wall thickness becomes too thin, and the shape of the microsphere cannot be maintained and collapses. obtain. As an example, the thickness of the partition may be 1/5 to 1/2 of the total diameter of the hollow porous microsphere.

具体的に、前記中空多孔性微小球の隔壁に含まれる微細気孔は、一実施例として、5〜50μmの平均径を有していてよい。前記平均径が5μm未満であると前記中空多孔性微小球を皮下組織に注入したときに皮膚組織細胞が微小球内部に移動することができず、また前記平均径が50μmを超えると隔壁内気孔が占める体積が増加して微小球の形態が保持され難くなる。   Specifically, the fine pores included in the partition walls of the hollow porous microspheres may have an average diameter of 5 to 50 μm as an example. When the average diameter is less than 5 μm, skin tissue cells cannot move into the microsphere when the hollow porous microspheres are injected into the subcutaneous tissue, and when the average diameter exceeds 50 μm, the pores in the partition walls The volume occupied by increases and the form of microspheres becomes difficult to be maintained.

例えば、前記中空多孔性微小球の好ましい空隙率は、平均20〜80%であってよい。   For example, the average porosity of the hollow porous microspheres may be 20 to 80%.

本発明の一実施例に係る製造方法において、前記多孔性微小球に含まれた気孔形成誘導物質を除去する段階は、一実施例として、前記微小球を水で洗浄した後に凍結乾燥させて気孔形成誘導物質を除去する段階を含んでいてよい。前記凍結乾燥は真空乾燥であってよい。本発明で用いる上述した気孔形成誘導物質は、1atm、30〜150℃で液状を保持し、1atm、250℃以下で沸点を有しており、本発明の疎水性の生分解性高分子を用いた多孔性微小球の製造工程中で揮発又は蒸発することなく多孔性微小球内に空隙を満たした状態で残留するようになる。したがって、前記したように気孔形成誘導物質を凍結乾燥を通じて除去する前までは、多孔性微小球内に空隙を形成した気孔形成誘導物質が保持されながら空隙安定性を極大化することができる。   In the manufacturing method according to an embodiment of the present invention, the step of removing the pore formation inducing substance contained in the porous microspheres may include, as one embodiment, the pores by washing the microspheres with water and then freeze-drying them. A step of removing the formation inducer may be included. The lyophilization may be vacuum drying. The above-mentioned pore formation inducing substance used in the present invention maintains a liquid state at 1 atm and 30 to 150 ° C. and has a boiling point at 1 atm and 250 ° C. or less, and uses the hydrophobic biodegradable polymer of the present invention. The porous microspheres remain in a state where the voids are filled without being volatilized or evaporated during the manufacturing process of the porous microspheres. Therefore, until the pore formation inducing substance is removed through freeze-drying as described above, the void stability can be maximized while the pore formation inducing substance having voids formed therein is retained.

本発明の一実施例に従い上述の製造方法にて製造された中空多孔性微小球は、中央に形成された空洞;及び前記空洞を取り囲む微細気孔を含む隔壁を含んでいてよい。また、本発明の一実施例は、中空多孔性微小球を含む皮膚組織の再生又は皮膚組織のボリューム増進注射用組成物を提供することができる。前記本発明の一実施例に係る中空多孔性微小球を注射用組成物に含ませて皮膚組織内に注入すると、生体内皮膚組織細胞が前記微細気孔を通じて前記中空多孔性微小球内に移動し、中央の空洞で前記移動した皮膚組織細胞が増殖して、皮膚組織を再生又はボリュームを増進させることができる。すなわち、生体組織内に存在する細胞が前記中空多孔性微小球内に浸透し、成長分裂して新規生体組織を形成することができる。本発明の一実施例によれば、前記空隙及び気孔形成誘導物質と疎水性の生分解性高分子の混合比を調節することで、微小球の中央に形成される空洞の及び隔壁の微細気孔の大きさや形態を調節自在とすることができ、前記中空多孔性微小球の外部に存在する線維芽細胞、脂肪細胞などが多孔性微小球内に浸透した後、成長し分裂することができる空間を与えることができる。   The hollow porous microspheres manufactured by the above-described manufacturing method according to an embodiment of the present invention may include a cavity formed in the center; and a partition wall including fine pores surrounding the cavity. In addition, an embodiment of the present invention can provide a composition for injecting skin tissue or increasing volume of skin tissue, which includes hollow porous microspheres. When hollow porous microspheres according to one embodiment of the present invention are included in an injectable composition and injected into skin tissue, in vivo skin tissue cells migrate into the hollow porous microspheres through the micropores. In the central cavity, the migrated skin tissue cells can grow and regenerate or increase the volume of the skin tissue. That is, a cell existing in a living tissue can penetrate into the hollow porous microsphere, and can grow and divide to form a new living tissue. According to an embodiment of the present invention, by adjusting the mixing ratio of the void and pore formation inducing substance and the hydrophobic biodegradable polymer, the micropores of the cavity and the partition formed in the center of the microsphere The size and shape of the microspheres can be adjusted, and the fibroblasts, adipocytes, etc. existing outside the hollow porous microspheres can penetrate into the porous microspheres and then grow and divide Can be given.

また、本発明によれば、一定期間の経過後に前記中空多孔性微小球が皮膚内で生分解した後でも前記新規に増殖した皮膚組織細胞がその体積を保持するので、皮膚しわまたは皮膚陥没部位などの皮膚組織のボリューム増進効果を増大させるだけでなく、その効果を安全且つ長期に亘り保持することができる。したがって、本発明は、皮膚組織のような生体組織内に伝達することができる組織工学用足場を製造する技術であって、前記本発明によって製造された中空多孔性微小球は、皮膚組織再生を通じて皮膚しわまたは陥没部位の改善だけではなく、骨組織の再生のような医薬の産業にも適用され得る。より具体的に、本発明の前記中空多孔性微小球は、皮膚しわを含む老化の改善、皮膚色調の改善、又は皮膚弾力の改善用フィラー(filler)又はリフティング(lifting)などを目的にして用いられてよいが、皮膚の組織再生のためであれば必ずしもこれらに制限されるものではない。例えば、人工皮膚、人工軟骨、骨充填剤、整形補型物などに用いられていてよい。   Further, according to the present invention, since the newly grown skin tissue cells retain their volume even after the hollow porous microspheres are biodegraded in the skin after a certain period of time, the skin wrinkle or skin depression site In addition to increasing the volume enhancement effect of the skin tissue, the effect can be maintained safely and for a long time. Accordingly, the present invention is a technique for manufacturing a tissue engineering scaffold that can be transmitted into a living tissue such as a skin tissue, and the hollow porous microspheres manufactured according to the present invention can be obtained through skin tissue regeneration. It can be applied not only to the improvement of skin wrinkles or depressions, but also to the pharmaceutical industry such as bone tissue regeneration. More specifically, the hollow porous microspheres of the present invention are used for the purpose of improving aging including skin wrinkles, improving skin color, or filler or lifting for improving skin elasticity. However, the present invention is not necessarily limited thereto as long as it is for tissue regeneration of the skin. For example, it may be used for artificial skin, artificial cartilage, bone filler, orthopedic prosthesis and the like.

以下、実施例を通じて本発明をより詳しく説明することにする。なお、これらの実施例は単に本発明を例示するためのものに過ぎず、本発明の範囲がこれらの実施例によって制限されるものではないと解釈されることは当業界における通常の知識を有する者にとって自明であろう。   Hereinafter, the present invention will be described in more detail through examples. It is to be understood that these examples are merely illustrative of the present invention and that the scope of the present invention should not be construed as being limited by these examples. It will be obvious to the person.

[実施例1]中空多孔性微小球の製造1
本発明の一実施例に係る中空多孔性微小球を下記の方法で製造した(図1参照)。
段階1:微細流体デバイス(simple fluidic device)の製作
PVCチューブに90゜で折り曲げた30ゲージの注射針を入れ、注射針とPVCチューブとの間に微細ガラス管を挿入して微細流体デバイスを製作した。製作された微細流体デバイスはエポキシ接着剤を用いて微細な隙間を埋め込んだ。
[Example 1] Production 1 of hollow porous microspheres
Hollow porous microspheres according to an example of the present invention were manufactured by the following method (see FIG. 1).
Step 1: Fabrication of a simple fluidic device A 30-gauge injection needle bent at 90 ° is placed in a PVC tube, and a microfluidic device is fabricated by inserting a fine glass tube between the injection needle and the PVC tube. did. The manufactured microfluidic device was embedded with fine gaps using epoxy adhesive.

段階2:アルカン類が含まれたPLLA溶液の製造
疎水性の生分解性高分子としてPLLA(RESOMER LR 704S、Evonik Industries AG)0.1g、揮発性溶媒としてジクロロメタン(Dichloromethane;34355−0350、Junsei)10g、気孔形成誘導物質としてアルカン類物質、具体的にオクタン(Octane、412236、Sigma−aldrich)またはウンデカン(Undecane、U407、Sigma−aldrich)またはトリデカン(Tridecane、T57401、Sigma−aldrich)またはペンタデカン(Pentadecane、76510、Sigma−aldrich)をそれぞれ0.1g、0.3g及び0.6g混ぜ合わせて疎水性の生分解性高分子(PLLA)溶液を製造した。
Step 2: Production of PLLA solution containing alkanes PLLA (RESOMER LR 704S, Evonik Industries AG) 0.1 g as a hydrophobic biodegradable polymer, Dichloromethane (34355-0350, Junsei) as a volatile solvent 10 g, alkane substances as pore formation inducers, specifically octane (Octane, 41236, Sigma-aldrich) or undecane (Undecane, U407, Sigma-aldrich) or tridecane (Tridecane, T57401, Sigma-aldrichene or pentadecane) , 76510, Sigma-aldrich) 0.1 g, 0.3 g and 0.6 g, respectively. In this way, a hydrophobic biodegradable polymer (PLLA) solution was produced.

段階3:均一なPLLAエマルジョンの製造
微細流体デバイスに、2% PVA溶液を流速が分当たり1.5mlの連続相(continuous phase)で供給し、且つ前記PVA溶液に、前記段階2で得たアルカン類が含まれたPLLA溶液を30ケージ注射器針を用いて流速が分当たり0.1mlの不連続相(discontinuous phase)で供給して、一定の大きさを有するエマルジョンが形成されるようにした。
Step 3: Production of a homogeneous PLLA emulsion A microfluidic device is fed with 2% PVA solution in a continuous phase with a flow rate of 1.5 ml per minute, and the PVA solution is fed with the alkane obtained in step 2 above. The PLLA solution containing the species was fed in a discontinuous phase with a flow rate of 0.1 ml per minute using a 30 cage syringe needle to form an emulsion with a constant size.

段階4:均一な中空多孔性微小球の製造
前記段階3で得たエマルジョンを2% PVA収集相(collection phase)に分散させて150rpmで撹拌させた後、ジクロロメタンを十分に揮発させた。
Step 4: Preparation of uniform hollow porous microspheres The emulsion obtained in Step 3 above was dispersed in a 2% PVA collection phase and stirred at 150 rpm, and then dichloromethane was sufficiently volatilized.

段階5:気孔形成誘導物質を除去して多孔性付与
前記段階4で得たPLLAビードを蒸留水(D.W.)で数回洗浄した後、凍結乾燥器を利用してアルカン類を昇華させて均一な大きさの中空多孔性微小球の多孔性PLLAビードを製造した。
Step 5: Removal of pore formation inducing substance to provide porosity After washing the PLLA beads obtained in Step 4 several times with distilled water (DW), the alkanes are sublimated using a freeze dryer. A porous PLLA bead of hollow porous microspheres of uniform size was manufactured.

前記製造された各中空多孔性微小球を図2に示した。気孔形成誘導物質の含量が増加するにつれて、または炭化水素鎖の長さが長くなるにつれて、微小球の中央に空洞がより効果的に製造されることを確認することができる。   The produced hollow porous microspheres are shown in FIG. It can be seen that the cavity is more effectively produced in the center of the microsphere as the content of pore formation inducer increases or as the length of the hydrocarbon chain increases.

[実施例2]中空多孔性微小球の製造2
本発明の一実施例に係る中空多孔性微小球を下記の方法で製造した。
[Example 2] Production of hollow porous microspheres 2
Hollow porous microspheres according to an example of the present invention were manufactured by the following method.

段階1:微細流体デバイス(simple fluidic device)の製作
PVCチューブに90゜で折り曲げた30ケージの注射針を入れ、注射針とPVCチューブとの間に微細ガラス管を挿入して微細流体デバイスを製作した。製作された微細流体デバイスはエポキシ接着剤を利用して微細な隙間を埋め込んだ。
Step 1: Fabrication of a simple fluidic device A 30-cage injection needle bent at 90 ° is inserted into a PVC tube, and a microfluidic device is fabricated by inserting a fine glass tube between the injection needle and the PVC tube. did. The fabricated microfluidic device filled in the fine gaps using epoxy adhesive.

段階2:植物性油が含まれたPLLA溶液の製造
疎水性の生分解性高分子としてPLLA(RESOMER LR 704S、Evonik Industries AG)0.1g、Dichloromethane(34355−0350、Junsei)10g、気孔形成誘導物質として綿実油または大豆油をそれぞれ0.5gに混ぜ合わせて疎水性の生分解性高分子(PLLA)溶液を製造した。
Step 2: Production of PLLA solution containing vegetable oil PLLA (RESOMER LR 704S, Evonik Industries AG) 0.1 g as hydrophobic biodegradable polymer, Dichloromethane (34355-0350, Junsei) 10 g, pore formation induction A hydrophobic biodegradable polymer (PLLA) solution was prepared by mixing 0.5 g of cottonseed oil or soybean oil as a substance.

段階3:均一なPLLAエマルジョンの製造
微細流体装置に、2% PVA溶液を流速が分当たり1.5mlの連続相(continuous phase)で供給し、且つ前記PVA溶液に、前記段階2で得た植物性油が含まれたPLLA溶液を30ケージ注射器針を用いて流速が分当たり0.1mlの不連続相(discontinuous phase)で供給して、一定の大きさを有するエマルジョンが形成されるようにした。
Step 3: Production of a uniform PLLA emulsion A microfluidic device is fed with 2% PVA solution in a continuous phase with a flow rate of 1.5 ml per minute, and the PVA solution is fed to the plant obtained in Step 2 above. The PLLA solution containing the essential oil was supplied in a discontinuous phase with a flow rate of 0.1 ml per minute using a 30-cage syringe needle to form an emulsion of a certain size. .

段階4:均一なPLLAビードの製造
前記段階3で得たエマルジョンを2% PVA収集相(collection phase)に分散させて150rpmで撹拌させた後、ジクロロメタン(Dichloromethane)を十分に揮発させた。
Step 4: Preparation of uniform PLLA beads The emulsion obtained in Step 3 above was dispersed in 2% PVA collection phase and stirred at 150 rpm, and then dichloromethane was fully volatilized.

段階5:内部気孔形成誘導物質を除去して多孔性付与
前記段階4で得たPLLAビードを蒸留水(D.W.)で数回洗浄した後、凍結乾燥器を利用して植物性油を除去して均一な大きさの中空多孔性微小球の多孔性PLLAビードを製造した。
Step 5: Removal of internal pore formation inducing substance to provide porosity After the PLLA bead obtained in Step 4 is washed several times with distilled water (DW), vegetable oil is added using a freeze dryer. A hollow PLLA bead having hollow porous microspheres of uniform size was produced by removing.

[試験例1]皮膚組織細胞の培養
本発明の一実施例に係る中空多孔性微小球の中空形成の有無による細胞移動性及び増殖効能を比べるための実験を下記のように行った。
[Test Example 1] Culture of skin tissue cells An experiment for comparing cell mobility and proliferation efficacy depending on the presence or absence of hollow formation of hollow porous microspheres according to an example of the present invention was performed as follows.

比較例として、中空を含まない多孔性微小球(small pores:トリデカン3質量%)及び前記実施例1の中空を含む多孔性微小球(Large pores:アルカン類でトリデカンを6質量wt%含む)をそれぞれ70%エタノールで滅菌処理した後、PBSで十分に洗浄し、NIH3T3線維芽細胞を移植して細胞増殖の挙動を観察した。NIH3T3線維芽細胞を1×10cells/mLの濃度で培養培地に分散させスピンナーフラスコ(spinner flask)を利用して6時間撹拌した後、多孔性粒子を培養容器(culture Plate)に移して培養した。細胞培養して1、3、7、10日目に前記培養した各多孔性微小球粒子をLIVE/DEAD染色した後、細胞の付着及び増殖の有無を共焦点顕微鏡とMTT assayによって確認した。図3及び図4に示したように、中空を含む中空多孔性微小球(Large pores)が、中空を含まず微細気孔のみを含む多孔性微小球(Small pores)に比べて、内部気孔へのNIH3T3線維芽細胞の浸透及び増殖が10日目までに順調になされることを確認することができる。これは、多孔性微小球内に含まれた中空が細胞の浸透及び増殖において大きな効果があることを意味する。 As comparative examples, porous microspheres without hollow (small pores: tridecane 3 mass%) and porous microspheres with hollow according to Example 1 (large pores: alkanes containing 6 mass% of tridecane) Each was sterilized with 70% ethanol, washed thoroughly with PBS, and NIH3T3 fibroblasts were transplanted to observe the behavior of cell proliferation. NIH3T3 fibroblasts are dispersed in a culture medium at a concentration of 1 × 10 3 cells / mL and stirred for 6 hours using a spinner flask, and then the porous particles are transferred to a culture plate (culture plate) and cultured. did. After culturing the cells, the cultured porous microsphere particles were stained with LIVE / DEAD on the first, third, seventh, and tenth days, and the presence or absence of cell attachment and proliferation was confirmed by a confocal microscope and MTT assay. As shown in FIGS. 3 and 4, the hollow porous microspheres including the hollow are larger than the porous microspheres (small pores) that do not include the hollow and include only the fine pores. It can be confirmed that the penetration and proliferation of NIH3T3 fibroblasts is successful by the 10th day. This means that the hollow contained in the porous microspheres has a great effect on cell penetration and proliferation.

本発明は、一実施例として次の実施形態を提供することができる。   The present invention can provide the following embodiment as an example.

第1実施形態は、中空多孔性微小球の製造方法であって、気孔形成誘導物質と疎水性の生分解性高分子を揮発性溶媒に溶解させることを含む高分子溶液の製造段階;前記高分子溶液を水又は相安定化剤を含む水溶液に分散させてO/W(Oil in Water)型のエマルジョン(emulsion)を形成する段階;前記高分子溶液が分散された水溶液上で揮発性溶媒を揮発させて前記疎水性の生分解性高分子を固形化して、疎水性の生分解性高分子と前記気孔形成誘導物質との間の自発的相分離を発生させて、O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させることを含む中空多孔性微小球の製造段階;及び前記中空多孔性微小球に含まれた気孔形成誘導物質を除去する段階を含む、中空多孔性微小球の製造方法を提供することができる。   The first embodiment is a method for producing hollow porous microspheres, comprising: producing a polymer solution comprising dissolving a pore formation inducing substance and a hydrophobic biodegradable polymer in a volatile solvent; A step of dispersing a molecular solution in water or an aqueous solution containing a phase stabilizer to form an oil in water (O / W) type emulsion; a volatile solvent is added to the aqueous solution in which the polymer solution is dispersed; Volatilizes and solidifies the hydrophobic biodegradable polymer to generate spontaneous phase separation between the hydrophobic biodegradable polymer and the pore formation inducing substance, and O / W (Oil in A process for producing hollow porous microspheres comprising converting an oil phase polymer solution contained in a water-type emulsion into O / S (oil in solid) microspheres; and said hollow porosity Comprising removing the pore forming inducing substance contained in globules, it is possible to provide a method for producing a hollow porous microspheres.

第2実施形態は、第1実施形態において、前記気孔形成誘導物質は、疎水性の生分解性高分子と相溶性がなく、且つ密度が水よりも低い疎水性流体である、中空多孔性微小球の製造方法を提供することができる。   The second embodiment is a hollow porous microporous material according to the first embodiment, wherein the pore formation inducing substance is a hydrophobic fluid that is not compatible with a hydrophobic biodegradable polymer and has a density lower than that of water. A method of manufacturing a sphere can be provided.

第3実施形態は、第1実施形態及び第2実施形態のいずれか一つ以上において、前記気孔形成誘導物質は、アルカン(alkane)類、植物性油及びこれらの混合物からなる群より選択された一つ以上の、中空多孔性微小球の製造方法を提供することができる。   According to a third embodiment, in any one or more of the first embodiment and the second embodiment, the pore formation inducing substance is selected from the group consisting of alkanes, vegetable oils, and mixtures thereof. One or more methods of producing hollow porous microspheres can be provided.

第4実施形態は、第3実施形態において、前記アルカン類は、オクタン(Octane)、ウンデカン(Undecane)、トリデカン(Tridecane)、ペンタデカン(Pentadecane)及びこれらの混合物からなる群より選択された一つ以上であり、前記植物性油は、大豆油、とうもろこし油、綿実油、オリーブ油、ブドウ種子油、くるみ油、ゴマ油、エゴマ油及びこれらの混合物からなる群より選択された一つ以上である、中空多孔性微小球の製造方法を提供することができる。   In a fourth embodiment, in the third embodiment, the alkane is one or more selected from the group consisting of octane, undecane, tridecane, pentadecane, and mixtures thereof. The vegetable oil is one or more selected from the group consisting of soybean oil, corn oil, cottonseed oil, olive oil, grape seed oil, walnut oil, sesame oil, sesame oil, and mixtures thereof, hollow porosity A method for producing microspheres can be provided.

第5実施形態は、第1実施形態〜第4実施形態のいずれか一つ以上において、前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる段階は、微細流体デバイスに前記水又は相安定化剤を含む水溶液を連続相で供給し、前記連続相で供給された水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相で供給する段階を含む、中空多孔性微小球の製造方法を提供することができる。   In the fifth embodiment, in any one or more of the first to fourth embodiments, an oil phase polymer solution contained in the O / W (oil in water) type emulsion is added to the O / W. The step of converting into S (Oil in Solid) microspheres includes supplying an aqueous solution containing the water or phase stabilizer to the microfluidic device in a continuous phase, and including the water or phase stabilizer supplied in the continuous phase. A method for producing hollow porous microspheres comprising the step of supplying the polymer solution to an aqueous solution in a discontinuous phase can be provided.

第6実施形態は、第1実施形態〜第5実施形態のいずれか一つ以上において、前記高分子溶液を不連続相で供給する速度を調節して、中空多孔性微小球の粒子及び気孔のうちの一つ以上の大きさ及び形態を調節する段階をさらに含む、中空多孔性微小球の製造方法を提供することができる。   The sixth embodiment is a method according to any one or more of the first to fifth embodiments, in which the rate of supplying the polymer solution in a discontinuous phase is adjusted, and the particles and pores of the hollow porous microspheres are adjusted. It is possible to provide a method for producing hollow porous microspheres, the method further comprising adjusting one or more of the sizes and forms.

第7実施形態は、第1実施形態〜第6実施形態のいずれか一つ以上において、前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる段階は、膜乳化装置に前記水又は相安定化剤を含む水溶液を連続相で供給し、前記連続相で供給された水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相で供給する段階を含む、中空多孔性微小球の製造方法を提供することができる。   In a seventh embodiment, the oil phase polymer solution contained in the O / W (Oil in Water) type emulsion is added to the O / W (oil in water) type emulsion in any one or more of the first to sixth embodiments. The step of converting into S (Oil in Solid) microspheres includes supplying an aqueous solution containing the water or phase stabilizer to the membrane emulsifying device in a continuous phase, and containing the water or phase stabilizer supplied in the continuous phase. A method for producing hollow porous microspheres comprising the step of supplying the polymer solution to an aqueous solution in a discontinuous phase can be provided.

第8実施形態は、第7実施形態において、前記膜乳化装置の膜に形成された空隙の大きさを調節して、中空多孔性微小球の粒子及び気孔のうちの一つ以上の大きさ及び形態を調節する段階をさらに含む、中空多孔性微小球の製造方法を提供することができる。   The eighth embodiment is the seventh embodiment, wherein the size of one or more of the hollow porous microsphere particles and pores is adjusted by adjusting the size of the voids formed in the membrane of the membrane emulsifying device. A method for producing hollow porous microspheres can further be provided, further comprising the step of adjusting the morphology.

第9実施形態は、第1実施形態〜第8実施形態のいずれか一つ以上において、前記微小球に含まれた気孔形成誘導物質を除去する段階は、前記微小球を水で洗浄した後に凍結乾燥させて気孔形成誘導物質を除去する段階を含む、中空多孔性微小球の製造方法を提供することができる。   In the ninth embodiment, in any one or more of the first embodiment to the eighth embodiment, the step of removing the pore formation inducing substance contained in the microsphere is performed by freezing the microsphere after washing with water. A method for producing hollow porous microspheres comprising the step of drying to remove pore formation inducing substances can be provided.

第10実施形態は、第1実施形態〜第9実施形態のいずれか一つ以上において、前記疎水性の生分解性高分子は、ポリ乳酸(Poly−L−Lactic Acid、PLLA)、ポリグリコール酸(polyglycolic acid、PGA)、ポリ乳酸−グリコール酸共重合体(poly(lactic−co−glycolic acid)、PLGA)、ポリ−ε−(カプロラクトン)(Polycaprolactone、PCL)、ポリ無水物(polyanhydrides)、ポリオルトエステル(polyorthoester)、ポリビニルアルコール(polyviniyalcohol)、ポリエチレングリコール(polyethyleneglycol)、ポリウレタン(polyurethane)、ポリアクリル酸(polyacrylic acid)、ポリ−N−イソプロピルアクリルアミド(Poly−N−isopropyl acrylamide)、ポリ(エチレンオキサイド)−ポリ(プロピレンオキサイド)−ポリ(エチレンオキサイド)共重合体(poly ethylene oxide)−poly propylene oxide−poly ethylene oxide copolymer)、これらの共重合体及びこれらの混合物からなる群より選択された一つ以上である、中空多孔性微小球の製造方法を提供することができる。   In a tenth embodiment according to any one or more of the first to ninth embodiments, the hydrophobic biodegradable polymer is polylactic acid (Poly-L-Lactic Acid, PLLA) or polyglycolic acid. (Polyglycolic acid, PGA), polylactic acid-glycolic acid copolymer (poly (lactic-co-glycolic acid), PLGA), poly-ε- (caprolactone) (Polycaprolactone, PCL), polyanhydrides (polyhydrides) Orthoester, poly (vinyl alcohol), polyethylene glycol, polyurethane, poly (polyethane) Polyacrylic acid, poly-N-isopropylacrylamide, poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) copolymer (polypropylene oxide) -polypropylene It is possible to provide a method for producing hollow porous microspheres, which is at least one selected from the group consisting of oxide-polyethylene oxide copolymer), copolymers thereof, and mixtures thereof.

第11実施形態は、第1実施形態〜第10実施形態のいずれか一つ以上において、前記製造される中空多孔性微小球は、中央に形成された空洞;及び前記空洞を取り囲む微細気孔を含む隔壁を含む、中空多孔性微小球の製造方法を提供することができる。   In an eleventh embodiment according to any one or more of the first to tenth embodiments, the produced hollow porous microsphere includes a cavity formed in the center; and micropores surrounding the cavity. A method for producing hollow porous microspheres including partition walls can be provided.

第12実施形態は、第1実施形態〜第10実施形態のいずれか一つ以上の製造方法によって製造された中空多孔性微小球を含む皮膚組織の再生又は皮膚組織のボリューム増進注射用組成物を提供することができる。   In a twelfth embodiment, there is provided a composition for injecting a skin tissue or a volume-enhancing injection of a skin tissue, comprising hollow porous microspheres produced by any one or more of the production methods of the first to tenth embodiments. Can be provided.

前記実施形態は本発明の説明のために開示されたものであり、前記説明は本発明の範囲を制限するものではない。したがって、当該技術分野の通常の技術者であれば本発明の意味及び範囲を逸脱することなく、種々の修正、変形、及び代替が可能である。   The embodiments have been disclosed for the purpose of explaining the present invention, and the above description does not limit the scope of the present invention. Accordingly, various modifications, variations, and alternatives can be made by those skilled in the art without departing from the meaning and scope of the present invention.

Claims (12)

中空多孔性微小球の製造方法であって、
気孔形成誘導物質と疎水性の生分解性高分子を揮発性溶媒に溶解させることを含む高分子溶液の製造段階;
前記高分子溶液を水又は相安定化剤を含む水溶液に分散させてO/W(Oil in Water)型のエマルジョン(emulsion)を形成する段階;
前記高分子溶液が分散された水溶液上で揮発性溶媒を揮発させて前記疎水性の生分解性高分子を固形化して、疎水性の生分解性高分子と前記気孔形成誘導物質との間の自発的相分離を発生させて、O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させることを含む中空多孔性微小球の製造段階;
前記中空多孔性微小球に含まれた気孔形成誘導物質を除去する段階を含む、
中空多孔性微小球の製造方法。
A method for producing hollow porous microspheres, comprising:
Producing a polymer solution comprising dissolving a pore formation inducer and a hydrophobic biodegradable polymer in a volatile solvent;
Dispersing the polymer solution in water or an aqueous solution containing a phase stabilizer to form an oil in water (O / W) type emulsion;
Volatile solvent is volatilized on the aqueous solution in which the polymer solution is dispersed to solidify the hydrophobic biodegradable polymer, so that the hydrophobic biodegradable polymer and the pore formation inducing substance are between. Hollow including generating spontaneous phase separation to convert oil phase polymer solution contained in O / W (Oil in Water) type emulsion into O / S (Oil in Solid) microspheres Production stage of porous microspheres;
Removing a pore formation inducing substance contained in the hollow porous microsphere,
Method for producing hollow porous microspheres.
前記気孔形成誘導物質は、疎水性の生分解性高分子と相溶性がなく、且つ密度が水よりも低い疎水性流体である、請求項1に記載の中空多孔性微小球の製造方法。   The method for producing hollow porous microspheres according to claim 1, wherein the pore formation inducing substance is a hydrophobic fluid that is not compatible with a hydrophobic biodegradable polymer and has a density lower than that of water. 前記気孔形成誘導物質は、アルカン(alkane)類、植物性油及びこれらの混合物からなる群より選択された一つ以上である、請求項2に記載の中空多孔性微小球の製造方法。   The method for producing hollow porous microspheres according to claim 2, wherein the pore formation inducing substance is at least one selected from the group consisting of alkanes, vegetable oils, and mixtures thereof. 前記アルカン類は、オクタン(Octane)、ウンデカン(Undecane)、トリデカン(Tridecane)、ペンタデカン(Pentadecane)及びこれらの混合物からなる群より選択された一つ以上であり、
前記植物性油は、大豆油、とうもろこし油、綿実油、オリーブ油、ブドウ種子油、くるみ油、ゴマ油、エゴマ油及びこれらの混合物からなる群より選択された一つ以上である、請求項3に記載の中空多孔性微小球の製造方法。
The alkane is at least one selected from the group consisting of octane, undecane, tridecane, pentadecane, and mixtures thereof.
The vegetable oil is one or more selected from the group consisting of soybean oil, corn oil, cottonseed oil, olive oil, grape seed oil, walnut oil, sesame oil, sesame oil, and mixtures thereof. Method for producing hollow porous microspheres.
前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる段階は、微細流体デバイスに前記水又は相安定化剤を含む水溶液を連続相で供給し、前記連続相で供給された水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相で供給する段階を含む、請求項1に記載の中空多孔性微小球の製造方法。   The step of converting the oil phase polymer solution contained in the O / W (Oil in Water) type emulsion into O / S (Oil in Solid) microspheres is performed by the microfluidic device in the water or phase stability. 2. The method according to claim 1, comprising: supplying an aqueous solution containing an agent in a continuous phase, and supplying the polymer solution in a discontinuous phase to water supplied in the continuous phase or an aqueous solution containing a phase stabilizer. Method for producing hollow porous microspheres. 前記高分子溶液を不連続相で供給する速度を調節して、中空多孔性微小球の粒子及び気孔のうちの一つ以上の大きさ及び形態を調節する段階をさらに含む、請求項5に記載の中空多孔性微小球の製造方法。   The method of claim 5, further comprising adjusting a rate at which the polymer solution is supplied in a discontinuous phase to adjust the size and shape of one or more of the particles and pores of the hollow porous microsphere. Of manufacturing hollow porous microspheres. 前記O/W(Oil in Water)型のエマルジョン(emulsion)に含まれた油相高分子溶液をO/S(Oil in Solid)微小球に変換させる段階は、膜乳化装置に前記水又は相安定化剤を含む水溶液を連続相で供給し、前記連続相で供給された水又は相安定化剤を含む水溶液に前記高分子溶液を不連続相で供給する段階を含む、請求項1に記載の中空多孔性微小球の製造方法。   The step of converting the oil-phase polymer solution contained in the O / W (Oil in Water) type emulsion into O / S (Oil in Solid) microspheres is performed by the membrane emulsifying device. 2. The method according to claim 1, comprising: supplying an aqueous solution containing an agent in a continuous phase, and supplying the polymer solution in a discontinuous phase to water supplied in the continuous phase or an aqueous solution containing a phase stabilizer. Method for producing hollow porous microspheres. 前記膜乳化装置の膜に形成された空隙大きさを調節して、中空多孔性微小球の粒子及び気孔のうちの一つ以上の大きさ及び形態を調節する段階をさらに含む、請求項7に記載の中空多孔性微小球の製造方法。   The method according to claim 7, further comprising adjusting a size of a void formed in the membrane of the membrane emulsifying device to adjust the size and shape of one or more of the particles and pores of the hollow porous microsphere. The manufacturing method of hollow porous microsphere of description. 前記微小球に含まれた気孔形成誘導物質を除去する段階は、前記微小球を水で洗浄した後に凍結乾燥させて気孔形成誘導物質を除去する段階を含む、請求項1に記載の中空多孔性微小球の製造方法。   2. The hollow porosity according to claim 1, wherein the step of removing pore formation inducing substances contained in the microspheres comprises the step of lyophilizing the microspheres and then lyophilizing to remove the pore formation inducing materials. A method for producing microspheres. 前記疎水性の生分解性高分子は、ポリ乳酸(Poly−L−Lactic Acid、PLLA)、ポリグリコール酸(polyglycolic acid、PGA)、ポリ乳酸−グリコール酸共重合体(poly(lactic−co−glycolic acid)、PLGA)、ポリ−ε−(カプロラクトン)(Polycaprolactone、PCL)、ポリ無水物(polyanhydrides)、ポリオルトエステル(polyorthoester)、ポリビニルアルコール(polyviniyalcohol)、ポリエチレングリコール(polyethyleneglycol)、ポリウレタン(polyurethane)、ポリアクリル酸(polyacrylic acid)、ポリ−N−イソプロピルアクリルアミド(Poly−N−isopropyl acrylamide)、ポリ(エチレンオキサイド)−ポリ(プロピレンオキサイド)−ポリ(エチレンオキサイド)共重合体(poly ethylene oxide)−poly propylene oxide−poly ethylene oxide copolymer)、これらの共重合体及びこれらの混合物からなる群より選択された一つ以上である、請求項1に記載の中空多孔性微小球の製造方法。   The hydrophobic biodegradable polymer includes polylactic acid (Poly-L-Lactic Acid, PLLA), polyglycolic acid (Polyglycolic acid, PGA), and polylactic acid-glycolic acid copolymer (poly (lactic-co-glycolic acid). acid), PLGA), poly-ε- (caprolactone) (Polycaprolactone, PCL), polyanhydrides, polyorthoesters, polyvinyl alcohol (polyvinylpropylene), polyethylene glycol (polyethylenepolyurethane). Polyacrylic acid, poly-N-isopropyl acetate Polyamide of poly-N-isopropyl acrylate, poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) -polypropylene oxide-polyethylene oxide, and polypropylene oxide-polyethylene oxide The method for producing hollow porous microspheres according to claim 1, wherein the method is one or more selected from the group consisting of a coalescence and a mixture thereof. 前記製造される中空多孔性微小球は、
中央に形成された空洞;及び前記空洞を取り囲む微細気孔を含む隔壁を含む、請求項1〜10のいずれか一項に記載の中空多孔性微小球の製造方法。
The produced hollow porous microsphere is:
The manufacturing method of the hollow porous microsphere as described in any one of Claims 1-10 including the cavity formed in the center; and the partition containing the micropores surrounding the said cavity.
請求項1〜10のいずれか一項に記載の製造方法によって製造された中空多孔性微小球を含む皮膚組織の再生又は皮膚組織のボリューム増進注射用組成物。   A composition for regenerating skin tissue or increasing volume of skin tissue, comprising hollow porous microspheres produced by the production method according to any one of claims 1 to 10.
JP2018516508A 2015-10-12 2016-09-28 Method for producing hollow porous microspheres Active JP6573716B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150142099A KR102464882B1 (en) 2015-10-12 2015-10-12 Method for manufacturing of hollow porous microsphere
KR10-2015-0142099 2015-10-12
PCT/KR2016/010855 WO2017065428A1 (en) 2015-10-12 2016-09-28 Method for producing hollow porous microspheres

Publications (2)

Publication Number Publication Date
JP2018529456A true JP2018529456A (en) 2018-10-11
JP6573716B2 JP6573716B2 (en) 2019-09-11

Family

ID=58517360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516508A Active JP6573716B2 (en) 2015-10-12 2016-09-28 Method for producing hollow porous microspheres

Country Status (4)

Country Link
JP (1) JP6573716B2 (en)
KR (1) KR102464882B1 (en)
CN (1) CN108136068B (en)
WO (1) WO2017065428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072968B1 (en) * 2019-05-28 2020-02-04 주식회사 울트라브이 The fabrication method of fine particle of biodegradable polymer and a biodegradable material for recovering tissues

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047058B2 (en) * 2017-07-27 2022-04-04 サムヤン ホールディングス コーポレイション Method for producing biodegradable polymer fine particles and biodegradable polymer fine particles produced thereby
CN107805464A (en) * 2017-11-28 2018-03-16 东莞中世拓实业有限公司 A kind of novel advertisement film with porous structural adhesive layer
CN108114310B (en) * 2017-12-22 2022-11-25 张海军 Degradable drug-loaded microsphere and preparation method thereof
CN109851721A (en) * 2018-12-28 2019-06-07 南京高正农用化工有限公司 A kind of pH stimulating responsive intelligent polymer microcapsule and preparation method thereof
CN111115612B (en) * 2019-12-14 2023-02-28 华东理工大学 Polyacrylonitrile-based millimeter-scale hollow porous carbon sphere and preparation method and application thereof
CN111298196A (en) * 2020-03-27 2020-06-19 常州药物研究所有限公司 Polylactic acid porous microsphere, preparation method and application thereof
CN112662005B (en) * 2020-12-17 2022-09-20 北京科技大学 Preparation and use method of polyester porous polymer microspheres
CN114225105A (en) * 2021-12-20 2022-03-25 南京思元医疗技术有限公司 Preparation method of microporous structure polycaprolactone/polyethylene glycol-poly-racemic lactic acid composite microspheres and injectable soft tissue filler
CN115212813B (en) * 2022-07-19 2023-07-25 西南交通大学 Full-aqueous-phase double-layer porous gel microsphere and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279138A (en) * 2004-03-31 2005-10-13 National Institute Of Advanced Industrial & Technology Spherical bioerodible polymer/ceramic complex having internal porous structure, and production method thereof
KR20080006965A (en) * 2006-07-14 2008-01-17 한국과학기술원 Porous biodegradable microcarriers for cell culture and delivery and fabrication method thereof
JP2009242728A (en) * 2008-03-31 2009-10-22 Ryukoku Univ Polylactic acid porous particle and method of manufacturing the same
US20090317478A1 (en) * 2008-06-19 2009-12-24 Korea Institute Of Science And Technology Method of preparing covered porous biodegradable polymer microspheres for sustained-release drug delivery and tissue regeneration
KR20090130912A (en) * 2008-06-17 2009-12-28 이진호 Porous beads having uniform pore structure for tissue engineering and its manufacturing method
JP2011512810A (en) * 2008-02-29 2011-04-28 コロプラスト アクティーゼルスカブ Compositions and methods for augmentation and regeneration of biological tissue in a subject
KR20120117585A (en) * 2011-04-15 2012-10-24 서울대학교산학협력단 Manufacturing method for porous hollow microsphere and porous hollow microsphere prepared by the same
KR20150108956A (en) * 2014-03-18 2015-10-01 단국대학교 천안캠퍼스 산학협력단 Porous polymer sphere, method for preparing thereof, and biodegradable materials for tissue engineering using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020004A (en) * 1997-04-17 2000-02-01 Amgen Inc. Biodegradable microparticles for the sustained delivery of therapeutic drugs
FR2769854B1 (en) * 1997-10-21 2000-03-31 Prographarm Lab NEW PROCESS FOR OBTAINING MICROSPHERES AND THE PRODUCTS THUS PRODUCED
KR20010002589A (en) * 1999-06-16 2001-01-15 김윤 Process for preparing biodegradable microspheres containing physiologically active agents
CN100467113C (en) * 2003-10-20 2009-03-11 中国科学院大连化学物理研究所 Prepn process of monodisperse polymer microballoon
CN101279232B (en) * 2008-01-11 2010-10-06 东南大学 Preparation of microballoons based on microfluid
KR101105292B1 (en) * 2009-06-05 2012-01-17 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
KR101142234B1 (en) 2009-12-28 2012-07-09 한남대학교 산학협력단 Injectable Porous Microparticle Filler System
CN102068948A (en) * 2010-11-19 2011-05-25 无锡中科光远生物材料有限公司 Polymer microsphere with golf ball surface structure and preparation method thereof
CN102417552A (en) * 2011-09-22 2012-04-18 中国科学院过程工程研究所 Polymer nanomicrosphere product with uniform and controllable size and preparation method thereof
KR101421933B1 (en) * 2012-06-19 2014-07-28 서울과학기술대학교 산학협력단 Biodegradable Hybrid Hydrogel and Method for Preparing the Same
KR101537716B1 (en) * 2013-02-14 2015-07-21 인제대학교 산학협력단 Manufacturing method of scafold using centrifugation and scafold made by the same
KR20150049029A (en) * 2013-10-29 2015-05-08 가톨릭대학교 산학협력단 Method of preparing biodegradable polymer microspheres with sustained release drug using fluidic process
CN104208755A (en) * 2014-08-29 2014-12-17 石家庄亿生堂医用品有限公司 Preparation method of chitosan microsphere

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279138A (en) * 2004-03-31 2005-10-13 National Institute Of Advanced Industrial & Technology Spherical bioerodible polymer/ceramic complex having internal porous structure, and production method thereof
KR20080006965A (en) * 2006-07-14 2008-01-17 한국과학기술원 Porous biodegradable microcarriers for cell culture and delivery and fabrication method thereof
JP2011512810A (en) * 2008-02-29 2011-04-28 コロプラスト アクティーゼルスカブ Compositions and methods for augmentation and regeneration of biological tissue in a subject
JP2009242728A (en) * 2008-03-31 2009-10-22 Ryukoku Univ Polylactic acid porous particle and method of manufacturing the same
KR20090130912A (en) * 2008-06-17 2009-12-28 이진호 Porous beads having uniform pore structure for tissue engineering and its manufacturing method
US20090317478A1 (en) * 2008-06-19 2009-12-24 Korea Institute Of Science And Technology Method of preparing covered porous biodegradable polymer microspheres for sustained-release drug delivery and tissue regeneration
KR20120117585A (en) * 2011-04-15 2012-10-24 서울대학교산학협력단 Manufacturing method for porous hollow microsphere and porous hollow microsphere prepared by the same
KR20150108956A (en) * 2014-03-18 2015-10-01 단국대학교 천안캠퍼스 산학협력단 Porous polymer sphere, method for preparing thereof, and biodegradable materials for tissue engineering using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072968B1 (en) * 2019-05-28 2020-02-04 주식회사 울트라브이 The fabrication method of fine particle of biodegradable polymer and a biodegradable material for recovering tissues

Also Published As

Publication number Publication date
JP6573716B2 (en) 2019-09-11
KR102464882B1 (en) 2022-11-17
WO2017065428A1 (en) 2017-04-20
KR20170042905A (en) 2017-04-20
CN108136068B (en) 2021-09-21
CN108136068A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
JP6573716B2 (en) Method for producing hollow porous microspheres
JP6567485B2 (en) Injectable pore-forming hydrogel for material-based cell therapy
Reverchon et al. Supercritical fluids in 3-D tissue engineering
Choi et al. Biodegradable porous beads and their potential applications in regenerative medicine
Mazzitelli et al. Preparation of cell-encapsulation devices in confined microenvironment
JP6605722B2 (en) Composition for injection of skin tissue regeneration or volume-enhanced skin tissue containing hollow porous microspheres
Park et al. Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering
Peng et al. Preparation of highly porous interconnected poly (lactic acid) scaffolds based on a novel dynamic elongational flow procedure
CN101791437B (en) Preparation method of polymer/inorganic particle composite bone repair porous scaffold
KR101222408B1 (en) Preparation of uniform microparticles with inner pore structures and dimple structures on the surface by using a microfluidic device
KR20180018000A (en) Injectable three-dimensional nano fiber scaffolds and method for preparing the same
US20190030211A1 (en) Hydrogel scaffold for three dimensional cell culture
WO2014143871A2 (en) Thermoresponsive polymer applications for adherent cell culture and recovery
KR101461327B1 (en) Porous beads with a large and open pores for tissue engineering and method thereof
KR20140103197A (en) Manufacturing method of scafold using centrifugation and scafold made by the same
KR102020803B1 (en) Technique for the production of nanofibrous collagen/bioceramic microspheres
Chen et al. Collagen‐Based Porous Scaffolds for Tissue Engineering
CN114832742B (en) Emulsion template and polymer porous microsphere derived from same
Della Porta et al. Modular Tissue Engineering: An Artificial Extracellular Matrix to Address and Stimulate Regeneration/Differentiation
EP3106183A1 (en) Scaffold for tissue engineering and method of fabricating the same
Wang et al. Emulsion electrospinning of nanofibrous delivery vehicles for the controlled release of biomolecules and the in vitro release behaviour of biomolecules
KR101622547B1 (en) Supports for tissue engineering, and method for preparing thereof
CN104001219A (en) Method for sintering co-loading cell porous microsphere scaffold through subcritical carbon dioxide
Li et al. Fabrication of polymeric microspheres for biomedical applications
Kirsch Developing and evaluating a microsphere laden neural tissue model using 3D bioprinting and microfluidics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250