JP2018206521A - High-temperature superconducting wire and superconducting coil - Google Patents

High-temperature superconducting wire and superconducting coil Download PDF

Info

Publication number
JP2018206521A
JP2018206521A JP2017107682A JP2017107682A JP2018206521A JP 2018206521 A JP2018206521 A JP 2018206521A JP 2017107682 A JP2017107682 A JP 2017107682A JP 2017107682 A JP2017107682 A JP 2017107682A JP 2018206521 A JP2018206521 A JP 2018206521A
Authority
JP
Japan
Prior art keywords
layer
superconducting
superconducting wire
stabilization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017107682A
Other languages
Japanese (ja)
Other versions
JP6751052B2 (en
Inventor
朋 吉田
Tomo Yoshida
朋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2017107682A priority Critical patent/JP6751052B2/en
Publication of JP2018206521A publication Critical patent/JP2018206521A/en
Application granted granted Critical
Publication of JP6751052B2 publication Critical patent/JP6751052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

To provide a high-temperature superconducting wire and a superconducting coil that reduce peeling stress generated upon cooling and can maintain tensile strength.SOLUTION: A high-temperature superconducting wire 10 has a high-temperature superconductor and a stabilization layer. In the high-temperature superconducting wire 10, the stabilization layer 12 is composed of two stabilization layers 12a, 12b on at least one principal surface of the high-temperature superconducting wire 10 and the inner stabilization layer 12a of two stabilization layers has a Young's modulus lower than a Young's modulus of the outer stabilization layer 12b.SELECTED DRAWING: Figure 2

Description

本発明は、高温超電導線材及び超電導コイルに関する。   The present invention relates to a high-temperature superconducting wire and a superconducting coil.

高温超電導線材を巻回させた超電導コイルを使用する際には、超電導特性を発現させるために冷却が必要となる。超電導コイルを冷却する際、含浸樹脂と高温超電導線材との熱収縮の差により、高温超電導線材の内部には高温超電導層が基材から剥離する方向に剥離応力が発生する。この剥離応力により、層間剥離やクラックが発生すると、安定した超電導特性を得ることができないおそれがある。   When using a superconducting coil in which a high-temperature superconducting wire is wound, cooling is necessary to develop superconducting characteristics. When the superconducting coil is cooled, a peeling stress is generated in the high temperature superconducting wire in the direction in which the high temperature superconducting layer peels from the base material due to a difference in thermal shrinkage between the impregnating resin and the high temperature superconducting wire. If delamination or cracks occur due to this peeling stress, stable superconducting characteristics may not be obtained.

剥離応力を低減するため、従来、様々な構造が提案されている。例えば、特許文献1には、超電導線材の表面に離形材層を設けた構造が記載されている。また、特許文献2には、超電導線材の表面にカーボン層を形成し、含浸樹脂と超電導線材との間で、カーボン層が弱い力で破断することにより、超電導層の破損を防止する構造が記載されている。   Conventionally, various structures have been proposed in order to reduce the peeling stress. For example, Patent Document 1 describes a structure in which a release material layer is provided on the surface of a superconducting wire. Patent Document 2 describes a structure in which a carbon layer is formed on the surface of a superconducting wire, and the carbon layer breaks with a weak force between the impregnating resin and the superconducting wire, thereby preventing damage to the superconducting layer. Has been.

特開2010−267550号公報JP 2010-267550 A 特開2016−134418号公報JP-A-2006-134418

超電導線材に離形材層やカーボン層等の柔軟な層を設ける場合、線材全体のヤング率が低くなり、超電導線材の引張強度が低下する。超電導線材をコイル状に巻回する際に離形材の塗布やカーボン層の形成を行う場合、超電導コイルの製造工程が複雑になる。   When a flexible layer such as a release material layer or a carbon layer is provided on the superconducting wire, the Young's modulus of the entire wire is lowered, and the tensile strength of the superconducting wire is lowered. When the superconducting wire is wound into a coil, when the release material is applied or the carbon layer is formed, the manufacturing process of the superconducting coil becomes complicated.

本発明は、上記事情に鑑みてなされたものであり、冷却時の剥離応力が低減され、引張強度を維持することが可能な高温超電導線材及び超電導コイルを提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the high temperature superconducting wire and superconducting coil which can reduce the peeling stress at the time of cooling and can maintain a tensile strength.

前記課題を解決するため、本発明は、高温超電導体と安定化層を有する高温超電導線材であって、前記安定化層は、前記高温超電導線材の少なくとも一方の主面において、2層の安定化層を有し、前記2層の安定化層のうち、内側の安定化層のヤング率が、外側の安定化層のヤング率より低いことを特徴とする高温超電導線材を提供する。   In order to solve the above problems, the present invention is a high-temperature superconducting wire having a high-temperature superconductor and a stabilization layer, wherein the stabilization layer has two layers of stabilization on at least one main surface of the high-temperature superconducting wire. There is provided a high-temperature superconducting wire characterized in that, among the two stabilization layers, the Young's modulus of the inner stabilization layer is lower than the Young's modulus of the outer stabilization layer.

前記安定化層は、テープ状の基材と、前記基材上に形成された中間層と、前記中間層上に形成されて前記高温超電導体からなる超電導層と、前記超電導層上に形成された保護層とを有する超電導積層体の外周に設けられ、前記2層の安定化層は、少なくとも前記保護層の表面に設けられていてもよい。   The stabilization layer is formed on a tape-shaped substrate, an intermediate layer formed on the substrate, a superconducting layer formed on the intermediate layer and made of the high-temperature superconductor, and the superconducting layer. Provided on the outer periphery of the superconducting laminate having the protective layer, and the two stabilization layers may be provided at least on the surface of the protective layer.

また、本発明は、前記高温超電導線材が巻回され、その間に樹脂が含浸されてなることを特徴とする超電導コイルを提供する。   The present invention also provides a superconducting coil, wherein the high-temperature superconducting wire is wound and impregnated with a resin therebetween.

本発明によれば、外側の安定化層の内側に、ヤング率が低い安定化層が設けられているため、冷却時の剥離応力が低減され、引張強度を維持することが可能になる。   According to the present invention, since the stabilizing layer having a low Young's modulus is provided inside the outer stabilizing layer, the peeling stress during cooling is reduced, and the tensile strength can be maintained.

超電導コイルの一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of a superconducting coil. 実施形態の超電導コイルの一例を示す部分拡大断面図である。It is a partial expanded sectional view which shows an example of the superconducting coil of embodiment. 超電導積層体の一例を模式的に示す断面図である。It is sectional drawing which shows an example of a superconducting laminated body typically. 比較例1の超電導コイルの一例を示す部分拡大断面図である。6 is a partial enlarged cross-sectional view showing an example of a superconducting coil of Comparative Example 1. FIG. 比較例2の超電導コイルの一例を示す部分拡大断面図である。6 is a partial enlarged cross-sectional view showing an example of a superconducting coil of Comparative Example 2. FIG.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
図1に、超電導コイルの一例を模式的に示す。図2に、図1のA部の断面を示す。図3に、超電導積層体の一例を示す。本実施形態の超電導コイル20は、高温超電導線材10が巻回された間に、樹脂21が含浸されてなる。高温超電導線材10は、超電導積層体11の周囲に安定化層12を有する。
Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.
FIG. 1 schematically shows an example of a superconducting coil. FIG. 2 shows a cross section of part A of FIG. FIG. 3 shows an example of a superconducting laminate. The superconducting coil 20 of this embodiment is impregnated with a resin 21 while the high-temperature superconducting wire 10 is wound. The high-temperature superconducting wire 10 has a stabilization layer 12 around the superconducting laminate 11.

超電導積層体11は、テープ状の基材11aと、基材11a上に形成された中間層11bと、中間層11b上に形成された超電導層11cと、超電導層11c上に形成された保護層11dとを有する。本明細書において、基材11a、中間層11b、超電導層11c、保護層11d等の各層が積層される方向が厚さ方向である。また、幅方向は、長手方向及び厚さ方向に垂直な方向である。   The superconducting laminate 11 includes a tape-like substrate 11a, an intermediate layer 11b formed on the substrate 11a, a superconducting layer 11c formed on the intermediate layer 11b, and a protective layer formed on the superconducting layer 11c. 11d. In the present specification, the direction in which the layers such as the base material 11a, the intermediate layer 11b, the superconducting layer 11c, and the protective layer 11d are laminated is the thickness direction. The width direction is a direction perpendicular to the longitudinal direction and the thickness direction.

基材11aは、例えばテープ状の金属基材であり、厚さ方向の両側に、それぞれ主面を有する。基材11aの幅は、例えば5〜20mm程度である。基材11aの厚さは、目的に応じて適宜調整すれば良く、例えば10〜500μmの範囲である。   The base material 11a is a tape-shaped metal base material, for example, and has main surfaces on both sides in the thickness direction. The width of the base material 11a is, for example, about 5 to 20 mm. What is necessary is just to adjust the thickness of the base material 11a suitably according to the objective, for example, it is the range of 10-500 micrometers.

中間層11bは、基材11aと超電導層11cとの間に設けられる。中間層11bは、多層構成でもよく、例えば基材11a側から超電導層11c側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。   The intermediate layer 11b is provided between the base material 11a and the superconducting layer 11c. The intermediate layer 11b may have a multilayer structure, and may include a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in order from the base material 11a side to the superconducting layer 11c side. These layers are not necessarily one layer at a time, and some layers may be omitted, or two or more of the same kind of layers may be laminated repeatedly.

超電導層11cは、高温超電導体から構成される。高温超電導体は、転移温度が約25K以上の超電導体であり、なかでも、転移温度が液体窒素温度(約77K)以上の超電導体が好ましい。高温超電導体の具体例として、希土類元素(RE)を含むRE−Ba−Cu−O系酸化物、ビスマス元素(Bi)を含むBi−Sr−Ca−Cu−O系酸化物が挙げられる。   The superconducting layer 11c is composed of a high temperature superconductor. The high-temperature superconductor is a superconductor having a transition temperature of about 25K or higher, and among them, a superconductor having a transition temperature of liquid nitrogen temperature (about 77K) or higher is preferable. Specific examples of the high-temperature superconductor include a RE-Ba-Cu-O-based oxide containing a rare earth element (RE) and a Bi-Sr-Ca-Cu-O-based oxide containing a bismuth element (Bi).

保護層11dは、事故時に発生する過電流をバイパスしたり、超電導層11cと保護層11dの上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層11dの材質としては、例えば銀(Ag)、銅(Cu)、金(Au)、金と銀との合金、その他の銀合金、銅合金、金合金などが挙げられる。保護層11dは、少なくとも超電導層11cの表面を覆っている。   The protective layer 11d has functions such as bypassing overcurrent generated at the time of an accident and suppressing a chemical reaction occurring between the superconducting layer 11c and a layer provided on the protective layer 11d. Examples of the material of the protective layer 11d include silver (Ag), copper (Cu), gold (Au), alloys of gold and silver, other silver alloys, copper alloys, and gold alloys. The protective layer 11d covers at least the surface of the superconducting layer 11c.

高温超電導線材10は、超電導積層体11の外周に、金属めっき、金属箔等の金属からなる安定化層12を有する。安定化層12は、保護層11dの表面、保護層11dの側面、超電導層11cの側面、中間層11bの側面、基材11aの側面、基材11aの裏面から選択される領域の一部または全部を覆ってもよい。安定化層12の厚さとしては、例えば10〜300μm程度が挙げられる。   The high-temperature superconducting wire 10 has a stabilization layer 12 made of metal such as metal plating or metal foil on the outer periphery of the superconducting laminate 11. The stabilization layer 12 is a part of a region selected from the surface of the protective layer 11d, the side surface of the protective layer 11d, the side surface of the superconducting layer 11c, the side surface of the intermediate layer 11b, the side surface of the base material 11a, or the back surface of the base material 11a. You may cover everything. As thickness of the stabilization layer 12, about 10-300 micrometers is mentioned, for example.

本実施形態の高温超電導線材10において、安定化層12は、高温超電導線材10の少なくとも一方の主面において、2層の安定化層12a,12bを有する。高温超電導線材10の主面とは、高温超電導線材10の厚さ方向の両側の面である。図2に示すように、超電導コイル20において、高温超電導線材10を巻回すると、高温超電導線材10の主面が対向する間に樹脂21が含浸されている。例えば、図3に示す超電導積層体11の外周上では、保護層11dの表面上、又は基材11aの裏面上が、高温超電導線材10の主面に相当する。   In the high temperature superconducting wire 10 of the present embodiment, the stabilization layer 12 has two stabilization layers 12 a and 12 b on at least one main surface of the high temperature superconducting wire 10. The main surfaces of the high-temperature superconducting wire 10 are surfaces on both sides in the thickness direction of the high-temperature superconducting wire 10. As shown in FIG. 2, when the high-temperature superconducting wire 10 is wound in the superconducting coil 20, the resin 21 is impregnated while the main surfaces of the high-temperature superconducting wire 10 face each other. For example, on the outer periphery of the superconducting laminate 11 shown in FIG. 3, the surface of the protective layer 11 d or the back surface of the base material 11 a corresponds to the main surface of the high-temperature superconducting wire 10.

2層の安定化層12a,12bにおいて、ヤング率が低い安定化層12aを内側に、ヤング率が高い安定化層12bを外側に配することにより、内側のヤング率が低い安定化層12aが緩衝材の役割を果たすため、高温超電導線材10にかかる剥離応力を低減することができる。また、外側のヤング率が高い安定化層12bは、高温超電導線材10の長手方向の引張強度を保つとともに、含浸樹脂21の熱収縮等に対して機械的な耐久性を付与することができる。2層の安定化層12a,12bは、金属同士で密着性に優れる。   In the two stabilization layers 12a and 12b, the stabilization layer 12a having a low Young's modulus is disposed on the inside, and the stabilization layer 12b having a high Young's modulus is disposed on the outside. Since it plays the role of a buffer material, the peeling stress applied to the high-temperature superconducting wire 10 can be reduced. In addition, the stabilization layer 12 b having a high Young's modulus on the outside can maintain the tensile strength in the longitudinal direction of the high-temperature superconducting wire 10 and can impart mechanical durability against thermal shrinkage of the impregnating resin 21. The two stabilization layers 12a and 12b are made of metal and excellent in adhesion.

基材11aを有する超電導積層体11において、一般に基材11aの厚さが超電導積層体11の厚さの大部分を占めることから、基材11aの裏面上よりも、保護層11dの表面上のほうが、超電導層11cに近くなる。そこで、2層の安定化層12a,12bは、少なくとも保護層11dの表面上に設けられることが好ましい。   In the superconducting laminate 11 having the base material 11a, since the thickness of the base material 11a generally occupies most of the thickness of the superconducting laminate 11, it is on the surface of the protective layer 11d rather than on the back surface of the base material 11a. This is closer to the superconducting layer 11c. Therefore, the two stabilization layers 12a and 12b are preferably provided on at least the surface of the protective layer 11d.

ヤング率が低い安定化層12aを構成する材料としては、例えばヤング率Eが50GPa以下の金属材料が好ましく、Eが40GPa以下の金属材料がより好ましい。具体例として、Sn−Ag−Cu(E=31GPa)、Sn−Zn−Al(E=37GPa)、Sn−Bi−Ag(E=24GPa)、Sn−Pb(E=22GPa)等の半田が挙げられる。ヤング率が低い安定化層12aの厚さは、例えば5μm以上であり、約10μm、約15μm、約20μm、約25μm、約30μm、約35μm、約40μm、約45μm、約50μm等が挙げられる。ヤング率の低い安定化層12aは、高温超電導線材10の厚さ方向に働く剥離応力を低減する緩衝層として働くことから、高温超電導線材10の側面よりも保護層11dの表面と基材11aにおいて厚く形成されていると良い。他方、高温超電導線材10の側面においては、線材の断面形状が歪になるのを避けるために、ヤング率の低い安定化層12aは薄く形成されていると良い。   As a material constituting the stabilization layer 12a having a low Young's modulus, for example, a metal material having a Young's modulus E of 50 GPa or less is preferable, and a metal material having an E of 40 GPa or less is more preferable. Specific examples include solders such as Sn-Ag-Cu (E = 31 GPa), Sn-Zn-Al (E = 37 GPa), Sn-Bi-Ag (E = 24 GPa), Sn-Pb (E = 22 GPa). It is done. The thickness of the stabilization layer 12a having a low Young's modulus is, for example, 5 μm or more, and examples thereof include about 10 μm, about 15 μm, about 20 μm, about 25 μm, about 30 μm, about 35 μm, about 40 μm, about 45 μm, and about 50 μm. Since the stabilization layer 12a having a low Young's modulus functions as a buffer layer that reduces the peeling stress acting in the thickness direction of the high-temperature superconducting wire 10, the surface of the protective layer 11d and the base material 11a are more than the side surfaces of the high-temperature superconducting wire 10. It should be thick. On the other hand, on the side surface of the high-temperature superconducting wire 10, the stabilization layer 12a having a low Young's modulus is preferably formed thin in order to prevent the cross-sectional shape of the wire from becoming distorted.

ヤング率が高い安定化層12bを構成する材料としては、例えばヤング率Eが70GPa以上の金属材料が好ましく、Eが100GPa以上の金属材料がより好ましい。銅(Cu)、銀(Ag)、金(Au)等が挙げられる。ヤング率が高い安定化層12bの厚さは、例えば5μm以上であり、約10μm、約15μm、約20μm、約25μm、約30μm、約35μm、約40μm、約45μm、約50μm等が挙げられる。   As a material constituting the stabilization layer 12b having a high Young's modulus, for example, a metal material having a Young's modulus E of 70 GPa or more is preferable, and a metal material having an E of 100 GPa or more is more preferable. Examples include copper (Cu), silver (Ag), and gold (Au). The thickness of the stabilization layer 12b having a high Young's modulus is, for example, 5 μm or more, and examples thereof include about 10 μm, about 15 μm, about 20 μm, about 25 μm, about 30 μm, about 35 μm, about 40 μm, about 45 μm, and about 50 μm.

2層の安定化層12a,12bの厚さの比率として、例えば10%:90%〜90%:10%が挙げられる。この比率の具体例として、10%:90%程度、20%:80%程度、30%:70%程度、40%:60%程度、50%:50%程度、60%:40%程度、70%:30%程度、80%:20%程度、90%:10%程度が挙げられる。   Examples of the ratio of the thicknesses of the two stabilization layers 12a and 12b include 10%: 90% to 90%: 10%. As specific examples of this ratio, 10%: about 90%, 20%: about 80%, 30%: about 70%, 40%: about 60%, 50%: about 50%, 60%: about 40%, 70 %: About 30%, 80%: about 20%, 90%: about 10%.

比較のため、図4に、超電導積層体11の外周にヤング率が中程度の安定化層12cを1層のみ積層してなる高温超電導線材101から作製した超電導コイル201を示す。この場合、安定化層12cに緩衝作用がないため、冷却時の剥離応力が低減されず、特性の劣化が多くなると考えられる。
また、図5に、ヤング率が低い安定化層12aを外側に、ヤング率が高い安定化層12bを内側に配した高温超電導線材102から作製した超電導コイル202を示す。この場合、ヤング率が低い安定化層12aが超電導層から離れるため、剥離応力を低減する効果が薄く、特性の劣化が多くなると考えられる。
For comparison, FIG. 4 shows a superconducting coil 201 produced from a high-temperature superconducting wire 101 in which only one stabilization layer 12c having a medium Young's modulus is laminated on the outer periphery of the superconducting laminate 11. In this case, since the stabilizing layer 12c does not have a buffering effect, it is considered that the peeling stress during cooling is not reduced and the deterioration of characteristics increases.
FIG. 5 shows a superconducting coil 202 made from a high-temperature superconducting wire 102 having a stabilization layer 12a having a low Young's modulus on the outside and a stabilization layer 12b having a high Young's modulus on the inside. In this case, since the stabilization layer 12a having a low Young's modulus is separated from the superconducting layer, it is considered that the effect of reducing the peeling stress is thin and the deterioration of the characteristics increases.

テープ状の高温超電導線材10を使用して超電導コイル20を作製するには、例えば線材を巻枠の外周面に沿って必要な層数巻き付けてコイル形状の多層巻きコイルを構成した後、巻き付けた線材を覆うようにエポキシ樹脂等の樹脂を含浸させて、超電導線材を固定する方法が挙げられる。   In order to fabricate the superconducting coil 20 using the tape-shaped high-temperature superconducting wire 10, for example, the wire is wound around the outer peripheral surface of the winding frame to form a coil-shaped multi-layer winding coil and then wound. A method of fixing the superconducting wire by impregnating a resin such as an epoxy resin so as to cover the wire is mentioned.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
高温超電導線材及び超電導コイルは、外部との接続端子や線材同士の接続部を有することができる。これらの箇所では、他の箇所と異なる断面構造を有してもよい。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
The high-temperature superconducting wire and the superconducting coil can have connection terminals to the outside and connecting portions between the wires. These portions may have a different cross-sectional structure from other portions.

以下、実施例をもって本発明を具体的に説明する。
(超電導積層体の作製)
厚さ75μm、幅12mmのハステロイ(登録商標)テープ基材の表面に、IBAD(イオンビームアシスト蒸着)法により厚さ1μmのGdZrからなる第一中間層を成膜した。次に、第一中間層の上に、パルスレーザー蒸着(PLD)法により厚さ0.5μmのCeOからなる第二中間層を成膜した。次に、第二中間層の上に、PLD法により厚さ2μmのGdBaCu7−xからなる超電導層を成膜した。次に、超電導層の上に、スパッタ法により厚さ7μmのAgからなる保護層を積層した。得られた積層体に対し、温度500℃で酸素アニール処理を施すことにより、超電導積層体を得た。
Hereinafter, the present invention will be specifically described with reference to examples.
(Preparation of superconducting laminate)
A first intermediate layer made of Gd 2 Zr 2 O 7 having a thickness of 1 μm was formed on the surface of a Hastelloy (registered trademark) tape base material having a thickness of 75 μm and a width of 12 mm by an IBAD (ion beam assisted vapor deposition) method. Next, a second intermediate layer made of CeO 2 having a thickness of 0.5 μm was formed on the first intermediate layer by a pulse laser deposition (PLD) method. Next, a superconducting layer made of GdBa 2 Cu 3 O 7-x having a thickness of 2 μm was formed on the second intermediate layer by the PLD method. Next, a protective layer made of Ag having a thickness of 7 μm was laminated on the superconducting layer by sputtering. The obtained laminate was subjected to oxygen annealing at a temperature of 500 ° C. to obtain a superconducting laminate.

(実施例)
超電導積層体の外周に、厚さ20μmでヤング率30GPaの第一安定化層を積層した。次に、第一安定化層の上に、厚さ20μmでヤング率130GPaの第二安定化層を積層して、2層の安定化層を有する超電導線材を作製した。得られた超電導線材を巻回し、線材間にエポキシ等の樹脂を含浸して、外径(OD)が140mm、内径(ID)が100mmの超電導コイルを作製した。20個の超電導コイルを作製して液体窒素温度に冷却し、超電導線材に通電したところ、20個中1個のコイル劣化が認められた。
(Example)
A first stabilizing layer having a thickness of 20 μm and a Young's modulus of 30 GPa was laminated on the outer periphery of the superconducting laminate. Next, a second stabilization layer having a thickness of 20 μm and a Young's modulus of 130 GPa was laminated on the first stabilization layer to produce a superconducting wire having two stabilization layers. The obtained superconducting wire was wound and impregnated with a resin such as epoxy between the wires to produce a superconducting coil having an outer diameter (OD) of 140 mm and an inner diameter (ID) of 100 mm. When 20 superconducting coils were prepared, cooled to liquid nitrogen temperature, and the superconducting wire was energized, one of the 20 coils was found to be deteriorated.

(比較例1)
超電導積層体の外周に、厚さ40μmでヤング率50GPaの安定化層を積層して、1層の安定化層を有する超電導線材を作製した。得られた超電導線材を巻回し、線材間にエポキシ等の樹脂を含浸して、外径(OD)が140mm、内径(ID)が100mmの超電導コイルを作製した。20個の超電導コイルを作製して液体窒素温度に冷却し、超電導線材に通電したところ、20個中6個のコイル劣化が認められた。
(Comparative Example 1)
A superconducting wire having one stabilization layer was prepared by laminating a stabilization layer having a thickness of 40 μm and a Young's modulus of 50 GPa on the outer periphery of the superconducting laminate. The obtained superconducting wire was wound and a resin such as epoxy was impregnated between the wires to produce a superconducting coil having an outer diameter (OD) of 140 mm and an inner diameter (ID) of 100 mm. When 20 superconducting coils were prepared, cooled to liquid nitrogen temperature, and the superconducting wire was energized, 6 of the 20 coils were found to be deteriorated.

(比較例2)
超電導積層体の外周に、厚さ20μmでヤング率130GPaの第一安定化層を積層した。次に、第一安定化層の上に、厚さ20μmでヤング率30GPaの第二安定化層を積層して、2層の安定化層を有する超電導線材を作製した。得られた超電導線材を巻回し、線材間にエポキシ等の樹脂を含浸して、外径(OD)が140mm、内径(ID)が100mmの超電導コイルを作製した。20個の超電導コイルを作製して液体窒素温度に冷却し、超電導線材に通電したところ、20個中10個のコイル劣化が認められた。
(Comparative Example 2)
A first stabilizing layer having a thickness of 20 μm and a Young's modulus of 130 GPa was laminated on the outer periphery of the superconducting laminate. Next, a second stabilizing layer having a thickness of 20 μm and a Young's modulus of 30 GPa was laminated on the first stabilizing layer to produce a superconducting wire having two stabilizing layers. The obtained superconducting wire was wound and a resin such as epoxy was impregnated between the wires to produce a superconducting coil having an outer diameter (OD) of 140 mm and an inner diameter (ID) of 100 mm. When 20 superconducting coils were prepared, cooled to liquid nitrogen temperature, and the superconducting wire was energized, 10 out of 20 coils were found to be deteriorated.

実施例1は、比較例1〜2と比較して、超電導線材全体のヤング率が同じであるが、冷却時のコイル劣化を著しく低減することができた。この結果から、実施例1は、比較例1〜2と比較して、剥離応力に強い構造であることが実証された。   In Example 1, the Young's modulus of the entire superconducting wire was the same as in Comparative Examples 1 and 2, but the coil deterioration during cooling could be remarkably reduced. From this result, it was proved that Example 1 had a structure strong against peeling stress as compared with Comparative Examples 1 and 2.

10…高温超電導線材、11…超電導積層体、11a…基材、11b…中間層、11c…超電導層、11d…保護層、12…安定化層、12a…ヤング率が低い安定化層、12b…ヤング率が高い安定化層、20…超電導コイル、21…含浸樹脂。 DESCRIPTION OF SYMBOLS 10 ... High temperature superconducting wire, 11 ... Superconducting laminated body, 11a ... Base material, 11b ... Intermediate layer, 11c ... Superconducting layer, 11d ... Protective layer, 12 ... Stabilizing layer, 12a ... Stabilizing layer with low Young's modulus, 12b ... Stabilization layer with high Young's modulus, 20 ... superconducting coil, 21 ... impregnation resin.

Claims (3)

高温超電導体と安定化層を有する高温超電導線材であって、
前記安定化層は、前記高温超電導線材の少なくとも一方の主面において、2層の安定化層を有し、前記2層の安定化層のうち、内側の安定化層のヤング率が、外側の安定化層のヤング率より低いことを特徴とする高温超電導線材。
A high-temperature superconducting wire having a high-temperature superconductor and a stabilization layer,
The stabilization layer has two stabilization layers on at least one main surface of the high-temperature superconducting wire, and among the two stabilization layers, the Young's modulus of the inner stabilization layer is the outer layer. A high-temperature superconducting wire characterized by a lower Young's modulus of the stabilizing layer.
前記安定化層は、テープ状の基材と、前記基材上に形成された中間層と、前記中間層上に形成されて前記高温超電導体からなる超電導層と、前記超電導層上に形成された保護層とを有する超電導積層体の外周に設けられ、前記2層の安定化層は、少なくとも前記保護層の表面に設けられていることを特徴とする請求項1に記載の高温超電導線材。   The stabilization layer is formed on a tape-shaped substrate, an intermediate layer formed on the substrate, a superconducting layer formed on the intermediate layer and made of the high-temperature superconductor, and the superconducting layer. 2. The high-temperature superconducting wire according to claim 1, wherein the high-temperature superconducting wire is provided on an outer periphery of a superconducting laminate having a protective layer, and the two stabilization layers are provided on at least a surface of the protective layer. 請求項1又は2に記載の高温超電導線材が巻回され、その間に樹脂が含浸されてなることを特徴とする超電導コイル。   A superconducting coil, wherein the high-temperature superconducting wire according to claim 1 is wound and impregnated with a resin therebetween.
JP2017107682A 2017-05-31 2017-05-31 High temperature superconducting wire and superconducting coil Active JP6751052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107682A JP6751052B2 (en) 2017-05-31 2017-05-31 High temperature superconducting wire and superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107682A JP6751052B2 (en) 2017-05-31 2017-05-31 High temperature superconducting wire and superconducting coil

Publications (2)

Publication Number Publication Date
JP2018206521A true JP2018206521A (en) 2018-12-27
JP6751052B2 JP6751052B2 (en) 2020-09-02

Family

ID=64957456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107682A Active JP6751052B2 (en) 2017-05-31 2017-05-31 High temperature superconducting wire and superconducting coil

Country Status (1)

Country Link
JP (1) JP6751052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438830B2 (en) 2020-04-10 2024-02-27 株式会社東芝 Bundle-wound high-temperature superconducting coil device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129568A1 (en) * 2012-02-29 2013-09-06 株式会社フジクラ Superconducting wire and superconducting coil
JP2013232297A (en) * 2012-04-27 2013-11-14 Fujikura Ltd Oxide superconducting wire
JP2014002848A (en) * 2012-06-15 2014-01-09 Fujikura Ltd Oxide superconductive wire material and method for manufacturing the same
JP2015046322A (en) * 2013-08-28 2015-03-12 株式会社フジクラ Oxide superconducting wire rod, and method for producing oxide superconducting wire rod
JP2015228357A (en) * 2014-05-07 2015-12-17 株式会社フジクラ Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129568A1 (en) * 2012-02-29 2013-09-06 株式会社フジクラ Superconducting wire and superconducting coil
US20140357495A1 (en) * 2012-02-29 2014-12-04 Fujikura Ltd. Superconducting wire and superconducting coil
JP2013232297A (en) * 2012-04-27 2013-11-14 Fujikura Ltd Oxide superconducting wire
JP2014002848A (en) * 2012-06-15 2014-01-09 Fujikura Ltd Oxide superconductive wire material and method for manufacturing the same
JP2015046322A (en) * 2013-08-28 2015-03-12 株式会社フジクラ Oxide superconducting wire rod, and method for producing oxide superconducting wire rod
JP2015228357A (en) * 2014-05-07 2015-12-17 株式会社フジクラ Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438830B2 (en) 2020-04-10 2024-02-27 株式会社東芝 Bundle-wound high-temperature superconducting coil device

Also Published As

Publication number Publication date
JP6751052B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP5501541B1 (en) Oxide superconducting wire and superconducting coil
WO2018181561A1 (en) Connecting structure
JP5534712B2 (en) High temperature superconducting pancake coil and high temperature superconducting coil
JP6012658B2 (en) Oxide superconducting wire and manufacturing method thereof
JP6751052B2 (en) High temperature superconducting wire and superconducting coil
JP6274975B2 (en) Oxide superconducting wire connecting structure manufacturing method and oxide superconducting wire connecting structure
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP6734092B2 (en) Superconducting wire connection structure
JP6688914B1 (en) Oxide superconducting wire and superconducting coil
JP2011040176A (en) Superconducting tape wire and superconducting coil using the same
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
KR102315482B1 (en) superconducting wire
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP2013186966A (en) Oxide superconducting wire and manufacturing method therefor
WO2021112181A1 (en) Connecting structure of oxide superconducting wire, superconducting coil, and method for connecting oxide superconducting wire
JP6031494B2 (en) Superconducting wire and superconducting coil using the same
WO2018150456A1 (en) Superconducting wire material and superconducting coil
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP6492205B2 (en) Manufacturing method of oxide superconducting wire
WO2023027149A1 (en) Superconducting wire material and superconducting coil
JP6652447B2 (en) Method for producing superconducting wire and method for producing superconducting coil
JP2017152210A (en) Oxide superconducting wire and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R151 Written notification of patent or utility model registration

Ref document number: 6751052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250