JP2018205699A - Imaging optical system, and imaging device and projection device including the same - Google Patents

Imaging optical system, and imaging device and projection device including the same Download PDF

Info

Publication number
JP2018205699A
JP2018205699A JP2018080119A JP2018080119A JP2018205699A JP 2018205699 A JP2018205699 A JP 2018205699A JP 2018080119 A JP2018080119 A JP 2018080119A JP 2018080119 A JP2018080119 A JP 2018080119A JP 2018205699 A JP2018205699 A JP 2018205699A
Authority
JP
Japan
Prior art keywords
optical system
imaging
reflecting
reflecting surface
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018080119A
Other languages
Japanese (ja)
Other versions
JP7016763B2 (en
Inventor
▲寛▼人 加納
Hiroto Kano
▲寛▼人 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/020716 external-priority patent/WO2017213058A1/en
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2018205699A publication Critical patent/JP2018205699A/en
Application granted granted Critical
Publication of JP7016763B2 publication Critical patent/JP7016763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a wide-angle and compact imaging optical system having high optical performance, and an imaging device and a projection device including the imaging optical system.SOLUTION: An imaging optical system 1 comprises, in order from an enlargement side, a first optical system 111 having a reflection surface, and a second optical system 112 having a refractive surface, wherein between the first optical system 111 and the second optical system 112, an intermediate image 104 of an object is formed. The first optical system 111 comprises, in order from the enlargement side, a first reflection group 113 composed of one or more negative power reflection surfaces 115, and a second reflection group 114 composed of plural positive power reflection surfaces 116, 117, wherein an absolute value of power of the reflection surface 115 arranged closest to the enlargement side in the first reflection group 113 becomes the smallest value in the first optical system 111.SELECTED DRAWING: Figure 1

Description

本発明は、結像光学系に関し、例えば画像を取得する撮像装置及び画像を投射する投射装置に好適なものである。   The present invention relates to an imaging optical system, and is suitable, for example, for an imaging device that acquires an image and a projection device that projects an image.

従来、撮像装置や投射装置などの光学装置に用いられる結像光学系として、ミラーなどの反射光学素子とレンズなどの屈折光学素子とを有するものが知られている。   2. Description of the Related Art Conventionally, an imaging optical system used in an optical apparatus such as an imaging apparatus or a projection apparatus has been known that includes a reflective optical element such as a mirror and a refractive optical element such as a lens.

特許文献1には、凹形状の反射面を含むミラーと複数のレンズとで構成された投射光学系が記載されている。特許文献1では、最も拡大側の反射面から表示素子の表示面までの距離と、表示面における光軸から最端部までの距離と、を適切に設定することで、投射光学系のコンパクト化及び高解像化を図っている。   Patent Document 1 describes a projection optical system including a mirror including a concave reflecting surface and a plurality of lenses. In Patent Document 1, the projection optical system is made compact by appropriately setting the distance from the most magnified reflective surface to the display surface of the display element and the distance from the optical axis to the end of the display surface. And high resolution.

また、特許文献2には、凸形状の反射面を含むミラー及び凹形状の反射面を含むミラーと複数のレンズとで構成された投射光学系が記載されている。特許文献2では、各ミラーの配置と焦点距離とを適切に設定することで、投射光学系の広角化及びコンパクト化を図っている。   Patent Document 2 describes a projection optical system including a mirror including a convex reflecting surface, a mirror including a concave reflecting surface, and a plurality of lenses. In Patent Literature 2, the projection optical system is widened and made compact by appropriately setting the arrangement and focal length of each mirror.

特開2008−250296号公報JP 2008-250296 A 特開2009−157223号公報JP 2009-157223 A

しかしながら、特許文献1に記載の投射光学系では、最も拡大側の反射面が凹形状であるため、広角化を実現するためには反射面を大きくすることが必要になる。なお、反射面の大型化を抑制しつつ広角化するためには反射面の曲率を大きくすればよいが、それにより増大した収差を補正するためにレンズの枚数を増やすことが必要になるため、全系のコンパクト化が難しくなる。   However, in the projection optical system described in Patent Document 1, since the reflecting surface on the most enlarged side has a concave shape, it is necessary to enlarge the reflecting surface in order to realize a wide angle. In order to widen the angle while suppressing an increase in the size of the reflecting surface, it is necessary to increase the curvature of the reflecting surface, but it is necessary to increase the number of lenses in order to correct the increased aberration. It becomes difficult to make the whole system compact.

また、特許文献2に記載の投射光学系では、凹形状の反射面が一つしか配置されていないため、凸形状の反射面で生じる収差及び複数のレンズで生じる収差の両方を良好に補正することができない。各収差を補正するためには、レンズの枚数を増やすことが必要になるため、全系のコンパクト化が難しくなる。   In addition, in the projection optical system described in Patent Document 2, since only one concave reflecting surface is disposed, both the aberration generated on the convex reflecting surface and the aberration generated on the plurality of lenses are favorably corrected. I can't. In order to correct each aberration, it is necessary to increase the number of lenses, which makes it difficult to make the entire system compact.

本発明の目的は、広角でかつコンパクトでありながら、高い光学性能を有する結像光学系、それを備える撮像装置及び投射装置を提供することである。   An object of the present invention is to provide an imaging optical system having high optical performance while being wide-angle and compact, and an imaging apparatus and a projection apparatus including the same.

上記目的を達成するための、本発明の一側面としての結像光学系は、拡大側から順に配置された、反射面を備える第1光学系と、屈折面を備える第2光学系とで構成され、該第1光学系と該第2光学系との間に物体の中間像を形成する結像光学系であって、前記第1光学系は、拡大側から順に配置された、一つ以上の負のパワーの反射面から成る第1反射群と、複数の正のパワーの反射面から成る第2反射群とで構成され、前記第1反射群における最も拡大側に配置された反射面のパワーの絶対値は、前記第1光学系において最も小さいことを特徴とする。   In order to achieve the above object, an imaging optical system as one aspect of the present invention includes a first optical system having a reflecting surface and a second optical system having a refracting surface, which are arranged in order from the magnification side. An imaging optical system that forms an intermediate image of an object between the first optical system and the second optical system, wherein the first optical system is arranged in order from the magnification side. A first reflecting group composed of a negative power reflecting surface and a second reflecting group composed of a plurality of positive power reflecting surfaces, and the reflecting surface disposed on the most enlarged side in the first reflecting group. The absolute value of power is the smallest in the first optical system.

また、本発明の他の側面としての結像光学系は、拡大側から順に配置された、反射面を備える第1光学系と、屈折面を備える第2光学系とで構成され、該第1光学系と該第2光学系との間に物体の中間像を形成する結像光学系であって、前記第1光学系は、拡大側から順に配置された、一つ以上の負のパワーの反射面から成る第1反射群と、複数の正のパワーの反射面から成る第2反射群とで構成され、前記第1反射群における最も拡大側に配置された1の反射面のパワーの絶対値は、前記第2反射群における最も拡大側に配置された第2の反射面及び該第2の反射面に隣接する第3の反射面の夫々のパワーの絶対値よりも大きいことを特徴とする。   An imaging optical system as another aspect of the present invention includes a first optical system having a reflecting surface and a second optical system having a refracting surface, which are arranged in order from the magnification side. An imaging optical system that forms an intermediate image of an object between an optical system and the second optical system, wherein the first optical system is arranged in order from the magnification side and has one or more negative powers The absolute value of the power of one reflecting surface which is composed of a first reflecting group consisting of reflecting surfaces and a second reflecting group consisting of a plurality of reflecting surfaces of positive power and which is arranged on the most enlarged side in the first reflecting group. The value is larger than the absolute value of the power of each of the second reflecting surface arranged on the most enlarged side in the second reflecting group and the third reflecting surface adjacent to the second reflecting surface. To do.

本発明によれば、広角でかつコンパクトでありながら、高い光学性能を有する結像光学系、それを備える撮像装置及び投射装置を提供することができる。   According to the present invention, it is possible to provide an imaging optical system having high optical performance while being wide-angled and compact, and an imaging apparatus and a projection apparatus including the same.

本発明の実施形態に係る結像光学系のパワー配置図。FIG. 3 is a power arrangement diagram of the imaging optical system according to the embodiment of the present invention. 本発明の実施形態に係る結像光学系の要部概略図。1 is a schematic diagram of a main part of an imaging optical system according to an embodiment of the present invention. 非球面形状の反射面のパワーの算出方法を説明するための図。The figure for demonstrating the calculation method of the power of an aspherical reflective surface. 本発明の実施例1に係る結像光学系の要部概略図。1 is a schematic diagram of a main part of an imaging optical system according to Embodiment 1 of the present invention. 本発明の実施例2に係る結像光学系の要部概略図。FIG. 5 is a schematic diagram of a main part of an imaging optical system according to Example 2 of the present invention. 本発明の実施例3に係る結像光学系の要部概略図。FIG. 6 is a schematic diagram of a main part of an imaging optical system according to Example 3 of the present invention. 本発明の実施例4に係る結像光学系の要部概略図。FIG. 9 is a schematic view of the main part of an imaging optical system according to Example 4 of the present invention. 本発明の実施例1に係る結像光学系の収差図。FIG. 6 is an aberration diagram of the imaging optical system according to Example 1 of the present invention. 本発明の実施例2に係る結像光学系の収差図。FIG. 6 is an aberration diagram of the imaging optical system according to Example 2 of the present invention. 本発明の実施例3に係る結像光学系の収差図。FIG. 10 is an aberration diagram of the imaging optical system according to Example 3 of the present invention. 本発明の実施例4に係る結像光学系の収差図。FIG. 10 is an aberration diagram of the imaging optical system according to Example 4 of the present invention. 本発明の実施形態に係る光学装置の要部概略図。1 is a schematic view of a main part of an optical device according to an embodiment of the present invention.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Each drawing may be drawn on a different scale for convenience. Moreover, in each drawing, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted.

図1は、本発明の実施形態に係る結像光学系1のパワー配置図であり、図2は、結像光学系1を模式的に示した要部概略図(光軸を含む断面図)である。なお、図1及び2において、一点鎖線121は、後述する第2光学系112の光軸を示し、破線APIMGは、後述する開口絞りAPの像(絞り像)の位置を示している。また、図1において、実線103は、結像光学系1の瞳の中心を通る近軸光線を示し、×印104は、拡大側共役面101又は縮小側共役面102と共役の関係にある中間像の位置を示している。 FIG. 1 is a power layout diagram of an imaging optical system 1 according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a main part schematically showing the imaging optical system 1 (a cross-sectional view including an optical axis). It is. 1 and 2, an alternate long and short dash line 121 indicates an optical axis of a second optical system 112 described later, and a broken line AP IMG indicates a position of an image (aperture image) of an aperture stop AP described later. Further, in FIG. 1, a solid line 103 indicates a paraxial ray passing through the center of the pupil of the imaging optical system 1, and a cross mark 104 is an intermediate having a conjugate relationship with the enlargement side conjugate surface 101 or the reduction side conjugate surface 102. The position of the image is shown.

結像光学系1は、撮像装置や投射装置等の光学装置に適用可能である。結像光学系1が撮像光学系(縮小系)として撮像装置に適用される場合は、結像光学系1の縮小側共役面102の位置に撮像素子の撮像面(受光面)が配置される。また、結像光学系1が投射光学系(拡大系)として投射装置に適用される場合は、結像光学系1の縮小側共役面102の位置に表示素子の表示面が配置される。このとき、撮像光学系と投射光学系とでは、物体側と像側とが反転し、光路が逆向きになる。なお、以下の説明では、結像光学系1が撮像装置に適用される場合を想定している。   The imaging optical system 1 can be applied to an optical device such as an imaging device or a projection device. When the imaging optical system 1 is applied as an imaging optical system (reduction system) to an imaging apparatus, the imaging surface (light receiving surface) of the imaging element is disposed at the position of the reduction-side conjugate surface 102 of the imaging optical system 1. . When the imaging optical system 1 is applied as a projection optical system (enlargement system) to a projection apparatus, the display surface of the display element is disposed at the position of the reduction-side conjugate surface 102 of the imaging optical system 1. At this time, in the imaging optical system and the projection optical system, the object side and the image side are reversed, and the optical paths are reversed. In the following description, it is assumed that the imaging optical system 1 is applied to an imaging apparatus.

結像光学系1は、拡大側共役面101の側(拡大側)から縮小側共役面102の側(縮小側)に向かって順に配置された、反射面を備える第1光学系111と屈折面を備える第2光学系112とを有する。また、結像光学系1は、第1光学系111と第2光学系112との間に中間像104を形成している。そして、第1光学系111は、拡大側から光路に沿って順に配置された、一つ以上の負のパワーの反射面115を備える第1反射群113と、正のパワーの反射面116及び117を備える第2反射群114とで構成される。   The imaging optical system 1 includes a first optical system 111 having a reflecting surface and a refracting surface, which are arranged in order from the side of the enlargement side conjugate surface 101 (enlargement side) to the side of the reduction side conjugate surface 102 (reduction side). And a second optical system 112. Further, the imaging optical system 1 forms an intermediate image 104 between the first optical system 111 and the second optical system 112. The first optical system 111 includes a first reflection group 113 including one or more negative power reflecting surfaces 115 arranged in order along the optical path from the enlargement side, and positive power reflecting surfaces 116 and 117. And a second reflection group 114 including

ただし、本実施形態における反射面のパワーとは、反射面による集光の度合いを示すものであり、反射面の焦点距離の逆数で表される。すなわち、反射面のパワーは、屈折面のパワー(屈折力)に対応するものであり、反射面の曲率に比例する。なお、反射面が凸形状である場合のパワーの符号は負であり、反射面が凹形状である場合のパワーの符号は正である。また、本実施形態における反射群とは、一つ以上のパワーを有する反射面の集合体を意味する。   However, the power of the reflecting surface in the present embodiment indicates the degree of light collection by the reflecting surface and is represented by the reciprocal of the focal length of the reflecting surface. That is, the power of the reflecting surface corresponds to the power (refractive power) of the refracting surface, and is proportional to the curvature of the reflecting surface. Note that the sign of power when the reflecting surface is convex is negative, and the sign of power when the reflecting surface is concave is positive. Further, the reflection group in the present embodiment means an aggregate of reflection surfaces having one or more powers.

このように、第1光学系111は、負のパワーを有する反射面115が最も拡大側に配置された構成を採ることにより、反射面を大型化することなく広角化を実現することができる。また、第1光学系111は、反射面115よりも縮小側に、正のパワーを有する反射面116及び117が配置された構成を採ることにより、反射面115及び第2光学系で生じる収差を補正することができる。具体的には、反射面116により反射面115で生じる歪曲収差を補正しつつ、反射面117により第2光学系で生じる像面湾曲及び歪曲収差を補正することができる。よって、本実施形態に係る結像光学系1によれば、広角でかつコンパクトでありながら、高い光学性能を実現することができる。   Thus, the 1st optical system 111 can implement | achieve widening, without enlarging a reflective surface, by taking the structure by which the reflective surface 115 which has negative power is arrange | positioned at the most expansion side. In addition, the first optical system 111 adopts a configuration in which the reflecting surfaces 116 and 117 having positive power are arranged on the reduction side with respect to the reflecting surface 115, so that the aberration generated in the reflecting surface 115 and the second optical system is reduced. It can be corrected. Specifically, it is possible to correct curvature of field and distortion generated in the second optical system by the reflecting surface 117 while correcting the distortion occurring on the reflecting surface 115 by the reflecting surface 116. Therefore, according to the imaging optical system 1 according to the present embodiment, high optical performance can be realized while being wide-angle and compact.

本実施形態において、第1光学系111は全体で正のパワーを有しており、第1反射群113は負のパワーを有し、第2反射群114は正のパワーを有する。また、第1反射群113は、凸形状の反射面115を含む一つの反射光学素子(凸面ミラー)から成り、第2反射群114は、夫々が凹形状の反射面116及び117を含む二つの反射光学素子(凹面ミラー)から成る。   In the present embodiment, the first optical system 111 has a positive power as a whole, the first reflection group 113 has a negative power, and the second reflection group 114 has a positive power. The first reflection group 113 includes one reflective optical element (convex mirror) including a convex reflection surface 115, and the second reflection group 114 includes two reflection surfaces 116 and 117 each having a concave shape. It consists of a reflective optical element (concave mirror).

ただし、必要に応じて、第1反射群113が複数の反射面を備える構成や、第2反射群114が三つ以上の反射面を備える構成を採用してもよい。このとき、第1反射群113及び第2反射群114で生じる収差を低減するためには、第1反射群113を負のパワーを有する反射面のみで構成し、第2反射群114を正のパワーを有する反射面のみで構成することが望ましい。   However, a configuration in which the first reflection group 113 includes a plurality of reflection surfaces and a configuration in which the second reflection group 114 includes three or more reflection surfaces may be employed as necessary. At this time, in order to reduce the aberration generated in the first reflection group 113 and the second reflection group 114, the first reflection group 113 is configured only by a reflection surface having a negative power, and the second reflection group 114 is positive. It is desirable to configure only with a reflective surface having power.

本実施形態に係る第2光学系112は、正のパワーを有する一つ(単一の)の屈折光学素子(レンズ)118と、結像光学系1のF値を決定するための開口絞りAPとで構成されており、全体で正のパワーを有している。なお、開口絞りAPは、屈折光学素子118よりも縮小側に配置されているが、必要に応じて拡大側に配置されていてもよい。また、第2光学系112は、必要に応じて複数の屈折光学素子を備えていてもよい。このとき、開口絞りAPは、屈折光学素子同士の間に配置されていてもよい。   The second optical system 112 according to this embodiment includes one (single) refractive optical element (lens) 118 having positive power and an aperture stop AP for determining the F value of the imaging optical system 1. It has a positive power as a whole. The aperture stop AP is disposed on the reduction side with respect to the refractive optical element 118, but may be disposed on the enlargement side as necessary. Further, the second optical system 112 may include a plurality of refractive optical elements as necessary. At this time, the aperture stop AP may be disposed between the refractive optical elements.

第2光学系112の光軸121は、屈折光学素子118及び開口絞りAPにより決定される。具体的には、光軸121は、屈折光学素子118の各屈折面(レンズ面)の曲率中心と開口絞りAPの中心とを通る軸である。すなわち、光軸121は、各屈折面の回転対称軸に一致する。なお、第2光学系112が複数の屈折光学素子を備える場合は、必要に応じて一部の屈折光学素子又は開口絞りAPの少なくとも一方を偏心させてもよい。この場合、屈折面の曲率中心及び開口絞りAPの中心を最も多く通過する軸を光軸121とすればよい。   The optical axis 121 of the second optical system 112 is determined by the refractive optical element 118 and the aperture stop AP. Specifically, the optical axis 121 is an axis passing through the center of curvature of each refractive surface (lens surface) of the refractive optical element 118 and the center of the aperture stop AP. That is, the optical axis 121 coincides with the rotational symmetry axis of each refractive surface. When the second optical system 112 includes a plurality of refractive optical elements, at least one of some refractive optical elements or the aperture stop AP may be decentered as necessary. In this case, the axis that passes through the center of curvature of the refracting surface and the center of the aperture stop AP most often is the optical axis 121.

本実施形態において、絞り像APIMGは、第2反射群114における反射面116と反射面117との間に形成されている。このように、絞り像APIMGの拡大側及び縮小側の夫々に正のパワーを有する反射面を配置することで、中間像104の非点収差を良好に補正することができる。これにより、第2光学系112による収差の補正が容易になるため、屈折光学素子の枚数を削減することができ、全系のコンパクト化が可能になる。 In the present embodiment, the aperture image AP IMG is formed between the reflecting surface 116 and the reflecting surface 117 in the second reflecting group 114. As described above, the astigmatism of the intermediate image 104 can be favorably corrected by disposing the reflecting surfaces having positive power on the enlargement side and the reduction side of the aperture image AP IMG . Accordingly, correction of aberrations by the second optical system 112 is facilitated, so that the number of refractive optical elements can be reduced and the entire system can be made compact.

第2反射群114が三つ以上の反射面で構成される場合においても、隣接する二つの正のパワーを有する反射面の間に絞り像APIMGが形成される構成を採ればよい。また、必要に応じて、絞り像が複数形成される構成、例えば第2反射群114だけでなく第2光学系112の光路上にも絞り像が形成される構成を採用してもよい。 Even when the second reflection group 114 includes three or more reflection surfaces, a configuration in which the aperture image AP IMG is formed between two adjacent reflection surfaces having positive power may be employed. If necessary, a configuration in which a plurality of aperture images are formed, for example, a configuration in which an aperture image is formed not only on the second reflection group 114 but also on the optical path of the second optical system 112 may be adopted.

なお、本実施形態において、第2反射群114が備える反射面のうち、最も縮小側に配置された反射面117の有効領域(結像に寄与する有効光束が通過する領域)を非球面とすることが望ましい。反射面117は、絞り像APIMGから最も離れた反射面、言い換えると第2光学系112に最も近い反射面である。この反射面117を非球面とすることで、第2光学系112に入射する光線の高さを制御することができ、結像光学系1における歪曲収差を良好に補正することが可能になる。なお、第2反射群114が三つ以上の反射面を有する場合は、そのうち少なくとも最も縮小側に配置された正のパワーの反射面を非球面とすればよく、必要に応じて他の反射面も非球面としてもよい。 In the present embodiment, among the reflecting surfaces of the second reflecting group 114, the effective region (the region through which the effective light beam contributing to image formation) of the reflecting surface 117 disposed on the most reduction side is an aspherical surface. It is desirable. The reflecting surface 117 is the reflecting surface farthest from the aperture image AP IMG , in other words, the reflecting surface closest to the second optical system 112. By making the reflecting surface 117 an aspherical surface, the height of light incident on the second optical system 112 can be controlled, and distortion in the imaging optical system 1 can be corrected well. When the second reflecting group 114 has three or more reflecting surfaces, at least the reflecting surface having the positive power disposed on the most reduction side may be an aspherical surface, and other reflecting surfaces may be used as necessary. Or an aspherical surface.

ここで、結像光学系1をよりコンパクトにするために、反射面同士をより近づけて配置する方法が考えられる。しかし、反射面同士の間隔を小さくした場合、各反射面のパワーを大きくすることが必要になるため、各反射面による諸収差の補正が難しくなる。そこで、第2反射群114における反射面117だけでなく、第1反射群113における反射面115も非球面とすることがより好ましい。これにより、反射面115によって、反射面117による収差補正の効果を補うことができるため、反射面同士の間隔を小さくした場合にも、諸収差を良好に補正することが可能になる。   Here, in order to make the imaging optical system 1 more compact, a method of arranging the reflecting surfaces closer to each other can be considered. However, when the interval between the reflecting surfaces is reduced, it is necessary to increase the power of each reflecting surface, so that it is difficult to correct various aberrations by each reflecting surface. Therefore, it is more preferable that not only the reflecting surface 117 in the second reflecting group 114 but also the reflecting surface 115 in the first reflecting group 113 is an aspherical surface. As a result, the effect of correcting aberrations by the reflecting surface 117 can be compensated by the reflecting surface 115, so that various aberrations can be corrected well even when the interval between the reflecting surfaces is reduced.

なお、第1反射群113が複数の反射面を有する場合は、最も拡大側に配置された負のパワーの反射面を非球面とすることが望ましい。これは、光線同士が最も大きく離間するのは、最も拡大側に配置された(最も絞り像APIMGから離れた)反射面に入射するときであるため、その反射面を非球面とすることで、各光線を制御することが容易になるからである。ただし、必要に応じて第1反射群113における他の反射面を非球面としてもよい。 In addition, when the 1st reflection group 113 has a some reflective surface, it is desirable to make the reflective surface of the negative power arrange | positioned at the most expansion side into an aspherical surface. This is because the light beams are most separated from each other when they are incident on the reflecting surface arranged on the most enlarged side (most distant from the aperture image AP IMG ). This is because it becomes easy to control each light beam. However, other reflective surfaces in the first reflective group 113 may be aspherical surfaces as necessary.

第1反射群113及び第2反射群114の両方が非球面を有する場合、第1反射群113における非球面の非球面量の最大値をQ、第2反射群114における非球面の非球面量の最大値をQとするとき、以下の条件式(1)を満たすことが望ましい。
0.35≦|Q/Q|≦0.80・・・(1)
When both the first reflection group 113 and the second reflection group 114 have aspheric surfaces, the maximum value of the aspheric amount of the aspheric surface in the first reflection group 113 is Q 1 , and the aspheric surface of the aspheric surface in the second reflection group 114. when the maximum value of the amount and Q 2, it is preferable to satisfy the following condition (1).
0.35 ≦ | Q 1 / Q 2 | ≦ 0.80 (1)

条件式(1)を満たすことで、反射面同士の間隔を小さくした場合にも、各非球面によって諸収差を容易に補正することができる。条件式(1)の下限を下回ると、各非球面によって歪曲収差を補正することが難しくなる可能性が生じる。また、条件式(1)の上限を上回ると、反射面115で生じる諸収差を反射面116によって補正することが難しくなる可能性が生じる。なお、以下の条件式(2)を満たすことがより好ましい。
0.42≦|Q/Q|≦0.70・・・(2)
By satisfying conditional expression (1), various aberrations can be easily corrected by each aspherical surface even when the interval between the reflecting surfaces is reduced. If the lower limit of conditional expression (1) is not reached, it may be difficult to correct distortion by each aspherical surface. If the upper limit of conditional expression (1) is exceeded, it may be difficult to correct various aberrations generated on the reflecting surface 115 by the reflecting surface 116. It is more preferable to satisfy the following conditional expression (2).
0.42 ≦ | Q 1 / Q 2 | ≦ 0.70 (2)

なお、一般的に、屈折系(屈折群)では負の歪曲収差が発生し易いため、反射面の非球面量を負とすることにより、反射面の周辺部におけるパワーを小さくすることが望ましい。これにより、屈折系に入射する光線の高さを周辺に向かうほど大きくすることができるため、屈折系で生じる負の歪曲収差を良好に補正することが可能になる。よって、以下の条件式(3)及び(4)の少なくとも一方を満たすことが望ましい。
<0・・・(3)
<0・・・(4)
In general, since negative distortion tends to occur in the refraction system (refractive group), it is desirable to reduce the power at the peripheral portion of the reflecting surface by setting the aspheric amount of the reflecting surface to be negative. As a result, the height of the light beam incident on the refraction system can be increased toward the periphery, so that negative distortion occurring in the refraction system can be favorably corrected. Therefore, it is desirable to satisfy at least one of the following conditional expressions (3) and (4).
Q 1 <0 (3)
Q 2 <0 (4)

また、本実施形態に係る第1反射群113において最も拡大側に配置された反射面115を、最も小さいパワーを有する反射面とすることが望ましい。すなわち、反射面115のパワーの絶対値を、第1光学系111において最も小さくすることが望ましい。これにより、第1光学系111及び第2光学系112で生じる諸収差をより良好に補正することが可能になる。第1反射群113における最も拡大側に配置された反射面のパワーの絶対値が他の反射面よりも大きい場合、負の歪曲が発生しやすくなる。この場合、その歪曲の補正のために第2反射群114の反射面や第2光学系112の屈折面を増やすことが必要になり、全系の小型化が難しくなる可能性が生じる。   In addition, it is desirable that the reflecting surface 115 disposed on the most enlarged side in the first reflecting group 113 according to the present embodiment be a reflecting surface having the smallest power. That is, it is desirable to make the absolute value of the power of the reflecting surface 115 the smallest in the first optical system 111. Thereby, various aberrations generated in the first optical system 111 and the second optical system 112 can be corrected more favorably. When the absolute value of the power of the reflecting surface arranged on the most enlarged side in the first reflecting group 113 is larger than that of other reflecting surfaces, negative distortion is likely to occur. In this case, it is necessary to increase the reflecting surface of the second reflecting group 114 and the refracting surface of the second optical system 112 in order to correct the distortion, which may make it difficult to reduce the size of the entire system.

あるいは、第1反射群113における最も拡大側に配置された第1の反射面のパワーの絶対値を、第2反射群114における最も拡大側に配置された第2の反射面及び該第2の反射面に隣接する第3の反射面の夫々のパワーの絶対値よりも大きくしてもよい。これにより、小型でありながら、より広角な結像光学系を実現することが可能になる。上記関係を満たさない場合、中間像の像面湾曲が発生しやすくなる。この場合、その像面湾曲の補正のために第2光学系112の屈折面を増やすことが必要になり、全系の小型化が難しくなる可能性が生じる。   Alternatively, the absolute value of the power of the first reflecting surface disposed on the most magnified side in the first reflecting group 113 is set as the second reflecting surface disposed on the most enlarging side in the second reflecting group 114 and the second reflecting surface. You may make larger than the absolute value of each power of the 3rd reflective surface adjacent to a reflective surface. Accordingly, it is possible to realize a wide-angle imaging optical system while being small. If the above relationship is not satisfied, field curvature of the intermediate image is likely to occur. In this case, it is necessary to increase the refracting surface of the second optical system 112 in order to correct the curvature of field, which may make it difficult to reduce the size of the entire system.

さらに、本実施形態に係る第2反射群114が備える反射面のうち、最も縮小側に配置された反射面117を、最も大きいパワーを有する反射面とすることが望ましい。すなわち、反射面117のパワーの絶対値を、第1光学系111において最大とすることが望ましい。このように、第2光学系112に最も近い反射面117のパワーを適切に設定することで、中間像104での非点収差を良好に補正することが可能になる。   Furthermore, it is desirable that the reflective surface 117 arranged on the most reduced side among the reflective surfaces included in the second reflective group 114 according to the present embodiment be a reflective surface having the largest power. That is, it is desirable that the absolute value of the power of the reflecting surface 117 is maximized in the first optical system 111. As described above, by appropriately setting the power of the reflecting surface 117 closest to the second optical system 112, it is possible to satisfactorily correct astigmatism in the intermediate image 104.

また、第1光学系111が備える反射面の少なくとも一つは、第2光学系112の光軸121に対し回転対称な形状であることが望ましい。第1光学系111が回転対称な反射面を備える構成を採ることにより、その反射面の光軸121回りの位置決めを容易にすることが可能になる。なお、図2に示すように、第1光学系111における各反射面は光軸121と交わっていないが、全て光軸121に対し回転対称な形状である。すなわち、各反射面は、光軸121上に曲率中心が存在する回転対称な反射面の一部が切り出されたものと考えることができる。   Further, it is desirable that at least one of the reflection surfaces provided in the first optical system 111 has a rotationally symmetric shape with respect to the optical axis 121 of the second optical system 112. By adopting a configuration in which the first optical system 111 includes a rotationally symmetric reflecting surface, it is possible to easily position the reflecting surface around the optical axis 121. As shown in FIG. 2, each reflecting surface in the first optical system 111 does not intersect with the optical axis 121, but all have a rotationally symmetric shape with respect to the optical axis 121. That is, each reflecting surface can be considered as a part of a rotationally symmetric reflecting surface having a center of curvature on the optical axis 121.

上述したように、本実施形態に係る結像光学系1は、第1光学系111と第2光学系112との間に中間像104を形成している。これにより、各反射面及び各屈折面における有効領域を小さくすることができるため、各反射光学素子及び各屈折光学素子を小型化することが可能になる。   As described above, the imaging optical system 1 according to this embodiment forms the intermediate image 104 between the first optical system 111 and the second optical system 112. Thereby, since the effective area | region in each reflective surface and each refractive surface can be made small, it becomes possible to reduce each reflective optical element and each refractive optical element.

さらに、第1光学系111のペッツバール和を負の値にすることで、中間像104が形成される位置を軸上から軸外にかけて縮小側に変位させることが望ましい。これにより、第2光学系112により生じる像面湾曲をキャンセルすることができるため、結像光学系1の全系での収差補正が容易になり、第2光学系112における屈折光学素子の枚数を削減することが可能になる。   Furthermore, it is desirable to shift the position where the intermediate image 104 is formed from the axial direction to the axial direction toward the reduction side by setting the Petzval sum of the first optical system 111 to a negative value. Thereby, since the curvature of field caused by the second optical system 112 can be canceled, aberration correction in the entire imaging optical system 1 is facilitated, and the number of refractive optical elements in the second optical system 112 can be reduced. It becomes possible to reduce.

具体的には、結像光学系1の全系の焦点距離を1として正規化したときの第1光学系111のペッツバール和を、−0.05よりも小さい値とすることが望ましい。これにより、第2光学系112により生じる像面湾曲を補正することができ、かつ第2光学系112に対する光線の入射角を小さくすることができるため、第2光学系112における最も中間像104に近い屈折光学素子を小型化することが可能になる。さらに、第1光学系111の正規化したペッツバール和を、−0.07よりも小さい値とすることがより好ましい。   Specifically, it is desirable that the Petzval sum of the first optical system 111 when the focal length of the entire imaging optical system 1 is normalized as 1, is a value smaller than −0.05. Thereby, the curvature of field caused by the second optical system 112 can be corrected, and the incident angle of the light beam with respect to the second optical system 112 can be reduced, so that the intermediate image 104 in the second optical system 112 is the most intermediate image 104. It is possible to reduce the size of the near refractive optical element. Furthermore, it is more preferable to set the normalized Petzval sum of the first optical system 111 to a value smaller than −0.07.

また、第2光学系112の全体又は屈折光学素子118のみを光軸方向に移動させるための移動機構を設けることにより、結像光学系1のピント調整(フォーカシング)を行うことができるようにしてもよい。これにより、例えば拡大側共役面101の位置が光軸方向に移動した際にも、良好にピントを合わせることが可能になる。なお、移動機構としては、屈折光学素子118や開口絞りAPを移動可能に保持する保持部材やモータなどの駆動部を採用することができる。   Further, by providing a moving mechanism for moving the entire second optical system 112 or only the refractive optical element 118 in the optical axis direction, it is possible to perform focusing adjustment of the imaging optical system 1. Also good. Thereby, for example, even when the position of the enlargement-side conjugate surface 101 moves in the optical axis direction, it is possible to focus well. As the moving mechanism, a driving member such as a holding member or a motor that movably holds the refractive optical element 118 and the aperture stop AP can be employed.

第2光学系112が複数の屈折光学素子を有する場合は、少なくとも一つの屈折光学素子、又は少なくとも一つの屈折光学素子及び開口絞りAPを移動させるようにすればよい。このとき、必要に応じて、各屈折光学素子及び開口絞りAPの移動量や移動方向を互いに異ならせてもよい。このように、屈折光学素子の移動によってフォーカシングを行う構成を採ることにより、反射光学素子の移動によってフォーカシングを行う構成と比較して、移動機構を簡略化することができ、装置全体を小型化することが可能になる。   When the second optical system 112 includes a plurality of refractive optical elements, at least one refractive optical element, or at least one refractive optical element and the aperture stop AP may be moved. At this time, the moving amount and moving direction of each refractive optical element and the aperture stop AP may be made different from each other as necessary. In this way, by adopting a configuration in which focusing is performed by moving the refractive optical element, the moving mechanism can be simplified and the entire apparatus can be downsized as compared with a configuration in which focusing is performed by moving the reflective optical element. It becomes possible.

なお、必要に応じて、第1光学系111における反射光学素子としてプリズムを採用してもよい。また、結像光学系1をよりコンパクトにするために、第2光学系112の光路上に折り返しミラーなどの反射光学素子を配置してもよい。さらに、塵埃対策として、結像光学系1の光路上の何れかの位置に、カバーガラスや保護膜等の光学部材を配置してもよい。   In addition, you may employ | adopt a prism as a reflective optical element in the 1st optical system 111 as needed. In order to make the imaging optical system 1 more compact, a reflecting optical element such as a folding mirror may be disposed on the optical path of the second optical system 112. Further, as a measure against dust, an optical member such as a cover glass or a protective film may be disposed at any position on the optical path of the imaging optical system 1.

ここで、図3を用いて、第1光学系111における反射面の有効領域が非球面である場合に、その反射面のパワーを算出するための方法について説明する。まず、反射面の有効領域が回転対称な非球面である場合は、その回転対称軸を光軸とし、有効領域における光軸上の点(中心点)とその中心点から最も離れた点とを通り、かつ光軸上に曲率中心が位置する球面を参照球面とする。また、反射面の有効領域が自由曲面である場合は、有効領域における任意の点Pを決め、その点Pに接する平面の点Pを通る垂線、すなわち点Pにおける有効領域の面法線を光軸とする。そして、有効領域における点Pと点Pから最も離れた点とを通り、かつ光軸上に中心が位置する球面を参照球面とする。   Here, a method for calculating the power of the reflecting surface when the effective area of the reflecting surface in the first optical system 111 is an aspherical surface will be described with reference to FIG. First, if the effective area of the reflecting surface is a rotationally symmetric aspherical surface, the axis of rotation symmetry is the optical axis, and the point on the optical axis in the effective area (center point) and the point farthest from the center point are A spherical surface that passes and whose center of curvature is located on the optical axis is defined as a reference spherical surface. Further, when the effective area of the reflecting surface is a free-form surface, an arbitrary point P in the effective area is determined, and a perpendicular passing through the point P on the plane in contact with the point P, that is, the surface normal of the effective area at the point P is expressed as light. Axis. A spherical surface that passes through the point P in the effective area and the point farthest from the point P and whose center is located on the optical axis is defined as a reference spherical surface.

このように、反射面の有効領域が非球面である場合は、参照球面を決定し、その参照球面に基づいてパワーを算出すればよい。なお、参照球面の有効径は、結像光学系1の結像倍率、F値、最大像高などから算出することができる。また、参照球面が凹面であるか凸面であるかによって、反射面のパワーの正負を判断することが可能になる。   As described above, when the effective area of the reflecting surface is an aspherical surface, a reference spherical surface is determined, and power may be calculated based on the reference spherical surface. Note that the effective diameter of the reference spherical surface can be calculated from the imaging magnification, F value, maximum image height, and the like of the imaging optical system 1. Further, it is possible to determine whether the power of the reflecting surface is positive or negative depending on whether the reference spherical surface is concave or convex.

[実施例]
図4乃至7の夫々は、本発明の実施例1乃至4に係る結像光学系の要部概略図である。第1光学系41、51、61、71の夫々は、第1反射群を構成する負のパワーの凸面ミラー8a、9a、10a、11aと、第2反射群を構成する正のパワーの凹面ミラー8b、8c、9b、9c、9d、10b、10c、11b、11と、を備えている。なお、図4乃至7では、各反射面における非有効領域(結像に寄与する有効光束が入射しない領域)を省略せずに示している。
[Example]
Each of FIGS. 4 to 7 is a schematic diagram of a main part of the imaging optical system according to Examples 1 to 4 of the present invention. Each of the first optical systems 41, 51, 61, and 71 includes negative power convex mirrors 8a, 9a, 10a, and 11a that constitute the first reflection group, and a positive power concave mirror that constitutes the second reflection group. 8b, 8c, 9b, 9c, 9d, 10b, 10c, 11b, and 11. 4 to 7 show the non-effective areas (areas where the effective light beam contributing to image formation is not incident) on each reflecting surface without being omitted.

また、第2光学系42、52、62、72の夫々は、開口絞りAPと、第1群8F、9F、10F、11Fと、第2群8FL、9FL、10FL、11FLと、を備えている。各第2光学系において、第1群及び第2群の夫々は、光軸方向に移動可能なレンズ群である。この二つのレンズ群の位置を調整することにより、ピント調整と像面湾曲の補正とを良好に行うことが可能になる。   Each of the second optical systems 42, 52, 62, 72 includes an aperture stop AP, a first group 8F, 9F, 10F, 11F, and a second group 8FL, 9FL, 10FL, 11FL. . In each second optical system, each of the first group and the second group is a lens group that can move in the optical axis direction. By adjusting the positions of these two lens groups, it is possible to satisfactorily perform focus adjustment and correction of field curvature.

実施例1乃至4に係る各結像光学系において、最も縮小側の反射面8c、9d、10c、11cの夫々は非球面である。各結像光学系は、この非球面により、第2光学系に入射する光線の高さを制御し、歪曲収差を良好に補正している。また、実施例1乃至4に係る各結像光学系において、全ての反射面が第2光学系の光軸に対して回転対称な形状である。この構成により、各反射面の位置決めを容易にし、結像光学系の製造工程の簡略化を実現している。   In each of the imaging optical systems according to Examples 1 to 4, each of the reflecting surfaces 8c, 9d, 10c, and 11c on the most reduced side is an aspherical surface. Each imaging optical system uses this aspherical surface to control the height of light rays incident on the second optical system and to correct distortion well. In each of the imaging optical systems according to Examples 1 to 4, all the reflecting surfaces are rotationally symmetric with respect to the optical axis of the second optical system. With this configuration, positioning of each reflecting surface is facilitated, and the manufacturing process of the imaging optical system is simplified.

図8乃至11の夫々は、実施例1乃至4に係る結像光学系の縮小側共役面における収差図である。球面収差図における実線はd線、2点鎖線はg線を示し、非点収差図における実線はサジタル光線、点線はメリジオナル光線を示し、歪曲収差図における実線はd線を示し、色収差図における2点鎖線はg線を示している。   8 to 11 are aberration diagrams on the reduction-side conjugate surface of the imaging optical system according to Examples 1 to 4, respectively. The solid line in the spherical aberration diagram indicates the d line, the two-dot chain line indicates the g line, the solid line in the astigmatism diagram indicates the sagittal ray, the dotted line indicates the meridional ray, the solid line in the distortion diagram shows the d line, and 2 in the chromatic aberration diagram The dotted line indicates the g line.

以下、実施例1乃至4に係る各結像光学系の夫々に対応する数値実施例1乃至4を、表1乃至12に示す。各数値実施例において、面番号は拡大側から数えた光学面の番号(i)を示し、「R」は第i番目の光学面(第i面)の曲率半径を示し、「D」は第i面と第(i+1)面との間の面間隔(光軸上の距離)、を示す。また、「N」及び「ν」の夫々は、第i面と第(i+1)面との間の媒質のd線に対する屈折率及びアッベ数を示す。なお、アッベ数νは、第i面と第(i+1)面との間の媒質のF線及びC線に対する屈折率を各々N及びNとするとき、以下の式で表される。 Hereinafter, Numerical Examples 1 to 4 corresponding to the respective imaging optical systems according to Examples 1 to 4 are shown in Tables 1 to 12, respectively. In each numerical example, the surface number indicates the number (i) of the optical surface counted from the enlargement side, “R” indicates the radius of curvature of the i-th optical surface (i-th surface), and “D” indicates the number of the surface. The inter-surface distance (distance on the optical axis) between the i-plane and the (i + 1) -th plane is shown. Each of “N d ” and “ν d ” indicates the refractive index and the Abbe number for the d-line of the medium between the i-th surface and the (i + 1) -th surface. The Abbe number ν d is expressed by the following equation when the refractive indexes for the F-line and C-line of the medium between the i-th surface and the (i + 1) -th surface are N F and N C , respectively.

Figure 2018205699
Figure 2018205699

また、「f」は焦点距離を示し、「Fno」は縮小側のF値を示し、「β」は結像倍率を示し、「L」は縮小側共役面上における軸上像高から最軸外像高(最軸外光線が入射する位置)までの距離を示す。なお、各数値実施例において、反射面には面番号の後に「Refl」を付加し、開口絞りには面番号の後に「AP」を付加し、非球面には面番号の後に「*(アスタリスク)」を付加している。   “F” indicates the focal length, “Fno” indicates the F value on the reduction side, “β” indicates the imaging magnification, and “L” indicates the maximum axis from the on-axis image height on the reduction-side conjugate plane. The distance to the outside image height (position where the most off-axis light beam is incident) is shown. In each numerical example, “Refl” is added to the reflecting surface after the surface number, “AP” is added to the aperture stop after the surface number, and “* (asterisk) is added to the aspheric surface after the surface number. ) ”.

非球面の形状は、円錐定数をK、非球面係数をC,C,C,C10、第2光学系の光軸に垂直な方向における光軸からの高さをr、高さrでの中心点(面頂点)に対する光軸方向における面位置をA(r)、とするとき、以下の式で表される。なお、各数値実施例における円錐定数K及び非球面係数C,C,C,C10の各数値での「E−N」は、「×10−N」を意味している。 The aspherical shape has a conic constant of K, an aspherical coefficient of C 4 , C 6 , C 8 , C 10 , a height from the optical axis in a direction perpendicular to the optical axis of the second optical system, and a height When the surface position in the optical axis direction with respect to the center point (surface vertex) at r is A (r), it is expressed by the following equation. In each numerical example, “ EN ” in the numerical values of the conic constant K and the aspheric coefficients C 4 , C 6 , C 8 , and C 10 means “× 10 −N ”.

Figure 2018205699
Figure 2018205699

(数値実施例1)   (Numerical example 1)

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

(数値実施例2)   (Numerical example 2)

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

(数値実施例3)   (Numerical Example 3)

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

(数値実施例4)   (Numerical example 4)

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

Figure 2018205699
Figure 2018205699

表Aに、実施例1乃至4の夫々の結像光学系における各反射面のパワーの絶対値を示す。面番号1は、第1反射群113における最も拡大側に配置された反射面(第1の反射面)を示す。面番号2及び3は、第2反射群114における最も拡大側に配置された反射面(第2の反射面)及び該反射面に隣接する反射面(第3の反射面)を示す。表Aより、実施例1、3、及び4については、最も拡大側に配置された反射面のパワーの絶対値が第1光学系111において最も小さいことがわかる。また、実施例2については、第1の反射面のパワーの絶対値が第2及び第3の反射面の夫々のパワーの絶対値よりも大きいことがわかる。   Table A shows the absolute value of the power of each reflecting surface in the imaging optical systems of Examples 1 to 4. Surface number 1 indicates the reflective surface (first reflective surface) disposed on the most enlarged side in the first reflective group 113. Surface numbers 2 and 3 indicate a reflective surface (second reflective surface) disposed on the most enlarged side in the second reflective group 114 and a reflective surface (third reflective surface) adjacent to the reflective surface. From Table A, it can be seen that in Examples 1, 3, and 4, the absolute value of the power of the reflecting surface arranged on the most enlarged side is the smallest in the first optical system 111. Moreover, about Example 2, it turns out that the absolute value of the power of a 1st reflective surface is larger than the absolute value of each power of a 2nd and 3rd reflective surface.

Figure 2018205699
Figure 2018205699

[光学装置]
図12は、上述した実施形態に係る結像光学系を備える光学装置100の要部概略図である。光学装置100が撮像装置である場合は、結像光学系の縮小側共役面の位置に配置される撮像素子により、拡大側共役面101に配置される載置面上の被写体を撮像することができる。撮像素子としては、CCD(Charge Coupled Device)センサーやCMOS(Complementary Metal Oxide Semiconductor)センサー等を採用することができる。
[Optical device]
FIG. 12 is a schematic diagram of a main part of an optical device 100 including the imaging optical system according to the above-described embodiment. When the optical device 100 is an imaging device, the subject on the placement surface arranged on the enlargement-side conjugate surface 101 can be imaged by an imaging element arranged at the position of the reduction-side conjugate surface of the imaging optical system. it can. As the imaging element, a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like can be employed.

また、光学装置100が投射装置である場合は、結像光学系の縮小側共役面の位置に配置される表示素子により表示される画像を、拡大側共役面101に配置される投射面に投射することができる。表示素子としては、LCD(Liquid Crystal Display)や、LCOS(Liquid Crystal On Silicon)、DMD(Digital Mirror Device)等を採用することができる。   When the optical device 100 is a projection device, the image displayed by the display element disposed at the position of the reduction-side conjugate surface of the imaging optical system is projected onto the projection surface disposed at the magnification-side conjugate surface 101. can do. As the display element, LCD (Liquid Crystal Display), LCOS (Liquid Crystal On Silicon), DMD (Digital Mirror Device), or the like can be used.

以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。   The preferred embodiments and examples of the present invention have been described above, but the present invention is not limited to these embodiments and examples, and various combinations, modifications, and changes can be made within the scope of the gist.

1 結像光学系
104 中間像
111 第1光学系
112 第2光学系
113 第1反射群
114 第2反射群
115、116、117 反射面
DESCRIPTION OF SYMBOLS 1 Imaging optical system 104 Intermediate image 111 1st optical system 112 2nd optical system 113 1st reflection group 114 2nd reflection group 115,116,117 Reflection surface

Claims (11)

拡大側から順に配置された、反射面を備える第1光学系と、屈折面を備える第2光学系とで構成され、該第1光学系と該第2光学系との間に物体の中間像を形成する結像光学系であって、
前記第1光学系は、拡大側から順に配置された、一つ以上の負のパワーの反射面から成る第1反射群と、複数の正のパワーの反射面から成る第2反射群とで構成され、
前記第1反射群における最も拡大側に配置された反射面のパワーの絶対値は、前記第1光学系において最も小さいことを特徴とする結像光学系。
An intermediate image of an object between the first optical system and the second optical system, which is composed of a first optical system having a reflecting surface and a second optical system having a refractive surface, which are arranged in order from the magnification side. An imaging optical system for forming
The first optical system includes a first reflection group including one or more negative power reflection surfaces and a second reflection group including a plurality of positive power reflection surfaces arranged in order from the magnification side. And
An imaging optical system characterized in that the absolute value of the power of the reflecting surface disposed on the most enlarged side in the first reflecting group is the smallest in the first optical system.
拡大側から順に配置された、反射面を備える第1光学系と、屈折面を備える第2光学系とで構成され、該第1光学系と該第2光学系との間に物体の中間像を形成する結像光学系であって、
前記第1光学系は、拡大側から順に配置された、一つ以上の負のパワーの反射面から成る第1反射群と、複数の正のパワーの反射面から成る第2反射群とで構成され、
前記第1反射群における最も拡大側に配置された1の反射面のパワーの絶対値は、前記第2反射群における最も拡大側に配置された第2の反射面及び該第2の反射面に隣接する第3の反射面の夫々のパワーの絶対値よりも大きいことを特徴とする結像光学系。
An intermediate image of an object between the first optical system and the second optical system, which is composed of a first optical system having a reflecting surface and a second optical system having a refractive surface, which are arranged in order from the magnification side. An imaging optical system for forming
The first optical system includes a first reflection group including one or more negative power reflection surfaces and a second reflection group including a plurality of positive power reflection surfaces arranged in order from the magnification side. And
The absolute value of the power of the first reflecting surface disposed on the most magnified side in the first reflecting group is the same as that on the second reflecting surface and the second reflecting surface disposed on the most magnified side in the second reflecting group. An imaging optical system characterized in that it is larger than the absolute value of the power of each of the adjacent third reflecting surfaces.
前記第2光学系は、開口絞りを含むことを特徴とする請求項1又は2に記載の結像光学系。   The imaging optical system according to claim 1, wherein the second optical system includes an aperture stop. 前記正のパワーの反射面は、前記開口絞りの像の拡大側及び縮小側の夫々に配置されていることを特徴とする請求項3に記載の結像光学系。   The imaging optical system according to claim 3, wherein the positive power reflecting surface is disposed on each of an enlargement side and a reduction side of an image of the aperture stop. 前記第2反射群における最も縮小側に配置された反射面は、非球面であることを特徴とする請求項1乃至4の何れか1項に記載の結像光学系。   5. The imaging optical system according to claim 1, wherein the reflecting surface disposed closest to the reduction side in the second reflecting group is an aspherical surface. 前記第2反射群における最も縮小側に配置された反射面のパワーの絶対値は、前記第1光学系において最も大きいことを特徴とする請求項1乃至5の何れか1項に記載の結像光学系。   The imaging according to any one of claims 1 to 5, wherein the absolute value of the power of the reflecting surface arranged closest to the reduction side in the second reflecting group is the largest in the first optical system. Optical system. 全系の焦点距離を1としたときの前記第1光学系のペッツバール和は、−0.05よりも小さいことを特徴とする請求項1乃至6の何れか1項に記載の結像光学系。   The imaging optical system according to claim 1, wherein the Petzval sum of the first optical system when the focal length of the entire system is 1 is smaller than −0.05. . 前記第1光学系は、前記第2光学系の光軸に対して回転対称な反射面を備えることを特徴とする請求項1乃至7の何れか1項に記載の結像光学系。   8. The imaging optical system according to claim 1, wherein the first optical system includes a reflecting surface that is rotationally symmetric with respect to the optical axis of the second optical system. 9. 前記第2光学系は、フォーカシングに際して移動する屈折光学素子を備えることを特徴とする請求項1乃至8の何れか1項に記載の結像光学系。   The imaging optical system according to any one of claims 1 to 8, wherein the second optical system includes a refractive optical element that moves during focusing. 請求項1乃至9の何れか1項に記載の結像光学系と、該結像光学系の縮小側共役面に配置された撮像面を備える撮像素子とを有することを特徴とする撮像装置。   An imaging apparatus comprising: the imaging optical system according to claim 1; and an imaging element including an imaging surface disposed on a reduction-side conjugate surface of the imaging optical system. 請求項1乃至9の何れか1項に記載の結像光学系と、該結像光学系の縮小側共役面に配置された表示面を備える表示素子とを有することを特徴とする投射装置。   A projection apparatus comprising: the imaging optical system according to claim 1; and a display element including a display surface disposed on a reduction-side conjugate surface of the imaging optical system.
JP2018080119A 2016-06-08 2018-04-18 Imaging optical system, imaging device and projection device equipped with it Active JP7016763B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016114806A JP2017219740A (en) 2016-06-08 2016-06-08 Image forming optical system, and imaging apparatus and projection device including the same
WOPCT/JP2017/020716 2017-06-02
PCT/JP2017/020716 WO2017213058A1 (en) 2016-06-08 2017-06-02 Image forming optical system, and imaging device and projection device provided with same

Publications (2)

Publication Number Publication Date
JP2018205699A true JP2018205699A (en) 2018-12-27
JP7016763B2 JP7016763B2 (en) 2022-02-07

Family

ID=60657987

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016114806A Pending JP2017219740A (en) 2016-06-08 2016-06-08 Image forming optical system, and imaging apparatus and projection device including the same
JP2018080119A Active JP7016763B2 (en) 2016-06-08 2018-04-18 Imaging optical system, imaging device and projection device equipped with it

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016114806A Pending JP2017219740A (en) 2016-06-08 2016-06-08 Image forming optical system, and imaging apparatus and projection device including the same

Country Status (1)

Country Link
JP (2) JP2017219740A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075767A (en) * 2001-09-04 2003-03-12 Canon Inc Projection optical system, image projection device, optical system and optical equipment
JP2004061960A (en) * 2002-07-30 2004-02-26 Canon Inc Projection type picture display device and picture display system
JP2006138882A (en) * 2004-11-10 2006-06-01 Konica Minolta Opto Inc Oblique projection optical system
JP2006184775A (en) * 2004-12-28 2006-07-13 Fujinon Corp Reflection optical system and projection type display device using same
JP2006276336A (en) * 2005-03-29 2006-10-12 Konica Minolta Opto Inc Image projection apparatus
JP2010186120A (en) * 2009-02-13 2010-08-26 Seiko Epson Corp Projection optical system and projection image display device
WO2017033445A1 (en) * 2015-08-21 2017-03-02 セイコーエプソン株式会社 Projection optical system and projector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075767A (en) * 2001-09-04 2003-03-12 Canon Inc Projection optical system, image projection device, optical system and optical equipment
JP2004061960A (en) * 2002-07-30 2004-02-26 Canon Inc Projection type picture display device and picture display system
JP2006138882A (en) * 2004-11-10 2006-06-01 Konica Minolta Opto Inc Oblique projection optical system
JP2006184775A (en) * 2004-12-28 2006-07-13 Fujinon Corp Reflection optical system and projection type display device using same
JP2006276336A (en) * 2005-03-29 2006-10-12 Konica Minolta Opto Inc Image projection apparatus
JP2010186120A (en) * 2009-02-13 2010-08-26 Seiko Epson Corp Projection optical system and projection image display device
WO2017033445A1 (en) * 2015-08-21 2017-03-02 セイコーエプソン株式会社 Projection optical system and projector

Also Published As

Publication number Publication date
JP7016763B2 (en) 2022-02-07
JP2017219740A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6517294B2 (en) Projection optical system
JP6253437B2 (en) Imaging optical system and image projection apparatus having the same
JP4612823B2 (en) Zoom lens and imaging apparatus having the same
JP6290804B2 (en) Projection optical system and projection display device
JP5317669B2 (en) Zoom lens and imaging apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP7154769B2 (en) Imaging optical system and image projection device
JP2005234460A (en) Zoom lens and imaging apparatus provided with the same
JP4419243B2 (en) Oblique projection optical system
JP5587017B2 (en) Viewfinder eyepiece
JP3710352B2 (en) Zoom lens and optical apparatus using the same
JPWO2018008199A1 (en) Projection optical system and image projection apparatus
JP3652179B2 (en) Zoom lens
JP2005331641A (en) Zoom lens and imaging apparatus having same
US11079579B2 (en) Image forming optical system, and imaging apparatus and projecting apparatus having the same
JP2004085979A (en) Projection optical system
JP2017219649A (en) Imaging optical system and optical apparatus including the same
JP2008008981A (en) Finder optical system and optical apparatus with the same
JP4817551B2 (en) Zoom lens
JP2017219741A (en) Image formation optical system, and imaging apparatus and projection device including the same
JP4838899B2 (en) Zoom lens and optical apparatus using the same
JP6716215B2 (en) Imaging device
JP7016763B2 (en) Imaging optical system, imaging device and projection device equipped with it
JP6415520B2 (en) Imaging optical system, imaging apparatus and projection apparatus including the same
JP4648757B2 (en) Optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126