JP2018204091A - Method for forming film on resin molding - Google Patents

Method for forming film on resin molding Download PDF

Info

Publication number
JP2018204091A
JP2018204091A JP2017114481A JP2017114481A JP2018204091A JP 2018204091 A JP2018204091 A JP 2018204091A JP 2017114481 A JP2017114481 A JP 2017114481A JP 2017114481 A JP2017114481 A JP 2017114481A JP 2018204091 A JP2018204091 A JP 2018204091A
Authority
JP
Japan
Prior art keywords
resin molded
molded product
film
forming method
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017114481A
Other languages
Japanese (ja)
Other versions
JP7194372B2 (en
Inventor
靖之 高橋
Yasuyuki Takahashi
靖之 高橋
攻 山家
Osamu Yamaya
攻 山家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaaki Kagaku Co Ltd
Original Assignee
Takaaki Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaaki Kagaku Co Ltd filed Critical Takaaki Kagaku Co Ltd
Priority to JP2017114481A priority Critical patent/JP7194372B2/en
Publication of JP2018204091A publication Critical patent/JP2018204091A/en
Application granted granted Critical
Publication of JP7194372B2 publication Critical patent/JP7194372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for forming a film excellent in adhesion, capable of easily removing abrasive grains without taking labor when the surface is roughened by the abrasive grains and easily performing hydrophilic treatment for improving the hydrophilicity of the resin molding surface after the surface is roughened by the abrasive grains.SOLUTION: The method for forming a film, capable of forming a metal film on a resin molding comprises: roughening the surface of the resin molding using sodium-bicarbonate powder as abrasive grains used to roughen the surface; and forming the film on the surface of the hydrophilized resin-molding.SELECTED DRAWING: None

Description

本発明は樹脂成形品の表面に金属被膜を形成するための被膜形成方法に関する。更に詳しくは、3Dプリンタで造形された樹脂成形品にも密着性に優れた金属被膜を形成可能な樹脂成形品の被膜形成方法に関する。   The present invention relates to a film forming method for forming a metal film on the surface of a resin molded product. More specifically, the present invention relates to a film forming method for a resin molded product capable of forming a metal film having excellent adhesion even on a resin molded product formed by a 3D printer.

耐候性、表面導電性、電磁波遮断性、抗菌性などの各種機能を樹脂成形品に付与する目的で、その表面に金属被膜を形成することが従来から行われている。その方法としては、例えば、真空蒸着やスパッタリングなどの真空めっき処理方法、無電解めっき処理方法、無電解めっき処理後に電気めっき処理を施す無電解・電気めっき処理方法などが知られている。樹脂成形品は非導電性であるので、直接電気めっき処理ができないことから、これらの方法は各種方面で実用化されている。
そして、樹脂成形品の表面に金属被膜を形成する場合、例えば下記特許文献1に開示されるように、樹脂成形品に対する被膜の密着性を上げるために、樹脂成形品の表面を砥粒で粗面化してから金属被膜を形成するようにしている。
For the purpose of imparting various functions such as weather resistance, surface conductivity, electromagnetic wave shielding properties, and antibacterial properties to a resin molded product, a metal film is conventionally formed on the surface thereof. As the method, for example, a vacuum plating method such as vacuum deposition or sputtering, an electroless plating method, an electroless / electroplating method in which electroplating is performed after the electroless plating is known. Since the resin molded product is non-conductive and cannot be directly electroplated, these methods have been put to practical use in various fields.
And when forming a metal film on the surface of a resin molded product, for example, as disclosed in Patent Document 1 below, the surface of the resin molded product is roughened with abrasive grains in order to increase the adhesion of the film to the resin molded product. The metal coating is formed after the surface.

特開2000−124583号公報JP 2000-124583 A

しかしながら、砥粒が炭化ケイ素やアルミナなどの非導電性無機物の場合、樹脂成形品の表面にそれらの砥粒が潜り込むことにより、金属被膜の形成に悪影響を及ぼしていた。そのため、それらの砥粒を除去する必要があるが、表面に潜り込んだ砥粒を除去することは非常に困難であった。
また、砥粒を用いた粗面化処理に次いで行われる樹脂成形品表面の親水性向上のための親水化処理がやりやすい砥粒処理の提案が望まれていた。
そこで、本発明の被膜形成方法は、砥粒処理における砥粒の除去に手間がかからず容易に除去でき、また、砥粒を用いた粗面化処理に次いで行われる樹脂成形品表面の親水性向上のための親水化処理もやりやすく、密着性に優れた被膜形成方法を提供することを目的とする。
However, in the case where the abrasive grains are non-conductive inorganic substances such as silicon carbide and alumina, the abrasive grains sink into the surface of the resin molded product, thereby adversely affecting the formation of the metal film. Therefore, it is necessary to remove those abrasive grains, but it is very difficult to remove the abrasive grains that have entered the surface.
Further, there has been a demand for a proposal of an abrasive treatment that facilitates a hydrophilic treatment for improving the hydrophilicity of the surface of the resin molded product performed after the roughening treatment using abrasive grains.
Therefore, the film forming method of the present invention can be easily removed without troublesome removal of the abrasive grains in the abrasive treatment, and the hydrophilicity of the surface of the resin molded product performed after the roughening treatment using the abrasive grains. It is an object of the present invention to provide a method for forming a film that is easy to perform a hydrophilic treatment for improving the property and has excellent adhesion.

本発明はかかる要望に応えるべく鋭意研究の結果、樹脂成形品の粗面化処理に用いる砥粒として重曹粉末を用いることにより、重曹粉末からなる砥粒が粗面化処理後に簡単に除去できるだけでなく、重曹粉末の化学的な物性に起因して簡単に樹脂成形品の表面を親水化できることを知見した。
本発明の被膜形成方法は前記知見に基づきなされたもので、請求項1に記載の通り、樹脂成形品に金属被膜を形成するための被膜形成方法であって、前記樹脂成形品の粗面化処理に用いる砥粒として重曹粉末を用いて粗面化し、親水化された前記樹脂成形品の表面に被膜形成を行うことを特徴とする。
また、請求項2記載の被膜形成方法は、請求項1記載の被膜形成方法において、前記樹脂成形品の表面に重曹粉末を吹き付けることを特徴とする。
また、請求項3記載の被膜形成方法は、請求項2記載の被膜形成方法において、前記重曹粉末の吹き付けを湿式で行うことを特徴とする。
また、請求項4記載の被膜形成方法は、請求項2記載の被膜形成方法において、前記重曹粉末の吹き付けを乾式で行うことを特徴とする。
また、請求項5記載の被膜形成方法は、請求項1乃至4の何れか1項に記載の被膜形成方法において、前記重曹粉末の平均粒径は60〜300μmであることを特徴とする。
また、請求項6記載の被膜形成方法は、請求項2乃至5の何れか1項に記載の被膜形成方法において、前記重曹粉末の吹き付け圧力は0.15〜0.65MPaであることを特徴とする。
また、請求項7記載の被膜形成方法は、請求項1乃至6の何れか1項に記載の被膜形成方法において、前記樹脂成形品表面をRa値で0.5〜3.0μmに粗面化することを特徴とする。
また、請求項8記載の被膜形成方法は、請求項1乃至7の何れか1項に記載の被膜方法において、前記樹脂成形品は3Dプリンタで成形されたものであることを特徴とする。
As a result of earnest research to meet such demands, the present invention can use a baking soda powder as an abrasive grain used for the roughening treatment of a resin molded product, so that abrasive grains made of the baking soda powder can be easily removed after the roughening treatment. It was also found that the surface of the resin molded product can be easily hydrophilized due to the chemical properties of the baking soda powder.
The film forming method of the present invention is based on the above knowledge, and as described in claim 1, is a film forming method for forming a metal film on a resin molded product, wherein the resin molded product is roughened. A coating film is formed on the surface of the resin molded article that has been roughened by using baking soda powder as an abrasive used in the treatment and has been made hydrophilic.
A film forming method according to claim 2 is characterized in that, in the film forming method according to claim 1, baking soda powder is sprayed on the surface of the resin molded product.
The film forming method according to claim 3 is characterized in that, in the film forming method according to claim 2, the baking powder is sprayed in a wet manner.
The film forming method according to claim 4 is characterized in that, in the film forming method according to claim 2, spraying of the baking soda powder is performed in a dry manner.
The film forming method according to claim 5 is the film forming method according to any one of claims 1 to 4, wherein the average particle diameter of the baking soda powder is 60 to 300 µm.
The film forming method according to claim 6 is characterized in that, in the film forming method according to any one of claims 2 to 5, the spray pressure of the baking soda powder is 0.15 to 0.65 MPa. To do.
The film forming method according to claim 7 is the film forming method according to any one of claims 1 to 6, wherein the surface of the resin molded product is roughened to a Ra value of 0.5 to 3.0 μm. It is characterized by doing.
The film forming method according to claim 8 is the film method according to any one of claims 1 to 7, wherein the resin molded product is formed by a 3D printer.

本発明の被膜形成方法は、樹脂成形品の表面を重曹粉末を用いて粗面化し、親水化された前記樹脂成形品の表面に金属被膜を形成するようにしたため、粗面化処理に用いる砥粒としての重曹粉末は、従来の金属やセラミックからなる砥粒とは異なり樹脂成形品への粗面化処理後に簡単に除去できるため潜り込みがなく、重曹粉末の化学的な物性に起因して簡単に樹脂成形品の表面を親水化でき、その後のめっき処理に手間がかからないため、3Dプリンタによる樹脂成形品を含め各種樹脂成形品の表面に密着性に優れた金属被膜をその物性を損なうことなく簡単に形成できるという効果を奏する。また、優れた密着性によって、金属被膜を厚膜に形成した場合は、3Dプリンタによる樹脂成形品も含め各種樹脂成形品に優れた機械的性質を付与できるという優れた効果を奏する。   In the film forming method of the present invention, the surface of the resin molded product is roughened using baking soda powder, and a metal film is formed on the hydrophilic surface of the resin molded product. Unlike conventional abrasive grains made of metal or ceramic, baking soda powder can be easily removed after surface roughening of resin molded products, so it does not sink and is easy due to the chemical properties of baking soda powder. Since the surface of the resin molded product can be made hydrophilic and the subsequent plating process does not take much time, a metal coating with excellent adhesion on the surface of various resin molded products, including resin molded products by 3D printers, is not impaired. There is an effect that it can be easily formed. Moreover, when the metal coating is formed into a thick film due to excellent adhesion, an excellent effect is obtained that excellent mechanical properties can be imparted to various resin molded products including resin molded products by 3D printers.

以下に本発明の被膜形成方法の実施の形態を説明するが、本発明の被膜形成方法は以下の実施の形態に限定されるものではない。
本発明の被膜形成方法では、樹脂成形品の表面を重曹粉末を用いて粗面化し、親水化された前記樹脂成形品の表面に金属被膜を形成するようにした。
Embodiments of the film forming method of the present invention will be described below, but the film forming method of the present invention is not limited to the following embodiments.
In the film forming method of the present invention, the surface of the resin molded article is roughened using baking soda powder, and a metal film is formed on the hydrophilic surface of the resin molded article.

重曹粉末からなる砥粒を用いた粗面化処理は特に限定されるものではなく、例えば、砥粒を吹き付けるブラスト処理や、砥粒と擦れ合わせるバレル処理等の粗面化方法が挙げられる。しかしながら、湿式ブラストや乾式ブラスト等のブラスト処理で行うのが好ましい。特に、湿式ブラストの場合は、ブラスト処理と同時に重曹粉末が水で溶解して樹脂成形品の表面を親水化するので、別途、親水化処理の必要がなくその後の金属被膜の形成に手間がかからないので好ましい。また、乾式ブラストの場合もブラスト処理後の水洗で、湿式ブラストと同様に簡単に樹脂成形品の表面が親水化されるので本発明の被膜形成方法にはブラスト処理が適している。   The surface roughening treatment using abrasive grains made of baking soda powder is not particularly limited, and examples thereof include a surface roughening method such as blasting for spraying abrasive grains and barrel treatment for rubbing with abrasive grains. However, it is preferable to carry out by blasting such as wet blasting or dry blasting. In particular, in the case of wet blasting, the baking soda powder dissolves in water simultaneously with the blasting treatment to make the surface of the resin molded product hydrophilic, so there is no need for a separate hydrophilization treatment and the subsequent formation of the metal film is not troublesome. Therefore, it is preferable. Also, in the case of dry blasting, the surface of the resin molded product can be easily made hydrophilic by washing with water after the blasting treatment as in the case of wet blasting. Therefore, the blasting treatment is suitable for the film forming method of the present invention.

前記重曹粉末の平均粒径は60〜300μmが好ましく、特に100〜200μmが好ましい。これは60μm未満であると粗面化が十分でなく、金属被膜の良好な密着性が得られず、300μmを越えると粗面化され過ぎ金属被膜との密着性が悪くなるからである。   The average particle size of the baking soda powder is preferably 60 to 300 μm, particularly preferably 100 to 200 μm. This is because if the thickness is less than 60 μm, roughening is not sufficient and good adhesion of the metal film cannot be obtained, and if it exceeds 300 μm, the surface is too rough and adhesion to the metal film is deteriorated.

また、前記重曹粉末を樹脂成形品の表面に吹き付ける場合、前記重曹粉末の吹き付け圧力は0.15〜0.65MPaが好ましく、特に0.2〜0.5MPaが好ましい。これは0.15MPa未満であると粗面化が十分でなく、金属被膜の良好な密着性が得られず、0.65MPaを越えると粗面化され過ぎ金属被膜との密着性が悪くなるからである。   Moreover, when spraying the said sodium bicarbonate powder on the surface of a resin molded product, the spraying pressure of the said sodium bicarbonate powder is preferably 0.15 to 0.65 MPa, particularly preferably 0.2 to 0.5 MPa. If it is less than 0.15 MPa, roughening is not sufficient, and good adhesion of the metal film cannot be obtained, and if it exceeds 0.65 MPa, it is too rough and adhesion to the metal film is deteriorated. It is.

また、重曹粉末を用いた粗面化では、前記樹脂成形品表面をRa値で0.5〜3.0μmに粗面化することが好ましく、特に、Ra値で1.0〜2.7μmに粗面化することが好ましい。これは、Ra値が0.5μm未満であると粗面化が十分でなく、金属被膜の良好な密着性が得られず、Ra値が3.0μmを越えると粗面化され過ぎ金属被膜との密着性が悪くなるからである。   Further, in roughening using baking soda powder, it is preferable to roughen the surface of the resin molded product to 0.5 to 3.0 μm in terms of Ra value, and in particular to 1.0 to 2.7 μm in terms of Ra value. It is preferable to roughen the surface. This is because when the Ra value is less than 0.5 μm, roughening is not sufficient, and good adhesion of the metal film cannot be obtained, and when the Ra value exceeds 3.0 μm, the metal film is too rough. This is because the adhesion of the resin becomes worse.

前記樹脂成形品の成形方法は特に限定されるものではなく、射出成形、圧縮成形、ブロー成形、インサート成形を始め、FDM法(熱溶解積層方式)、SLS法(粉末焼結積層造形方式)やSLA法(光造形方式)等の3Dプリンタによる樹脂成形品など広く適用可能であるが、FDM法(熱溶解積層方式)やSLS法(粉末焼結積層造形方式)の3Dプリンタの場合、樹脂積層時の積層痕により表面に大きな凹凸が形成されており、更にブラスト処理による粗面化で微小な凹凸が形成されることで2パターンの凹凸が形成されており、金属被膜形成時に強力なアンカー効果が生じている。また、FDM法(熱溶解積層方式)やSLS法(粉末焼結積層造形方式)で用いられている主な樹脂は親水性がある化学結合を有しているため、物理的な結合と化学的な結合の相乗効果により、金属被膜との良好な密着性を得ることができる。
そのため、本発明の樹脂成形品の被膜形成方法は、3Dプリンタによる樹脂成形品に対する金属被膜の形成に好適である。
The molding method of the resin molded product is not particularly limited, and includes injection molding, compression molding, blow molding, insert molding, FDM method (hot melt lamination method), SLS method (powder sintering additive manufacturing method), It is widely applicable to resin molded products by 3D printers such as SLA method (stereolithography method), but in the case of 3D printers using FDM method (hot melt lamination method) or SLS method (powder sintering lamination molding method), resin lamination Large irregularities are formed on the surface due to the stacking marks at the time, and two irregularities are formed by forming fine irregularities by roughening by blasting treatment, and a strong anchor effect at the time of metal film formation Has occurred. In addition, since the main resin used in the FDM method (hot melt lamination method) and the SLS method (sintered powder sintering method) has a hydrophilic chemical bond, the physical bond and the chemical Good adhesion to the metal coating can be obtained due to the synergistic effect of simple bonding.
Therefore, the method for forming a film of a resin molded product of the present invention is suitable for forming a metal film on a resin molded product by a 3D printer.

前記樹脂成形品を構成する樹脂としては、特に制限されることなく、ナイロンなどのポリアミド樹脂、ポリ乳酸などのポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合樹脂)など、広く使用することができる。   The resin constituting the resin molded product is not particularly limited, but is not limited to polyamide resin such as nylon, polyester resin such as polylactic acid, epoxy resin, polyurethane resin, polyvinyl chloride resin, acrylic resin, polycarbonate resin, polystyrene resin. And ABS resin (acrylonitrile-butadiene-styrene copolymer resin).

前記樹脂成形品表面の親水性は、前記重曹粉末の化学的物性から容易に得られ、前記したように、湿式ブラストの場合は重曹粉末の樹脂成形品表面に対する吹き付けと同時に得られ、乾式ブラストの場合も、重曹粉末の樹脂成形品表面に対する吹き付けに続く水洗によって簡単に得られる。重曹粉末の化学的物性に起因する親水化は前記ブラスト処理に限定されるものではなく、アルカリ液を用いた浸漬処理や重曹粉末を用いたバレル処理によっても樹脂成形品を簡単に親水化することができる。   The hydrophilicity of the surface of the resin molded product is easily obtained from the chemical properties of the baking soda powder, and as described above, in the case of wet blasting, it is obtained simultaneously with the spraying of the baking soda powder on the surface of the resin molded product. In this case, it can be easily obtained by washing with water following the spraying of the baking soda powder onto the surface of the resin molded product. Hydrophilization due to the chemical properties of baking soda powder is not limited to the above blasting treatment, and the resin molded product can be easily hydrophilized also by immersion treatment using alkaline solution or barrel treatment using baking soda powder. Can do.

前記粗面化された樹脂成形品表面に対する金属被膜の形成はめっきによる金属被膜の形成に特に限定されるものではない。重曹粉末による親水化を利用する観点からは、次いで、コンディショナー溶液による表面調整を行い、塩化パラジウム、塩化第一錫等の触媒付与を施し、無電解ニッケルを行って金属被膜を形成し、更に、電解銅めっき、電解ニッケルめっきを行うようにしてもよい。   Formation of the metal film on the surface of the roughened resin molded product is not particularly limited to formation of the metal film by plating. From the viewpoint of utilizing hydrophilization with sodium bicarbonate powder, the surface is then adjusted with a conditioner solution to give a catalyst such as palladium chloride and stannous chloride, and electroless nickel is formed to form a metal film. Electrolytic copper plating or electrolytic nickel plating may be performed.

次ぎに、本発明被膜形成方法の具体的実施例を説明する。
実施例1
先ず、FDM法(熱溶解積層方式)の3Dプリンタ(Maker Bot製 Replicator2)を用いてタテ80mm×ヨコ10mm×厚み4mmのポリエステル系熱可塑性樹脂であるポリ乳酸(PLA)樹脂成形品を作製した。
次ぎに、樹脂成形品の表面に、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径100μmの重曹粉末を0.2MPaの圧力で吹き付けた。
次ぎに、コンディショナー溶液(奥野製薬工業株式会社製 コンディライザーSP)に浸漬させて表面調整を行なった。
次いで、塩化パラジウム、塩化第一錫、濃塩酸の混合液(奥野製薬工業株式会社製 キャタリストC−7)に浸漬して触媒付与した。
次ぎに、希塩酸液に浸漬して活性化を行った。
次ぎに、アルカリ性無電解ニッケルめっき液(奥野製薬工業株式会社製 化学ニッケルEXC)でめっきして、厚さ1μmの無電解ニッケルめっき被膜を形成した。
次ぎに、硫酸銅を溶液(奥野製薬工業株式会社製 エレカッパー25)で電解銅めっきを行ない厚さ37μmの銅めっき被膜を形成した。
最後に、硫酸ニッケル、塩化ニッケルを主成分とした溶液中で電解ニッケルめっきを行い厚さ15μmのニッケルめっき被膜を形成した。
尚、無電解ニッケルめっきの条件は、pH8.5〜9.5、溶液温度25〜35℃に管理し、めっき時間は10〜12分とした。電解銅めっきの条件は、電流密度2A/dm、温度は室温、めっき時間は80〜90分とした。電解ニッケルめっきの条件は、電流密度2A/dm、温度45〜55℃、めっき時間は20〜30分とした。
Next, specific examples of the coating film forming method of the present invention will be described.
Example 1
First, a polylactic acid (PLA) resin molded product, which is a polyester-based thermoplastic resin having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm, was prepared using a 3D printer (manufactured by Maker Bot Replicator 2) of the FDM method (heat melting lamination method).
Next, baking soda powder having an average particle size of 100 μm was sprayed onto the surface of the resin molded product at a pressure of 0.2 MPa using a blast machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Next, the surface was adjusted by dipping in a conditioner solution (Condizer SP manufactured by Okuno Pharmaceutical Co., Ltd.).
Subsequently, it was immersed in a mixed solution of palladium chloride, stannous chloride and concentrated hydrochloric acid (Catalyst C-7 manufactured by Okuno Pharmaceutical Co., Ltd.) to give a catalyst.
Next, activation was performed by dipping in a diluted hydrochloric acid solution.
Next, an electroless nickel plating film having a thickness of 1 μm was formed by plating with an alkaline electroless nickel plating solution (chemical nickel EXC manufactured by Okuno Pharmaceutical Co., Ltd.).
Next, electrolytic copper plating was performed with a solution of copper sulfate (ELECAPPER 25, manufactured by Okuno Pharmaceutical Co., Ltd.) to form a 37 μm thick copper plating film.
Finally, electrolytic nickel plating was performed in a solution mainly composed of nickel sulfate and nickel chloride to form a nickel plating film having a thickness of 15 μm.
The electroless nickel plating conditions were controlled at pH 8.5 to 9.5, solution temperature 25 to 35 ° C., and plating time 10 to 12 minutes. The conditions for electrolytic copper plating were a current density of 2 A / dm 2 , a temperature of room temperature, and a plating time of 80 to 90 minutes. The conditions for electrolytic nickel plating were a current density of 2 A / dm 2 , a temperature of 45 to 55 ° C., and a plating time of 20 to 30 minutes.

実施例2
造形精度の高いFDM法(熱溶解積層方式)の3Dプリンタ(株式会社久宝金属製作所製 Qholia)を用いてタテ50mm×ヨコ50mm×厚み3mmのポリエステル系熱可塑性樹脂であるポリ乳酸(PLA)樹脂成形品を作製した。
次いで、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径100μmの重曹粉末を0.5MPaの圧力で吹き付けた。
その後、前記実施例1と同様の処理を行って樹脂成形品の表面に無電解ニッケルめっき被膜(1μm)、銅めっき被膜(37μm)、ニッケルめっき被膜(15μm)をこの順で形成した。
Example 2
Polylactic acid (PLA) resin molding, which is a polyester-based thermoplastic resin of 50 mm x 50 mm x 3 mm thickness, using a 3D printer (Qholia, manufactured by Kyuho Metals Co., Ltd.) with a high modeling accuracy FDM method (heat melting lamination method) An article was made.
Next, baking soda powder having an average particle size of 100 μm was sprayed at a pressure of 0.5 MPa using a blasting machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Thereafter, the same treatment as in Example 1 was performed to form an electroless nickel plating film (1 μm), a copper plating film (37 μm), and a nickel plating film (15 μm) in this order on the surface of the resin molded product.

実施例3
SLS法(粉末焼結積層造形方式)の3Dプリンタ(株式会社アスペクト製 RaFaEL)を用いてタテ32mm×ヨコ35mm×厚み3mmのポリアミド系樹脂であるナイロン12系樹脂(ASPEX-PA)成形品を作製した。
次いで、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径100μmの重曹粉末を0.2MPaの圧力で吹き付けた。
その後、前記実施例1と同様の処理を行って樹脂成形品の表面に無電解ニッケルめっき被膜(1μm)、銅めっき被膜(37μm)、ニッケルめっき被膜(15μm)をこの順で形成した。
Example 3
Using a SLS method (powder sintering additive manufacturing method) 3D printer (RaFaEL manufactured by Aspect Co., Ltd.), a nylon 12 resin (ASPEX-PA) molded product, which is a polyamide resin having a length of 32 mm, a width of 35 mm and a thickness of 3 mm did.
Subsequently, baking soda powder having an average particle diameter of 100 μm was sprayed at a pressure of 0.2 MPa using a blasting machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Thereafter, the same treatment as in Example 1 was performed to form an electroless nickel plating film (1 μm), a copper plating film (37 μm), and a nickel plating film (15 μm) in this order on the surface of the resin molded product.

実施例4
SLS法(粉末焼結積層造形方式)の3Dプリンタ(EOS製 FORMIGA P)を用いて実施例2と同形状のポリアミド系樹脂であるナイロン12系樹脂(PA2200)成形品を作製した。
次いで、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径100μmの重曹粉末を0.2MPaの圧力で吹き付けた。
その後、前記実施例1と同様の処理を行って樹脂成形品の表面に無電解ニッケルめっき被膜(1μm)、銅めっき被膜(37μm)、ニッケルめっき被膜(15μm)をこの順で形成した。
Example 4
A nylon 12-based resin (PA2200) molded product, which is a polyamide-based resin having the same shape as that of Example 2, was prepared using a 3D printer (former P of EOS manufactured by SOS method).
Subsequently, baking soda powder having an average particle diameter of 100 μm was sprayed at a pressure of 0.2 MPa using a blasting machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Thereafter, the same treatment as in Example 1 was performed to form an electroless nickel plating film (1 μm), a copper plating film (37 μm), and a nickel plating film (15 μm) in this order on the surface of the resin molded product.

実施例5
SLA法(光造形方式)の3Dプリンタ(株式会社ディーメック製 ACCULAS(登録商標)シリーズ)を用いてタテ45mm×ヨコ20mm×厚み4mmのエポキシ系樹脂(SCR(登録商標)737)成形品を作製した。
次いで、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径100μmの重曹粉末を0.5MPaの圧力で吹き付けた。
その後、前記実施例1と同様の処理を行って樹脂成形品の表面に無電解ニッケルめっき被膜(1μm)、銅めっき被膜(37μm)、ニッケルめっき被膜(15μm)をこの順で形成した。
Example 5
Using an SLA method (stereolithography method) 3D printer (ACCULAS (registered trademark) series manufactured by DEMEC Co., Ltd.), a molded product of epoxy resin (SCR (registered trademark) 737) having a length of 45 mm, a width of 20 mm, and a thickness of 4 mm is produced. did.
Next, baking soda powder having an average particle size of 100 μm was sprayed at a pressure of 0.5 MPa using a blasting machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Thereafter, the same treatment as in Example 1 was performed to form an electroless nickel plating film (1 μm), a copper plating film (37 μm), and a nickel plating film (15 μm) in this order on the surface of the resin molded product.

比較例1
実施例1と同様の方法で、但し、タテ50mm×ヨコ50mm×厚み3mmの成形品を作製した。
次ぎに、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径約100μmのアルミナ粉末を0.2MPaの圧力で吹き付けた。
その後、前記実施例1と同様の処理を行って樹脂成形品の表面に無電解ニッケルめっき被膜(1μm)、銅めっき被膜(37μm)、ニッケルめっき被膜(15μm)をこの順で形成した。
Comparative Example 1
A molded product having a length of 50 mm, a width of 50 mm, and a thickness of 3 mm was produced in the same manner as in Example 1.
Next, alumina powder having an average particle size of about 100 μm was sprayed at a pressure of 0.2 MPa using a blast machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Thereafter, the same treatment as in Example 1 was performed to form an electroless nickel plating film (1 μm), a copper plating film (37 μm), and a nickel plating film (15 μm) in this order on the surface of the resin molded product.

比較例2
実施例2と同様の方法で、タテ50mm×ヨコ50mm×厚み3mmの成形品を作製した。
次ぎに、ブラスト機(株式会社不二製作所製 SGK−3LD)を用いて平均粒径約100μmのアルミナ粉末を0.5MPaの圧力で吹き付けた。
その後、前記実施例1と同様の処理を行って樹脂成形品の表面に無電解ニッケルめっき被膜(1μm)、銅めっき被膜(37μm)、ニッケルめっき被膜(15μm)をこの順で形成した。
Comparative Example 2
In the same manner as in Example 2, a molded product having a length of 50 mm, a width of 50 mm, and a thickness of 3 mm was produced.
Next, alumina powder having an average particle size of about 100 μm was sprayed at a pressure of 0.5 MPa using a blast machine (SGK-3LD manufactured by Fuji Seisakusho Co., Ltd.).
Thereafter, the same treatment as in Example 1 was performed to form an electroless nickel plating film (1 μm), a copper plating film (37 μm), and a nickel plating film (15 μm) in this order on the surface of the resin molded product.

次ぎに、実施例1乃至5、並びに、比較例1及び2の各樹脂成形品の金属被膜の外観・密着性の評価を示す。尚、評価方法は次ぎのようにして行った。
尚、外観・密着性の評価は、前記各樹脂成形品に厚さ1μmの無電解ニッケルめっき被膜を形成した段階で行った。
(1)外観:
無電解ニッケルめっき被膜の外観を目視で評価した。その際、無めっき・ピンホール・ピット・ふくれなどの異常の有無を確認した。
(2)密着性試験:
JIS H 8504に準じて、無電解ニッケルめっき被膜の表面にカッターで素地まで達する切り込みを入れ、粘着テープを貼り付けた後、テープをめっき面に対して垂直に引っ張った場合のめっき被膜の剥離の有無を調べた。
上記評価方法によって得られた結果を下記表1に示す。
Next, evaluations of the appearance and adhesion of the metal coatings of the resin molded products of Examples 1 to 5 and Comparative Examples 1 and 2 are shown. The evaluation method was performed as follows.
The appearance and adhesion were evaluated at the stage where an electroless nickel plating film having a thickness of 1 μm was formed on each resin molded product.
(1) Appearance:
The appearance of the electroless nickel plating film was visually evaluated. At that time, the presence or absence of abnormalities such as no plating, pinholes, pits and blisters was confirmed.
(2) Adhesion test:
According to JIS H 8504, the surface of the electroless nickel plating film is cut with a cutter to reach the substrate, and after the adhesive tape is applied, the plating film is peeled off when the tape is pulled perpendicular to the plating surface. The presence or absence was examined.
The results obtained by the evaluation method are shown in Table 1 below.

Figure 2018204091
Figure 2018204091

上記表1に示されるように、本発明被膜形成方法で得られた実施例1乃至5の試料表面の全面に良好な外観の密着性に優れた無電解ニッケルめっき被膜が形成されていた。これに対して、比較例1ではほぼ全体が無めっきの状態で、また、比較例2も端部の大部分が無めっきの状態であった。   As shown in Table 1 above, an electroless nickel plating film excellent in adhesion with good appearance was formed on the entire surface of the sample surfaces of Examples 1 to 5 obtained by the film forming method of the present invention. On the other hand, in Comparative Example 1, almost the whole was unplated, and in Comparative Example 2, most of the end portions were unplated.

次ぎに、3Dプリンタで得られた前記実施例1の樹脂成形品のめっき前後における機械的性質として曲げ強度と、曲げ弾性率を試験した。尚、曲げ強度と曲げ弾性率は次ぎのようにして行った。
万能材料試験機(株式会社島津製作所製 AG−250kNI)を用いて、JIS K 7171に準じて、曲げ強度と曲げ弾性率を求めた。詳細には、樹脂成形品の中央に集中荷重を加え、樹脂成形品が破壊または規定のたわみに達するまで一定速度でたわませ、その間の樹脂成形品に負荷される荷重を測定し、その結果より曲げ強度と曲げ弾性率を算出した。
上記試験によって得られて曲げ強度と、曲げ弾性率の値を下記表2に示す。
Next, bending strength and bending elastic modulus were tested as mechanical properties before and after plating of the resin molded product of Example 1 obtained by a 3D printer. In addition, bending strength and bending elastic modulus were performed as follows.
Using a universal material testing machine (AG-250kNI, manufactured by Shimadzu Corporation), bending strength and flexural modulus were determined according to JIS K7171. Specifically, a concentrated load is applied to the center of the resin molded product, and the resin molded product is deflected at a constant speed until it breaks or reaches the specified deflection, and the load applied to the resin molded product during that time is measured. Bending strength and flexural modulus were further calculated.
The values of bending strength and bending elastic modulus obtained by the above test are shown in Table 2 below.

Figure 2018204091
Figure 2018204091

上記表2に示されるように、本発明被膜形成方法で得られた実施例1の金属被膜を形成された樹脂成形品の曲げ強度と曲げ弾性率は被膜形成されていない樹脂成形品に比して、曲げ強度で1.7倍、曲げ弾性率で5.2倍という値が得られ、被膜形成されていない樹脂成形品よりも優れた機械的性質を備えていた。   As shown in Table 2 above, the bending strength and the flexural modulus of the resin molded product formed with the metal film of Example 1 obtained by the coating film forming method of the present invention are compared with those of the resin molded product with no film formed. Thus, a value of 1.7 times in bending strength and 5.2 times in flexural modulus was obtained, and mechanical properties superior to those of a resin molded product having no film formed were provided.

本発明の被膜形成方法においては、環境に優しい化学物質である重曹粉末を砥粒に用いて、3Dプリンタによる樹脂成形品を含め各種樹脂成形品の表面に密着性に優れた金属被膜をその物性を損なうことなく簡単に形成できるため産業上有用である。   In the film forming method of the present invention, a baking soda powder, which is an environmentally friendly chemical substance, is used for abrasive grains, and a metal film having excellent adhesion on the surface of various resin molded products including resin molded products by 3D printers. This is industrially useful because it can be easily formed without impairing the thickness.

Claims (8)

樹脂成形品に金属被膜を形成するための被膜形成方法であって、前記樹脂成形品の粗面化処理に用いる砥粒として重曹粉末を用いて粗面化し、親水化された前記樹脂成形品の表面に被膜形成を行うことを特徴とする被膜形成方法。 A film forming method for forming a metal film on a resin molded product, wherein the resin molded product is roughened by using baking soda powder as abrasive grains used in the surface roughening treatment of the resin molded product, and is made hydrophilic. A method of forming a film, comprising forming a film on a surface. 前記樹脂成形品の表面に重曹粉末を吹き付けることを特徴とする請求項1記載の被膜形成方法。 The film forming method according to claim 1, wherein baking soda powder is sprayed on a surface of the resin molded product. 前記重曹粉末の吹き付けを湿式で行うことを特徴とする請求項2記載の被膜形成方法。 The film forming method according to claim 2, wherein the baking powder is sprayed in a wet process. 前記重曹粉末の吹き付けを乾式で行うことを特徴とする請求項2記載の被膜形成方法。 The film forming method according to claim 2, wherein the baking powder is sprayed by a dry method. 前記重曹粉末の平均粒径は60〜300μmであることを特徴とする請求項1乃至4の何れか1項に記載の被膜形成方法。 The film forming method according to any one of claims 1 to 4, wherein an average particle diameter of the baking soda powder is 60 to 300 µm. 前記重曹粉末の吹き付け圧力は0.15〜0.65MPaであることを特徴とする請求項2乃至5の何れか1項に記載の被膜形成方法。 The film forming method according to any one of claims 2 to 5, wherein a spray pressure of the baking soda powder is 0.15 to 0.65 MPa. 前記樹脂成形品表面をRa値で0.5〜3.0μmに粗面化することを特とする請求項1乃至6の何れか1項に記載の被膜形成方法。 The film forming method according to claim 1, wherein the surface of the resin molded product is roughened to a Ra value of 0.5 to 3.0 μm. 前記樹脂成形品は3Dプリンタで成形されたものであることを特徴とする請求項1乃至7の何れか1項に記載の被膜形成方法。 The film forming method according to any one of claims 1 to 7, wherein the resin molded product is molded by a 3D printer.
JP2017114481A 2017-06-09 2017-06-09 METHOD FOR FORMING COATING OF RESIN MOLDED PRODUCT Active JP7194372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017114481A JP7194372B2 (en) 2017-06-09 2017-06-09 METHOD FOR FORMING COATING OF RESIN MOLDED PRODUCT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017114481A JP7194372B2 (en) 2017-06-09 2017-06-09 METHOD FOR FORMING COATING OF RESIN MOLDED PRODUCT

Publications (2)

Publication Number Publication Date
JP2018204091A true JP2018204091A (en) 2018-12-27
JP7194372B2 JP7194372B2 (en) 2022-12-22

Family

ID=64956523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017114481A Active JP7194372B2 (en) 2017-06-09 2017-06-09 METHOD FOR FORMING COATING OF RESIN MOLDED PRODUCT

Country Status (1)

Country Link
JP (1) JP7194372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038681A (en) * 2019-09-02 2021-03-11 株式会社日立産機システム Screw rotor and fluid machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161571A (en) * 1974-11-26 1976-05-28 Kurosawa Telecommunications METSUKIHOHO
JP2000343434A (en) * 1999-05-31 2000-12-12 Mitsumasa Matsumoto Blasting method
JP2001277120A (en) * 2000-03-29 2001-10-09 Asahi Glass Co Ltd Wet blast nozzle and wet blast method
JP2004099918A (en) * 2002-09-04 2004-04-02 Polyplastics Co Method for plating article molded of crystalline polyester resin, and plated article molded of crystalline polyester resin
JP2010515606A (en) * 2007-01-12 2010-05-13 ストラタシス,インコーポレイテッド Surface treatment method for three-dimensional object manufactured at high speed

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG141441A1 (en) 2004-09-15 2008-04-28 Honeywell Int Inc Treating agent materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161571A (en) * 1974-11-26 1976-05-28 Kurosawa Telecommunications METSUKIHOHO
JP2000343434A (en) * 1999-05-31 2000-12-12 Mitsumasa Matsumoto Blasting method
JP2001277120A (en) * 2000-03-29 2001-10-09 Asahi Glass Co Ltd Wet blast nozzle and wet blast method
JP2004099918A (en) * 2002-09-04 2004-04-02 Polyplastics Co Method for plating article molded of crystalline polyester resin, and plated article molded of crystalline polyester resin
JP2010515606A (en) * 2007-01-12 2010-05-13 ストラタシス,インコーポレイテッド Surface treatment method for three-dimensional object manufactured at high speed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038681A (en) * 2019-09-02 2021-03-11 株式会社日立産機システム Screw rotor and fluid machine
JP7284045B2 (en) 2019-09-02 2023-05-30 株式会社日立産機システム Fluid machinery

Also Published As

Publication number Publication date
JP7194372B2 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US10808322B2 (en) Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US8906515B2 (en) Metal-clad polymer article
JP6063961B2 (en) Aluminum alloy, aluminum alloy resin composite, and preparation method thereof
JP2018040052A (en) Material and process for electrochemical deposition of nanolaminated brass alloys
CN104608317B (en) The preparation method and product of a kind of combination of metal and resin
TW201511939A (en) Metal/resin composite structure and metal member
TW201821649A (en) The application of laminate and nanolaminate materials to tooling and molding processes
Bernasconi et al. Electroless plating of PLA and PETG for 3D printed flexible substrates
JP2006523544A (en) Article
JP2018204091A (en) Method for forming film on resin molding
CN106696172A (en) Making method of metal and plastic composite product
JPH0235033B2 (en)
JP2012015448A (en) Flexible copper clad laminate and manufacturing method of the same, and circuit board using the same
US3632704A (en) Method for modifying electrically nonconductive surfaces for electroless plating
TW201703984A (en) Method for producing metal-resin composite structure and method for producing surface roughed steel member
Chen et al. Tough bonding of metallic layers to hydrocarbon surfaces by depositing Ag films
US20070065634A1 (en) Use of an object as a decorative component
JP2006523774A (en) Use of articles as molding tools
JPS63175038A (en) Surface treatment for molded article of polyacetal resin
US20070087215A1 (en) Use of an article as electronic structural part
US20110318596A1 (en) High peel strength article comprising a thermoplastic-metal interpenetrated volume
JP2013095975A (en) Method for manufacturing aluminum base material and aluminum-resin joined body
JPH0525298A (en) Surface roughening of resin molding suitable for its metallization
CA2523008A1 (en) Article with layers of composite material of a first non-metallic layer and a second metallic layer applied to the first layer
JP2003105551A (en) Method of manufacturing plastic plated goods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211019

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211026

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211112

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211116

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220201

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220405

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220802

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221018

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221101

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221129

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221130

R150 Certificate of patent or registration of utility model

Ref document number: 7194372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150