JP2018204076A - Estimation method of burning rate of reduction material injected in blast furnace, operation method of blast furnace and blowing tuyere - Google Patents

Estimation method of burning rate of reduction material injected in blast furnace, operation method of blast furnace and blowing tuyere Download PDF

Info

Publication number
JP2018204076A
JP2018204076A JP2017112046A JP2017112046A JP2018204076A JP 2018204076 A JP2018204076 A JP 2018204076A JP 2017112046 A JP2017112046 A JP 2017112046A JP 2017112046 A JP2017112046 A JP 2017112046A JP 2018204076 A JP2018204076 A JP 2018204076A
Authority
JP
Japan
Prior art keywords
reducing material
blast furnace
combustion
blowing
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017112046A
Other languages
Japanese (ja)
Other versions
JP6604658B2 (en
Inventor
晃太 盛家
Kota MORIYA
晃太 盛家
明紀 村尾
Akinori Murao
明紀 村尾
功一 ▲高▼橋
功一 ▲高▼橋
Koichi Takahashi
尚貴 山本
Naoki Yamamoto
尚貴 山本
深田 喜代志
Kiyoshi Fukada
喜代志 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel and Sumitomo Metal Corp
Nisshin Steel Co Ltd
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel and Sumitomo Metal Corp, Nisshin Steel Co Ltd, Nippon Steel and Sumikin Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2017112046A priority Critical patent/JP6604658B2/en
Publication of JP2018204076A publication Critical patent/JP2018204076A/en
Application granted granted Critical
Publication of JP6604658B2 publication Critical patent/JP6604658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

To realize a stable operation of a blast furnace by accurately estimating and utilizing the burning rate of an injected reduction material in the blast furnace operation in which the reducing material is blown into the furnace.SOLUTION: In the blast furnace operation, a reduction material is blown into the furnace through a blowing pipe in which a tip portion is located in a blowing flow path of the blower tuyere body or a blowing pipe path of a blowpipe upstream side of the blower tuyere. Emission peak intensity of a radical of the reduction material is measured in the burning field through an observation hole provided in the blower tuyere body or the blowpipe. The obtained emission peak intensity is compared with a calibration curve representing the relationship between the burning rate of the reduction material and the emission peak intensity of the radical in the burning field. The burning rate of the reduction material is thus estimated from the measured emission peak intensity of the radical in the burning field.SELECTED DRAWING: Figure 4

Description

本発明は、還元材を炉内へ吹き込む高炉操業において、吹き込まれた還元材の燃焼率を的確に推定することができる高炉吹込み還元材の燃焼率推定方法に関するものである。
また、本発明は、上記した高炉吹込み還元材の燃焼率推定方法を利用することによって高炉の安定操業を図る高炉操業方法に関するものである。
さらに、本発明は、上記した高炉操業方法の実施に用いて好適な送風羽口に関するものである。
The present invention relates to a method for estimating the combustion rate of a blast furnace blowing reductant that can accurately estimate the combustion rate of the blown reducing material in a blast furnace operation in which the reductant is blown into the furnace.
The present invention also relates to a blast furnace operation method for achieving stable operation of the blast furnace by utilizing the above-described method for estimating the combustion rate of the blast furnace blown reducing material.
Furthermore, the present invention relates to a ventilation tuyere suitable for use in the implementation of the blast furnace operating method described above.

現在、高炉操業においては、コークス使用量の削減を目的として、送風羽口から還元材を吹き込む操業が実施されている。
かような高炉操業において、送風羽口から吹き込まれる還元材としては、微粉炭、天然ガス、プロパンガス、重油、軽油、タールなどの化石燃料、菜種油をはじめとする植物性油脂、コークス炉ガスおよび廃プラスチックなどが挙げられる。これらの還元材は、ブローパイプと送風羽口本体で構成される送風羽口内に挿入されたランスと呼ばれる吹込み管を通じて熱風流路に吹き込まれ、熱風とともに高炉炉内に供給されている。
Currently, in blast furnace operation, for the purpose of reducing the amount of coke used, an operation of blowing a reducing material from a blower tuyere is being carried out.
In such blast furnace operation, the reducing material blown from the ventilation tuyere includes fossil fuels such as pulverized coal, natural gas, propane gas, heavy oil, light oil, tar, vegetable oils including rapeseed oil, coke oven gas and Examples include plastic waste. These reducing materials are blown into a hot air flow path through a blowing pipe called a lance inserted into a blowing tuyere composed of a blow pipe and a blowing tuyere body, and are supplied into the blast furnace furnace together with hot air.

高炉炉内に供給された還元材は、送風羽口内部および羽口先端に形成されるレースウェイ部で燃焼し、高炉下部の熱の維持および酸化鉄の還元などの観点からコークスの代替となるが、送風流速が毎秒200mと非常に速いため、還元材が送風羽口内に吹き込まれてからレースウェイを通り炉内充填層に入るまでの時間は数ミリ秒と非常に短い。
そのため、コークス使用量をより削減するために吹込む還元材の量を増加させていくと、レースウェイ内で完全に燃焼できなかった還元材(以降、未燃チャーと呼ぶ)が炉内充填層に侵入し、炉内に残留することがあった。
The reducing material supplied into the blast furnace is combusted in the raceway section formed in the blower tuyere and at the tip of the tuyere, and serves as a substitute for coke in terms of maintaining heat at the bottom of the blast furnace and reducing iron oxide. However, since the air flow velocity is very fast at 200 m per second, the time from when the reducing material is blown into the air blower tuyeres through the raceway and entering the packed bed in the furnace is as short as several milliseconds.
Therefore, when the amount of reducing material to be injected is increased in order to further reduce the amount of coke used, the reducing material that could not be completely combusted in the raceway (hereinafter referred to as unburned char) is filled in the furnace. In some cases and remained in the furnace.

炉内に残留した未燃チャーの一部は、ソリューションロス反応で消費されるが、その消費量には限界があるため、未消費のままの未燃チャーは、一部が炉頂から排出されてコークス置換率の低下を招き、それに伴い還元材比の上昇につながる。また、その一部は、炉芯や滴下帯に蓄積して炉内通気・通液性の悪化の原因となる。
そのため、健全な高炉操業を維持するためには、還元材の燃焼率を一定水準以上に保つことが必要である。
Part of the unburned char remaining in the furnace is consumed by the solution loss reaction, but its consumption is limited, so some of the unburned char that remains unconsumed is discharged from the top of the furnace. This leads to a reduction in the coke replacement rate, which leads to an increase in the reducing material ratio. Some of them accumulate in the furnace core and dripping zone and cause deterioration in the ventilation and liquid permeability in the furnace.
Therefore, in order to maintain a sound blast furnace operation, it is necessary to keep the combustion rate of the reducing material above a certain level.

そのためには、還元材が燃焼する送風羽口内部およびレースウェイ部において還元材の燃焼率を把握する必要があるが、高炉の送風羽口内部およびレースウェイ部は摂氏2000度を超える高温燃焼場であるうえ、レースウェイ部にはコークスや溶銑、スラグなども存在しているため、還元材の燃焼率の測定は極めて困難である。   For that purpose, it is necessary to grasp the combustion rate of the reducing material inside the blast tuyere where the reducing material burns and in the raceway part, but the inside of the blast furnace tuyere and the raceway part is a high-temperature combustion field exceeding 2000 degrees Celsius. In addition, since the coke, hot metal, slag, etc. also exist in the raceway section, it is extremely difficult to measure the burning rate of the reducing material.

これまで、燃焼率に代表される還元材の燃焼挙動を把握する方法として、次のような方法が提案されてきた。
たとえば、特許文献1では、送風羽口覗き窓に設置した放射温度カメラで測定したレースウェイの輝度から温度を計算し、該温度の時系列データのスペクトル解析を行い、パワー密度スペクトルが最大となる周波数の逆数からレースウェイ崩壊周期を算出し、この崩壊周期から微粉炭燃焼率を評価する方法が提案されている。
Until now, the following method has been proposed as a method for grasping the combustion behavior of the reducing material represented by the combustion rate.
For example, in Patent Document 1, a temperature is calculated from the brightness of a raceway measured by a radiation temperature camera installed in a ventilation tuyere sight window, a time series data analysis of the temperature is performed, and a power density spectrum is maximized. A method has been proposed in which the raceway decay period is calculated from the reciprocal of the frequency, and the pulverized coal combustion rate is evaluated from the decay period.

また、特許文献2では、高炉の羽口部に設置したゾンデの先端から微粉炭燃焼炎の発光を検出し、該発光を分光分析して、特にアルカリ金属ピークの強度比から微粉炭の燃焼挙動を観測する方法が提案されている。   Moreover, in patent document 2, the light emission of the pulverized coal combustion flame is detected from the tip of the sonde installed in the tuyere of the blast furnace, and the light emission is spectroscopically analyzed. A method has been proposed for observing.

さらに、特許文献3では、高炉送風羽口背面の窓からレースウェイ内燃焼場の発光を異なる2波長で撮像し、かかるデータをデジタル化した画像の画素を2色輝度から温度を求めてヒストグラム化し、このヒストグラムの形状から炉況を検知する方法が提案されている。   Furthermore, in Patent Document 3, the emission of the combustion field in the raceway is imaged at two different wavelengths from the window behind the blast furnace blast tuyere, and the pixel of the image obtained by digitizing such data is obtained as a histogram by obtaining the temperature from the two color luminances. A method for detecting the furnace condition from the shape of the histogram has been proposed.

その他、高炉以外の分野では、燃料の燃焼挙動を計測する方法として、次のような方法が提案されている。
たとえば、特許文献4では、ガスタービン中トランジションピース(TP)内において、ガス燃焼場を分割し、このガス燃焼場の発光をTP内壁に複数設けられた受光部で検出し、分光分析することでバンドスペクトル強度を求め、かかるガスの燃焼属性に基づいてガス燃焼場各部位の平均ガス温度を計算し、各部位ごとに計算された平均ガス温度と前記バンドスペクトル強度から該ガス燃焼場のガス温度分布を算出する方法が提案されている。
In addition, in the fields other than the blast furnace, the following methods have been proposed as methods for measuring the combustion behavior of fuel.
For example, in Patent Document 4, a gas combustion field is divided in a transition piece (TP) in a gas turbine, and light emission from the gas combustion field is detected by a plurality of light receiving portions provided on the inner wall of the TP, and then spectral analysis is performed. The band spectrum intensity is obtained, the average gas temperature of each part of the gas combustion field is calculated based on the combustion attribute of the gas, and the gas temperature of the gas combustion field is calculated from the average gas temperature calculated for each part and the band spectrum intensity. A method for calculating the distribution has been proposed.

特開平7−305105号公報JP-A-7-305105 特開平10−30105号公報Japanese Patent Laid-Open No. 10-30105 特許4873788号公報Japanese Patent No. 4873788 特開2012−193978号公報JP 2012-193978 A

しかしながら、特許文献1および特許文献3に述べられた方法は、送風羽口の背面覗き窓から輝度あるいは放射温度を測定し微粉炭の燃焼挙動を推定する方法であり、計測する方向とブローパイプ部・羽口内のガス流れが同方向であるため、測定対象である微粉炭の位置の特定が難しく、たとえ微粉炭の燃焼挙動を把握できたとしても、その現象が起こった位置を判別できないという問題点があった。   However, the method described in Patent Document 1 and Patent Document 3 is a method of estimating the combustion behavior of pulverized coal by measuring the luminance or radiation temperature from the rear viewing window of the blower tuyere.・ Because the gas flow in the tuyere is the same direction, it is difficult to identify the position of the pulverized coal to be measured, and even if the combustion behavior of the pulverized coal can be grasped, the position where the phenomenon occurred cannot be determined There was a point.

また、特許文献2に記載の方法では、微粉炭の発光を測定するために羽口部からゾンデを挿入する必要があるが、羽口内にゾンデを挿入すると羽口内のガス流れが乱れ微粉炭の燃焼挙動が通常の操業から変化してしまうという問題があった。また、羽口部からレースウェイにゾンデを挿入して発光を測定する場合では溶銑滓やコークスの発光の影響を受け微粉炭の発光を正しく測定できないという問題があった。   In addition, in the method described in Patent Document 2, it is necessary to insert a sonde from the tuyere to measure the luminescence of the pulverized coal, but if the sonde is inserted into the tuyere, the gas flow in the tuyere is disturbed and the pulverized coal There was a problem that the combustion behavior changed from normal operation. Further, when light emission is measured by inserting a sonde into the raceway from the tuyere, there is a problem that the light emission of pulverized coal cannot be measured correctly due to the influence of hot metal or coke.

さらに、特許文献4に記載の方法は、燃料の燃焼温度の制御性を高めるために、燃焼装置内壁に光ファイバーなどの受光部を設置し、検出した光を元に燃焼装置内の特定位置における燃焼ガスの温度分布を算出する方法であって、高炉羽口部における還元材の燃焼率測定という課題とは合致しない。
また、ブローパイプ部〜羽口部においては一般的に、微粉炭をはじめとした固体還元材を吹込む場合があるほか、熱風炉から脱落したレンガの破片をはじめとする異物などが、燃焼ガスとともに固体が装置内を流れる。このような環境下において炉内壁に受光部を設置すると、飛来した固体の受光部への衝突、吹込み還元材から発生する溶融難燃物の付着により、受光部が破損し、炉内燃焼場の発光の検出が不可能になる場合があった。一旦発光の検出が不可能になると、ブローパイプあるいは羽口の交換作業が必要となるが、そのためには高炉の操業を中断する必要があり、溶銑の生産量が減少するという課題があった。
Furthermore, in the method described in Patent Document 4, in order to improve the controllability of the combustion temperature of the fuel, a light receiving unit such as an optical fiber is installed on the inner wall of the combustion apparatus, and combustion at a specific position in the combustion apparatus is performed based on the detected light. This is a method for calculating the temperature distribution of the gas and does not match the problem of measuring the burning rate of the reducing material in the blast furnace tuyere.
In addition, in the blow pipe part to the tuyere part, in general, solid reducing material such as pulverized coal may be blown, and foreign matters such as brick fragments dropped from the hot air furnace are burned gas. At the same time, a solid flows through the apparatus. If the light receiving part is installed on the inner wall of the furnace in such an environment, the light receiving part is damaged due to the collision of the flying solid with the light receiving part and the adhesion of the molten flame retardant generated from the blown reducing material. In some cases, it was impossible to detect luminescence. Once it becomes impossible to detect light emission, it is necessary to replace the blowpipe or tuyere, but this requires the operation of the blast furnace to be interrupted, resulting in a reduction in the amount of hot metal produced.

本発明は、上記の課題を有利に解決するもので、還元材吹込みを行う高炉操業において、吹込んだ還元材の燃焼率を的確に推定することができる高炉吹込み還元材の燃焼率推定方法を提供することを目的とする。
また、本発明は、上記した高炉吹込み還元材の燃焼率推定方法で得られた結果に基づいて、操業条件を調整することにより高炉の安定操業を行うことができる高炉操業方法を提供することを目的とする。
さらに、本発明は、上記した高炉操業方法の実施に用いて好適な送風羽口を提供することを目的とする。
The present invention advantageously solves the above problem, and in the blast furnace operation in which the reducing material is injected, the burning rate estimation of the blast furnace blowing reducing material that can accurately estimate the burning rate of the injected reducing material. It aims to provide a method.
The present invention also provides a blast furnace operation method capable of performing stable operation of the blast furnace by adjusting the operation conditions based on the result obtained by the method of estimating the combustion rate of the blast furnace blown reducing material described above. With the goal.
Furthermore, this invention aims at providing a suitable ventilation tuyere used for implementation of the above-mentioned blast furnace operating method.

すなわち、本発明の要旨構成は次のとおりである。
1.送風羽口本体の送風流路または送風羽口上流側のブローパイプ部の送風流路に先端部が位置する吹込み管を通じて還元材を炉内へ吹込む高炉操業において、
該羽口本体または該ブローパイプ部に設けた観察孔を通じて該還元材の燃焼場におけるラジカルの発光ピーク強度を測定し、得られた該発光ピーク強度を、予め作成しておいた該還元材の燃焼率とその燃焼場におけるラジカルの発光ピーク強度との関係を表す検量線と照合することにより、測定した燃焼場におけるラジカルの発光ピーク強度から該還元材の燃焼率を推定することを特徴とする高炉吹込み還元材の燃焼率推定方法。
That is, the gist configuration of the present invention is as follows.
1. In the blast furnace operation in which the reducing material is blown into the furnace through the blowing pipe whose tip is located in the blowing channel of the blowing tuyere body or the blowing pipe part on the upstream side of the blowing tuyere,
The radical emission peak intensity in the combustion field of the reducing material is measured through an observation hole provided in the tuyere main body or the blow pipe part, and the obtained emission peak intensity is obtained from the reducing material prepared in advance. It is characterized by estimating the burning rate of the reducing material from the measured emission peak intensity of the radical in the combustion field by collating with a calibration curve representing the relationship between the combustion rate and the emission peak intensity of the radical in the combustion field. A method for estimating the combustion rate of blast furnace reducing material.

2.還元材として、微粉炭、天然ガス、プロパンガス、重油、軽油、化石燃料、植物性油脂、コークス炉ガスおよび廃プラスチックのうちから選んだ少なくとも一種を用いることを特徴とする前記1に記載の高炉吹込み還元材の燃焼率推定方法。 2. 2. The blast furnace according to 1 above, wherein the reducing material is at least one selected from pulverized coal, natural gas, propane gas, heavy oil, light oil, fossil fuel, vegetable oil, coke oven gas, and waste plastic. A method for estimating the combustion rate of blown reducing material.

3.前記1または2に記載の高炉吹込み還元材の燃焼率推定方法を利用する高炉操業において、
推定された還元材の燃焼率が、安定操業時の燃焼率に対する相対値として0.95を下回った際に、送風中の酸素濃度を1vol%以上上昇させることを特徴とする高炉操業方法。
3. In blast furnace operation using the method for estimating the combustion rate of the blast furnace blown reducing material according to 1 or 2,
A blast furnace operating method characterized by increasing the oxygen concentration in the blown air by 1 vol% or more when the estimated burning rate of the reducing material falls below 0.95 as a relative value with respect to the burning rate during stable operation.

4.前記1または2に記載の高炉吹込み還元材の燃焼率推定方法を利用する高炉操業において、
推定された還元材の燃焼率が、安定操業時の燃焼率に対する相対値として0.95を下回った際に、送風温度を20℃以上上昇させることを特徴とする高炉操業方法。
4). In blast furnace operation using the method for estimating the combustion rate of the blast furnace blown reducing material according to 1 or 2,
A blast furnace operating method characterized in that when the estimated burning rate of the reducing material falls below 0.95 as a relative value with respect to the burning rate during stable operation, the blowing temperature is increased by 20 ° C or more.

5.送風羽口本体または送風羽口上流側のブローパイプ部のいずれかの送風流路に先端部が位置する還元材の吹込み管を有し、さらに該送風羽口本体または該ブローパイプ部のいずれかまたは両方に、その内外に通じる観察ランスを有し、該観察ランスは、該送風羽口本体または該ブローパイプ部の外側に観察窓をそなえると共に、その他端部には該送風流路内に吹き込んだ還元材の燃焼場におけるラジカルの発光ピーク強度を測定するための発光強度測定装置をそなえ、加えて送風羽口本体から高炉のレースウェイ内へ噴出した還元材を採取するための還元材採取装置を有することを特徴とする送風羽口。 5. It has a blowing pipe of a reducing material whose tip is located in the air flow path of either the blower tuyere main body or the blowpipe part upstream of the blower tuyere, and either the blower tuyere main body or the blowpipe part One or both of them have an observation lance that communicates with the inside and outside thereof, and the observation lance has an observation window on the outside of the blower tuyere body or the blow pipe part, and at the other end in the blow passage. Equipped with a luminescence intensity measuring device to measure the emission peak intensity of radicals in the combustion field of the injected reducing material, and in addition, collecting the reducing material to collect the reducing material ejected from the blower tuyere into the blast furnace raceway A blower tuyere characterized by having a device.

本発明によれば、還元材の燃焼により生成したラジカルの発光ピーク強度と、送風羽口内に吹き込まれた還元材の燃焼率との関係を予め求めておき、その上で送風羽口内のラジカルの発光ピーク強度を測定することで、還元材の燃焼率を非接触で推定し、またこの推定値に基づいて操業条件を制御することによって、炉内の環境に干渉することなく還元材の燃焼率を正確に把握することができ、その結果、より安定した高炉操業を行うことができる。
また、観察孔を通じて炉外から還元材燃焼場の発光強度を測定することによって、受光部の破損を防ぎ、高炉操業に支障をきたすことなしに還元材の燃焼率を正確に把握することができる。
According to the present invention, the relationship between the emission peak intensity of radicals generated by the combustion of the reducing material and the combustion rate of the reducing material blown into the blowing tuyere is obtained in advance, and then the radicals in the blowing tuyere are determined. By measuring the emission peak intensity, the burning rate of the reducing material is estimated in a non-contact manner, and the operating conditions are controlled based on this estimated value, so that the burning rate of the reducing material does not interfere with the furnace environment. As a result, more stable blast furnace operation can be performed.
In addition, by measuring the emission intensity of the reducing material combustion field from the outside of the furnace through the observation hole, it is possible to prevent damage to the light receiving part and accurately grasp the reducing material combustion rate without hindering blast furnace operation. .

本発明の実施に用いて好適な送風羽口の模式図である。It is a schematic diagram of a suitable ventilation tuyere used for implementation of this invention. 本発明に従って作成された検量線を示す図である。It is a figure which shows the calibration curve created according to this invention. 小型燃焼炉の断面を示す模式図である。It is a schematic diagram which shows the cross section of a small combustion furnace. 本発明に従い作成した微粉炭燃焼率の検量線を示す図である。It is a figure which shows the calibration curve of the pulverized coal combustion rate created according to this invention. 微粉炭燃焼場の発光スペクトルの一部,ならびにラジカルの発光ピーク強度の算出方法を示した図である。It is the figure which showed the calculation method of a part of emission spectrum of a pulverized coal combustion field, and the emission peak intensity of a radical.

以下、本発明を具体的に説明する。
送風羽口本体や送風羽口上流側のブローパイプ部の送風流路に吹き込まれた還元材の燃焼場は、2000℃を超える高温条件であるため、大気中や常温では存在しないラジカルが生成する。
還元材燃焼場の例として微粉炭燃焼場について述べると、微粉炭中の炭化水素の燃焼に由来するOH,CH,Cラジカルや、微粉炭中の灰分に含まれるNa,Kに由来するNa,Kラジカルが存在する。
このような燃焼場では、熱や燃焼反応によってラジカルが励起され、このラジカルが励起状態から基底状態に遷移する際にラジカルに固有な波長をもつ光を放出する現象が確認されている(OHラジカル:309nm,CHラジカル:431nm,Cラジカル:517nm,Naラジカル:589nm,Kラジカル:766,770nm)。
Hereinafter, the present invention will be specifically described.
Since the combustion field of the reducing material blown into the air flow path of the blow pipe part upstream of the air blow tuyere body or air blow tuyere is a high temperature condition exceeding 2000 ° C., radicals that do not exist in the atmosphere or at room temperature are generated. .
The pulverized coal combustion field will be described as an example of the reducing material combustion field. OH, CH, C 2 radicals derived from the combustion of hydrocarbons in the pulverized coal and Na derived from Na, K contained in the ash content in the pulverized coal. , K radicals are present.
In such a combustion field, a radical is excited by heat or a combustion reaction, and it has been confirmed that when this radical changes from an excited state to a ground state, light having a wavelength unique to the radical is emitted (OH radical). : 309 nm, CH radical: 431 nm, C 2 radical: 517 nm, Na radical: 589 nm, K radical: 766, 770 nm).

ここに、ラジカルの発光ピーク強度は、ラジカルが還元材の燃焼により生成するものであるから還元材の燃焼率との相関があると考えられる。
本発明は、上記の相関を利用して、還元材の燃焼率とその燃焼場に存在するラジカルの発光ピーク強度の関係を表す検量線を予め作成しておくことで、燃焼場に存在するラジカルの発光ピーク強度から還元材の燃焼率を推定するものである。
また、本発明は、その推定値がある一定の水準未満となった時に、還元材の燃焼率を向上させるような操業条件の変更を行うことで、より安定的な高炉操業を行うものである。
Here, it is considered that the emission peak intensity of radicals has a correlation with the combustion rate of the reducing material because radicals are generated by the combustion of the reducing material.
The present invention makes use of the above correlation to create a calibration curve representing the relationship between the burning rate of the reducing material and the emission peak intensity of the radicals existing in the combustion field in advance, so that the radicals existing in the combustion field. The burning rate of the reducing material is estimated from the emission peak intensity.
In addition, the present invention performs more stable blast furnace operation by changing the operation conditions so as to improve the combustion rate of the reducing material when the estimated value becomes less than a certain level. .

図1に、本発明の実施に用いて好適な送風羽口の一例を示す。
図中、符号1は送風羽口本体、2は送風羽口本体に接続しているブローパイプ部、3は還元材吹込み管であり、この例ではこの還元材吹込み管3の先端部が送風羽口本体1の送風流路に挿入された場合について示している。4は高炉のレースウェイ、5は送風羽口本体1を通り、レースウェイ4中でサンプリングを実施するためのサンプリング器具である。6はブローパイプ部2の内外に通じる観察孔であり、7は観察孔6のパイプ部外側に設けた観察窓、8は観察孔6の他端部において送風羽口本体1内のラジカルの発光ピーク強度を測定する発光強度測定装置である。
In FIG. 1, an example of a suitable ventilation tuyere used for implementation of this invention is shown.
In the figure, reference numeral 1 is a blower tuyere body, 2 is a blow pipe part connected to the blower tuyere body, 3 is a reducing material blowing pipe, and in this example, the tip of the reducing material blowing pipe 3 is It has shown about the case where it inserts in the ventilation flow path of the ventilation tuyere main body 1. FIG. Numeral 4 is a blast furnace raceway, and 5 is a sampling device for carrying out sampling in the raceway 4 through the blower tuyere body 1. Reference numeral 6 denotes an observation hole that communicates with the inside and outside of the blow pipe portion 2, 7 denotes an observation window provided outside the pipe portion of the observation hole 6, and 8 denotes light emission of radicals in the blower tuyere body 1 at the other end of the observation hole 6. This is a light emission intensity measuring device for measuring peak intensity.

ここに、サンプリング器具5としては、レースウェイ内へ噴出した還元材の採取が可能であればどのような形式でもよい。
また、観察ランス孔6について、図1ではブローパイプ部2に設置されているが、この点については流れ方向の位置を特定できる形で炉内の還元材燃焼場の発光を計測可能な位置であれば、設置箇所は問わない。
さらに、発光強度測定装置8としては、ラジカルの発光ピーク強度が計算可能という条件を満たす分光装置であれば、干渉フィルターを用いたもの、回折格子を用いたもの、プリズムを用いたものなどいずれもが適合し、その形式は問わない。
Here, the sampling device 5 may be of any type as long as the reducing material ejected into the raceway can be collected.
In addition, the observation lance hole 6 is installed in the blow pipe portion 2 in FIG. 1, but this point is a position where the emission of the reducing material combustion field in the furnace can be measured in such a way that the position in the flow direction can be specified. If it exists, the installation location does not matter.
Furthermore, as the emission intensity measuring device 8, any spectrometer using an interference filter, one using a diffraction grating, or one using a prism can be used as long as it satisfies the condition that the emission peak intensity of radicals can be calculated. Conforms to any format.

さて、本発明では、種々の還元材について、その燃焼率と特定のラジカルの発光ピーク強度との関係を予め求めて、検量線を作成しておく。
その一例を図2に示す。
図2は、還元材として粉炭を用い、その燃焼率とOHラジカルの発光ピーク強度との関係を求めて作成した検量線である。
同図に示したとおり、還元材の燃焼率とラジカルの発光ピーク強度との間には強い相関がある。
そこで、この検量線を利用して還元材の燃焼率を推定するのである。
In the present invention, a calibration curve is prepared for various reducing materials by obtaining in advance the relationship between the burning rate and the emission peak intensity of a specific radical.
An example is shown in FIG.
FIG. 2 is a calibration curve created by determining the relationship between the combustion rate and the emission peak intensity of OH radicals using pulverized coal as the reducing material.
As shown in the figure, there is a strong correlation between the burning rate of the reducing material and the emission peak intensity of radicals.
Therefore, the combustion rate of the reducing material is estimated using this calibration curve.

すなわち、図1に示したような構成の送風羽口を用いて送風流路に還元材を吹き込む高炉操業を行う場合において、燃焼場における特定のラジカルの発光ピーク強度を測定し、得られた発光ピーク強度を予め作成しておいた検量線と照合することにより、還元材の燃焼率を推定するのである。   That is, when performing a blast furnace operation in which a reducing material is blown into the air flow passage using the air tuyere configured as shown in FIG. 1, the emission peak intensity of a specific radical in the combustion field is measured, and the obtained light emission By comparing the peak intensity with a calibration curve prepared in advance, the combustion rate of the reducing material is estimated.

ここに、発光ピーク強度を測定するラジカル種については、還元材の燃焼場に生成するラジカルであれば何でもよい。
本発明では、OH,CH,C,Na,Kラジカルなどを用いることができるが、特にOH,CH,Cラジカルは、化石燃料系の還元材でなくても燃焼の際に生成するため、これらを用いることがとりわけ有利である。
Here, the radical species for measuring the emission peak intensity may be any radical that is generated in the combustion field of the reducing material.
In the present invention, OH, CH, C 2 , Na, K radicals and the like can be used. In particular, OH, CH, C 2 radicals are generated during combustion even if they are not a fossil fuel reducing material. It is particularly advantageous to use these.

本発明に従い、かような検量線を、還元材ごとに求めておけば、使用した還元材の燃焼場におけるラジカルの発光ピーク強度を測定することにより、還元材の燃焼率を推定することができる。
なお、発明者らの実験によれば、還元材の種類によって、還元材の燃焼率との燃焼場における特定のラジカル発光ピーク強度との関係にさほどの差異はなく、従ってこれらを合成することにより、検量線は一本に集約しても問題はないことが判明した。
If such a calibration curve is obtained for each reducing material according to the present invention, the burning rate of the reducing material can be estimated by measuring the emission peak intensity of radicals in the combustion field of the reducing material used. .
According to the experiments by the inventors, depending on the type of the reducing material, there is not much difference in the relationship between the burning rate of the reducing material and the specific radical emission peak intensity in the combustion field. It was found that there was no problem even if the calibration curves were consolidated into one.

また、上記の検量線を利用して推定した還元材の燃焼率を、実際にサンプリング器具5を用いて測定したレースウェイ4内の還元材燃焼率と比較したところ、よい相関が見られることも確かめられた。   Moreover, when the burning rate of the reducing material estimated using the above calibration curve is compared with the reducing material burning rate in the raceway 4 actually measured using the sampling device 5, a good correlation may be seen. It was confirmed.

そして、上記のようにして正確に還元材の燃焼率を推定することができれば、この推定値を高炉操業に活用することにより、高炉操業の一層の安定化を図ることができる。
推定された還元材の燃焼率が、安定操業期のおける燃焼率を下回った場合は、高炉内における熱量不足のみならず、未燃チャーの発生が懸念される。
従って、かような場合には、炉内における還元材燃焼率の回復を図る必要がある。
If the burning rate of the reducing material can be accurately estimated as described above, the estimated value can be utilized for blast furnace operation to further stabilize the blast furnace operation.
If the estimated burning rate of the reducing material falls below the burning rate in the stable operation period, there is a concern that not only the amount of heat in the blast furnace will be insufficient, but also unburned char will be generated.
Therefore, in such a case, it is necessary to recover the reducing material combustion rate in the furnace.

そこで、本発明では、推定された還元材の燃焼率が、安定操業期の燃焼率に対する相対値で0.95を下回った場合には、送風酸素濃度を1vol%以上上昇させることにしたのである。なお、送風酸素濃度の上昇率は1〜5vol%とするのが好ましい。5vol%を超えると炉内へ供給されるCO等の還元ガスの増加に伴う炉内装入物の荷下がり速度の増大から、低温の装入物が炉下部に到達して操業トラブルを引き起こす。より好ましい送風酸素濃度の上昇率は1〜2vol%である。
かくして、前記したような、還元材燃焼率の低下に起因するコークス置換率の低下に伴う還元材比の増加や、滴下帯や炉芯への未燃チャーの蓄積による炉内通気性の悪化といった悪影響を未然に防止して、安定した高炉操業を行うことができる。
ここで、安定操業期とは、棚吊り、吹き抜け、羽口閉塞、出銑滓異常などに代表される高炉操業上のトラブルが発生しなかった期間とする。
Therefore, in the present invention, when the estimated burning rate of the reducing material is less than 0.95 relative to the burning rate in the stable operation period, the blast oxygen concentration is increased by 1 vol% or more. . In addition, it is preferable that the raise rate of ventilation oxygen concentration shall be 1-5 vol%. If it exceeds 5 vol%, the low-temperature charge reaches the lower part of the furnace due to an increase in the unloading speed of the furnace interior charge accompanying the increase of reducing gas such as CO supplied into the furnace, causing operational troubles. A more preferable increase rate of the blast oxygen concentration is 1 to 2 vol%.
Thus, as described above, an increase in the reducing material ratio accompanying a reduction in the coke replacement rate due to a reduction in the reducing material combustion rate, and a deterioration in furnace breathability due to accumulation of unburned char in the dripping zone and the furnace core Stable blast furnace operation can be performed by preventing adverse effects.
Here, the stable operation period is a period in which troubles in blast furnace operation represented by shelves, blow-throughs, tuyere blockages, tapping abnormalities, etc. have not occurred.

また、還元材の燃焼率が低下した際の対処法としては、送風酸素濃度を上昇させることの他、送風温度を上昇させることによっても、同様な効果が得られることが判明した。
すなわち、推定された還元材の燃焼率が、安定操業時の燃焼率に対する相対値で0.95を下回った場合には、送風温度を20℃以上上昇させることによっても、同様に対処することができる。なお、送風温度の上昇程度は20〜50℃とするのが好ましい。50℃を超えると炉熱の上昇に伴い溶銑中Si濃度の上昇幅が大きく、後の工程で不純物除去に要する時間やコストが増大するため望ましくない。より好ましい送風温度の上昇程度は20〜30℃である。
Further, as a countermeasure when the combustion rate of the reducing material is lowered, it has been found that the same effect can be obtained by raising the blowing temperature in addition to raising the blowing oxygen concentration.
That is, when the estimated burning rate of the reducing material is less than 0.95 relative to the burning rate during stable operation, the same problem can be dealt with by increasing the blowing temperature by 20 ° C. or more. it can. In addition, it is preferable that the raise degree of ventilation temperature shall be 20-50 degreeC. If the temperature exceeds 50 ° C., the rise in the Si concentration in the hot metal increases with the increase in the furnace heat, which is not desirable because the time and cost required for removing impurities in the subsequent process increase. A more preferable increase in the blowing temperature is 20 to 30 ° C.

(実施例1)送風中酸素濃度調整の実施例
実験は、図3に示すような円筒形の小型燃焼炉10を用いて行った。この小型燃焼炉10は、内径100mmの円柱状の流路を有し、その長手方向に沿って還元材吹込み管3−1,3−2の先端からそれぞれ80mm、280mm隔てて2つの側面観察窓6−1,6−2が設置されている。
(Example 1) Example of adjusting oxygen concentration during blowing Experiments were performed using a small cylindrical combustion furnace 10 having a cylindrical shape as shown in FIG. The small combustion furnace 10 has a cylindrical flow path having an inner diameter of 100 mm, and two side observations are provided at 80 mm and 280 mm apart from the tips of the reducing material blowing pipes 3-1 and 3-2 along the longitudinal direction thereof. Windows 6-1 and 6-2 are installed.

図3に示した円筒形の小型燃焼炉を用い、その上流側から送風量毎時210Nm,送風温度1000℃,酸素濃度16,28,37,43,49vol%の条件で熱風を吹き込んだ。その熱風中に、側面観察窓から先端が見える位置に、側面・上流側から20度の角度で挿入した2本の還元材吹込み管3−1,3−2を通じて、還元材として微粉炭を毎時35kg、コークス炉ガスを模擬した気体(その組成を表1に示す)を毎時22Nm吹込み、この還元材の燃焼によって生成されたOHラジカルの発光ピーク強度(OHラジカル:309nm)と、微粉炭の燃焼率の関係について調査を行い(図4中にηBT、ηBOで示す点)、検量線を作成した。 The cylindrical small combustion furnace shown in FIG. 3 was used, and hot air was blown from the upstream side under the conditions of an air flow rate of 210 Nm 3 per hour, an air temperature of 1000 ° C., and an oxygen concentration of 16, 28, 37, 43, and 49 vol%. In the hot air, pulverized coal is supplied as reducing material through two reducing material blowing pipes 3-1 and 3-2 inserted at an angle of 20 degrees from the side surface and upstream side at the position where the tip can be seen from the side observation window. Emission peak intensity of OH radicals (OH radicals: 309 nm) generated by combustion of this reducing material with 35 kg per hour, a gas simulating coke oven gas (its composition is shown in Table 1) at 22 Nm 3 per hour, fine powder relationship between the combustion rate of coal investigates (point indicated ItaBT, in ItaBO 2 in FIG. 4), a calibration curve was prepared.

Figure 2018204076
Figure 2018204076

作成した検量線を図4に示す。なお、この検量線は、後述する実施例2で求めたOHラジカルの発光ピーク強度と微粉炭の燃焼率の関係についての調査結果と合成して作成したものである。ここで、ηBOは送風温度一定(1000℃)で送風酸素濃度を変更した本実施例の条件、ηBTは送風酸素濃度一定(37vol%)で送風温度を変更した実施例2の条件におけるプロットである。
ここに、発光ピーク強度の計測は、還元材吹込み管の先端から80mmの距離に位置する側面観察窓6−1から実施した。発光ピーク強度計測には190nm〜1100nmの波長範囲の光を測定可能な分光装置を用い、この分光装置を用いた測定により得られた図5に示すような発光スペクトルから、OHラジカルのピーク強度を算出した。また、微粉炭の燃焼率は、還元材吹込み管の先端280mmに位置する側面観察窓6−2の対面に設置されたサンプリングゾンデ(図示省略)を用いて炉内を流れるガスを採取し、採取したガス中の気体の濃度の分析値を利用して、次の式を用いて算出した。
The prepared calibration curve is shown in FIG. This calibration curve was created by combining with the survey results on the relationship between the emission peak intensity of OH radicals and the combustion rate of pulverized coal obtained in Example 2 described later. Here, ηBO 2 is a plot in the condition of this example in which the blowing oxygen concentration was changed at a constant blowing temperature (1000 ° C.), and ηBT was a plot in the condition in Example 2 in which the blowing temperature was changed at a constant blowing oxygen concentration (37 vol%). is there.
Here, the emission peak intensity was measured from the side observation window 6-1 located at a distance of 80 mm from the tip of the reducing material blowing tube. The emission peak intensity is measured using a spectroscope capable of measuring light in the wavelength range of 190 nm to 1100 nm. From the emission spectrum shown in FIG. 5 obtained by measurement using this spectroscope, the peak intensity of OH radicals is calculated. Calculated. Moreover, the burning rate of pulverized coal is obtained by collecting gas flowing in the furnace using a sampling sonde (not shown) installed on the opposite side of the side observation window 6-2 located at the tip 280 mm of the reducing material blowing pipe, Using the analytical value of the concentration of the gas in the collected gas, it was calculated using the following formula.

Figure 2018204076
ここで、ηc:微粉炭燃焼率[%],xi:1分子あたり炭素原子をi個含む気体の採取ガス中の濃度[vol%],xN2:採取ガス中の窒素濃度[vol%],VN2°:送風中窒素流量[Nm/時],Vi°:1分子あたり炭素原子をi個含む気体の送風、還元ガス中の体積の合計[Nm/時],xc,pc:微粉炭中炭素原子分率[mass%],mpc:微粉炭吹込み量[kg/時]である。
Figure 2018204076
Here, η c : pulverized coal combustion rate [%], x i : concentration in a sampling gas of a gas containing i carbon atoms per molecule [vol%], x N2 : nitrogen concentration in the sampling gas [vol%] ], V N2 °: nitrogen flow rate during blowing [Nm 3 / hour], V i °: blowing of gas containing i carbon atoms per molecule, total volume in reducing gas [Nm 3 / hour], x c , pc : carbon atomic fraction [mass%] in pulverized coal, m pc : pulverized coal injection amount [kg / hour].

図4より、OHラジカルの発光ピーク強度は微粉炭燃焼率と良い相関関係にあることが分かる。
かくして、この関係を利用して、ラジカルの発光ピーク強度を測定することで微粉炭の燃焼率を推定できることが明らかとなった。
FIG. 4 shows that the emission peak intensity of the OH radical has a good correlation with the pulverized coal combustion rate.
Thus, it became clear that the combustion rate of pulverized coal can be estimated by measuring the emission peak intensity of radicals using this relationship.

次に、炉内体積12mの高炉を模擬した試験炉において、OHラジカルの発光ピーク強度測定から推定した燃焼率と高炉操業の安定性について検証を行った。高炉の出銑量は30t/日(下記表2中ではt/dと記載)で一定となるように送風量を決定し、操業の安定性の指標として通気抵抗指数を用いた。通気抵抗指数は、炉頂圧と送風圧との圧力差および送風量をパラメータとした炉内の通気性を示す指数であり、この数値が大きいほど炉内の通気性が悪いことを意味する。この検証を行った期間では、送風温度1000℃の条件下で羽口先温度が一定の範囲となるように送風中湿分を調整し、溶銑温度は1470℃±10℃の範囲に収めた。
まず、ベース条件として、表2に示すケース1の条件、すなわちコークス比401kg/t、微粉炭比136kg/t、送風酸素濃度27.0vol%で操業を行ったところ、トラブルなく安定した操業を行うことができた。この条件を安定操業期とし、この条件における微粉炭燃焼率、通気抵抗指数を1.0と規格化した。ついで、表2に示すように条件を種々に変更して操業を行った際の通気抵抗指数を相対比較した。通気抵抗指数は、1.05までは安定操業を行う上で問題ない値であった。ここで、微粉炭は全条件で同じ銘柄のものを使用し、微粉炭吹込みランスは全羽口において単管のものを1本ずつ使用した。
Next, in a test furnace simulating a blast furnace with a furnace volume of 12 m 3 , the combustion rate estimated from the measurement of the emission peak intensity of OH radicals and the stability of the blast furnace operation were verified. The amount of blown air was determined so that the amount of blast furnace discharge was constant at 30 t / day (described as t / d in Table 2 below), and the airflow resistance index was used as an indicator of operational stability. The ventilation resistance index is an index indicating the air permeability in the furnace with the pressure difference between the furnace top pressure and the air blowing pressure and the air blowing amount as parameters, and the larger this value, the worse the air permeability in the furnace. During the period of this verification, the moisture during blowing was adjusted so that the tuyere temperature was within a certain range under the condition of the blowing temperature of 1000 ° C., and the hot metal temperature was kept within the range of 1470 ° C. ± 10 ° C.
First, as a base condition, when the operation was performed under the conditions of Case 1 shown in Table 2, that is, a coke ratio of 401 kg / t, a pulverized coal ratio of 136 kg / t, and a blowing oxygen concentration of 27.0 vol%, a stable operation was performed without any trouble. I was able to. This condition was set as the stable operation period, and the pulverized coal combustion rate and the ventilation resistance index under this condition were normalized to 1.0. Next, as shown in Table 2, the airflow resistance index when operating under various conditions was relatively compared. The ventilation resistance index was a value up to 1.05, which was satisfactory for stable operation. Here, pulverized coal of the same brand was used under all conditions, and pulverized coal injection lances were used one by one for all tuyere.

Figure 2018204076
Figure 2018204076

ケース2は、ケース1に対して微粉炭比を5kg/t増加させた条件である。ケース1に比してケース2では、相対微粉炭燃焼率が0.96まで低下し、通気抵抗指数が1.04まで増加したが、安定に操業できる範囲内であった。
ケース3は、ケース2からさらに微粉炭比を5kg/t増加させた条件である。ケース2に比してケース3では相対微粉炭燃焼率が0.93まで低下し、通気抵抗指数は1.08まで増加した。この条件では、炉内の通気性が非常に悪く、コークス比を414kg/tまで増加させたものの、安定操業を行うことが非常に難しくなった。この原因としては、前述したとおり、未燃チャーが滴下帯および炉心に蓄積し、炉内の通気を阻害したことが考えられる。
ケース4は、ケース3の条件から送風中酸素濃度を0.5vol%上昇させ、微粉炭燃焼率の向上を試みた場合である。ケース3に比してケース4では、相対微粉炭燃焼率が0.94まで上昇し、通気抵抗指数は1.06まで改善したものの、コークス比は410kg/tと依然として高く、炉況は安定しなかった。
ケース5は、ケース4の条件から送風中酸素濃度をさらに0.5vol%上昇させ、微粉炭燃焼率の向上を試みた場合である。ケース4に比してケース5では、相対微粉炭燃焼率が0.95まで増加し、通気抵抗指数は1.03まで改善された。また、コークス比もベース条件であるケース1に比して6kg/t減少した395kg/tとなった。この条件では、ケース3および4とは異なり、安定した操業を行うことができた。
ケース6は、ケース5の条件から送風中酸素濃度をさらに0.8vol%上昇させ、微粉炭燃焼率の向上を試みた条件である。ケース5に比してケース6では、相対微粉炭燃焼率が0.99まで増加し、安定操業を行うことができ、通気抵抗指数も1.02とケース5に比して0.01低下した。ただ、コークス比は394kg/tで、ケース5に比した減少の幅は1kg/tに止まった。
以上の検証から、安定操業期の微粉炭燃焼率に対する相対微粉炭燃焼率が0.95を下回らないように送風酸素濃度を少なくとも1vol%上昇させることで、安定した高炉操業を実施することが可能であることが確認された。
Case 2 is a condition in which the pulverized coal ratio is increased by 5 kg / t with respect to Case 1. Compared to case 1, in case 2, the relative pulverized coal combustion rate decreased to 0.96 and the ventilation resistance index increased to 1.04, but it was within the range where stable operation was possible.
Case 3 is a condition in which the pulverized coal ratio is further increased from Case 2 by 5 kg / t. Compared to case 2, in case 3, the relative pulverized coal combustion rate decreased to 0.93, and the ventilation resistance index increased to 1.08. Under these conditions, the air permeability in the furnace was very poor and the coke ratio was increased to 414 kg / t, but it was very difficult to perform stable operation. As a cause of this, as described above, it is considered that unburned char accumulated in the dripping zone and the core and hindered ventilation in the furnace.
Case 4 is a case where the oxygen concentration during blowing is increased by 0.5 vol% from the conditions of case 3 and an attempt is made to improve the pulverized coal combustion rate. Compared to Case 3, in Case 4, the relative pulverized coal combustion rate rose to 0.94 and the ventilation resistance index improved to 1.06, but the coke ratio was still high at 410 kg / t, and the furnace conditions were stable. There wasn't.
Case 5 is a case where the oxygen concentration during blowing is further increased by 0.5 vol% from the condition of case 4 to attempt to improve the pulverized coal combustion rate. Compared to case 4, in case 5, the relative pulverized coal combustion rate increased to 0.95 and the ventilation resistance index was improved to 1.03. Also, the coke ratio was 395 kg / t, which was reduced by 6 kg / t compared to the base condition, Case 1. Under these conditions, unlike cases 3 and 4, stable operation was possible.
Case 6 is a condition in which the oxygen concentration during blowing is further increased by 0.8 vol% from the condition of Case 5 to attempt to improve the pulverized coal combustion rate. Compared to Case 5, in Case 6, the relative pulverized coal combustion rate increased to 0.99, stable operation was possible, and the airflow resistance index was also decreased by 0.01 compared to Case 5 to 1.02. . However, the coke ratio was 394 kg / t, and the amount of decrease compared to case 5 was only 1 kg / t.
From the above verification, it is possible to carry out stable blast furnace operation by increasing the blast oxygen concentration by at least 1 vol% so that the relative pulverized coal combustion rate with respect to the pulverized coal combustion rate during the stable operation period does not fall below 0.95. It was confirmed that.

(実施例2)送風温度調整の実施例
実験は、実施例1と同様、図3に示すような円筒形の小型燃焼炉10を用いて行った。
送風条件は、上流側から送風量毎時210Nm,送風温度900,1000,1100,1200℃、酸素濃度37vol%の熱風を吹き込む条件とした。そして、実施例1と同様、2本の還元材吹込み管を通じて、還元材として微粉炭を毎時35kg、コークス炉ガスを模擬した気体を毎時22Nm吹込み、この還元材の燃焼によって生成されたOHラジカルの発光ピーク強度(OHラジカル:309nm)と、微粉炭の燃焼率の関係について調査を行った。
この調査結果を利用して求めた検量線は、前掲図4に示したものである。
ここに、発光ピーク強度の計測は、実施例1と同様にして行った。
(Example 2) Example of ventilation temperature adjustment The experiment was carried out using a cylindrical small combustion furnace 10 as shown in FIG.
The air blowing conditions were such that hot air having an air flow rate of 210 Nm 3 per hour, an air blowing temperature of 900, 1000, 1100, and 1200 ° C. and an oxygen concentration of 37 vol% was blown from the upstream side. Then, as in Example 1, through two reducing agent blowing pipe, the pulverized coal per hour 35kg as a reducing material, a gas simulating the coke oven gas per hour 22 Nm 3 blown, produced by combustion of the reducing agent The relationship between the emission peak intensity of OH radical (OH radical: 309 nm) and the combustion rate of pulverized coal was investigated.
The calibration curve obtained using this survey result is shown in FIG.
Here, the emission peak intensity was measured in the same manner as in Example 1.

図4に示したとおり、OHラジカルの発光ピーク強度は微粉炭燃焼率と良好な相関関係に有ることが確認された。それ故、この関係を利用して、ラジカルの発光ピーク強度を測定することによって、微粉炭の燃焼率を推定できることができるのである。   As shown in FIG. 4, it was confirmed that the emission peak intensity of OH radicals had a good correlation with the pulverized coal combustion rate. Therefore, the combustion rate of pulverized coal can be estimated by measuring the emission peak intensity of radicals using this relationship.

次に、実施例1と同様、炉内体積12mの高炉を模擬した試験炉で、OHラジカルの発光ピーク強度を測定し、その値から推定した燃焼率と操業の安定性について検証を行った。高炉の出銑量は30t/日(下記表2中ではt/dと記載)で一定となるように送風量を決定し、操業の安定性の指標として通気抵抗指数を用いた。
まず、ベース条件として、表3に示すケース1の条件、すなわちコークス比399kg/t、微粉炭比135kg/t、送風温度980℃で操業を行ったところ、トラブルなく安定した操業を行うことができた。この条件を安定操業期とし、この条件における微粉炭燃焼率、通気抵抗指数を1.0と規格化した。ついで、表3に示すように条件を種々に変更して操業を行った際の通気抵抗指数を相対比較した。通気抵抗指数は、1.05までは安定操業を行う上で問題ない値であった。ここで、微粉炭は全条件で同じ銘柄のものを使用し、微粉炭吹込みランスは全羽口において単管のものを1本ずつ使用した。
Next, as in Example 1, the emission peak intensity of OH radicals was measured in a test furnace simulating a blast furnace with a furnace volume of 12 m 3 , and the combustion rate estimated from the values and the stability of operation were verified. . The amount of blown air was determined so that the amount of blast furnace discharge was constant at 30 t / day (described as t / d in Table 2 below), and the airflow resistance index was used as an indicator of operational stability.
First, as the base conditions, when the operation was performed under the conditions of Case 1 shown in Table 3, that is, a coke ratio of 399 kg / t, a pulverized coal ratio of 135 kg / t, and a blowing temperature of 980 ° C., stable operation can be performed without any trouble. It was. This condition was set as the stable operation period, and the pulverized coal combustion rate and the ventilation resistance index under this condition were normalized to 1.0. Next, as shown in Table 3, the airflow resistance index when operating under various conditions was relatively compared. The ventilation resistance index was a value up to 1.05, which was satisfactory for stable operation. Here, pulverized coal of the same brand was used under all conditions, and pulverized coal injection lances were used one by one for all tuyere.

Figure 2018204076
Figure 2018204076

ケース2は、ケース1に対して微粉炭比を5kg/t増加させた条件である。ケース1に比してケース2では、相対微粉炭燃焼率が0.97まで低下し、通気抵抗指数が1.04まで増加したが、安定に操業できる範囲内であった。
ケース3は、ケース2からさらに微粉炭比を5kg/t増加させた条件である。ケース2に比してケース3では相対微粉炭燃焼率が0.93まで低下し、通気抵抗指数は1.07まで増加した。この条件では、炉内の通気性が非常に悪く、コークス比を416kg/tまで増加させたものの、安定操業を行うことが非常に難しくなった。この原因としては、前述したとおり、未燃チャーが滴下帯および炉芯に蓄積し、炉内の通気を阻害したことが考えられる。
ケース4は、ケース3の条件から送風温度を10℃上昇させ、微粉炭燃焼率の向上を試みた場合である。ケース3に比してケース4では、相対微粉炭燃焼率が0.94まで上昇し、通気抵抗指数は1.06まで改善した。しかし、コークス比は409kg/tと依然高く、炉況は安定しなかった。
ケース5は、ケース4の条件から送風温度をさらに10℃上昇させ、微粉炭燃焼率の向上を試みた場合である。ケース4に比してケース5では、相対微粉炭燃焼率が0.95まで増加し、通気抵抗指数は1.03まで改善した。また、コークス比もベース条件であるケース1に比して6kg/t減少した393kg/tとなった。この条件では、ケース3および4とは異なり、安定した操業を行うことができた。
ケース6は、ケース5の条件から送風温度をさらに10℃上昇させ、微粉炭燃焼率の向上を試みた条件である。ケース5に比してケース6では、相対微粉炭燃焼率が0.99まで増加し、安定操業を行うことができたものの、通気抵抗指数に関しては1.03とケース5と同じ値であった。また、コークス比は392kg/tで、ケース5に比した減少幅は1kg/tに止まった。
以上の検証から、安定操業期の微粉炭燃焼率に対する相対微粉炭燃焼率が0.95を下回らないように送風温度を少なくとも20℃上昇させることで、安定した高炉操業を実施することが可能であることが確認された。
Case 2 is a condition in which the pulverized coal ratio is increased by 5 kg / t with respect to Case 1. Compared to case 1, in case 2, the relative pulverized coal combustion rate decreased to 0.97 and the ventilation resistance index increased to 1.04, but it was within the range where stable operation was possible.
Case 3 is a condition in which the pulverized coal ratio is further increased from Case 2 by 5 kg / t. Compared to case 2, in case 3, the relative pulverized coal combustion rate decreased to 0.93 and the ventilation resistance index increased to 1.07. Under these conditions, the air permeability in the furnace was very poor and the coke ratio was increased to 416 kg / t, but it was very difficult to perform stable operation. As a cause of this, as described above, it is considered that unburned char accumulated in the dripping zone and the furnace core and hindered ventilation in the furnace.
Case 4 is a case where the blowing temperature is increased by 10 ° C. from the conditions of case 3 to attempt to improve the pulverized coal combustion rate. Compared to case 3, in case 4, the relative pulverized coal combustion rate increased to 0.94 and the ventilation resistance index improved to 1.06. However, the coke ratio was still high at 409 kg / t, and the furnace condition was not stable.
Case 5 is a case where the blowing temperature is further increased by 10 ° C. from the conditions of case 4 and an attempt is made to improve the pulverized coal combustion rate. Compared to Case 4, in Case 5, the relative pulverized coal combustion rate increased to 0.95 and the ventilation resistance index improved to 1.03. Also, the coke ratio was 393 kg / t, which was 6 kg / t lower than that of case 1 which is the base condition. Under these conditions, unlike cases 3 and 4, stable operation was possible.
Case 6 is a condition in which the blowing temperature is further increased by 10 ° C. from the condition of case 5 to attempt to improve the pulverized coal combustion rate. Compared to Case 5, in Case 6, the relative pulverized coal combustion rate increased to 0.99 and stable operation was possible, but the ventilation resistance index was 1.03, which was the same value as in Case 5 . Further, the coke ratio was 392 kg / t, and the reduction width compared to Case 5 was only 1 kg / t.
From the above verification, it is possible to carry out stable blast furnace operation by raising the blast temperature by at least 20 ° C so that the relative pulverized coal combustion rate with respect to the pulverized coal combustion rate during the stable operation period does not fall below 0.95. It was confirmed that there was.

本発明によって、還元材の吹込みを行う高炉操業において、送風羽口内における還元材の燃焼率を正確に推定して、より安定した高炉操業を行うことが可能となった。   According to the present invention, in the blast furnace operation in which the reducing material is injected, it is possible to accurately estimate the combustion rate of the reducing material in the blower tuyere and perform more stable blast furnace operation.

1 送風羽口本体
2 ブローパイプ部
3 還元材吹込み管
4 レースウェイ
5 サンプリング器具
6 観察孔
7 観察窓
8 発光強度測定装置
10 小型燃焼炉
DESCRIPTION OF SYMBOLS 1 Blower tuyere body 2 Blow pipe part 3 Reducing material blowing pipe 4 Raceway 5 Sampling instrument 6 Observation hole 7 Observation window 8 Luminescence intensity measuring device 10 Small combustion furnace

Claims (5)

送風羽口本体の送風流路または送風羽口上流側のブローパイプ部の送風流路に先端部が位置する吹込み管を通じて還元材を炉内へ吹込む高炉操業において、
該羽口本体または該ブローパイプ部に設けた観察孔を通じて該還元材の燃焼場におけるラジカルの発光ピーク強度を測定し、得られた該発光ピーク強度を、予め作成しておいた該還元材の燃焼率とその燃焼場におけるラジカルの発光ピーク強度との関係を表す検量線と照合することにより、測定した燃焼場におけるラジカルの発光ピーク強度から該還元材の燃焼率を推定することを特徴とする高炉吹込み還元材の燃焼率推定方法。
In the blast furnace operation in which the reducing material is blown into the furnace through the blowing pipe whose tip is located in the blowing channel of the blowing tuyere body or the blowing pipe part on the upstream side of the blowing tuyere,
The radical emission peak intensity in the combustion field of the reducing material is measured through an observation hole provided in the tuyere main body or the blow pipe part, and the obtained emission peak intensity is obtained from the reducing material prepared in advance. It is characterized by estimating the burning rate of the reducing material from the measured emission peak intensity of the radical in the combustion field by collating with a calibration curve representing the relationship between the combustion rate and the emission peak intensity of the radical in the combustion field. A method for estimating the combustion rate of blast furnace reducing material.
還元材として、微粉炭、天然ガス、プロパンガス、重油、軽油、化石燃料、植物性油脂、コークス炉ガスおよび廃プラスチックのうちから選んだ少なくとも一種を用いることを特徴とする請求項1に記載の高炉吹込み還元材の燃焼率推定方法。   2. The reducing material according to claim 1, wherein at least one selected from pulverized coal, natural gas, propane gas, heavy oil, light oil, fossil fuel, vegetable oil, coke oven gas, and waste plastic is used as the reducing material. A method for estimating the combustion rate of blast furnace reducing material. 請求項1または2に記載の高炉吹込み還元材の燃焼率推定方法を利用する高炉操業において、
推定された還元材の燃焼率が、安定操業時の燃焼率に対する相対値として0.95を下回った際に、送風中の酸素濃度を1vol%以上上昇させることを特徴とする高炉操業方法。
In blast furnace operation using the method for estimating the combustion rate of the blast furnace blown reducing material according to claim 1 or 2,
A blast furnace operating method characterized by increasing the oxygen concentration in the blown air by 1 vol% or more when the estimated burning rate of the reducing material falls below 0.95 as a relative value with respect to the burning rate during stable operation.
請求項1または2に記載の高炉吹込み還元材の燃焼率推定方法を利用する高炉操業において、
推定された還元材の燃焼率が、安定操業時の燃焼率に対する相対値として0.95を下回った際に、送風温度を20℃以上上昇させることを特徴とする高炉操業方法。
In blast furnace operation using the method for estimating the combustion rate of the blast furnace blown reducing material according to claim 1 or 2,
A blast furnace operating method characterized in that when the estimated burning rate of the reducing material falls below 0.95 as a relative value with respect to the burning rate during stable operation, the blowing temperature is increased by 20 ° C or more.
送風羽口本体または送風羽口上流側のブローパイプ部のいずれかの送風流路に先端部が位置する還元材の吹込み管を有し、さらに該送風羽口本体または該ブローパイプ部のいずれかまたは両方に、その内外に通じる観察ランスを有し、該観察ランスは、該送風羽口本体または該ブローパイプ部の外側に観察窓をそなえると共に、その他端部には該送風流路内に吹き込んだ還元材の燃焼場におけるラジカルの発光ピーク強度を測定するための発光強度測定装置をそなえ、加えて送風羽口本体から高炉のレースウェイ内へ噴出した還元材を採取するための還元材採取装置を有することを特徴とする送風羽口。   It has a blowing pipe of a reducing material whose tip is located in the air flow path of either the blower tuyere main body or the blowpipe part upstream of the blower tuyere, and either the blower tuyere main body or the blowpipe part One or both of them have an observation lance that communicates with the inside and outside thereof, and the observation lance has an observation window on the outside of the blower tuyere body or the blow pipe part, and at the other end in the blow passage. Equipped with a luminescence intensity measuring device to measure the emission peak intensity of radicals in the combustion field of the injected reducing material, and in addition, collecting the reducing material to collect the reducing material ejected from the blower tuyere into the blast furnace raceway A blower tuyere characterized by having a device.
JP2017112046A 2017-06-06 2017-06-06 Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere Active JP6604658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017112046A JP6604658B2 (en) 2017-06-06 2017-06-06 Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112046A JP6604658B2 (en) 2017-06-06 2017-06-06 Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere

Publications (2)

Publication Number Publication Date
JP2018204076A true JP2018204076A (en) 2018-12-27
JP6604658B2 JP6604658B2 (en) 2019-11-13

Family

ID=64956515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112046A Active JP6604658B2 (en) 2017-06-06 2017-06-06 Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere

Country Status (1)

Country Link
JP (1) JP6604658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204043A1 (en) * 2019-04-03 2020-10-08 Jfeスチール株式会社 Blast furnace abnormality assessment device, blast furnace abnormality assessment method, and blast furnace operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204043A1 (en) * 2019-04-03 2020-10-08 Jfeスチール株式会社 Blast furnace abnormality assessment device, blast furnace abnormality assessment method, and blast furnace operation method
JP6825753B1 (en) * 2019-04-03 2021-02-03 Jfeスチール株式会社 Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method

Also Published As

Publication number Publication date
JP6604658B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
CA3125187C (en) Gaseous tracer leak detection
Smart et al. Characterisation of an oxy-coal flame through digital imaging
JP6604658B2 (en) Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere
KR101608231B1 (en) Method for operating blast furnace
CN101372630A (en) On-line coke cleaning method for tube cracking furnace
KR102080705B1 (en) Method for injecting pulverized coal into oxygen blast furnace
JP6942641B2 (en) Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere
JPH07305105A (en) Method for evaluating raceway condition of blast furnace
CN109635464A (en) A kind of steel mill's sulfur content in gas flexible measurement method
JP5786922B2 (en) Oxygen enrichment rate setting method and blast furnace operation method
JP6421938B2 (en) Combustion status measurement method and combustion status measurement system
CN113578513A (en) Control method and system for outlet temperature of coal mill of direct-fired pulverizing system
KR102144168B1 (en) Method for predicting injection effect of furnace pulverized coal
Rudyka et al. Innovations in World Cokemaking Technologies: A Report on the ESTAD 2019 Steel Conference
JP2018016849A (en) Burning position estimation method of blowing reduction material at blow tuyere of a blast furnace and blow tuyere used for the method
KR101707321B1 (en) Method for mesuring combustion of pulverized coal in blast furnace
WO2022157304A1 (en) Monitoring combustible matter in a gaseous stream
KR101466481B1 (en) Method for forecasting generating quantity of hydrogen sulfide in cokes process
KR19990002212A (en) Estimation method of pulverized coal combustion rate during blast furnace operation
CN101430264A (en) Sedimentation furnace coal powder ignition mode judgment method based on flame detector
JP7077832B2 (en) Whitening prediction method for sintered main exhaust gas
SU868253A1 (en) Method of monitoring steam-generator heating-surface slagging
JP3132311B2 (en) Burning rate measurement method of pulverized coal in pulverized coal injection operation to blast furnace
JPH08188807A (en) Method of pulverized coal injection into blast furnace
JPH0694565B2 (en) Injection method of auxiliary fuel into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191010

R150 Certificate of patent or registration of utility model

Ref document number: 6604658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350