JP2018197884A - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP2018197884A
JP2018197884A JP2018168937A JP2018168937A JP2018197884A JP 2018197884 A JP2018197884 A JP 2018197884A JP 2018168937 A JP2018168937 A JP 2018168937A JP 2018168937 A JP2018168937 A JP 2018168937A JP 2018197884 A JP2018197884 A JP 2018197884A
Authority
JP
Japan
Prior art keywords
optical
optical filter
cellulose
fine cellulose
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018168937A
Other languages
Japanese (ja)
Other versions
JP6638783B2 (en
Inventor
佑美 林
Yumi Hayashi
佑美 林
拓也 磯貝
Takuya Isogai
拓也 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2018168937A priority Critical patent/JP6638783B2/en
Publication of JP2018197884A publication Critical patent/JP2018197884A/en
Application granted granted Critical
Publication of JP6638783B2 publication Critical patent/JP6638783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an optical filter having a low environmental load.SOLUTION: The optical filter includes: a base material; and a coating layer on at least one surface of the base material, the coating layer containing an optical material. The transmission becomes the smallest in a region with a wavelength of 500nm to 700nm, both inclusive, and the optical material contains complex fine particles including metal and a natural polymer which are physically indivisible. The complex fine particles are each in the shape of a flat surface or a rod.SELECTED DRAWING: Figure 1

Description

本発明は、金属と天然高分子とを含有する複合微粒子を含む光学材料及びこれを用いた光学フィルターに関する。   The present invention relates to an optical material including composite fine particles containing a metal and a natural polymer, and an optical filter using the same.

特定の波長範囲の光を透過する光学フィルターは、照明器具フィルター、各種光学機器に用いられている。医療・生物関係の分野で蛍光を利用して標本の細胞構造を観察する際に用いられる蛍光顕微鏡に光学フィルターが用いられる。カメラモジュールにおいては、ノイズとなる赤外線をカットする用途に用いられる。   Optical filters that transmit light in a specific wavelength range are used in lighting fixture filters and various optical devices. An optical filter is used in a fluorescence microscope used for observing a cell structure of a specimen using fluorescence in the medical / biological field. In a camera module, it is used for the purpose of cutting infrared rays that become noise.

例えば、プラズマディスプレー前面に配置される光学フィルターとして、590nm付近のネオンオレンジ色に近く色再現性を悪化させる波長を吸収するため、570から600nm付近に吸収極大波長を有する色素を配合したものがある(特許文献1)。しかし、色素を用いた光学フィルターは長期間使用すると劣化するという問題がある。   For example, as an optical filter disposed on the front surface of a plasma display, there is an optical filter blended with a dye having an absorption maximum wavelength in the vicinity of 570 to 600 nm in order to absorb a wavelength that is close to a neon orange color near 590 nm and deteriorates color reproducibility. (Patent Document 1). However, an optical filter using a dye has a problem that it deteriorates when used for a long time.

特許文献2では、基材の両面に機能膜を有する光選択透過フィルターであり、機能膜が無機材料からなる赤外線を遮断する光選択透過性フィルターが開示されている。しかし、真空成膜で製造する場合、コストが高くなるという問題がある。   Patent Document 2 discloses a light selective transmission filter having a functional film on both surfaces of a base material, wherein the functional film blocks infrared rays made of an inorganic material. However, when manufacturing by vacuum film formation, there exists a problem that cost becomes high.

近年、化石資源の枯渇問題の解決を目指して、持続的に利用可能な環境調和型材料である天然高分子を用いた機能性材料の開発が盛んに行われている。生分解性を有する環境に優しい天然高分子材料としては、セルロース等の植物材料が知られている。   In recent years, in order to solve the problem of fossil resource depletion, functional materials using natural polymers, which are environmentally friendly materials that can be used continuously, have been actively developed. Plant materials such as cellulose are known as environmentally friendly natural polymer materials having biodegradability.

植物や木材の主成分であるセルロースは、地球上に最も大量に蓄積された天然高分子材料である。木材中では、数十本以上のセルロース分子が束になって高結晶性でナノメートルオーダーの繊維径をもつ微細繊維(ミクロフィブリル)を形成しており、さらに多数の微細繊維が互いに水素結合してセルロース繊維を形成し、植物の支持体となっている。   Cellulose, the main component of plants and wood, is a natural polymer material that is accumulated in large quantities on the earth. In wood, dozens or more of cellulose molecules are bundled to form fine fibers (microfibrils) having a high crystallinity and a nanometer order fiber diameter, and many fine fibers are hydrogen-bonded to each other. Cellulosic fibers are formed to become a plant support.

このセルロース繊維を、繊維径がナノメートルオーダーになるまで微細化(ナノファイバー化)して利用する方法が知られる。N−オキシル化合物を酸化触媒として、セルロースの水酸基の一部がカルボキシ基およびアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化された、最大繊維径1000nm以下かつ数平均繊維径が2から150nmである、セルロースI型結晶構造を有する微細セルロース繊維が知られる(特許文献3)。微細セルロースを用いた例として、例えば、酸素等のガスバリア性を有する包装材料として、基材上に、少なくとも微細セルロース繊維、無機層状化合物および水溶性高分子を含む包装材料も知られている(特許文献4)。   There is known a method of using this cellulose fiber by making it fine (nanofiber) until the fiber diameter becomes nanometer order. Using an N-oxyl compound as an oxidation catalyst, a part of the hydroxyl group of cellulose is oxidized to at least one functional group selected from the group consisting of a carboxy group and an aldehyde group, and the maximum fiber diameter is 1000 nm or less and the number average fiber diameter is 2 A fine cellulose fiber having a cellulose I-type crystal structure of 150 nm is known (Patent Document 3). As an example using fine cellulose, for example, as a packaging material having gas barrier properties such as oxygen, a packaging material containing at least fine cellulose fibers, an inorganic layered compound and a water-soluble polymer on a substrate is also known (patent) Reference 4).

特開2001−228323号公報JP 2001-228323 A 特開2009−154489号公報JP 2009-154489 A 特開2008−1728号公報JP 2008-1728 A 特開2012−149114号公報JP 2012-149114 A

本発明の課題は、環境負荷の低い光学フィルターを提供することである。   An object of the present invention is to provide an optical filter with a low environmental load.

本発明の一局面は、基材と、基材の少なくとも1つの面に形成された、光学材料を含むコーティング層とを備え、透過率が500nm以上700nm以下の波長領域で極小となり、光学材料は、金属と天然高分子とを含有する複合微粒子を含み、前記金属と前記天然高分子とは物理的に不可分であり、前記複合微粒子は平板状またはロッド状である、光学材料である。   One aspect of the present invention includes a base material and a coating layer containing an optical material, which is formed on at least one surface of the base material, and has a minimum transmittance in a wavelength region of 500 nm to 700 nm. And an optical material including a composite fine particle containing a metal and a natural polymer, wherein the metal and the natural polymer are physically inseparable, and the composite fine particle has a flat plate shape or a rod shape.

また、複合微粒子が、体積が5×10−1nm以上5×1010nm以下であり、厚みが1nm以上50nm以下の範囲であってもよい。 The composite fine particles may have a volume of 5 × 10 −1 nm 3 or more and 5 × 10 10 nm 3 or less and a thickness of 1 nm or more and 50 nm or less.

また、金属が、少なくとも銀を含む1種類以上の金属またはそれらの化合物を含んでもよい。   In addition, the metal may include one or more metals including at least silver or a compound thereof.

また、天然高分子が微細セルロース繊維を含んでもよい。   Moreover, the natural polymer may contain fine cellulose fibers.

また、微細セルロース繊維の短軸の数平均軸径が1nm以上200nm以下であり、微細セルロース繊維の、長軸の数平均軸径が0.05μm以上50μm以下であってもよい。   Moreover, the number average axis diameter of the short axis of the fine cellulose fiber may be 1 nm or more and 200 nm or less, and the number average axis diameter of the long axis of the fine cellulose fiber may be 0.05 μm or more and 50 μm or less.

また、微細セルロース繊維の数平均短軸径が1nm以上50nm以下で、微細セルロース繊維の数平均長軸径は0.1μm以上10μm以下であり、微細セルロース繊維に含まれるカルボキシ基量が0.1mmol/g以上3.0mmol/g以下であってもよい。   The number average minor axis diameter of the fine cellulose fibers is 1 nm or more and 50 nm or less, the number average major axis diameter of the fine cellulose fibers is 0.1 μm or more and 10 μm or less, and the amount of carboxy groups contained in the fine cellulose fibers is 0.1 mmol. / G or more and 3.0 mmol / g or less may be sufficient.

また、微細セルロース繊維は、繊維表面にカルボキシ基が導入されていてもよい。   In the fine cellulose fiber, a carboxy group may be introduced on the fiber surface.

本発明により、環境負荷の低い天然高分子を含む光学フィルターを提供することが出来る。   According to the present invention, an optical filter containing a natural polymer having a low environmental load can be provided.

本発明の光学材料を用いた光学フィルターの一実施形態の断面図である。It is sectional drawing of one Embodiment of the optical filter using the optical material of this invention.

ここに、環境負荷の低い天然高分子を用い、分散性、耐熱性、耐光性に優れ、低エネルギー、且つ低コストに製造できる光学材料及び光学フィルターを開示する。
(光学材料)
本開示に係る光学材料は、金属と天然高分子とを含む複合微粒子を含み、両者が物理的に不可分であり、500nm以上の波長領域の光を遮蔽する光選択性を有する。この光選択性のある光学材料を含有する樹脂やコーティング層は、光選択性を有する光学フィルターに用いることができる。本開示において、遮蔽とは吸収または反射により光の透過率が低下することとする。本開示に係る光学材料を含有する分散液が、500nm以上700nm以下の波長領域で、吸収や反射により透過率が極小となる極小波長を有することが好ましい。500nm以上700nm以下の波長領域を遮蔽する光学材料により、プラズマディスプレー前面に配置される光学フィルターに用いることができる。
金属微粒子の表面の自由電子は、光等の外部電場により集団的に振動を起こすことがある(表面プラズモン)。電子は電荷を持った粒子であるため、電子が振動を起こすと周囲に電場を発生する。金属微粒子では、自由電子の振動を起こすことにより生じる電場と外部電場(光等)が共鳴する現象が起きる(表面プラズモン共鳴(Surface Plasmon Resonance;SPR))。この表面プラズモン共鳴により、特定の波長域の光の吸収が起こる。この光吸収波長域は、粒子の大きさや形状により変化する。
Disclosed herein are optical materials and optical filters that use natural polymers with low environmental impact, are excellent in dispersibility, heat resistance, and light resistance, and can be produced at low energy and at low cost.
(Optical material)
The optical material according to the present disclosure includes composite fine particles containing a metal and a natural polymer, both of which are physically indivisible, and has a light selectivity that blocks light in a wavelength region of 500 nm or more. The resin or coating layer containing the optical material having photoselectivity can be used for an optical filter having photoselectivity. In the present disclosure, “shielding” means that light transmittance is reduced by absorption or reflection. It is preferable that the dispersion liquid containing the optical material according to the present disclosure has a minimum wavelength at which the transmittance is minimized by absorption or reflection in a wavelength region of 500 nm to 700 nm. An optical material that shields a wavelength region of 500 nm or more and 700 nm or less can be used for an optical filter disposed in front of the plasma display.
Free electrons on the surface of the metal fine particles may collectively vibrate due to an external electric field such as light (surface plasmon). Since electrons are charged particles, an electric field is generated around them when they vibrate. In the metal fine particle, a phenomenon occurs in which an electric field generated by free electron vibration and an external electric field (light, etc.) resonate (Surface Plasmon Resonance (SPR)). The surface plasmon resonance causes light absorption in a specific wavelength range. This light absorption wavelength region varies depending on the size and shape of the particles.

一般に、金属微粒子は、そのアスペクト比が高いほど長波長に吸収を得やすい。そのため、本開示に係る光学材料においても、異方性を有することにより長波長領域に吸収を得ることなる。そのため、本開示に係る光学材料の形状は特に限定されないが、500nm以上の波長領域の光を遮蔽するためには、異方性を有することが好ましい。特に、平板状またはロッド状、より好ましくは体積が5×10−1nm以上5×1010nm以下、厚みが1nm以上50nm以下の平板状の複合微粒子である。本開示に係る光学材料の形状やサイズの観察は、走査型電子顕微鏡、透過型電子顕微鏡、走査透過型電子顕微鏡にて行う。
本開示に係る光学材料の作製方法は、特に限定されるものではないが、一般的液相還元法にて、天然高分子の存在下、前駆体金属イオンの存在下で還元することにより、形状とサイズの制御された光学材料を得ることができる。この光学材料の製造においては、高温に加熱する必要もなく、複数の反応を経ずに低エネルギー、且つ低コストで光学材料を得ることができる。また、本開示に係る光学材料は、耐光性、耐熱性に優れる。
In general, the higher the aspect ratio of metal fine particles, the easier it is to obtain absorption at longer wavelengths. Therefore, also in the optical material according to the present disclosure, absorption is obtained in the long wavelength region by having anisotropy. Therefore, the shape of the optical material according to the present disclosure is not particularly limited, but preferably has anisotropy in order to shield light in a wavelength region of 500 nm or more. In particular, it is a flat or rod-like composite fine particle having a volume of 5 × 10 −1 nm 3 or more and 5 × 10 10 nm 3 or less and a thickness of 1 nm or more and 50 nm or less. The shape and size of the optical material according to the present disclosure are observed with a scanning electron microscope, a transmission electron microscope, and a scanning transmission electron microscope.
The production method of the optical material according to the present disclosure is not particularly limited, but is reduced by a general liquid phase reduction method in the presence of a natural polymer and in the presence of a precursor metal ion. An optical material with a controlled size can be obtained. In the production of this optical material, it is not necessary to heat to a high temperature, and the optical material can be obtained at low energy and at low cost without undergoing a plurality of reactions. In addition, the optical material according to the present disclosure is excellent in light resistance and heat resistance.

(天然高分子)
本開示に係る光学材料に用いる天然高分子は、動物、植物、微生物が生産する高分子である。天然高分子は、特に限定されるものではないが、一般に、多糖やポリペプチドが知られる。多糖としては、例えば、デンプン、セルロース、キチン・キトサン、セルロース、デキストラン、プルラン、カードラン、アルギン酸、ヒアルロン酸が挙げられる。ポリペプチドとしては、例えば、グルテン、ゼイン、コラーゲン、ゼラチン、フィブロイン、セリシン、ケラチン等が挙げられる。中でもセルロースを用いることが好ましい。セルロースは、例えば以下に示す方法により微細化した微細セルロース繊維を用いることが好ましい。
(Natural polymer)
Natural polymers used in the optical material according to the present disclosure are polymers produced by animals, plants, and microorganisms. Natural polymers are not particularly limited, but polysaccharides and polypeptides are generally known. Examples of the polysaccharide include starch, cellulose, chitin / chitosan, cellulose, dextran, pullulan, curdlan, alginic acid, and hyaluronic acid. Examples of the polypeptide include gluten, zein, collagen, gelatin, fibroin, sericin, keratin and the like. Among these, it is preferable to use cellulose. As the cellulose, for example, it is preferable to use fine cellulose fibers refined by the following method.

(微細セルロース繊維とその製造方法)
本開示に係る微細セルロース繊維は、特に限定されるものではないが、その繊維径が以下に示す範囲内であることが好ましい。また、その調製方法については特に限定されない。すなわち短軸径において数平均短軸径が1nm以上200nm以下であれば好ましく、より好ましくは1nm以上50nm以下である。数平均短軸径が1nm以上では高結晶性の剛直な微細セルロース繊維構造をとるため、安定的に光学材料を製造できる。一方、200nm以上であると、安定的に光学材料を製造することが難しくなる。また、長軸径においては、数平均長軸径は0.05μm以上が好ましく、50μm以下が好ましく、より好ましくは0.1μm以上10μm以下である。長軸径の数平均長軸径がこの範囲であると、安定的に光学材料を製造することができる。
(Fine cellulose fiber and its manufacturing method)
Although the fine cellulose fiber which concerns on this indication is not specifically limited, It is preferable that the fiber diameter exists in the range shown below. Moreover, the preparation method is not particularly limited. That is, the number average minor axis diameter is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 50 nm or less. When the number average minor axis diameter is 1 nm or more, a highly crystalline rigid fine cellulose fiber structure is adopted, so that an optical material can be stably produced. On the other hand, when it is 200 nm or more, it becomes difficult to stably produce an optical material. In addition, regarding the major axis diameter, the number average major axis diameter is preferably 0.05 μm or more, preferably 50 μm or less, and more preferably 0.1 μm or more and 10 μm or less. When the number average major axis diameter of the major axis diameter is within this range, the optical material can be stably produced.

微細セルロース繊維の数平均短軸径は、透過型電子顕微鏡観察および原子間力顕微鏡観察により100本の繊維の短軸径(最小径)を測定し、その平均値として求められる。一方、微細セルロース繊維の数平均長軸径は、透過型電子顕微鏡観察および原子間力顕微鏡観察により100本の繊維の長軸径(最大径)を測定し、その平均値として求められる。   The number average minor axis diameter of fine cellulose fibers is determined by measuring the minor axis diameter (minimum diameter) of 100 fibers by observation with a transmission electron microscope and atomic force microscope, and obtaining the average value. On the other hand, the number average major axis diameter of fine cellulose fibers is determined by measuring the major axis diameter (maximum diameter) of 100 fibers by observation with a transmission electron microscope and observation with an atomic force microscope, and is obtained as an average value thereof.

微細セルロース繊維の原料として用いることが出来る植物セルロースの種類も特に限定されず、例えば木材系天然セルロースに加えて、コットンリンター、竹、麻、バガス、ケナフを用いることができる。また、バクテリアセルロース、ホヤセルロース、バロニアセルロースといった非木材系天然セルロース、さらにはレーヨン繊維、キュプラ繊維に代表される再生セルロースを用いることもできる。   The kind of plant cellulose that can be used as a raw material for fine cellulose fibers is not particularly limited. For example, in addition to wood-based natural cellulose, cotton linter, bamboo, hemp, bagasse, and kenaf can be used. Further, non-wood type natural cellulose such as bacterial cellulose, squirt cellulose, and valonia cellulose, and regenerated cellulose represented by rayon fiber and cupra fiber can also be used.

微細セルロース繊維の微細化処理法も特に限定されないが、例えばグラインダーによる機械処理の他、TEMPOなどのN−オキシル化合物を用いた酸化処理、希酸加水分解処理、酵素処理などを機械処理と併用して微細化する方法が知られている。また、バクテリアセルロースも微細セルロース繊維として用いることが出来る。さらには各種天然セルロースを各種セルロース溶剤に溶解させたのち、電解紡糸することによって得られる微細再生セルロース繊維を用いても良い。特に特許文献3の方法に示されるように、TEMPOをはじめとするN−オキシル化合物を用いた酸化反応では、結晶表面のセルロース分子鎖が持つグルコピラノース単位の第6位の−CHOHが高い選択性で酸化され、アルデヒド基を経てカルボキシ基に変換される。このように結晶表面に導入されたカルボキシ基を有する微細セルロース繊維間には静電的な反発力が働くため、水性媒体中でミクロフィブリル単位にまで分散したセルロースシングルナノファイバー(CSNF)を得ることができる。N−オキシル化合物を用いた酸化反応については後で詳しく説明する。この微細セルロース繊維を用いれば、安定的に本発明の光学材料を製造することができる。 The method for refining fine cellulose fibers is not particularly limited. For example, in addition to mechanical treatment by a grinder, oxidation treatment using N-oxyl compounds such as TEMPO, dilute acid hydrolysis treatment, enzyme treatment, etc. are used in combination with mechanical treatment. There are known methods for miniaturization. Bacterial cellulose can also be used as fine cellulose fibers. Furthermore, finely regenerated cellulose fibers obtained by dissolving various natural celluloses in various cellulose solvents and then performing electrospinning may be used. In particular, as shown in the method of Patent Document 3, in the oxidation reaction using an N-oxyl compound such as TEMPO, the —CH 2 OH at the sixth position of the glucopyranose unit of the cellulose molecular chain on the crystal surface is high. It is oxidized selectively and converted to a carboxy group via an aldehyde group. In this way, electrostatic repulsion acts between the fine cellulose fibers having carboxy groups introduced on the crystal surface, so that cellulose single nanofibers (CSNF) dispersed in microfibril units in an aqueous medium can be obtained. Can do. The oxidation reaction using the N-oxyl compound will be described in detail later. If this fine cellulose fiber is used, the optical material of this invention can be manufactured stably.

微細セルロース繊維中のカルボキシ基の含有量は、微細セルロース繊維1g当たり0.1mmol以上3.0mmol以下の範囲内であることが好ましく、0.5mmol以上3.0mmol以下であることがより好ましい。カルボキシ基量が0.1mmol/g以上であると、分散安定性が良好である。3.0mmol/g以下であると、微細セルロース繊維の結晶構造が充分に保持され、安定的に光学材料を製造することができる。   The content of carboxy groups in the fine cellulose fibers is preferably in the range of 0.1 mmol to 3.0 mmol, more preferably 0.5 mmol to 3.0 mmol, per 1 g of fine cellulose fibers. When the carboxy group amount is 0.1 mmol / g or more, the dispersion stability is good. When it is 3.0 mmol / g or less, the crystal structure of the fine cellulose fibers is sufficiently retained, and an optical material can be produced stably.

以下、木材系天然セルロースから、N−オキシル化合物を用いた酸化反応により導入されたカルボキシ基を有する微細セルロース繊維の分散液を調製する方法の一例を説明する。この例の調製方法は、木材系天然セルロースを、N−オキシル化合物を用いて酸化して酸化セルロースを得る工程(酸化工程)と、該酸化セルロースを水性媒体中で微細化して微細セルロース繊維分散液を調製する工程(微細化工程)とを含む。   Hereinafter, an example of a method for preparing a dispersion of fine cellulose fibers having a carboxy group introduced from wood-based natural cellulose by an oxidation reaction using an N-oxyl compound will be described. The preparation method of this example includes a step of oxidizing a wood-based natural cellulose with an N-oxyl compound to obtain oxidized cellulose (oxidation step), and a fine cellulose fiber dispersion by refining the oxidized cellulose in an aqueous medium. And a step of preparing (miniaturization step).

(酸化工程)
微細セルロース繊維の原料としては、特に限定されず、木材セルロースを用いる場合には、針葉樹パルプや広葉樹パルプ、古紙パルプなど、一般的に用いられるものを用いることができる。精製および微細化のしやすさから、針葉樹パルプが好ましい。N−オキシル化合物としては、TEMPO(2,2,6,6−テトラメチルピペリジニル−1−オキシラジカル)、2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、4−メトキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−エトキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−アセトアミド−2,2,6,6−テトラメチルピペリジン−N−オキシル、等が挙げられる。その中でも、TEMPOが好ましい。N−オキシル化合物の使用量は、触媒としての量でよく、特に限定されない。通常、酸化処理する木材系天然セルロースの固形分に対して0.01質量%から5.0質量%程度である。
(Oxidation process)
The raw material for the fine cellulose fiber is not particularly limited. When wood cellulose is used, commonly used materials such as softwood pulp, hardwood pulp, and waste paper pulp can be used. Softwood pulp is preferred because it is easily refined and refined. Examples of N-oxyl compounds include TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy radical), 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 4 -Methoxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-ethoxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-acetamido-2,2,6,6 -Tetramethylpiperidine-N-oxyl, etc. Among these, TEMPO is preferable. The amount of the N-oxyl compound used is not particularly limited, and may be an amount as a catalyst. Usually, it is about 0.01% by mass to 5.0% by mass with respect to the solid content of wood-based natural cellulose to be oxidized.

N−オキシル化合物を用いた酸化方法としては、セルロース原料を水中に分散させ、N−オキシル化合物の共存下で酸化処理する方法が挙げられる。このとき、N−オキシル化合物とともに、共酸化剤を併用することが好ましい。この場合、反応系内において、N−オキシル化合物が順次共酸化剤により酸化されてオキソアンモニウム塩が生成し、オキソアンモニウム塩によりセルロースが酸化される。かかる酸化処理によれば、温和な条件でも酸化反応が円滑に進行し、カルボキシ基の導入効率が向上する。酸化処理を温和な条件で行うと、セルロースの結晶構造を維持しやすい。共酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸や過ハロゲン酸、またはそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、酸化反応を推進することが可能であれば、いずれの酸化剤も用いることができる。入手の容易さや反応性から、次亜塩素酸ナトリウムが好ましい。共酸化剤の使用量は、酸化反応を促進することができる量でよく、特に限定されない。通常、酸化処理するセルロースの固形分に対して1質量%から200質量%程度である。   Examples of the oxidation method using an N-oxyl compound include a method in which a cellulose raw material is dispersed in water and oxidized in the presence of the N-oxyl compound. At this time, it is preferable to use a co-oxidant together with the N-oxyl compound. In this case, in the reaction system, the N-oxyl compound is sequentially oxidized by the cooxidant to produce an oxoammonium salt, and the cellulose is oxidized by the oxoammonium salt. According to such oxidation treatment, the oxidation reaction proceeds smoothly even under mild conditions, and the introduction efficiency of the carboxy group is improved. When the oxidation treatment is performed under mild conditions, it is easy to maintain the crystal structure of cellulose. Co-oxidants include halogens, hypohalous acids, halous acids and perhalogen acids, or salts thereof, halogen oxides, nitrogen oxides, peroxides, etc., as long as they can promote the oxidation reaction. Any oxidizing agent can be used. Sodium hypochlorite is preferred because of its availability and reactivity. The amount of the co-oxidant used is not particularly limited, and may be an amount that can promote the oxidation reaction. Usually, it is about 1 mass% to 200 mass% with respect to the solid content of the cellulose to be oxidized.

N−オキシル化合物および共酸化剤とともに、臭化物およびヨウ化物から選ばれる少なくとも1種の化合物をさらに併用してもよい。これにより、酸化反応を円滑に進行させることができ、カルボキシ基の導入効率を改善することができる。化合物としては、臭化ナトリウムまたは臭化リチウムが好ましく、コストや安定性から、臭化ナトリウムがより好ましい。化合物の使用量は、酸化反応を促進することができる量でよく、特に限定されない。通常、酸化処理する木材系天然セルロースの固形分に対して1質量%から50質量%程度である。   Along with the N-oxyl compound and the co-oxidant, at least one compound selected from bromide and iodide may be further used in combination. Thereby, an oxidation reaction can be advanced smoothly and the introduction efficiency of a carboxy group can be improved. As the compound, sodium bromide or lithium bromide is preferable, and sodium bromide is more preferable from the viewpoint of cost and stability. The amount of the compound used is not particularly limited, and may be an amount that can promote the oxidation reaction. Usually, it is about 1% by mass to 50% by mass with respect to the solid content of the wood-based natural cellulose to be oxidized.

酸化反応の反応温度は特に限定されないが、4℃以上50℃以下が好ましく、10℃以上50℃以下がより好ましい。4℃より低いと、試料の反応性が低下し反応時間が長くなってしまう。50℃より高いと副反応が促進して試料が低分子化し、光学材料を安定的に製造することが難しくなる。酸化処理の反応時間は、反応温度、所望のカルボキシ基量等を考慮して適宜設定でき、特に限定されないが、通常、1時間から5時間程度である。   Although the reaction temperature of an oxidation reaction is not specifically limited, 4 to 50 degreeC is preferable and 10 to 50 degreeC is more preferable. If it is lower than 4 ° C., the reactivity of the sample is lowered and the reaction time is prolonged. If it is higher than 50 ° C., the side reaction is promoted to lower the molecular weight of the sample, making it difficult to stably produce the optical material. The reaction time for the oxidation treatment can be appropriately set in consideration of the reaction temperature, the desired amount of carboxy group, etc., and is not particularly limited, but is usually about 1 to 5 hours.

酸化反応時の反応系のpHは、9以上11以下が好ましい。pHが9以上であると反応を効率よく進めることができる。pHが11を超えると副反応が進行し、試料の分解が促進されてしまうおそれがある。酸化処理においては、酸化が進行するにつれて、カルボキシ基が生成することにより系内のpHが低下してしまうため、酸化処理中、反応系のpHを9以上11以下に保つことが好ましい。反応系のpHを9以上11以下に保つ方法としては、pHの低下に応じてアルカリ水溶液を添加する方法が挙げられる。アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、水酸化テトラメチルアンモニウム水溶液、水酸化テトラエチルアンモニウム水溶液、水酸化テトラブチルアンモニウム水溶液、水酸化ベンジルトリメチルアンモニウム水溶液などの有機アルカリなどが挙げられる。コストなどの面から水酸化ナトリウム水溶液が好ましい。   The pH of the reaction system during the oxidation reaction is preferably 9 or more and 11 or less. When the pH is 9 or more, the reaction can be efficiently carried out. If the pH exceeds 11, side reactions may progress and the decomposition of the sample may be accelerated. In the oxidation treatment, as the oxidation proceeds, the pH in the system decreases due to the formation of a carboxy group. Therefore, it is preferable to maintain the pH of the reaction system at 9 or more and 11 or less during the oxidation treatment. Examples of a method for maintaining the pH of the reaction system at 9 or more and 11 or less include a method of adding an alkaline aqueous solution in accordance with a decrease in pH. Examples of alkaline aqueous solutions include sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, tetramethylammonium hydroxide aqueous solution, tetraethylammonium hydroxide aqueous solution, tetrabutylammonium hydroxide aqueous solution, and benzyltrimethylammonium hydroxide aqueous solution. And organic alkalis. A sodium hydroxide aqueous solution is preferable from the viewpoint of cost.

N−オキシル化合物による酸化反応は、反応系にアルコールを添加することにより停止させることができる。このとき、反応系のpHは上述の範囲内に保つことが好ましい。添加するアルコールとしては、反応をすばやく終了させるためメタノール、エタノール、プロパノールなどの低分子量のアルコールが好ましく、反応により生成される副産物の安全性などから、エタノールが特に好ましい。   The oxidation reaction with the N-oxyl compound can be stopped by adding alcohol to the reaction system. At this time, the pH of the reaction system is preferably maintained within the above-mentioned range. The alcohol to be added is preferably a low molecular weight alcohol such as methanol, ethanol or propanol in order to quickly terminate the reaction, and ethanol is particularly preferred from the viewpoint of safety of by-products generated by the reaction.

酸化処理後の反応液は、そのまま微細化工程に供してもよいが、N−オキシル化合物等の触媒、不純物等を除去するために、反応液に含まれる酸化セルロースを回収し、洗浄液で洗浄することが好ましい。酸化セルロースの回収は、ガラスフィルターや20μm孔径のナイロンメッシュを用いたろ過等の公知の方法により実施できる。酸化セルロースの洗浄に用いる洗浄液としては蒸留水が好ましい。   The reaction solution after the oxidation treatment may be directly subjected to a refinement process, but in order to remove a catalyst such as an N-oxyl compound, impurities, etc., the oxidized cellulose contained in the reaction solution is recovered and washed with a washing solution. It is preferable. Oxidized cellulose can be collected by a known method such as filtration using a glass filter or a nylon mesh having a 20 μm pore size. Distilled water is preferable as the cleaning liquid used for cleaning the oxidized cellulose.

(微細化工程)
酸化セルロースを微細化する方法としてはまず、酸化セルロースに水性媒体を加えて懸濁させる。水性媒体としては、前記と同様のものが挙げられ、水が特に好ましい。必要に応じて、酸化セルロースや生成する微細セルロース繊維の分散性を上げるために、懸濁液のpH調整を行ってもよい。pH調整に用いられるアルカリ水溶液としては、酸化工程の説明で挙げたアルカリ水溶液と同様のものが挙げられる。
(Miniaturization process)
In order to refine the oxidized cellulose, first, an aqueous medium is added to the oxidized cellulose and suspended. Examples of the aqueous medium include those described above, and water is particularly preferable. If necessary, the pH of the suspension may be adjusted in order to increase the dispersibility of the oxidized cellulose and the fine cellulose fibers to be produced. Examples of the alkaline aqueous solution used for pH adjustment include the same alkaline aqueous solution as mentioned in the description of the oxidation step.

続いて懸濁液に物理的解繊処理を施して、酸化セルロースを微細化する。物理的解繊処理としては、高圧ホモジナイザー、超高圧ホモジナイザー、ボールミル、ロールミル、カッターミル、遊星ミル、ジェットミル、アトライター、グラインダー、ジューサーミキサー、ホモミキサー、超音波ホモジナイザー、ナノジナイザー、水中対向衝突などの機械的処理が挙げられる。このような物理的解繊処理を行うことで、懸濁液中の酸化セルロースが微細化され、繊維表面にカルボキシ基を有する微細セルロース繊維の分散液を得ることができる。このときの物理的解繊処理の時間や回数により、得られる微細セルロース繊維分散液に含まれる微細セルロース繊維の数平均短軸径および数平均長軸径を調整できる。   Subsequently, the suspension is subjected to a physical defibrating treatment to refine the oxidized cellulose. For physical fibrillation treatment, high pressure homogenizer, ultra high pressure homogenizer, ball mill, roll mill, cutter mill, planetary mill, jet mill, attritor, grinder, juicer mixer, homomixer, ultrasonic homogenizer, nanogenizer, underwater facing collision, etc. Mechanical treatment is mentioned. By performing such physical fibrillation treatment, the oxidized cellulose in the suspension is refined, and a dispersion of fine cellulose fibers having a carboxy group on the fiber surface can be obtained. The number average minor axis diameter and the number average major axis diameter of the fine cellulose fibers contained in the obtained fine cellulose fiber dispersion can be adjusted by the time and number of times of the physical fibrillation treatment at this time.

上記のようにして、カルボキシ基が導入された微細セルロース繊維の分散液が得られる。得られた分散液は、そのまま、または希釈、濃縮等を行って、金属微粒子を還元析出させる反応場として用いることができる。   As described above, a dispersion of fine cellulose fibers having a carboxy group introduced therein is obtained. The obtained dispersion can be used as a reaction field for reducing and precipitating metal fine particles as it is or by diluting, concentrating and the like.

微細セルロース繊維の分散液は、必要に応じて、本発明の効果を損なわない範囲で、セルロースおよびpH調整に用いた成分以外の他の成分を含有してもよい。他の成分としては、特に限定されず、用途に応じて、公知の添加剤のなかから適宜選択できる。具体的には、アルコキシシラン等の有機金属化合物またはその加水分解物、無機層状化合物、無機針状鉱物、消泡剤、無機系粒子、有機系粒子、潤滑剤、酸化防止剤、帯電防止剤、紫外線吸収剤、安定剤、磁性粉等が挙げられる。   The dispersion of fine cellulose fibers may contain other components than cellulose and components used for pH adjustment, as long as they do not impair the effects of the present invention. Other components are not particularly limited, and can be appropriately selected from known additives depending on the application. Specifically, organometallic compounds such as alkoxysilanes or hydrolysates thereof, inorganic layered compounds, inorganic needle minerals, antifoaming agents, inorganic particles, organic particles, lubricants, antioxidants, antistatic agents, An ultraviolet absorber, a stabilizer, magnetic powder, etc. are mentioned.

(金属)
本開示に係る光学材料に含有される金属種は、特に限定されるものではなく、金、銀、銅、アルミニウム、鉄、白金、亜鉛、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウム、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属、金属塩、金属錯体およびこれらの合金、または酸化物、複酸化物等が挙げられる。光学特性の制御の観点から、少なくとも銀を含む1種類以上が好ましい。金属微粒子は形状制御により可視光線から近赤外光線にわたる任意の波長光を吸収することが可能であり、各種組成物の用途に合わせて所望の波長領域に吸収することで光選択性を有する。複合微粒子の周りを、他の金属あるいは金属酸化物で被覆して、複合微粒子の安定性を向上させても良い。被覆に用いる金属種としては特に限定せず、例えば、金、銀、銅、アルミニウム、鉄、白金、亜鉛、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウム、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属、金属塩、金属錯体およびこれらの合金、または酸化物、複酸化物が挙げられる。
(metal)
The metal species contained in the optical material according to the present disclosure is not particularly limited, and gold, silver, copper, aluminum, iron, platinum, zinc, palladium, ruthenium, iridium, rhodium, osmium, chromium, cobalt, Examples thereof include metals such as nickel, manganese, vanadium, molybdenum, gallium, and aluminum, metal salts, metal complexes, alloys thereof, oxides, and double oxides. From the viewpoint of controlling optical characteristics, at least one kind containing at least silver is preferable. The metal fine particles can absorb light of any wavelength ranging from visible light to near infrared light by shape control, and have light selectivity by absorbing in a desired wavelength region according to the use of various compositions. The composite fine particles may be coated with another metal or metal oxide to improve the stability of the composite fine particles. The metal species used for the coating is not particularly limited, for example, gold, silver, copper, aluminum, iron, platinum, zinc, palladium, ruthenium, iridium, rhodium, osmium, chromium, cobalt, nickel, manganese, vanadium, molybdenum, Examples include metals such as gallium and aluminum, metal salts, metal complexes, and alloys thereof, or oxides and double oxides.

(光学材料の製造方法)
本開示に係る光学材料の製造方法は、特に限定されるものではないが、一般的な湿式法である液相還元法で調製できる。金属表面と溶媒は、強い親和力は無く、そのままでは金属微粒子は凝集沈殿してしまう。天然高分子の存在により金属微粒子の特徴が大きく変化する。天然高分子と前駆体金属イオンの存在下で還元剤を添加することにより、前駆体金属イオンが還元されて金属原子が生成し、核発生、成長を経て金属微粒子が生成する過程で相互作用し、形状やサイズの制御された複合微粒子が生成する。この複合微粒子が500nm以上の波長領域を遮蔽する光学特性を有し、光学材料として用いることができる。例えば、球状の銀微粒子は通常400nm付近に吸収を有するが、銀と天然高分子とを含有する複合微粒子は、その異方性により500nm以上の波長領域を遮蔽する光学特性を有する。
(Optical material manufacturing method)
Although the manufacturing method of the optical material which concerns on this indication is not specifically limited, It can prepare with the liquid phase reduction method which is a general wet method. The metal surface and the solvent do not have a strong affinity, and the metal fine particles coagulate and precipitate as they are. Due to the presence of the natural polymer, the characteristics of the metal fine particles are greatly changed. By adding a reducing agent in the presence of a natural polymer and a precursor metal ion, the precursor metal ion is reduced to produce a metal atom, which interacts in the process of producing metal particles through nucleation and growth. As a result, composite fine particles having a controlled shape and size are produced. This composite fine particle has an optical property of shielding a wavelength region of 500 nm or more, and can be used as an optical material. For example, spherical silver fine particles usually have absorption in the vicinity of 400 nm, but composite fine particles containing silver and a natural polymer have an optical property of shielding a wavelength region of 500 nm or more due to the anisotropy.

天然高分子の分散に用いる溶媒は、天然高分子が充分に分散または溶解するものであれば、特に限定されない。環境への負荷の面から水を用いることが好ましい。微細セルロース繊維を用いる場合は、分散性の観点から水や親水性溶媒を用いることが好ましい。親水性溶媒については特に制限は無いが、メタノール、エタノール、イソプロパノールなどのアルコール類が好ましい。   The solvent used for dispersing the natural polymer is not particularly limited as long as the natural polymer is sufficiently dispersed or dissolved. It is preferable to use water from the viewpoint of environmental load. In the case of using fine cellulose fibers, it is preferable to use water or a hydrophilic solvent from the viewpoint of dispersibility. Although there is no restriction | limiting in particular about a hydrophilic solvent, Alcohols, such as methanol, ethanol, isopropanol, are preferable.

光学材料の製造に用いる天然高分子の分散液の濃度は特に限定しないが、0.1%以上50%未満が好ましい。0.1%未満では金属微粒子の形状制御効果が不十分となり、50%以上では粘度が上昇し、均一な反応が難しくなる。天然高分子の分散液の添加する前駆体金属イオンの濃度も限定しない。前駆体金属イオン濃度、天然高分子濃度は生成する光学材料の光学特性に影響を与える。複合微粒子の光学特性は、その形状により大きく変化する。光選択性材料の具体的な作製法については実施例にて詳細を記した。   The concentration of the natural polymer dispersion used in the production of the optical material is not particularly limited, but is preferably 0.1% or more and less than 50%. If it is less than 0.1%, the shape control effect of the metal fine particles will be insufficient, and if it is 50% or more, the viscosity will increase and a uniform reaction will be difficult. The concentration of the precursor metal ion added to the dispersion of the natural polymer is not limited. Precursor metal ion concentration and natural polymer concentration affect the optical properties of the optical material produced. The optical characteristics of the composite fine particles vary greatly depending on the shape. Details of the specific method for producing the photoselective material are described in Examples.

前駆体金属イオンは、特に限定されず、公知に用いられる前駆体金属イオンである塩化金酸、硝酸銀、シアン化銀、酢酸銀等を用いることができる。前駆体銀イオン現を用いる場合は、安全性の観点から硝酸銀を用いることが好ましい。   The precursor metal ion is not particularly limited, and a commonly used precursor metal ion such as chloroauric acid, silver nitrate, silver cyanide, and silver acetate can be used. In the case of using the precursor silver ion, silver nitrate is preferably used from the viewpoint of safety.

前駆体金属イオンの還元に用いる還元剤は、公知の還元剤を用いることができる。例えば、金属ヒドリド系、ボロヒドリド系、ボラン系、シラン系、ヒドラジン及びヒドラジド系の還元剤が挙げられる。一般に、液相還元法では、水素化ホウ素ナトリウム、クエン酸、ヒドラジン等が用いられる。反応を行う際は、攪拌翼、マグネチックスターラー等、公知の方法で攪拌を行っても良い。   A known reducing agent can be used as the reducing agent used for reducing the precursor metal ion. Examples thereof include metal hydride-based, borohydride-based, borane-based, silane-based, hydrazine, and hydrazide-based reducing agents. In general, sodium borohydride, citric acid, hydrazine and the like are used in the liquid phase reduction method. When performing the reaction, stirring may be performed by a known method such as a stirring blade or a magnetic stirrer.

(光学フィルター)
こうして得られた光学材料の分散液から光学材料を分離し、特に限定されないが樹脂分散またはコーティング液として用いるなどにより、特定の波長領域の選択性を持つ光学フィルターとして利用できる。光学フィルターは、空の状態をリファレンスとして500nm以上の波長に、透過率が70%以下となる波長領域を有することが好ましい。
(Optical filter)
The optical material is separated from the dispersion liquid of the optical material thus obtained, and is not particularly limited, but can be used as an optical filter having selectivity in a specific wavelength region by using as a resin dispersion or coating liquid. The optical filter preferably has a wavelength region in which the transmittance is 70% or less at a wavelength of 500 nm or more with an empty state as a reference.

得られた光学材料を分画する方法としては、沈殿法、遠心分離、ゲル濾過カラム、ゲル電気泳動法等の公知の方法を用いることができる。複数の分画方法を組み合わせても良い。   As a method for fractionating the obtained optical material, a known method such as precipitation, centrifugation, gel filtration column, gel electrophoresis or the like can be used. A plurality of fractionation methods may be combined.

光学材料を再分散させる方法は、公知の方法を用いることができる。例えば、攪拌型分散機、高速度回転せん断装置、ミル型分散装置(ボールミル、ビーズミル、コロイドミル等)、高圧噴射装置、超音波分散装置等の液中分散装置が挙げられる。分散剤を添加して分散化してもよい。   As a method for redispersing the optical material, a known method can be used. Examples thereof include a dispersion device in liquid such as a stirring type disperser, a high speed rotary shearing device, a mill type dispersing device (ball mill, bead mill, colloid mill, etc.), a high pressure jet device, and an ultrasonic dispersing device. You may disperse | distribute by adding a dispersing agent.

光学材料を成形材料と複合化して成形することで光選択性を有する光学フィルターを製造することができる。光学材料と複合化する成形材料は、公知のプラスチック材料を用いることができる。
プラスチック材料は、特に限定されるものではなく、一般に用いられる熱可塑性樹脂、熱硬化性樹脂を用いることができる。例えば、ポリスチレン、ABS樹脂(A;アクリロニトリル、B;ブタジエン、S;スチレン)、AS樹脂、ポリエチレン、EVA樹脂、ポリプロピレン、メタクリル樹脂、セルロースアセテート、ポリカーボネート、ポリアミド、ポリアセタール、ポリサルフォン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、塩化ビニル樹脂等が挙げられる。
特に、再生可能な資源を用いたバイオマスプラスチックを用いることが好ましい。再生可能な資源を用いたバイオマスプラスチックとしては、例えば、ポリ乳酸、ポリオレフィン、ポリアミドが挙げられる。
光学材料と樹脂とを複合化する際の複合化方法は、公知の方法を用いることができる。
An optical filter having photoselectivity can be manufactured by forming an optical material in combination with a molding material. A known plastic material can be used as the molding material to be combined with the optical material.
The plastic material is not particularly limited, and generally used thermoplastic resins and thermosetting resins can be used. For example, polystyrene, ABS resin (A; acrylonitrile, B; butadiene, S; styrene), AS resin, polyethylene, EVA resin, polypropylene, methacrylic resin, cellulose acetate, polycarbonate, polyamide, polyacetal, polysulfone, polyethylene terephthalate, polybutylene terephthalate And vinyl chloride resin.
In particular, it is preferable to use biomass plastics using renewable resources. Examples of biomass plastics using renewable resources include polylactic acid, polyolefin, and polyamide.
A known method can be used as a compounding method for compounding the optical material and the resin.

成形の方法は、公知の方法を用いることができる。例えば、射出成形法、圧縮成形法、積層成形法、トランスファ成形法、押出成形法、インフレーション成形法、Tダイ成形法、押出ラミネート、ブロー成形法、真空成形法、スプラッシュ成形法、低圧積層成形法が挙げられる。   A known method can be used as the molding method. For example, injection molding, compression molding, lamination molding, transfer molding, extrusion molding, inflation molding, T-die molding, extrusion lamination, blow molding, vacuum molding, splash molding, low pressure lamination molding Is mentioned.

光学材料をコーティング液に混合し、基材にコーティングさせることで、光選択性を有する光学フィルターを製造できる。コーティング液は、水系または溶剤系の塗液であり、樹脂を溶解或いは分散しているものではり、コーティングによりコーティング層を形成できる。
環境負荷の観点から、水系のコーティング液を用いることが好ましい。例えば、水性アルキド樹脂や水溶性アクリル樹脂塗料、水性エポキシ樹脂、水性ウレタン樹脂、合成樹脂エマルジョンが挙げられる。
An optical filter having photoselectivity can be manufactured by mixing an optical material in a coating solution and coating the substrate. The coating liquid is an aqueous or solvent-based coating liquid that dissolves or disperses a resin, and a coating layer can be formed by coating.
From the viewpoint of environmental burden, it is preferable to use an aqueous coating solution. For example, water-based alkyd resin, water-soluble acrylic resin paint, water-based epoxy resin, water-based urethane resin, and synthetic resin emulsion can be used.

コーティング層の形成方法は、常温乾燥コーティング、加熱硬化コーティング、電着コーティング等の公知の方法を用いることができる。コーティング層の膜厚は特に限定されない。   As a method for forming the coating layer, known methods such as room temperature dry coating, heat-curing coating, and electrodeposition coating can be used. The thickness of the coating layer is not particularly limited.

光学材料を含有するコーティング液を塗工する基材は、特に限定されず、プラスチックやガラス等の公知のものを用いることができる。光選択性材料の特徴を活かすためには、透明基材であることが好ましい。
基材の材質としては、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン等。)、ポリエステル(ポリエチレンナフタレート、ポリエチレンテレフタレート等。)、ポリアミド(ナイロン−6、ナイロン−66等。)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネート、ポリエーテルスルホン、アクリルセルロース(トリアセチリルセルロース、ジアセチルセルロース等。)等が挙げられる。
The base material to which the coating liquid containing the optical material is applied is not particularly limited, and known materials such as plastic and glass can be used. In order to make use of the characteristics of the photoselective material, a transparent substrate is preferable.
Examples of the material of the base material include polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene naphthalate, polyethylene terephthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, ethylene vinyl alcohol, poly And vinyl chloride, polyimide, polyvinyl alcohol, polycarbonate, polyethersulfone, acrylic cellulose (triacetylyl cellulose, diacetyl cellulose, etc.), and the like.

基材の膜厚は、特に限定されないが、生産性や成形性の観点では、基材の膜厚は、5μm以上1000μm以下が好ましい。   Although the film thickness of a base material is not specifically limited, From a viewpoint of productivity or moldability, the film thickness of a base material has preferable 5 micrometers or more and 1000 micrometers or less.

本開示に係る光学材料を用いた光学フィルターの一実施形態の断面図を図1に示す。基材11におけるコーティング層14を設ける側の面には、表面処理を施し、表面処理層12を設けることが好ましい。これにより、接着層13を形成する塗工液の塗工性がより良好になる。表面処理としては、例えば、コロナ処理、プラズマ処理等が挙げられる。   FIG. 1 shows a cross-sectional view of an embodiment of an optical filter using the optical material according to the present disclosure. It is preferable that the surface of the substrate 11 on the side where the coating layer 14 is provided is subjected to surface treatment and the surface treatment layer 12 is provided. Thereby, the applicability | paintability of the coating liquid which forms the contact bonding layer 13 becomes more favorable. Examples of the surface treatment include corona treatment and plasma treatment.

光学フィルターは、接着層13を含むことが出来る。接着層13は、基材11とコーティング層14との密着性を高める役割を果たす。
接着層13の形成に用いる接着成分としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリビニル系樹脂、ポリオレフィン系樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスチレン樹脂等の接着樹脂が挙げられる。なかでも、接着樹脂としては、密着性が良好な点から、ポリビニル系樹脂、ポリオレフィン系樹脂、アクリル樹脂を用いることが好ましい。
The optical filter can include an adhesive layer 13. The adhesive layer 13 plays a role of improving the adhesion between the substrate 11 and the coating layer 14.
Examples of the adhesive component used for forming the adhesive layer 13 include phenol resin, urea resin, melamine resin, polyvinyl resin, polyolefin resin, urethane resin, epoxy resin, acrylic resin, polyester resin, polyamide resin, and polystyrene resin. Adhesive resin is mentioned. Among these, as the adhesive resin, it is preferable to use a polyvinyl resin, a polyolefin resin, or an acrylic resin from the viewpoint of good adhesion.

光学材料を含有する組成物は積層構造を有しても良い。また、光選択性材料を含有するコーティング層は、単層でなくてもよく、複層の層を設けても良い。   The composition containing the optical material may have a laminated structure. In addition, the coating layer containing the photoselective material may not be a single layer but may be provided with a plurality of layers.

光学材料との複合組成物や光学材料を含有するコーティング層は、成形性の向上や劣化抑制、光学材料の分散性の向上等の目的で、公知の添加剤を混合することができる。例えば、熱安定剤、安定化助剤、可塑剤、酸化防止剤、光安定剤、難燃剤、滑剤、帯電防止剤を含んでも構わない。   The composite layer with the optical material and the coating layer containing the optical material can be mixed with known additives for the purpose of improving moldability, suppressing deterioration, and improving the dispersibility of the optical material. For example, a heat stabilizer, a stabilizing aid, a plasticizer, an antioxidant, a light stabilizer, a flame retardant, a lubricant, and an antistatic agent may be included.

(木材セルロースのTEMPO酸化)
針葉樹クラフトパルプ70gを蒸留水3500gに懸濁し、蒸留水350gにTEMPOを0.7g、臭化ナトリウムを7g溶解させた溶液を加え、20℃まで冷却した。ここに2mol/L、密度1.15g/mLの次亜塩素酸ナトリウム水溶液450gを滴下により添加し、酸化反応を開始した。系内の温度は常に20℃に保ち、反応中のpHの低下は0.5Nの水酸化ナトリウム水溶液を添加することでpH10に保ち続けた。セルロースの質量に対して、水酸化ナトリウムが3.00mmol/gになった時点で、過剰量のエタノールを添加し反応を停止させた。その後、ガラスフィルターを用いて蒸留水によるろ過洗浄を繰り返し、酸化パルプを得た。
(TEMPO oxidation of wood cellulose)
70 g of softwood kraft pulp was suspended in 3500 g of distilled water, and a solution of 0.7 g of TEMPO and 7 g of sodium bromide dissolved in 350 g of distilled water was added and cooled to 20 ° C. 450 g of sodium hypochlorite aqueous solution having a concentration of 2 mol / L and a density of 1.15 g / mL was added dropwise thereto to initiate an oxidation reaction. The temperature in the system was always kept at 20 ° C., and the decrease in pH during the reaction was kept at pH 10 by adding a 0.5N aqueous sodium hydroxide solution. When sodium hydroxide reached 3.00 mmol / g based on the mass of cellulose, an excessive amount of ethanol was added to stop the reaction. Thereafter, filtration and washing with distilled water were repeated using a glass filter to obtain oxidized pulp.

(酸化パルプのカルボキシ基量測定)
上記TEMPO酸化で得た酸化パルプを固形分重量で0.1g量りとり、1%濃度で水に分散させ、塩酸を加えてpHを2.5とした。その後0.5M水酸化ナトリウム水溶液を用いた電導度滴定法により、カルボキシ基量(mmol/g)を求めた。結果は1.6mmol/gであった。
(Measurement of carboxy group content in oxidized pulp)
Oxidized pulp obtained by the above TEMPO oxidation was weighed by 0.1 g in terms of solid content, dispersed in water at a concentration of 1%, and hydrochloric acid was added to adjust the pH to 2.5. Thereafter, the amount of carboxy groups (mmol / g) was determined by conductivity titration using a 0.5 M aqueous sodium hydroxide solution. The result was 1.6 mmol / g.

(酸化パルプの解繊処理)
TEMPO酸化で得た酸化パルプ1gを99gの蒸留水に分散させ、ジューサーミキサーで30分間微細化処理し、CSNF濃度1%のCSNF水分散液を得た。該CSNF水分散液に含まれるCSNFの数平均短軸径は4nm、数平均長軸径は1110nmであった。また、レオメーターを用いて定常粘弾性測定を行ったところ、該CSNF分散液はチキソトロピック性を示した。
(硝酸銀水溶液の調製)
硝酸銀を蒸留水50mLに溶解させ、硝酸銀水溶液を調製した。
(Oxidized pulp defibration)
1 g of oxidized pulp obtained by TEMPO oxidation was dispersed in 99 g of distilled water and refined with a juicer mixer for 30 minutes to obtain a CSNF aqueous dispersion having a CSNF concentration of 1%. The number average minor axis diameter of CSNF contained in the CSNF aqueous dispersion was 4 nm, and the number average major axis diameter was 1110 nm. Further, when steady viscoelasticity measurement was performed using a rheometer, the CSNF dispersion showed thixotropic properties.
(Preparation of silver nitrate aqueous solution)
Silver nitrate was dissolved in 50 mL of distilled water to prepare an aqueous silver nitrate solution.

(水素化ホウ素ナトリウム水溶液の調製)
水素化ホウ素ナトリウムを蒸留水50mLに溶解させ、水素化ホウ素ナトリウム水溶液を調製した。
(Preparation of aqueous sodium borohydride solution)
Sodium borohydride was dissolved in 50 mL of distilled water to prepare a sodium borohydride aqueous solution.

(光学材料の作製)
1%CSNF水分散液50gに対し、硝酸銀水溶液0.5gを室温(25℃)で攪拌しながら添加した。30分攪拌を続けたのち、水素化ホウ素ナトリウム水溶液を添加して光学材料を作製した。
(Production of optical materials)
To 50 g of 1% CSNF aqueous dispersion, 0.5 g of an aqueous silver nitrate solution was added with stirring at room temperature (25 ° C.). After stirring for 30 minutes, an optical material was prepared by adding an aqueous sodium borohydride solution.

<実施例1>
上述の方法でCSNF水分散液を作製し、CSNF水分散液に硝酸銀水溶液を添加し、しばらくして還元剤である水素化ホウ素ナトリウムを添加して光学材料を製造した。
<Example 1>
A CSNF aqueous dispersion was prepared by the method described above, an aqueous silver nitrate solution was added to the CSNF aqueous dispersion, and sodium borohydride as a reducing agent was added after a while to produce an optical material.

<実施例2>
上述の方法でCSNF水分散液を作製し、CSNF分散液に0.01MのNaOHを0.6g添加して硝酸銀水溶液を添加し、しばらくして還元剤である水素化ホウ素ナトリウムを添加して光学材料を製造した。
<Example 2>
Prepare a CSNF aqueous dispersion by the above method, add 0.6 g of 0.01 M NaOH to the CSNF dispersion, add an aqueous silver nitrate solution, and add sodium borohydride as a reducing agent after a while. The material was manufactured.

<実施例3>
上述の方法でCSNF水分散液を作製し、CSNF分散液に0.01MのNaOHを1.2g添加して硝酸銀水溶液を添加し、しばらくして還元剤である水素化ホウ素ナトリウムを添加して光学材料を製造した。
<Example 3>
Prepare a CSNF aqueous dispersion by the above method, add 1.2 g of 0.01M NaOH to the CSNF dispersion, add an aqueous silver nitrate solution, and add sodium borohydride as a reducing agent after a while to add the optical solution. The material was manufactured.

<実施例4>
上述の方法でCSNF水分散液を作製し、CSNF分散液に0.01MのNaOHを1.8g添加して硝酸銀水溶液を添加し、しばらくして還元剤である水素化ホウ素ナトリウムを添加して光学材料を製造した。
<Example 4>
Prepare a CSNF aqueous dispersion by the above method, add 1.8 g of 0.01 M NaOH to the CSNF dispersion, add an aqueous silver nitrate solution, and add sodium borohydride as a reducing agent after a while to add the optical solution. The material was manufactured.

<比較例1>
水に硝酸銀水溶液を添加し、しばらくして還元剤である水素化ホウ素ナトリウムを添加した。
<Comparative Example 1>
A silver nitrate aqueous solution was added to water, and sodium borohydride as a reducing agent was added after a while.

<比較例2>
ポリビニルアルコールPVA124(クラレ社製)に硝酸銀を添加し、しばらくして還元剤である水素化ホウ素ナトリウムを添加した。
<Comparative Example 2>
Silver nitrate was added to polyvinyl alcohol PVA124 (manufactured by Kuraray Co., Ltd.), and sodium borohydride as a reducing agent was added after a while.

<比較例3>
CSNF水分散液に、還元剤である水素化ホウ素ナトリウムを添加した。
<Comparative Example 3>
Sodium borohydride as a reducing agent was added to the CSNF aqueous dispersion.

<比較例4>
CSNF水分散液に硝酸銀を添加した。
<Comparative example 4>
Silver nitrate was added to the CSNF aqueous dispersion.

実施例1から4、比較例1から4にて調製した分散液から、25000rpmの遠心分離により沈殿物を得、ポリビニルアルコール水溶液に分散させ、コーティング液を調製した。PETフィルムにコロナ処理を施し、コーティング液をバーコーターを用いて塗工し、120℃で乾燥させた。 A precipitate was obtained from the dispersions prepared in Examples 1 to 4 and Comparative Examples 1 to 4 by centrifugation at 25000 rpm, and dispersed in an aqueous polyvinyl alcohol solution to prepare a coating solution. The PET film was subjected to corona treatment, and the coating solution was applied using a bar coater and dried at 120 ° C.

(複合微粒子生成の評価方法)
複合微粒子の生成は、走査透過型電子顕微鏡と走査型電子顕微鏡、透過型電子顕微鏡を用いて観察し、ロッド状、平板状等、金属と天然高分子の複合微粒子が生成している場合を『○』とし、複合微粒子が生成していない場合に『×』とした。
(光学特性の評価方法)
得られたフィルムを、空の状態をリファレンスとして、220nmから1400nmの波長領域の透過率を、分光光度計UV−3600(島津製作所社製)を用いて測定した。波長700nmの光の透過率が70%以下である場合に『△』、60%以下である場合に『○』とした。光選択性を有する場合、透過率が極小となった波長をλmaxとした。
(Evaluation method of composite fine particle production)
The formation of composite fine particles is observed using a scanning transmission electron microscope, a scanning electron microscope, and a transmission electron microscope. “○”, and “×” when composite fine particles were not generated.
(Evaluation method of optical characteristics)
With respect to the obtained film, the transmittance in the wavelength region from 220 nm to 1400 nm was measured using a spectrophotometer UV-3600 (manufactured by Shimadzu Corporation) with the empty state as a reference. “Δ” when the transmittance of light having a wavelength of 700 nm is 70% or less, and “◯” when 60% or less. In the case of having light selectivity, the wavelength at which the transmittance was minimized was defined as λmax.

Figure 2018197884
Figure 2018197884

表1に示すように、実施例1から4では、複合微粒子が生成し、700nmにて透過率が70%以下となり、光選択性を有する光学フィルターが得られた。比較例1から4では、複合微粒子が観察されず、光選択性を有さなかった(表1における、光選択性が『×』である)。本実施例により、環境負荷の低い天然高分子を用い、分散性、耐熱性、耐光性に優れ、低エネルギー且つ低コストで製造できる光学材料及びこれを含む光学フィルターを提供することが出来た。   As shown in Table 1, in Examples 1 to 4, composite fine particles were produced, and the transmittance was 70% or less at 700 nm, and an optical filter having photoselectivity was obtained. In Comparative Examples 1 to 4, composite fine particles were not observed and did not have photoselectivity (the photoselectivity in Table 1 is “x”). According to this example, it was possible to provide an optical material that uses a natural polymer having a low environmental load, is excellent in dispersibility, heat resistance, and light resistance, can be produced at low energy and at low cost, and an optical filter including the same.

本発明は、光学材料およびこれを用いた光学フィルター等に有用である。   The present invention is useful for optical materials and optical filters using the same.

11 基材
12 表面処理層
13 接着層
14 コーティング層
11 Substrate 12 Surface treatment layer 13 Adhesive layer 14 Coating layer

Claims (7)

基材と、前記基材の少なくとも1つの面に形成された、光学材料を含むコーティング層とを備え、
透過率が500nm以上700nm以下の波長領域で極小となり、
前記光学材料は、金属と天然高分子とを含有する複合微粒子を含み、前記金属と前記天然高分子とは物理的に不可分であり、前記複合微粒子は平板状またはロッド状である、光学フィルター。
A substrate and a coating layer containing an optical material formed on at least one surface of the substrate;
The transmittance becomes minimum in the wavelength region of 500 nm to 700 nm,
The optical material includes composite fine particles containing a metal and a natural polymer, wherein the metal and the natural polymer are physically inseparable, and the composite fine particles have a flat plate shape or a rod shape.
前記複合微粒子が、体積が5×10−1nm以上5×1010nm以下であり、厚みが1nm以上50nm以下の範囲である、請求項1に記載の光学フィルター。 2. The optical filter according to claim 1, wherein the composite fine particles have a volume of 5 × 10 −1 nm 3 or more and 5 × 10 10 nm 3 or less and a thickness of 1 nm or more and 50 nm or less. 前記金属が、少なくとも銀を含む1種類以上の金属またはそれらの化合物を含む、請求項1または2に記載の光学フィルター。   The optical filter according to claim 1, wherein the metal includes one or more metals including at least silver or a compound thereof. 前記天然高分子が微細セルロース繊維を含む、請求項1から3のいずれかに記載の光学フィルター。   The optical filter according to claim 1, wherein the natural polymer includes fine cellulose fibers. 前記微細セルロース繊維の短軸の数平均軸径が1nm以上200nm以下であり、前記微細セルロース繊維の、長軸の数平均軸径が0.05μm以上50μm以下である、請求項4に記載の光学フィルター。   The optical axis according to claim 4, wherein the number average axis diameter of the minor axis of the fine cellulose fiber is from 1 nm to 200 nm, and the number average axis diameter of the major axis of the fine cellulose fiber is from 0.05 μm to 50 μm. filter. 前記微細セルロース繊維の数平均短軸径が1nm以上50nm以下で、前記微細セルロース繊維の数平均長軸径は0.1μm以上10μm以下であり、前記微細セルロース繊維に含まれるカルボキシ基量が0.1mmol/g以上3.0mmol/g以下である、請求項4または5に記載の光学フィルター。   The number average minor axis diameter of the fine cellulose fibers is from 1 nm to 50 nm, the number average major axis diameter of the fine cellulose fibers is from 0.1 μm to 10 μm, and the amount of carboxy groups contained in the fine cellulose fibers is 0.00. The optical filter according to claim 4, wherein the optical filter is 1 mmol / g or more and 3.0 mmol / g or less. 前記微細セルロース繊維は、繊維表面にカルボキシ基が導入されている、請求項4から6のいずれかに記載の光学フィルター。   The optical filter according to any one of claims 4 to 6, wherein the fine cellulose fiber has a carboxy group introduced on the fiber surface.
JP2018168937A 2018-09-10 2018-09-10 Optical filter Active JP6638783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168937A JP6638783B2 (en) 2018-09-10 2018-09-10 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168937A JP6638783B2 (en) 2018-09-10 2018-09-10 Optical filter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014048931A Division JP6402454B2 (en) 2014-03-12 2014-03-12 Optical material and optical filter

Publications (2)

Publication Number Publication Date
JP2018197884A true JP2018197884A (en) 2018-12-13
JP6638783B2 JP6638783B2 (en) 2020-01-29

Family

ID=64662562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168937A Active JP6638783B2 (en) 2018-09-10 2018-09-10 Optical filter

Country Status (1)

Country Link
JP (1) JP6638783B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031753A (en) * 2005-07-25 2007-02-08 Institute Of Physical & Chemical Research Method for producing support-metal nanoparticle composite, method for producing metal nanoparticle fused body, and metal nanoparticle fused body
WO2008111949A2 (en) * 2006-07-05 2008-09-18 Optimax Technology Corporation Metal nanotechnology for advanced display and optical applications
JP2010043144A (en) * 2008-08-10 2010-02-25 Univ Of Tokyo Composite material, functional material, preparation of composite material, and preparation of composite material pellicle
US20120058697A1 (en) * 2009-04-01 2012-03-08 Strickland Aaron D Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
JP2013209779A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Formed body and method for producing the same
JP2015172687A (en) * 2014-03-12 2015-10-01 凸版印刷株式会社 Optical material and optical filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031753A (en) * 2005-07-25 2007-02-08 Institute Of Physical & Chemical Research Method for producing support-metal nanoparticle composite, method for producing metal nanoparticle fused body, and metal nanoparticle fused body
WO2008111949A2 (en) * 2006-07-05 2008-09-18 Optimax Technology Corporation Metal nanotechnology for advanced display and optical applications
JP2010043144A (en) * 2008-08-10 2010-02-25 Univ Of Tokyo Composite material, functional material, preparation of composite material, and preparation of composite material pellicle
US20120058697A1 (en) * 2009-04-01 2012-03-08 Strickland Aaron D Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
JP2013209779A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Formed body and method for producing the same
JP2015172687A (en) * 2014-03-12 2015-10-01 凸版印刷株式会社 Optical material and optical filter

Also Published As

Publication number Publication date
JP6638783B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
JP6446834B2 (en) Method for producing composite and dispersion of fine cellulose fiber
JP6446829B2 (en) Infrared shielding material, coating composition, and infrared shielding film
JP6421455B2 (en) Method for producing composite, and composite
JP6083165B2 (en) Method for producing metal / cellulose composite fine fiber, dispersion containing metal / cellulose composite fine fiber, and method for producing transparent conductive film
Wang et al. Preparation of nanocellulose and its potential in reinforced composites: A review
Hooshmand et al. Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue
Shinoda et al. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils
JP6690531B2 (en) Composite, composite manufacturing method, dispersion, dispersion manufacturing method, and optical material
Rodionova et al. TEMPO-mediated oxidation of Norway spruce and eucalyptus pulps: preparation and characterization of nanofibers and nanofiber dispersions
Zeng et al. Cellulose nanofibrils manufactured by various methods with application as paper strength additives
JP6248511B2 (en) Thickening and coloring antibacterial agent, method for producing the same, and composition for personal care products
JP2015218159A (en) Antimicrobial composition, laminate and compact
JP2019002004A (en) Photothermal conversion material, photothermal conversion composition and photothermal conversion molded body
JP2011195660A (en) Cellulose film and laminated material using the same
JP6402454B2 (en) Optical material and optical filter
JP2017141394A (en) Resin composition, resin molded article and production method of the same
JP2015218299A (en) Method for producing cellulose nanofiber, cellulose nanofiber, and fluid dispersion thereof
Araki et al. Preparation of sterically stabilized chitin nanowhisker dispersions by grafting of poly (ethylene glycol) and evaluation of their dispersion stability
Kato et al. Mechanical and thermal properties of cellulose nanofiber composites with nanodiamond as nanocarbon filler
JP6260451B2 (en) POROUS BODY, PROCESS FOR PRODUCING THE SAME, AND HEAT SHIELDING FILM
JP6303258B2 (en) Method for producing composite of silver and fine cellulose fiber and method for producing thermal barrier film
JP7167433B2 (en) Resin composition and method for producing resin composition
Wang et al. TEMPO-mediated oxidation promotes cellulose dissolution in a zincate–NaOH system at suprazero temperatures
JP2017124529A (en) Antifogging film and antifogging composition
JP7143628B2 (en) Resin molding and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250