JP2018197683A - Surface shape distortion measurement device - Google Patents

Surface shape distortion measurement device Download PDF

Info

Publication number
JP2018197683A
JP2018197683A JP2017102041A JP2017102041A JP2018197683A JP 2018197683 A JP2018197683 A JP 2018197683A JP 2017102041 A JP2017102041 A JP 2017102041A JP 2017102041 A JP2017102041 A JP 2017102041A JP 2018197683 A JP2018197683 A JP 2018197683A
Authority
JP
Japan
Prior art keywords
measured
measurement
coordinate
camera
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017102041A
Other languages
Japanese (ja)
Other versions
JP6864911B2 (en
Inventor
直樹 石田
Naoki Ishida
直樹 石田
優典 白谷
Yusuke Shiratani
優典 白谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKKO AUTOMATION KK
Original Assignee
HAKKO AUTOMATION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKKO AUTOMATION KK filed Critical HAKKO AUTOMATION KK
Priority to JP2017102041A priority Critical patent/JP6864911B2/en
Publication of JP2018197683A publication Critical patent/JP2018197683A/en
Application granted granted Critical
Publication of JP6864911B2 publication Critical patent/JP6864911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a surface shape distortion measurement device that can measure distortion of a surface shape by fine concavity and convexity, and is less likely to be affected by a change in installation distance of a measured object, too.SOLUTION: A surface shape distortion measurement device comprises: an illumination light source 3 that irradiate slit-like diffusion light; a camera 4 that takes pictures of reflection images upon a measured surface 2 of the diffusion light; image processing means that detects a relative inclination of each reflection point; and a movement mechanism 6 that moves, loading the illumination light source 3 and the camera 4. The image processing means comprises: means that calculates an inclination angle from a reference surface in each point in the reflection image to prepare inclination angle-versus-luminance data associated with luminance of the reflection image of a coordinate determined on the measured surface; move the camera to sequentially take the picture, thereby acquires the inclination angle-versus-luminance data in each coordinate in a measurement area, determines an inclination angle having maximum luminance in each coordinate as a positive reflection inclination angle, and calculates a curvature in each coordinate from a change in the positive reflection inclination angle of each coordinate; and means that displays a distribution of the calculated curvature in the measurement area of the measured surface.SELECTED DRAWING: Figure 1

Description

本発明は、面形状の歪みを測定する面形状歪測定装置に関する。   The present invention relates to a surface shape distortion measuring apparatus that measures surface shape distortion.

従来、工業製品などの検査において物体表面の面形状の歪を測定する場合、例えば特許文献1に記載された方法などにより物体の表面形状を測定し、周囲の面形状からの変位を歪として計測する方法が一般的である。しかし、その面が緩やかな形状変化や傾きを持つ場合には、微小な歪は周囲形状に埋もれてしまい正確な測定できない。また、三角測量の原理を応用した三次元計測が知られているが、測定精度がカメラの画素分解能と撮影角度に依存するため、測定範囲と計測精度がトレードオフの関係となり、広い範囲内での微小な面形状の歪は測定できない。   Conventionally, when measuring distortion of a surface shape of an object in an inspection of an industrial product or the like, for example, the surface shape of the object is measured by a method described in Patent Document 1, and the displacement from the surrounding surface shape is measured as distortion. The method to do is common. However, if the surface has a gradual shape change or inclination, a minute strain is buried in the surrounding shape and cannot be measured accurately. In addition, three-dimensional measurement using the principle of triangulation is known, but since measurement accuracy depends on the pixel resolution and shooting angle of the camera, the measurement range and measurement accuracy are in a trade-off relationship, and within a wide range. It is impossible to measure the distortion of the minute surface shape.

従来の微小な面形状の歪の測定方法としては、特許文献2および3に記載のように複数のストライプを面内に平行に並べた格子状パターンを被測定物に照射してその正反射像をカメラにより撮像し、その格子像のライン間のピッチの変化から面形状の歪みを求める方法が知られている。   As a conventional method for measuring distortion of a minute surface shape, a specular reflection image is obtained by irradiating an object to be measured with a lattice pattern in which a plurality of stripes are arranged in parallel in a plane as described in Patent Documents 2 and 3. There is known a method of obtaining a distortion of a surface shape from a change in pitch between lines of the lattice image.

図9は従来の格子パターンの正反射像から歪を検出する方法の測定系の模式的な配置図と格子パターンの一例を示す図である。照明装置91により、y方向に伸びた複数のストライプを平面内に等間隔で平行に並べて構成される格子状パターン90を被測定物92に照射して、被測定物92の表面による格子パターン90の正反射による反射像93をカメラ94により撮像して歪みを測定するものである。平面形状に歪みがある場合、反射像93の格子パターンが歪み、ライン間隔dが変化するのでその間隔の変化を読み取って面の歪を算出する。しかし、この従来の測定装置では、ディスプレイに表示される格子パターンの歪みを測定するため、ディスプレイの表示画面の大きさによって被測定面の計測範囲が限られてしまう。また、被測定物92の設置位置が図のようにz方向にずれた場合、反射像93は反射像95のようにその位置が変化し、これをカメラで撮影すると格子パターン96のようになり、そのライン間隔dが変化してしまう。このため算出される歪の大きさに大きな誤差が生じていた。   FIG. 9 is a schematic layout diagram of a measurement system and an example of a lattice pattern in a method for detecting distortion from a regular reflection image of a conventional lattice pattern. An illuminating device 91 irradiates a measurement object 92 with a lattice pattern 90 configured by arranging a plurality of stripes extending in the y direction in parallel in a plane at equal intervals, and the lattice pattern 90 formed by the surface of the measurement object 92 is irradiated. A reflection image 93 obtained by regular reflection is captured by a camera 94 and distortion is measured. When the planar shape is distorted, the lattice pattern of the reflected image 93 is distorted and the line interval d changes, so the change in the interval is read to calculate the distortion of the surface. However, in this conventional measuring apparatus, since the distortion of the lattice pattern displayed on the display is measured, the measurement range of the surface to be measured is limited by the size of the display screen of the display. Further, when the installation position of the object to be measured 92 is shifted in the z direction as shown in the figure, the position of the reflected image 93 changes like the reflected image 95, and when this is photographed with a camera, it becomes a lattice pattern 96. The line interval d changes. For this reason, a large error has occurred in the calculated magnitude of distortion.

このように、従来の格子パターンの正反射像から歪を検出する方法では、微小な歪を広範囲にわたって測定を行う場合には大型のディスプレイが必要となり、その大きさの制限から計測範囲が限られていた。また、カメラに対する被測定物の設置距離が変動すると正反射像のライン間のピッチが変化し、算出される傾きに大きな誤差が生じていた。   As described above, the conventional method of detecting distortion from a regular reflection image of a lattice pattern requires a large display when measuring a minute distortion over a wide range, and the measurement range is limited due to the limitation of the size. It was. Further, when the installation distance of the object to be measured with respect to the camera fluctuates, the pitch between the lines of the regular reflection image changes and a large error occurs in the calculated inclination.

そこで、この問題を解決するため、被測定物の設置距離の変動にも影響を受けにくい面形状歪測定装置が特許文献4に記載されている。その測定装置では、被測定面に一定の長さで一定の幅を有する直線状の拡散光を照射し、その被測定面による正反射像をカメラにより撮影して、その撮影画像から画像処理手段により被測定面上の反射点の相対的な傾きを検出している。照明光源とカメラを上記拡散光の幅方向に移動させながら撮影を順次行うことにより被測定面の測定領域内の各反射点の傾きを順次検出し、その傾きの変化から各反射点における曲率を算出し、測定領域内における曲率の分布を表示するものである。   Therefore, in order to solve this problem, Patent Document 4 describes a surface shape distortion measuring apparatus that is not easily affected by fluctuations in the installation distance of an object to be measured. In the measuring apparatus, the surface to be measured is irradiated with linear diffused light having a certain length and a certain width, a regular reflection image by the surface to be measured is photographed by a camera, and image processing means is obtained from the photographed image. Thus, the relative inclination of the reflection point on the surface to be measured is detected. By sequentially taking pictures while moving the illumination light source and the camera in the width direction of the diffused light, the inclination of each reflection point in the measurement area of the measurement surface is sequentially detected, and the curvature at each reflection point is determined from the change in the inclination. The curvature is calculated and displayed in the measurement area.

特開2003−4425号公報JP 2003-4425 A 特開2011−89981号公報JP 2011-89981 A 特開2012−215486号公報JP 2012-215486 A 特開2016−200396号公報Japanese Unexamined Patent Publication No. 2016-200396

従来、様々な製品における表面の微小な傷による凹凸や、塗装時の異物付着等による点状の突起、いわゆる塗装ブツなどの検査は目視により行われることが多く、このような検査を効率的に行うことが可能な測定器が必要とされている。   Conventionally, inspections of unevenness due to minute scratches on various products, point-like protrusions due to adhesion of foreign matters during painting, so-called coating solids, etc. have often been performed visually, and such inspections are efficient. There is a need for a measuring instrument that can be performed.

上記の従来の特許文献4に記載の面形状歪測定装置では、拡散光の正反射像を幅方向に分割してその分割された各ピクセルの輝度を求め、その輝度により幅方向の重心を求め、その重心を直線状の拡散光の被測定面による正反射像の座標としていた。このため、従来は、被測定面の検査における上記の幅方向の測定分解能を拡散光の幅の大きさより小さくすることは困難であり、検出可能な表面形状の凹凸の幅は拡散光の幅により制限されていた。そのため、塗装ブツのような微小な凹凸の検出は困難であった。   In the conventional surface shape distortion measuring apparatus described in Patent Document 4, the specular reflection image of diffused light is divided in the width direction to obtain the luminance of each divided pixel, and the center of gravity in the width direction is obtained from the luminance. The center of gravity was used as the coordinates of the regular reflection image of the measurement surface of the linear diffused light. For this reason, conventionally, it is difficult to make the measurement resolution in the width direction in the inspection of the surface to be measured smaller than the width of the diffused light, and the width of the unevenness of the detectable surface shape depends on the width of the diffused light. It was restricted. Therefore, it was difficult to detect minute irregularities such as coatings.

本発明は、係る問題を解決するためになされたものであり、微小な凹凸による面形状の歪みの測定が可能で、被測定物の設置距離の変動にも影響を受けにくい面形状歪測定装置を提供することを目的とする。   The present invention has been made to solve such a problem, and is capable of measuring distortion of a surface shape due to minute unevenness, and is not easily affected by fluctuations in the installation distance of an object to be measured. The purpose is to provide.

第1の観点では、本発明の面形状歪測定装置は、被測定面にy軸方向に伸びたスリット状の拡散光を照射する照明光源と、該照明光源に対する相対位置を固定して設置され前記拡散光の被測定面による反射像を撮影するカメラと、該撮影された反射像により該反射像を生ずる前記被測定面の各反射点の相対的な傾きを検出する画像処理手段と、前記照明光源および前記カメラまたは前記被測定面を有する被測定物を搭載して前記被測定面に照射された前記拡散光のスリットの幅方向(x軸方向とする)に移動する移動機構と、該移動機構の移動量に応じた電気信号を出力するエンコーダとを備え、前記画像処理手段は、前記被測定面がy軸に平行な軸を中心にして基準となる基準面より傾いていることにより前記拡散光による前記被測定面の各点の正反射像がx軸方向に変移して撮像されたものとして前記反射像内の各点において前記基準面よりの傾きの角度である傾斜角度を算出し、前記被測定面上に定めた座標に対して前記傾斜角度をその座標の前記反射像の輝度と対応させた傾斜角度対輝度データを作成し、前記照明光源および前記カメラまたは前記被測定面を前記移動機構により所定の間隔でx軸方向に移動させながら前記撮影を順次行うことにより前記被測定面の測定領域内の各座標における前記傾斜角度対輝度データを取得し、該傾斜角度対輝度データに基づいて、前記各座標において最大の輝度を有する傾斜角度を該座標において正反射を生じさせた正反射傾斜角度として決定し、前記被測定面の測定領域内の各座標の前記正反射傾斜角度の変化から前記各座標における曲率を算出する手段と、該算出された被測定面の測定領域内における曲率の分布を表示する手段とを備えることを特徴とする。   In a first aspect, the surface shape distortion measuring apparatus of the present invention is installed with an illumination light source that irradiates a surface to be measured with slit-shaped diffused light extending in the y-axis direction and a relative position with respect to the illumination light source. A camera that captures a reflected image of the diffused light by the surface to be measured; an image processing means that detects a relative inclination of each reflection point of the surface to be measured that produces the reflected image by the captured reflected image; A moving mechanism that mounts an illumination light source and an object to be measured having the camera or the surface to be measured, and moves in the width direction (x-axis direction) of the slit of the diffused light irradiated on the surface to be measured; An encoder that outputs an electrical signal corresponding to the amount of movement of the moving mechanism, and the image processing means is configured such that the measured surface is inclined with respect to a reference surface that is a reference centered on an axis parallel to the y axis. Of the surface to be measured by the diffused light. Assuming that the specular reflection image of the point has been picked up by shifting in the x-axis direction, an inclination angle, which is an inclination angle from the reference plane, is calculated at each point in the reflection image and determined on the surface to be measured. Inclination angle vs. luminance data is generated by associating the inclination angle with the luminance of the reflected image of the coordinates with respect to the coordinates, and the illumination light source and the camera or the surface to be measured are arranged at predetermined intervals by the moving mechanism. By sequentially performing the imaging while moving in the axial direction, the tilt angle versus luminance data at each coordinate in the measurement area of the surface to be measured is acquired, and based on the tilt angle versus luminance data, the maximum at each coordinate is obtained. Is determined as a specular reflection tilt angle that causes specular reflection at the coordinates, and each coordinate is determined from the change in the specular reflection tilt angle of each coordinate in the measurement area of the measurement target surface. Means for calculating that curvature, characterized in that it comprises means for displaying the distribution of the curvature at the calculated out the measurement surface of the measurement region.

本発明においては、スリット状の拡散光を移動機構により移動させて測定を行うので、移動機構の移動方向はその駆動範囲まで測定が可能であり、広い範囲にわたって微小な面形状の測定が可能であること、スリット状の拡散光を移動させて撮影し、測定を行うので、被測定物の設置距離が変動しても算出される曲率の値への影響は他の方式の装置に比べると非常に小さいことなどの利点を有することは従来の特許文献4に記載の測定装置と同様である。   In the present invention, since the slit-like diffused light is measured by moving the moving mechanism, the moving direction of the moving mechanism can be measured up to its driving range, and a minute surface shape can be measured over a wide range. Certainly, since the slit-shaped diffused light is moved for shooting and measurement, the influence on the calculated curvature value is much greater than that of other types of devices even if the installation distance of the object to be measured varies. It is the same as the conventional measuring apparatus described in Patent Document 4 that it has advantages such as being small.

但し、本発明の画像処理においては、スリット状の拡散光の反射像の画像中の画素ごとにその座標に対応した基準面からの傾斜角度を求めてその画素の輝度と対応させた傾斜角度対輝度データを作成し、照明光源とカメラまたは被測定面をx軸方向に移動機構により移動させながら撮影を順次行うことにより被測定面の測定領域内の各座標について上記の傾斜角度対輝度データを追加しながら保存する。このとき、各座標について、保存された傾斜角度対輝度データの中から最大の輝度を有する傾斜角度をその座標において正反射を生じさせた正反射傾斜角度として決定し、それを被測定面のその座標における傾きとするものである。すなわち、被測定面の傾きの分布の分解能は撮影画像の画素の分解能で決定される。一方、特許文献4に記載の画像処理においては、スリット状の拡散光の座標を幅方向すなわちx方向の重心の1点に代表させてその被測定面の反射点の傾きを求めている。すなわち、被測定面の傾きの分布の分解能は拡散光のスリット幅となる。この結果、本発明では、特許文献4に記載の方法に比べて、より微小な凹凸による面形状の歪みの測定が可能となる。   However, in the image processing of the present invention, for each pixel in the image of the reflected image of the slit-like diffused light, an inclination angle from the reference plane corresponding to the coordinates is obtained and the inclination angle pair corresponding to the luminance of the pixel is obtained. Brightness data is created, and the above-mentioned tilt angle vs. brightness data is obtained for each coordinate in the measurement area of the measurement surface by sequentially performing imaging while moving the illumination light source and the camera or measurement surface in the x-axis direction by the moving mechanism. Save while adding. At this time, for each coordinate, the inclination angle having the maximum luminance is determined from the stored inclination angle versus luminance data as the specular reflection inclination angle that caused specular reflection at the coordinates, and is determined as that of the measured surface. This is the inclination in coordinates. That is, the resolution of the inclination distribution of the surface to be measured is determined by the resolution of the pixels of the captured image. On the other hand, in the image processing described in Patent Document 4, the coordinate of the slit-like diffused light is represented by one point of the center of gravity in the width direction, that is, the x direction, and the inclination of the reflection point of the measured surface is obtained. That is, the resolution of the inclination distribution of the surface to be measured is the slit width of the diffused light. As a result, in the present invention, it is possible to measure the distortion of the surface shape due to finer unevenness as compared with the method described in Patent Document 4.

第2の観点では、本発明は、前記第1の観点の面形状歪測定装置において、前記各座標における正反射傾斜角度と輝度のデータに基づいて、前記被測定面の測定領域内の各点の任意の正反射傾斜角度に対する輝度分布を表示する手段を有することを特徴とする。本観点の発明では、被測定面の測定領域内において、基準面に対して同一の傾斜角度を有する点が輝度分布として表示されるので、様々な傾斜角度における分布を表示することにより、曲率の分布の表示と同様に測定領域内において特異的な傾斜を有する歪を有する点の視覚的な把握が容易となる。また、測定領域内において基準面に対して傾いた領域が存在する場合にも把握が容易となる。   In a second aspect, the present invention relates to the surface shape distortion measuring apparatus according to the first aspect, wherein each point in the measurement area of the surface to be measured is based on the specular reflection inclination angle and luminance data at each coordinate. And a means for displaying a luminance distribution with respect to an arbitrary regular reflection inclination angle. In the invention of this aspect, since the points having the same inclination angle with respect to the reference plane are displayed as the luminance distribution in the measurement area of the surface to be measured, the distribution of the curvature can be obtained by displaying the distribution at various inclination angles. As with the distribution display, it is easy to visually grasp a point having a distortion having a specific slope in the measurement region. It is also easy to grasp when there is a region inclined with respect to the reference plane in the measurement region.

第3の観点では、本発明は、前記第1または第2の観点の面形状歪測定装置において、y軸に垂直で前記カメラの光軸と前記被測定面とが交わる被測定点を含む面内における前記拡散光の発光点と前記被測定点とを結ぶ直線と前記カメラの光軸との成す角度が30度以内であることを特徴とする。   In a third aspect, the present invention relates to a surface shape distortion measuring apparatus according to the first or second aspect, wherein the surface includes a measurement point perpendicular to the y axis and where the optical axis of the camera and the measurement surface intersect. The angle formed by the straight line connecting the light emitting point of the diffused light and the point to be measured and the optical axis of the camera is within 30 degrees.

本発明の測定装置においては、スリット状の拡散光の反射像のずれによりその反射点での被測定面の傾きを算出するが、そのずれは被測定面の傾き以外に被測定面の奥行き方向の位置ずれによっても生ずるので、その影響を軽減するためには、照明光源とカメラを被測定面に対してできるだけ垂直に向き合うように設定する必要がある。例えば、多くの従来の測定装置では照明光源とカメラを離して設置し、照明光源からの拡散光が被測定面に45度以上の入射角で入射し同じ角度で反射してカメラに入射し反射像を撮影するように設定しているが、このような場合は被測定面の奥行き方向の位置ずれが生ずるとその影響が大きくなり、正確な面の傾きの算出は困難となる。
一方、本観点の発明は、照明光源とカメラおよび被測定面の配置を上記のように設定することにより、照明光源の拡散光の被測定面への入射角および反射角が15度程度以内の反射像がカメラで撮影されることとなるので、被測定面の奥行き方向の位置ずれの影響を小さく抑えることができる。さらにその影響を小さくするためには、本観点の発明における上記の拡散光の発光点と被測定点とを結ぶ直線と前記カメラの光軸との成す角度が30度以内とする角度は、14度以内とし、入射角および反射角が7度程度以内の反射像をカメラで撮影することが望ましい。
In the measuring apparatus of the present invention, the inclination of the measurement surface at the reflection point is calculated based on the deviation of the reflected image of the slit-shaped diffused light. The deviation is the depth direction of the measurement surface in addition to the inclination of the measurement surface. In order to reduce the influence, it is necessary to set the illumination light source and the camera so that they face each other as perpendicular to the surface to be measured as possible. For example, in many conventional measuring devices, the illumination light source and the camera are placed apart from each other, and diffused light from the illumination light source is incident on the surface to be measured at an incident angle of 45 degrees or more, is reflected at the same angle, and is incident on the camera and reflected. Although an image is set to be taken, in such a case, if the position of the surface to be measured is displaced in the depth direction, the influence becomes large, and it is difficult to accurately calculate the inclination of the surface.
On the other hand, in the invention of this aspect, by setting the arrangement of the illumination light source, the camera, and the measured surface as described above, the incident angle and the reflection angle of the diffused light of the illumination light source to the measured surface are within about 15 degrees. Since the reflected image is taken by the camera, the influence of the positional deviation in the depth direction of the surface to be measured can be reduced. In order to further reduce the influence, in the invention of the present aspect, the angle between the straight line connecting the light emitting point of the diffused light and the point to be measured and the optical axis of the camera is within 30 degrees. It is desirable that a reflected image with an incident angle and a reflection angle within about 7 degrees is taken with a camera.

第4の観点では、本発明は、前記第1乃至第3の観点の面形状歪測定装置において、前記算出された被測定面の曲率または傾きより該被測定面のx軸方向の相対変位を算出する手段と、該算出された相対変位を表示する手段とを有することを特徴とする。本発明の面形状歪測定装置では被測定面の各反射点における曲率および傾きが算出されるので、それを拡散光の移動方向、すなわち、x軸方向に2重積分または積分することによりそれらの方向の連続的な変位を算出することができる。さらに、その相対的な変位の変化をディスプレイなどに表示することにより被測定物の表面形状を視覚的に観察することができる。   In a fourth aspect, the present invention relates to the surface shape distortion measuring apparatus according to any one of the first to third aspects, wherein the relative displacement in the x-axis direction of the measured surface is determined from the calculated curvature or inclination of the measured surface. It has a means for calculating and a means for displaying the calculated relative displacement. In the surface shape distortion measuring apparatus of the present invention, the curvature and inclination at each reflection point of the surface to be measured are calculated, and these are integrated by double integration or integration in the moving direction of diffused light, that is, the x-axis direction. A continuous displacement in the direction can be calculated. Further, the surface shape of the object to be measured can be visually observed by displaying the change of the relative displacement on a display or the like.

以上のように、本発明によれば、微小な凹凸による面形状の歪みの測定が可能で、被測定物の設置距離の変動にも影響を受けにくい面形状歪測定装置が得られる。   As described above, according to the present invention, it is possible to obtain a surface shape distortion measuring apparatus that can measure surface shape distortion due to minute unevenness and is not easily affected by fluctuations in the installation distance of an object to be measured.

実施例1に係る面形状歪測定装置の模式的な構成図。1 is a schematic configuration diagram of a surface shape strain measuring apparatus according to Embodiment 1. FIG. 実施例1における照明光源とカメラおよび移動機構の斜視図。FIG. 3 is a perspective view of an illumination light source, a camera, and a movement mechanism in Embodiment 1. 本発明の面形状歪測定装置の測定原理を説明する図。The figure explaining the measurement principle of the surface shape distortion measuring apparatus of this invention. 実施例1の面形状歪測定装置の測定手順を示すフローチャート。3 is a flowchart showing a measurement procedure of the surface shape distortion measuring apparatus according to the first embodiment. 所定の間隔で照明光源とカメラをx軸方向に移動させ反射像を撮影したときの反射像の座標を示す図。The figure which shows the coordinate of a reflected image when an illumination light source and a camera are moved to a x-axis direction at predetermined intervals, and the reflected image was image | photographed. 実施例1の面形状歪測定装置による測定結果の一例を示す図であり、ディスプレイ上に表示された曲率分布を示す図。It is a figure which shows an example of the measurement result by the surface shape distortion measuring apparatus of Example 1, and is a figure which shows the curvature distribution displayed on the display. 図6の表示画面の一部を拡大して表示された曲率分布を示す図。The figure which shows the curvature distribution displayed by magnifying a part of display screen of FIG. 実施例2の測定結果の一例を示す図であり、ディスプレイ上に表示された正反射傾斜角度の分布を示す図。It is a figure which shows an example of the measurement result of Example 2, and is a figure which shows distribution of the regular reflection inclination angle displayed on the display. 従来の格子パターンの正反射像から歪を検出する方法の測定系の模式的な配置図と格子パターンの一例を示す図。The figure which shows the example of a typical layout of the measuring system of the method of detecting distortion from the regular reflection image of the conventional lattice pattern, and an example of a lattice pattern.

以下、図面を参照して本発明の面形状歪測定装置を実施例により詳細に説明する。なお、図面の説明において同一の要素には同一符号を付し、その重複した説明を省略する。   Hereinafter, the surface shape distortion measuring apparatus of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description thereof is omitted.

図1は、実施例1に係る面形状歪測定装置の模式的な構成図である。図1において、本実施例の面形状歪測定装置10では、照明光源3により被測定物1の被測定面2にy軸方向に伸びたスリット状の拡散光を照射し、照明光源3に対する相対位置を固定して設置されたカメラ4により拡散光の被測定面2による反射像を撮影する。カメラ4により撮影された反射像のデータは画像処理手段を内蔵したパーソナルコンピュータ5に入力され、被測定面2の各反射点の相対的な傾きを検出する。照明光源3とカメラ4はx軸方向に平行な軸上を移動する移動機構6に搭載され固定されている。移動機構6はコントローラ7により駆動制御される。コントローラ7は移動機構6の移動量に応じた電気信号を出力するエンコーダを備え、そのエンコーダの出力は撮影トリガーをかけるためカメラ4に入力される。照明光源3およびカメラ4を移動機構6により移動させながらカメラ4により反射像の撮影を順次行うことにより被測定面2の測定領域内の各反射点の傾きを画像処理手段により順次検出する。パーソナルコンピュータ5はそれらの反射点の傾きの変化から各反射点における曲率を算出する曲率算出手段を備え、算出された被測定面2の測定領域内における曲率の分布がパーソナルコンピュータ5のディスプレイ画面上に表示される。なお、照明光源3は照明コントローラ8により制御される。   FIG. 1 is a schematic configuration diagram of the surface shape distortion measuring apparatus according to the first embodiment. In FIG. 1, in the surface shape distortion measuring device 10 of the present embodiment, the illumination light source 3 irradiates the measurement surface 2 of the object 1 to be measured with slit-like diffused light extending in the y-axis direction, and the relative to the illumination light source 3 A reflected image of the diffused light reflected by the surface to be measured 2 is photographed by a camera 4 installed at a fixed position. Data of the reflected image taken by the camera 4 is input to a personal computer 5 having a built-in image processing means, and the relative inclination of each reflection point on the measured surface 2 is detected. The illumination light source 3 and the camera 4 are mounted and fixed on a moving mechanism 6 that moves on an axis parallel to the x-axis direction. The moving mechanism 6 is driven and controlled by the controller 7. The controller 7 includes an encoder that outputs an electrical signal corresponding to the amount of movement of the moving mechanism 6, and the output of the encoder is input to the camera 4 to apply a shooting trigger. While the illumination light source 3 and the camera 4 are moved by the moving mechanism 6, the reflected images are sequentially taken by the camera 4, whereby the inclination of each reflection point in the measurement area of the measurement surface 2 is sequentially detected by the image processing means. The personal computer 5 includes curvature calculating means for calculating the curvature at each reflection point from the change in the inclination of the reflection point, and the calculated distribution of curvature in the measurement region of the measured surface 2 is on the display screen of the personal computer 5. Is displayed. The illumination light source 3 is controlled by the illumination controller 8.

図2は本実施例における照明光源とカメラおよび移動機構の斜視図であり、図3は本発明の面形状歪測定装置の測定原理を説明する図である。図2に示すように、本実施例においては被測定面の奥行き方向の位置ずれの影響を小さく抑えるため、被測定面2に対して照明光源3とカメラ4ができるだけ垂直な方向に配置されるようにしている。図3はy軸に垂直でカメラ4の光軸13と被測定面2が交わる被測定点14とを含む面内における位置関係を模式的に示しており、照明光源3の拡散光の発光点15と被測定点14とを結ぶ直線16とカメラ4の光軸13との成す角度αは被測定面の奥行き方向の位置ずれの影響を抑えるためにはできるだけ小さい方が望ましい。αの値としては30度以下が望ましく、高精度の測定では14度以下となるように設定する。なお、図3においてはカメラ4の光軸13は図3が示す面内、すなわちy軸に垂直な面内にあるが、カメラの光軸と直線16との成す角度がαの値の条件を満たす範囲内であればカメラの光軸はこの面内になくてもよい。   FIG. 2 is a perspective view of an illumination light source, a camera, and a moving mechanism in this embodiment, and FIG. 3 is a diagram for explaining the measurement principle of the surface shape distortion measuring apparatus of the present invention. As shown in FIG. 2, in this embodiment, the illumination light source 3 and the camera 4 are arranged in a direction as perpendicular as possible to the measurement surface 2 in order to suppress the influence of the positional deviation in the depth direction of the measurement surface. I am doing so. FIG. 3 schematically shows a positional relationship in a plane that is perpendicular to the y-axis and includes the measurement point 14 where the optical axis 13 of the camera 4 and the measurement surface 2 intersect, and the light emission point of the diffused light of the illumination light source 3 The angle α formed by the straight line 16 connecting 15 and the measured point 14 and the optical axis 13 of the camera 4 is desirably as small as possible in order to suppress the influence of the positional deviation in the depth direction of the measured surface. The value of α is preferably 30 degrees or less, and is set to 14 degrees or less for high-accuracy measurement. In FIG. 3, the optical axis 13 of the camera 4 is in the plane shown in FIG. 3, that is, in the plane perpendicular to the y-axis, but the angle between the optical axis of the camera and the straight line 16 satisfies the condition of α. The optical axis of the camera may not be in this plane as long as it is within the range to be satisfied.

図4は本実施例の面形状歪測定装置の測定手順を示すフローチャートである。図5は所定の間隔で照明光源とカメラをx軸方向に移動させ反射像を撮影したときの反射像の座標を示す図である。以下に、図3、図4および図5を参照して本実施例の測定手順について説明する。基本的には以下の各ステップはパーソナルコンピュータ5からの指令により行う。   FIG. 4 is a flowchart showing the measurement procedure of the surface shape distortion measuring apparatus of this embodiment. FIG. 5 is a diagram showing the coordinates of the reflected image when the illumination light source and the camera are moved in the x-axis direction at a predetermined interval to capture the reflected image. Hereinafter, the measurement procedure of this embodiment will be described with reference to FIGS. 3, 4, and 5. Basically, the following steps are performed by commands from the personal computer 5.

先ず移動させて撮像を行う前に、最初に、反射画像中の各画素の座標と基準面からの傾斜角度との関係を算出し座標対角度対応表を作成する。この際、被測定面の傾きが生じたことによる各画素の座標を補正する。具体的には、図3において、被測定面2がx軸に平行な場合の被測定点14の正反射による反射像は反射像9となるが、被測定面が角度θ傾き、被測定面2aとなった場合は正反射による反射像は反射像9aとなる。この際、被測定面の傾きθが生じたことによる被測定点の位置を補正してもよい。すなわち、被測定面がθ傾いたことにより反射像9aの位置にある被測定点は被測定点17となる。このように、撮影されたスリットの反射像内の画素の座標に傾斜角度が対応することになる。例えば、図5において、i回目に撮影されたスリットの反射像においてx方向の画素の幅をΔx、基準面と平行な被測定点14の反射像9に対応する座標をx、傾斜角度θ傾いた被測定点17に対応する反射像9aの座標をx−nΔx(ここでnは1以上の整数)とすると、座標xには傾斜角0、座標x−nΔxには傾斜角θが対応する。スリット反射像内の各±nの値に対応する座標にはその座標に対応する傾斜角度が算出されて座標対角度対応表が作成される。x軸方向に所定の間隔dで移動しながら撮影を繰り返すことにより、被測定領域内の各座標にその撮影されたスリット内の画素の座標に対応する傾斜角度が入力される。なお、実際に撮影されるスリットの反射像には、被測定面からの正反射だけでなく、散乱反射された像も含まれている。 First, before moving and imaging, the relationship between the coordinates of each pixel in the reflected image and the inclination angle from the reference plane is calculated to create a coordinate-to-angle correspondence table. At this time, the coordinates of each pixel due to the tilt of the surface to be measured are corrected. Specifically, in FIG. 3, when the measured surface 2 is parallel to the x-axis, the reflected image by the regular reflection of the measured point 14 becomes a reflected image 9, but the measured surface is inclined by an angle θ, and the measured surface In the case of 2a, the reflected image by regular reflection becomes a reflected image 9a. At this time, the position of the measurement point due to the occurrence of the inclination θ of the measurement surface may be corrected. That is, the measurement point at the position of the reflected image 9 a becomes the measurement point 17 because the measurement surface is inclined by θ. In this way, the inclination angle corresponds to the coordinates of the pixel in the reflected image of the captured slit. For example, in FIG. 5, in the reflected image of the slit taken at the i-th time, the width of the pixel in the x direction is Δx, the coordinate corresponding to the reflected image 9 of the measurement point 14 parallel to the reference plane is x i , and the inclination angle θ Assuming that the coordinate of the reflected image 9a corresponding to the tilted measurement point 17 is x i −nΔx (where n is an integer equal to or greater than 1), the coordinate x i has an inclination angle of 0, and the coordinate x i −nΔx has an inclination angle. θ corresponds. For coordinates corresponding to each ± n value in the slit reflection image, an inclination angle corresponding to the coordinates is calculated, and a coordinate-to-angle correspondence table is created. By repeating the imaging while moving in the x-axis direction at a predetermined interval d, an inclination angle corresponding to the coordinates of the pixel in the captured slit is input to each coordinate in the measured region. Note that the reflected image of the slit actually photographed includes not only regular reflection from the surface to be measured but also a scattered and reflected image.

図4において、最初のステップS1として、コントローラ7により移動機構6の移動を開始し最初の位置に設定する。次にステップS2として撮影トリガーをカメラ4に入力し、被測定面2の反射像を撮影する。次にステップS3として、カメラ4のレンズの歪みを多項式近似で補正し、画面上の反射像の位置座標を補正する。   In FIG. 4, as the first step S1, the movement of the moving mechanism 6 is started by the controller 7 and set to the first position. In step S2, a shooting trigger is input to the camera 4, and a reflected image of the surface to be measured 2 is shot. In step S3, the lens distortion of the camera 4 is corrected by polynomial approximation, and the position coordinates of the reflected image on the screen are corrected.

次にステップS4として、レンズ歪補正された反射像をx方向に撮影画像の画素の幅、または設定された単位画像の幅、y方向に設定された単位画像サイズの幅の矩形状のピクセルに分割し、各ピクセル内の輝度を抽出する。さらに、ステップS5としてその抽出された輝度と座標対角度対応表により、反射画像中の上記の各ピクセルの座標に対する傾斜角度対輝度データを作成し、メモリ上の二次元配列に保存する。   Next, in step S4, the reflected image corrected for lens distortion is converted into a rectangular pixel having a pixel width of the photographed image in the x direction, or a width of the set unit image and a width of the unit image size set in the y direction. Divide and extract the luminance in each pixel. Further, as step S5, tilt angle vs. luminance data for the coordinates of each pixel in the reflected image is created from the extracted luminance and coordinate vs. angle correspondence table, and stored in a two-dimensional array on the memory.

ステップS6で移動機構6の移動距離が測定範囲の端まで達したか否かを判定し、達していない場合は上記のステップS1からS5を繰り返し、達した場合にステップS7として移動を終了する。   In step S6, it is determined whether or not the moving distance of the moving mechanism 6 has reached the end of the measurement range. If not, the above steps S1 to S5 are repeated. If it has reached, the movement is ended as step S7.

次に、ステップS8として、メモリの二次元配列上に保存された各座標に対する傾斜角度対輝度データに基づき、最大輝度を有する傾斜角度をその座標の正反射傾斜角度として抽出する。   Next, as step S8, based on the tilt angle versus brightness data for each coordinate stored on the two-dimensional array in the memory, the tilt angle having the maximum brightness is extracted as the specular reflection tilt angle of that coordinate.

ステップS9として、被測定領域内の各座標の正反射傾斜角度を用い、被測定領域の各点の曲率を算出する。   As step S9, the curvature of each point in the measurement area is calculated using the regular reflection inclination angle of each coordinate in the measurement area.

最後にステップS10として、算出された被測定面の曲率の分布を曲率の大きさに応じて色分けして示すように処理し、パーソナルコンピュータ5のディスプレイ画面上に表示する。   Finally, in step S 10, the calculated distribution of curvature of the measured surface is processed so as to be color-coded according to the magnitude of the curvature, and displayed on the display screen of the personal computer 5.

図6は本実施例の面形状歪測定装置による測定結果の一例を示す図であり、ディスプレイ上に表示された曲率分布を示す。図7は、図6の表示画面の一部を拡大して表示された曲率分布を示す。本実施例においては、製品の塗装面を被測定面として測定し、その表面の曲率分布を測定したものである。図6において、実際の画面では曲率の大きさによって、赤色(R)、黄色(Y)、緑色(G)、青色(B)の順に色分けして示している。赤色(R)が曲率9.0/m〜10.0/m付近、黄色(Y)が曲率5.0/m付近であり凸部を、緑色(G)が曲率0/m付近であり平面部を、青色(B)が曲率−0.7/m〜−0.8/m付近であり凹部をそれぞれ示す。この表示により、測定者は視覚的に被測定面の面形状の歪みの様子を明確に認識することができる。この色分けの範囲はパーソナルコンピュータ5の操作により変更可能としている。   FIG. 6 is a diagram showing an example of a measurement result obtained by the surface shape distortion measuring apparatus of the present embodiment, and shows a curvature distribution displayed on the display. FIG. 7 shows a curvature distribution displayed by enlarging a part of the display screen of FIG. In this example, the painted surface of the product is measured as the surface to be measured, and the curvature distribution of the surface is measured. In FIG. 6, on an actual screen, colors are shown in order of red (R), yellow (Y), green (G), and blue (B) depending on the magnitude of curvature. Red (R) has a curvature of about 9.0 / m to 10.0 / m, yellow (Y) has a curvature of about 5.0 / m, and the convex portion has a green color (G) has a curvature of about 0 / m. As for the part, blue (B) is a curvature -0.7 / m--0.8 / m vicinity, and shows a recessed part, respectively. By this display, the measurer can clearly recognize the state of distortion of the surface shape of the surface to be measured. This color-coded range can be changed by operating the personal computer 5.

図6の曲率分布の表示画面において、全体的には平面を示す緑色(G)であるが、一部に中心が赤色(R)で周囲が青色(B)の点状の歪が見られ、これが塗装ブツと言われる小さな点状の突起である。図6の表示画面上では、このような小さな塗装ブツの存在を視覚的に明確に把握することができる。なお、本実施例においては、突起部が正の曲率として表示されるように、曲率の計算結果に対して極性を反転させて表示している。   In the curvature distribution display screen of FIG. 6, the whole is green (G) indicating a plane, but a point-like distortion having a center of red (R) and a periphery of blue (B) is seen in part. This is a small dot-like projection called a coating spot. On the display screen of FIG. 6, the presence of such small paint spots can be clearly grasped visually. In the present embodiment, the polarity is inverted with respect to the calculation result of the curvature so that the protrusion is displayed as a positive curvature.

図7は、図6の座標x=18.5mm。y=100mm付近にある1つの塗装ブツの周囲を拡大して表示している。これにより、1つの塗装ブツが凸状の中心部と凹状の周囲部分から形成された1〜2mm程度の形状の歪であることがわかる。さらに、本実施例においては、算出された各反射点における曲率のx軸方向、y軸方向のそれぞれの変化を拡大して表示画面上に表示している。y=100mmの直線上のx軸方向の曲率の変化がx軸の下側に表示され、x=18.5mmの直線上のy軸方向の曲率の変化がy軸の左側に表示されている。これにより被測定物の表面形状や塗装ブツの形状を視覚的に観察することができる。なお、算出された各反射点における曲率をx軸方向に2重積分することによりその方向の連続的な変位を算出し、その相対的な変位の変化を表示画面上に表示してもよい。この場合、被測定面の傾きを積分して相対的な変位を算出してもよい。   FIG. 7 shows the coordinate x in FIG. 6 = 18.5 mm. The periphery of one coating point in the vicinity of y = 100 mm is enlarged and displayed. Thereby, it can be seen that one coating is a distortion having a shape of about 1 to 2 mm formed from a convex center portion and a concave peripheral portion. Furthermore, in this embodiment, the changes in the x-axis direction and the y-axis direction of the calculated curvature at each reflection point are enlarged and displayed on the display screen. The change in curvature in the x-axis direction on the straight line with y = 100 mm is displayed below the x-axis, and the change in curvature in the y-axis direction on the straight line with x = 18.5 mm is displayed on the left side of the y-axis. . As a result, the surface shape of the object to be measured and the shape of the coating can be visually observed. It should be noted that a continuous displacement in the direction may be calculated by double integration of the calculated curvature at each reflection point in the x-axis direction, and a change in the relative displacement may be displayed on the display screen. In this case, the relative displacement may be calculated by integrating the inclination of the surface to be measured.

測定においては、図2に示す照明光源3、カメラ4、移動機構6を一体にした装置を三脚やラックなどに搭載し、被測定物に対して最適な位置に設置している。   In the measurement, a device in which the illumination light source 3, the camera 4, and the moving mechanism 6 shown in FIG. 2 are integrated is mounted on a tripod, a rack, or the like, and is installed at an optimum position with respect to the object to be measured.

次に本発明の面形状歪測定装置の実施例2について説明する。実施例2に用いた面形状歪測定装置の基本的な構成や機能は図1に示す実施例1と同じである。図8は本実施例の測定結果の一例を示す図であり、ディスプレイ上に表示された正反射傾斜角度の分布を示す図である。本実施例においては、わずかに曲面形状を有する被測定物の表面形状を測定した結果を示す。図8に示すとおり、各座標の正反射傾斜角度をその大きさに応じて色分けして示すように処理し、表示した。赤色(R)が傾斜角1.4〜1.5度付近、黄色(Y)が傾斜角1.1〜1.2度付近、緑色(G)が傾斜角0.8度付近、青色(B)が傾斜角2.0〜3.0度付近をそれぞれ示す。これから、表面形状の傾きを視覚的に把握することができる。   Next, a second embodiment of the surface shape distortion measuring apparatus of the present invention will be described. The basic configuration and function of the surface shape distortion measuring apparatus used in the second embodiment are the same as those in the first embodiment shown in FIG. FIG. 8 is a diagram illustrating an example of the measurement result of the present example, and is a diagram illustrating a distribution of specular reflection inclination angles displayed on the display. In the present embodiment, the result of measuring the surface shape of an object having a slightly curved surface shape is shown. As shown in FIG. 8, the regular reflection inclination angle of each coordinate is processed and displayed as color-coded according to its size. Red (R) has an inclination angle of 1.4 to 1.5 degrees, yellow (Y) has an inclination angle of 1.1 to 1.2 degrees, green (G) has an inclination angle of 0.8 degrees, blue (B ) Indicates the vicinity of an inclination angle of 2.0 to 3.0 degrees. From this, it is possible to visually grasp the inclination of the surface shape.

以上のように、本発明により微小な凹凸による面形状の歪みの測定が可能で、被測定物の設置距離の変動にも影響を受けにくい面形状歪測定装置が得られることが確認できた。   As described above, it has been confirmed that the present invention can provide a surface shape distortion measuring apparatus that can measure surface shape distortion due to minute unevenness and is less susceptible to fluctuations in the installation distance of the object to be measured.

なお、本発明は上記の実施例に限定されるものではないことは言うまでもなく、目的や用途に応じて設計変更可能である。例えば、パーソナルコンピュータには上記の実施例に示した以外の機能を付加してもよい。または、上記の実施例に示した機能の一部またはすべてをパーソナルコンピュータ以外の電子機器で実現してもよい。照明光源やカメラの種類、形状、機能も目的に合わせて選択可能である。また、移動機構は2軸以上の移動が可能であってもよい。   Needless to say, the present invention is not limited to the above-described embodiments, and the design can be changed according to the purpose and application. For example, functions other than those shown in the above embodiments may be added to the personal computer. Alternatively, some or all of the functions shown in the above embodiments may be realized by an electronic device other than a personal computer. The type, shape, and function of the illumination light source and camera can be selected according to the purpose. Further, the moving mechanism may be capable of moving more than two axes.

1、92 被測定物
2、2a 被測定面
3 照明光源
4、94 カメラ
5 パーソナルコンピュータ
6 移動機構
7 コントローラ
8 照明コントローラ
9、9a、93、95 反射像
10 面形状歪測定装置
13 光軸
14、17 被測定点
15 発光点
16 直線
90、96 格子状パターン
91 照明装置
DESCRIPTION OF SYMBOLS 1,92 Measured object 2, 2a Measured surface 3 Illumination light source 4, 94 Camera 5 Personal computer 6 Moving mechanism 7 Controller 8 Illumination controller
9, 9a, 93, 95 Reflected image 10 Surface shape distortion measuring device 13 Optical axis 14, 17 Measurement point 15 Light emitting point 16 Straight line 90, 96 Lattice pattern 91 Illumination device

Claims (4)

被測定面にy軸方向に伸びたスリット状の拡散光を照射する照明光源と、該照明光源に対する相対位置を固定して設置され前記拡散光の被測定面による反射像を撮影するカメラと、該撮影された反射像により該反射像を生ずる前記被測定面の各反射点の相対的な傾きを検出する画像処理手段と、前記照明光源および前記カメラまたは前記被測定面を有する被測定物を搭載して前記被測定面に照射された前記拡散光のスリットの幅方向(x軸方向とする)に移動する移動機構と、該移動機構の移動量に応じた電気信号を出力するエンコーダとを備え、
前記画像処理手段は、前記被測定面がy軸に平行な軸を中心にして基準となる基準面より傾いていることにより前記拡散光による前記被測定面の各点の正反射像がx軸方向に変移して撮像されたものとして前記反射像内の各点において前記基準面よりの傾きの角度である傾斜角度を算出し、前記被測定面上に定めた座標に対して前記傾斜角度をその座標の前記反射像の輝度と対応させた傾斜角度対輝度データを作成し、
前記照明光源および前記カメラまたは前記被測定面を前記移動機構により所定の間隔でx軸方向に移動させながら前記撮影を順次行うことにより前記被測定面の測定領域内の各座標における前記傾斜角度対輝度データを取得し、該傾斜角度対輝度データに基づいて、前記各座標において最大の輝度を有する傾斜角度を該座標において正反射を生じさせた正反射傾斜角度として決定し、
前記被測定面の測定領域内の各座標の前記正反射傾斜角度の変化から前記各座標における曲率を算出する手段と、該算出された被測定面の測定領域内における曲率の分布を表示する手段とを備えることを特徴とする面形状歪測定装置。
An illumination light source that irradiates a surface to be measured with slit-shaped diffused light extending in the y-axis direction, a camera that is installed with a fixed relative position to the illumination light source and that captures a reflected image of the diffused light by the surface to be measured; An image processing means for detecting a relative inclination of each reflection point of the surface to be measured that generates the reflected image by the photographed reflected image; and an object to be measured having the illumination light source and the camera or the surface to be measured. A moving mechanism that is mounted and moves in the width direction (x-axis direction) of the slit of the diffused light irradiated on the surface to be measured, and an encoder that outputs an electrical signal corresponding to the amount of movement of the moving mechanism Prepared,
The image processing means is configured such that the specular reflection image of each point of the measurement surface by the diffused light is x-axis because the measurement surface is inclined with respect to a reference surface that is a reference around an axis parallel to the y-axis. An inclination angle, which is an angle of inclination from the reference plane, is calculated at each point in the reflected image as having been imaged with a change in direction, and the inclination angle is calculated with respect to coordinates determined on the measurement target surface. Create tilt angle versus brightness data corresponding to the brightness of the reflected image at that coordinate,
By sequentially performing the imaging while moving the illumination light source and the camera or the measured surface in the x-axis direction at a predetermined interval by the moving mechanism, the tilt angle pair at each coordinate in the measurement area of the measured surface. Luminance data is acquired, and based on the tilt angle versus brightness data, the tilt angle having the maximum brightness at each coordinate is determined as the regular reflection tilt angle that caused specular reflection at the coordinates;
Means for calculating a curvature at each coordinate from a change in the regular reflection inclination angle of each coordinate within the measurement area of the surface to be measured; and means for displaying a distribution of the curvature within the measurement area of the surface to be measured. A surface shape distortion measuring apparatus comprising:
前記各座標における正反射傾斜角度と輝度のデータに基づいて、前記被測定面の測定領域内の各点の任意の正反射傾斜角度に対する輝度分布を表示する手段を有することを特徴とする請求項1に記載の面形状歪測定装置。   The apparatus according to claim 1, further comprising means for displaying a luminance distribution with respect to an arbitrary specular reflection inclination angle at each point in the measurement region of the measurement target surface based on data of the specular reflection inclination angle and the luminance at each coordinate. 2. The surface shape distortion measuring apparatus according to 1. y軸に垂直で前記カメラの光軸と前記被測定面とが交わる被測定点を含む面内における前記拡散光の発光点と前記被測定点とを結ぶ直線と前記カメラの光軸との成す角度が30度以内であることを特徴とする請求項1又は2に記載の面形状歪測定装置。   A straight line connecting the light emission point of the diffused light and the measurement point in a plane including a measurement point perpendicular to the y-axis and where the optical axis of the camera intersects the measurement surface and the optical axis of the camera The surface shape distortion measuring apparatus according to claim 1 or 2, wherein the angle is within 30 degrees. 前記算出された被測定面の曲率より該被測定面のx軸方向の相対変位を算出する手段と、該算出された相対変位を表示する手段とを有することを特徴とする請求項1乃至3のいずれか1項に記載の面形状歪測定装置。   4. The apparatus according to claim 1, further comprising means for calculating a relative displacement in the x-axis direction of the surface to be measured from the calculated curvature of the surface to be measured, and means for displaying the calculated relative displacement. The surface shape distortion measuring apparatus according to any one of the above.
JP2017102041A 2017-05-23 2017-05-23 Surface shape strain measuring device Active JP6864911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102041A JP6864911B2 (en) 2017-05-23 2017-05-23 Surface shape strain measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102041A JP6864911B2 (en) 2017-05-23 2017-05-23 Surface shape strain measuring device

Publications (2)

Publication Number Publication Date
JP2018197683A true JP2018197683A (en) 2018-12-13
JP6864911B2 JP6864911B2 (en) 2021-04-28

Family

ID=64663931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102041A Active JP6864911B2 (en) 2017-05-23 2017-05-23 Surface shape strain measuring device

Country Status (1)

Country Link
JP (1) JP6864911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672009A (en) * 2019-10-11 2020-01-10 宁波舜宇仪器有限公司 Reference positioning, object posture adjustment and graphic display method based on machine vision

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672009A (en) * 2019-10-11 2020-01-10 宁波舜宇仪器有限公司 Reference positioning, object posture adjustment and graphic display method based on machine vision
CN110672009B (en) * 2019-10-11 2021-06-22 宁波舜宇仪器有限公司 Reference positioning, object posture adjustment and graphic display method based on machine vision

Also Published As

Publication number Publication date
JP6864911B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
US8244023B2 (en) Shape measuring device and shape measuring method
KR100499764B1 (en) Method and system of measuring an object in a digital
TWI635252B (en) Methods and system for inspecting a 3d object using 2d image processing
JP6532325B2 (en) Measuring device for measuring the shape of the object to be measured
JP5375201B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP3937024B2 (en) Detection of misalignment, pattern rotation, distortion, and misalignment using moiré fringes
JP5515432B2 (en) 3D shape measuring device
JP6848385B2 (en) 3D shape measuring device
CN107683401A (en) Shape measuring apparatus and process for measuring shape
JP2007010393A (en) Screw shape measuring device
JP2007322162A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
US9939261B2 (en) Method and device for calibrating an imaging optical unit for metrological applications
JP2013205071A (en) Visual inspection device and visual inspection method
US20120194647A1 (en) Three-dimensional measuring apparatus
US20170309035A1 (en) Measurement apparatus, measurement method, and article manufacturing method and system
TWI568989B (en) Full-range image detecting system and method thereof
JP6864911B2 (en) Surface shape strain measuring device
JP2014059164A (en) Shape measurement device and shape measurement method
JP2009036631A (en) Device of measuring three-dimensional shape and method of manufacturing same
JP2007205868A (en) Device and method for optical shape inspection
JP5786999B2 (en) Three-dimensional shape measuring device, calibration method for three-dimensional shape measuring device
JP2009192483A (en) Three dimensional shape measuring method and three dimensional shape measuring device
JP2009243920A (en) Reference plate, optical axis adjustment method of surface inspection apparatus and surface inspection apparatus
JP6532158B2 (en) Surface shape strain measuring apparatus and method of measuring surface shape strain
JP2008170282A (en) Shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6864911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250