JP2018197572A - Torsional damper - Google Patents

Torsional damper Download PDF

Info

Publication number
JP2018197572A
JP2018197572A JP2017101851A JP2017101851A JP2018197572A JP 2018197572 A JP2018197572 A JP 2018197572A JP 2017101851 A JP2017101851 A JP 2017101851A JP 2017101851 A JP2017101851 A JP 2017101851A JP 2018197572 A JP2018197572 A JP 2018197572A
Authority
JP
Japan
Prior art keywords
rubber member
peripheral surface
torsional damper
hub
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017101851A
Other languages
Japanese (ja)
Other versions
JP6882067B2 (en
Inventor
田部井 賢
Masaru Tabei
賢 田部井
勇人 片貝
Yuto Katagai
勇人 片貝
輝 安藤
Teru Ando
輝 安藤
恵一 荒川
Keiichi Arakawa
恵一 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukoku Co Ltd
Fukoku KK
Original Assignee
Fukoku Co Ltd
Fukoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukoku Co Ltd, Fukoku KK filed Critical Fukoku Co Ltd
Priority to JP2017101851A priority Critical patent/JP6882067B2/en
Priority to CN201880034259.4A priority patent/CN110678669A/en
Priority to PCT/JP2018/018920 priority patent/WO2018216567A1/en
Publication of JP2018197572A publication Critical patent/JP2018197572A/en
Application granted granted Critical
Publication of JP6882067B2 publication Critical patent/JP6882067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/124Elastomeric springs
    • F16F15/126Elastomeric springs consisting of at least one annular element surrounding the axis of rotation

Abstract

To provide a torsional damper capable of suppressing generation of abrasion powder and improving durability even when a rubber member having high damping characteristics is used.SOLUTION: A torsional damper 1 is characterized in that a loss coefficient (tanδpi) of a rubber member at a surface temperature 60±5°C of the rubber member upon torsional damper resonance is larger than 0.23, shear strain of the rubber member in such a state as to be press-fitted into the torsional damper is larger than 35% and is less than 60%, surface roughness of a gap part 5 between a hub outer peripheral face 25A and an inertia ring inner peripheral face 3A is 4 to 30 μm, and an abrasion reduction area 53 having surface roughness smaller than those of the hub outer peripheral face 25A and the inertia ring inner peripheral face 3A which form a main compression gap part 51 is provided on the hub outer peripheral face 25A and the inertia ring inner peripheral face 3A which form an inclination gap part 52 at a press-fitting inlet side of the rubber member 4.SELECTED DRAWING: Figure 4

Description

本発明は、エンジンのクランクシャフトやカムシャフトなどの回転軸に装着されて当該回転軸の捩り振動を吸収するトーショナルダンパに関する。   The present invention relates to a torsional damper that is attached to a rotating shaft such as a crankshaft or a camshaft of an engine and absorbs torsional vibration of the rotating shaft.

従来より、車両に搭載されたエンジンのクランクシャフトやカムシャフトなどの回転軸の一端には、当該回転軸の回転変動によって発生する捩り振動を吸収するためにトーショナルダンパが装着されている。一般に、エンジンのクランクシャフトに装着されたトーショナルダンパは、ダンパプーリとして用いられ、動力伝達用のベルトを介してエンジン補機にエンジンの動力の一部を伝達する。   Conventionally, a torsional damper is attached to one end of a rotary shaft such as a crankshaft or a camshaft of an engine mounted on a vehicle in order to absorb torsional vibrations generated by rotational fluctuation of the rotary shaft. Generally, a torsional damper mounted on an engine crankshaft is used as a damper pulley, and transmits a part of engine power to an engine accessory via a power transmission belt.

このトーショナルダンパは、ボス部にクランクシャフトの先端が取り付けられるハブと、当該ハブに対して径方向外方に配置される慣性リングとを有し、ハブ外周面と慣性リング内周面との間隙部にはゴム部材が介挿している。このゴム部材は、車両の走行中に発生する回転軸の捩り振動を低減させて回転軸の破損を防止し、エンジンから伝達される振動や当該振動により生じる騒音を低減する役割をする。このとき、慣性リングとハブの間に介挿されたゴム部材は、当該慣性リングとハブとの間において円周方向に相互にずれる捩れ移動が生じる。このとき、ゴム部材に加わる捩れ振動による負荷が一定以上になると、ゴム部材に亀裂が発生する。特に、高減衰ゴム部材を用いた場合には、耐久性が低下することが知られている。   This torsional damper has a hub to which the tip of the crankshaft is attached to a boss portion, and an inertia ring disposed radially outward with respect to the hub, and includes a hub outer peripheral surface and an inertia ring inner peripheral surface. A rubber member is inserted in the gap. This rubber member serves to reduce the torsional vibration of the rotating shaft that occurs during traveling of the vehicle to prevent the rotating shaft from being damaged, and to reduce the vibration transmitted from the engine and the noise generated by the vibration. At this time, the rubber member inserted between the inertia ring and the hub undergoes a torsional movement that is shifted in the circumferential direction between the inertia ring and the hub. At this time, if the load due to the torsional vibration applied to the rubber member exceeds a certain level, the rubber member cracks. In particular, it is known that durability is lowered when a high damping rubber member is used.

例えば、特許文献1には、ハブの外周面に円筒面部とテーパ状の応力緩和部を設けるとともに、前記ハブの外周側に配置される質量体の内周面に前記円筒面部に対向する円筒面部と前記応力緩和部に対向するテーパ状の応力緩和部を設け、前記ハブと前記質量体の間に軸方向一方からゴム状弾性材製の弾性体を圧入することが開示されている。当該特許文献1には、弾性体の前記応力緩和部に接する部分に、凹凸を有しない平滑面を設けて、弾性体の圧入時に当該弾性体がうねることを抑制し、前記弾性体の前記円筒面部に接する部分に、接着剤又は潤滑用の油を保有せしめる凹凸を設けて、強固な連結を図る技術が開示されている。   For example, in Patent Document 1, a cylindrical surface portion and a tapered stress relieving portion are provided on the outer peripheral surface of the hub, and a cylindrical surface portion facing the cylindrical surface portion on the inner peripheral surface of the mass body arranged on the outer peripheral side of the hub. It is disclosed that a taper-like stress relaxation part is provided opposite to the stress relaxation part, and an elastic body made of a rubber-like elastic material is press-fitted between the hub and the mass body from one axial direction. In Patent Document 1, a smooth surface that does not have unevenness is provided in a portion of the elastic body that is in contact with the stress relaxation portion, and the elastic body is prevented from swelling when the elastic body is press-fitted. A technique is disclosed in which unevenness for retaining an adhesive or lubricating oil is provided in a portion in contact with the surface portion to achieve a strong connection.

また、特許文献2には、金属部品からなるハブと質量体の間に軸方向の一方からゴムなどの高分子弾性体を圧入する嵌合タイプのダンパであって、ハブ及び/又は質量体の高分子弾性体を固着する金属面の面粗度が5〜50μmRzであり、これらハブと高分子弾性体との間及び/又は前記質量体と前記高分子弾性体との間に滑り止め剤としてオルガノシランを固着することにより、固着力の高いダンパの実現を図る技術が開示されている。   Patent Document 2 discloses a fitting type damper in which a polymer elastic body such as rubber is press-fitted from one axial direction between a hub made of metal parts and the mass body, and includes a hub and / or a mass body. The surface roughness of the metal surface to which the polymer elastic body is fixed is 5 to 50 μm Rz, and is used as an anti-slip agent between the hub and the polymer elastic body and / or between the mass body and the polymer elastic body. A technique for realizing a damper having a high fixing force by fixing an organosilane is disclosed.

更に、特許文献3には、長期にわたり防振特性が変化することなく耐久性を有するトーショナルダンパを提供することを目的として、環状弾性体が圧入されるハブの外周面と環状質量体の内周面との間で構成される間隙部が、軸方向中央部の環状弾性体を圧縮状態で保持する主間隙部と、軸方向両端部の少なくとも一方の端部が、主間隙部よりも大きな間隙を有し、環状弾性体の端部に当該端部を圧縮状態で保持する圧縮力保持部を形成する副間隙部とを備えることが開示されている。   Furthermore, Patent Document 3 discloses that an outer peripheral surface of a hub into which an annular elastic body is press-fitted and an annular mass body are provided for the purpose of providing a torsional damper having durability without vibration-proof characteristics changing over a long period of time. A gap formed between the circumferential surface and the circumferential surface has a main gap that holds the annular elastic body in the axial center in a compressed state, and at least one end of both axial ends is larger than the main gap. It is disclosed that a sub-gap part that has a gap and forms a compressive force holding part that holds the end part in a compressed state is provided at the end part of the annular elastic body.

また、特許文献4には、ばね−質量系の共振による動的吸振効果を得るトーショナルダンパにおいて、質量体の質量増大に依存することなく制振性能を向上させることを目的として、ハブと質量体の間に、このハブと質量体のうち少なくとも一方と摺動可能に接触される滑り軸受けを介在させることが開示されている。   Further, in Patent Document 4, a torsional damper that obtains a dynamic vibration absorption effect by resonance of a spring-mass system has a hub and a mass for the purpose of improving the damping performance without depending on the mass increase of the mass body. It is disclosed that a sliding bearing is slidably contacted between at least one of the hub and the mass body between the bodies.

特開平11−44344号公報JP-A-11-44344 特開2011−263423号公報JP 2011-263423 A 特開2010−151217号公報JP 2010-151217 A 特開2015−38366号公報JP-A-2015-38366

ところで、この種のトーショナルダンパの動的吸振効果を向上させるためには、慣性リングの質量を増大させることが有効であるが、近年では、車両の燃費向上を目的として、トーショナルダンパの軽量化が求められているため、高減衰特性を備えたゴム部材の使用が検討されている。   By the way, in order to improve the dynamic vibration absorption effect of this type of torsional damper, it is effective to increase the mass of the inertia ring. Therefore, the use of rubber members having high damping characteristics has been studied.

しかし、圧入作業性を考慮して、軸方向の圧入側端部に、圧縮量を徐々に低減していくテーパ部が形成されている場合、圧入側端部に挟まれた圧縮量が低いゴム部材縁部に連続的な一定負荷が加わると、高減衰特性を有するゴム部材は、ハブや慣性リングの表面と擦れ合うことによって生じる摩耗が顕著になり、摩耗した部分に亀裂が発生し、ゴム部材の耐久性が悪くなる。また、高減衰特性を備えたゴム部材を用いることで、捩り振動を低減することができるが、高減衰化するために添加する添加物によりゴム部材の耐摩耗性が低下するため、当該ゴム部材は、凹凸が大きい表面と擦れ合うと摩耗粉の発生が多くなってしまう。   However, in consideration of press-fit workability, when a taper part that gradually reduces the amount of compression is formed at the end of the press-fit side in the axial direction, rubber with a low amount of compression sandwiched between the end of the press-fit side When a constant constant load is applied to the edge of the member, the rubber member having high damping characteristics becomes prominent due to friction caused by rubbing against the surface of the hub or inertia ring. The durability of the deteriorated. In addition, torsional vibration can be reduced by using a rubber member having a high damping characteristic, but the wear resistance of the rubber member is reduced by an additive added to increase the damping. If the surface is rubbed against a large uneven surface, the generation of wear powder increases.

そのため、市場からは、高い減衰性能を備えたゴム部材を使用した場合においても、摩耗粉の発生を抑制してゴム部材の耐久性を向上させることができるトーショナルダンパの開発が要望されてきた。   For this reason, there has been a demand from the market for the development of a torsional damper that can suppress the generation of abrasion powder and improve the durability of the rubber member even when a rubber member having high damping performance is used. .

そこで、本件発明者等は、鋭意研究の結果、以下のトーショナルダンパを提供するに至った。すなわち、本発明に係るトーショナルダンパは、回転軸に固定され、当該回転軸と略同心円状の外周面を備えたハブと、当該ハブ外周面と対向し当該外周面と略同心円状の内周面を備えた慣性リングと、当該ハブ外周面と、当該慣性リング内周面との間隙部に圧入されたゴム部材とを備えたものであって、当該トーショナルダンパ共振時における当該ゴム部材の表面温度60±5℃でのゴム部材の損失係数(tanδpi)が0.23より大きく、高温時における補機の合計負荷トルクで測定したときの当該トーショナルダンパに圧入された状態でのゴム部材のせん断歪みが35%より大きく60%未満であり、当該間隙部が、当該ハブ外周面と当該慣性リング内周面とにより形成される当該ゴム部材を圧縮保持する主圧縮間隙部と、当該ハブ外周面端部と当該慣性リング内周面端部に形成され、端面にいくにしたがって当該ハブ外周面と当該慣性リング内周面が離間する方向に傾斜した傾斜間隙部とを備え、当該主圧縮間隙部と傾斜間隙部を形成する当該ハブ外周面と当該慣性リング内周面の表面粗さが4μm以上30μm以下であり、かつ、当該傾斜間隙部を形成するハブ外周面と慣性リング内周面に、当該主圧縮間隙部を形成するハブ外周面と慣性リング内周面より表面粗さが小さい摩擦低減領域を備えることを特徴とする。   Therefore, the inventors of the present invention have provided the following torsional dampers as a result of intensive studies. That is, the torsional damper according to the present invention includes a hub that is fixed to a rotating shaft and has an outer peripheral surface that is substantially concentric with the rotating shaft, and an inner periphery that is opposed to the outer peripheral surface of the hub and is substantially concentric with the outer peripheral surface. An inertia ring having a surface, a hub outer peripheral surface, and a rubber member press-fitted into a gap between the inertia ring inner peripheral surface, the rubber member at the time of torsional damper resonance Rubber member in which the loss factor (tan δpi) of the rubber member at a surface temperature of 60 ± 5 ° C. is greater than 0.23 and is press-fitted into the torsional damper as measured by the total load torque of the auxiliary machine at a high temperature A main compression gap portion that compresses and holds the rubber member formed by the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring, and the hub. The main compression includes an outer peripheral surface end portion and an inertia ring inner peripheral surface end portion, and an inclined gap portion that inclines in a direction in which the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring are separated from each other toward the end surface. The surface roughness of the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring forming the gap portion and the inclined gap portion is 4 μm or more and 30 μm or less, and the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring forming the inclined gap portion And a friction reduction region having a smaller surface roughness than the outer peripheral surface of the hub forming the main compression gap and the inner peripheral surface of the inertia ring.

本発明に係るトーショナルダンパは、前記摩擦低減領域の前記ハブ外周面と前記慣性リング内周面の表面粗さが4μm以上15μm以下であり、当該摩擦低減領域以外のハブ外周面と前記慣性リング内周面の表面粗さが15μmより大きく30μm以下であることが好ましい。   In the torsional damper according to the present invention, the surface roughness of the hub outer peripheral surface and the inertia ring inner peripheral surface of the friction reduction region is 4 μm or more and 15 μm or less, and the hub outer surface other than the friction reduction region and the inertia ring The surface roughness of the inner peripheral surface is preferably greater than 15 μm and 30 μm or less.

本発明に係るトーショナルダンパにおいて、以下の式(1)で表される前記ゴム部材の径方向平均圧縮率は、前記主圧縮間隙部の平均圧縮率と前記傾斜間隙部の平均圧縮率により定義され、前記主圧縮間隙部が30%以上40%以下であり、前記傾斜間隙部が10%以上20%以下であることが好ましい。   In the torsional damper according to the present invention, the radial average compression ratio of the rubber member represented by the following formula (1) is defined by the average compression ratio of the main compression gap and the average compression ratio of the inclined gap. The main compression gap is preferably 30% or more and 40% or less, and the inclined gap is preferably 10% or more and 20% or less.

Figure 2018197572

ただし、t:圧入前のゴム部材の厚み
:空隙部に圧入したときの各領域におけるゴム部材の厚み
:トーショナルダンパの幅方向の長さ
:空隙部の各領域の幅方向の長さ
n:圧縮率が異なる領域の数であり、2〜7までの整数。
Figure 2018197572

However, t 0: thickness t n of the rubber member before press-: thickness of the rubber member in each region when pressed into the gap portion L 0: the width direction of the torsional damper length L n: each region of the air gap Length in the width direction n: the number of regions having different compression ratios, and an integer from 2 to 7.

本発明に係るトーショナルダンパは、前記傾斜間隙部の傾斜角度が25°以上40°未満であることが好ましい。   In the torsional damper according to the present invention, it is preferable that an inclination angle of the inclined gap portion is 25 ° or more and less than 40 °.

本発明に係るトーショナルダンパに用いるゴム部材は、圧入前の当該ゴム部材に1.4MPaの引張応力を複数回加えたときの伸び率が34%より大きく62%未満であることが好ましい。   The rubber member used for the torsional damper according to the present invention preferably has an elongation percentage of more than 34% and less than 62% when a tensile stress of 1.4 MPa is applied to the rubber member before press fitting a plurality of times.

本発明に係るトーショナルダンパは、トーショナルダンパ共振時における前記ゴム部材の表面温度120±5℃での当該ゴム部材の損失係数(tanδph)が0.21以上であり、当該トーショナルダンパ共振時における前記ゴム部材の表面温度120±5℃での前記ゴム部材の損失係数(tanδph)とトーショナルダンパ共振時における前記ゴム部材の表面温度60±5℃での前記ゴム部材の損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が0.66以上であることが好ましい。   The torsional damper according to the present invention has a loss coefficient (tan δph) of the rubber member at a surface temperature of 120 ± 5 ° C. at the time of resonance of the torsional damper of 0.21 or more. Loss coefficient (tan δph) of the rubber member at a surface temperature of 120 ± 5 ° C. and loss coefficient (tan δpi) of the rubber member at a surface temperature of the rubber member at torsional damper resonance of 60 ± 5 ° C. Loss factor ratio (tan δph / tan δpi) is preferably 0.66 or more.

本発明に係るトーショナルダンパは、圧入前の前記ゴム部材の60℃における損失係数(tanδi)が0.39以上で、120℃における損失係数(tanδh)と60℃における損失係数(tanδi)との損失係数比(tanδh/tanδi)が0.87以上であることが好ましい。   In the torsional damper according to the present invention, the loss factor (tan δi) at 60 ° C. of the rubber member before press-fitting is 0.39 or more, and the loss coefficient (tan δh) at 120 ° C. and the loss coefficient (tan δi) at 60 ° C. The loss factor ratio (tan δh / tan δi) is preferably 0.87 or more.

本発明に係るトーショナルダンパに用いるゴム部材は、圧入前の前記ゴム部材の50%伸長時のモジュラスが1.28MPaより大きく、1.82MPa未満であることが好ましい。   The rubber member used for the torsional damper according to the present invention preferably has a modulus at 50% elongation of the rubber member before press-fitting is greater than 1.28 MPa and less than 1.82 MPa.

本発明に係るトーショナルダンパにおいて、圧入前の前記ゴム部材は、ゴム組成物を加硫成形したものであって、当該ゴム組成物は、EPDM100重量部に対して、カーボンブラック100重量部以上、プロセスオイル40重量部以上が添加され、前記EPDMのポリマー分率が20重量%以上40重量%以下であることが好ましい。   In the torsional damper according to the present invention, the rubber member before press-fitting is obtained by vulcanization molding of a rubber composition, and the rubber composition is 100 parts by weight or more of EPDM with respect to 100 parts by weight of EPDM, Preferably, 40 parts by weight or more of process oil is added, and the polymer fraction of the EPDM is 20% by weight or more and 40% by weight or less.

本発明におけるゴム組成物は、前記カーボンブラックのヨウ素吸着量が70mg/g以上185mg/g以下であることが好ましい。   In the rubber composition of the present invention, the iodine adsorption amount of the carbon black is preferably 70 mg / g or more and 185 mg / g or less.

また、本発明におけるゴム組成物は、前記カーボンブラックのDBP吸油量が40cm/100g以上120cm/100g以下であることが好ましい。 Further, the rubber composition of the present invention preferably has DBP oil absorption of the carbon black is less than 40 cm 3/100 g or more 120 cm 3/100 g.

本発明によれば、摩耗しやすい高減衰特性を備えたゴム部材を用いても、ハブと慣性リングとの間隙部に形成された当該間隙部の傾斜間隙部の表面粗さが、ゴム部材を圧縮保持する主圧縮間隙部よりも小さいため、当該ゴム部材が傾斜間隙部と擦れ合って生じる摩耗粉の発生を著しく抑制することができる。結果としてトーショナルダンパの耐久性の向上を図ることができると同時に高減衰特性のゴム部材を用いることで、捩り振動を低減することができるため、トーショナルダンパの軽量化を図ることができる。   According to the present invention, even when a rubber member having high damping characteristics that easily wears is used, the surface roughness of the inclined gap portion of the gap portion formed in the gap portion between the hub and the inertia ring is such that the rubber member is Since it is smaller than the main compression gap portion to be compressed and held, it is possible to remarkably suppress the generation of wear powder caused by the rubber member rubbing against the inclined gap portion. As a result, it is possible to improve the durability of the torsional damper, and at the same time, torsional vibration can be reduced by using a rubber member having a high damping characteristic, so that the weight of the torsional damper can be reduced.

本発明を適用した実施形態としてのトーショナルダンパの斜視図である。It is a perspective view of the torsional damper as an embodiment to which the present invention is applied. 図1のトーショナルダンパの部分破断斜視図である。FIG. 2 is a partially broken perspective view of the torsional damper of FIG. 1. ゴム部材の圧入前のトーショナルダンパの部分破断斜視図である。It is a partially broken perspective view of a torsional damper before press-fitting a rubber member. 図1のトーショナルダンパの部分拡大断面図である。It is a partial expanded sectional view of the torsional damper of FIG. 図4の部分拡大断面図である。It is a partial expanded sectional view of FIG. 実施例及び比較例のトーショナルダンパの耐久性能特性線図である。It is a durable performance characteristic diagram of the torsional damper of an Example and a comparative example.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は本発明を適用した実施形態としてのトーショナルダンパ1の斜視図、図2は図1のトーショナルダンパの部分破断斜視図、図3はゴム部材の圧入前のトーショナルダンパ1の部分破断斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a perspective view of a torsional damper 1 as an embodiment to which the present invention is applied, FIG. 2 is a partially cutaway perspective view of the torsional damper of FIG. 1, and FIG. 3 is a portion of the torsional damper 1 before press-fitting a rubber member FIG.

本発明に係るトーショナルダンパは、車両等に搭載されたエンジン等のクランクシャフトやカムシャフト等の図示しない回転軸の一端に装着されて、当該回転軸の回転変動によって発生する捩り振動を吸収するものである。当該トーショナルダンパは、動力伝達用の図示しないベルトを装着することにより、エンジン補機に回転軸を介して伝達されたエンジンの動力の一部を伝達することができる。   A torsional damper according to the present invention is attached to one end of a rotating shaft (not shown) such as a crankshaft or a camshaft of an engine or the like mounted on a vehicle or the like, and absorbs torsional vibration generated by rotational fluctuation of the rotating shaft. Is. The torsional damper can transmit a part of the engine power transmitted to the engine accessory via the rotating shaft by mounting a belt (not shown) for power transmission.

本実施の形態に係るトーショナルダンパ1は、回転軸に固定され、当該回転軸と略同心円状の外周面を備えたハブ2と、当該ハブ2外周面と対向し当該外周面と略同心円状の内周面を備えた慣性リング3と、当該ハブ2外周面と、当該慣性リング3内周面との間隙部に圧入された環状のゴム部材4とを備えている。   The torsional damper 1 according to the present embodiment is fixed to a rotating shaft, and has a hub 2 having an outer peripheral surface that is substantially concentric with the rotating shaft, and an outer peripheral surface that faces the outer peripheral surface of the hub 2 and is substantially concentric with the outer peripheral surface. Inertial ring 3 having an inner peripheral surface, an outer peripheral surface of hub 2 and an annular rubber member 4 press-fitted in a gap between the inner peripheral surface of inertia ring 3.

具体的に、ハブ2は、回転軸の先端が固定されるボス部21と、当該ボス部21から外径方向に延在した円盤状のフランジ部24と、当該フランジ部24の外周に形成され、前記回転軸の軸方向に延在する筒状部25とを備えており、これらが鋳鉄等の金属材料やフェノール樹脂等の樹脂材料等によって一体に成形されている。ハブ2を構成する鋳鉄としては、例えば、FC250やFCD450等を用いることができる。ハブ2のボス部21は、回転軸の先端が挿入固定される軸孔22とキー溝23が形成されており、当該ボス部21に回転軸の先端が締結されることにより、当該ハブ2は、回転軸の中心軸Cを中心に回転駆動される。本実施の形態において、ハブ2の筒状部25の外周面25Aが、本発明でいう回転軸と略同心円状の外周面に相当する。   Specifically, the hub 2 is formed on the outer periphery of the boss portion 21 to which the tip of the rotating shaft is fixed, the disk-shaped flange portion 24 extending from the boss portion 21 in the outer diameter direction, and the flange portion 24. And a cylindrical portion 25 extending in the axial direction of the rotating shaft, and these are integrally formed of a metal material such as cast iron or a resin material such as phenol resin. As cast iron which comprises hub 2, FC250, FCD450, etc. can be used, for example. The boss portion 21 of the hub 2 is formed with a shaft hole 22 into which the tip of the rotating shaft is inserted and fixed, and a key groove 23. By fastening the tip of the rotating shaft to the boss portion 21, the hub 2 is The rotary shaft is driven to rotate about the central axis C of the rotary shaft. In the present embodiment, the outer peripheral surface 25A of the cylindrical portion 25 of the hub 2 corresponds to the outer peripheral surface that is substantially concentric with the rotating shaft in the present invention.

慣性リング3は、ハブ2と同様に鋳鉄等の金属材料あるいは金属と樹脂の複合材料からなるものであって、トーショナルダンパ1が所定の動的吸振効果を得るため、所定の質量を備えている。慣性リング3を構成する鋳鉄として、例えば、FC250等を用いることができる。この慣性リング3の外周面3Bには、エンジン補機への動力伝達用の図示しないベルトが掛けられるプーリ溝3Cが形成され、動力伝達用のプーリを構成している。当該慣性リング3は、前記回転軸の軸方向に延在する円筒状を呈しており、当該慣性リング3の内径は、ハブ2の外径よりも所定寸法大きく形成されている。この慣性リング3がハブ2と同軸的に配置されることにより、この慣性リング内周面3Aと、ハブ2の筒状部25の外周面25A(以下、単にハブ外周面25Aと称する)とは、所定の間隔を有し、略同心円状となる。図3に示すように、この慣性リング内周面3Aとハブ外周面25Aとの間隔は、ゴム部材41を圧入する間隙部5とされる。   The inertia ring 3 is made of a metal material such as cast iron or a composite material of a metal and a resin like the hub 2 and has a predetermined mass so that the torsional damper 1 obtains a predetermined dynamic vibration absorption effect. Yes. As cast iron constituting the inertia ring 3, for example, FC250 or the like can be used. The outer peripheral surface 3B of the inertia ring 3 is formed with a pulley groove 3C on which a belt (not shown) for power transmission to the engine auxiliary machine is hung, and constitutes a power transmission pulley. The inertia ring 3 has a cylindrical shape extending in the axial direction of the rotating shaft, and the inner diameter of the inertia ring 3 is larger than the outer diameter of the hub 2 by a predetermined dimension. By arranging the inertia ring 3 coaxially with the hub 2, the inertia ring inner peripheral surface 3A and the outer peripheral surface 25A of the cylindrical portion 25 of the hub 2 (hereinafter simply referred to as the hub outer peripheral surface 25A) are defined. , Having a predetermined interval and being substantially concentric. As shown in FIG. 3, the gap between the inertia ring inner peripheral surface 3 </ b> A and the hub outer peripheral surface 25 </ b> A is a gap portion 5 into which the rubber member 41 is press-fitted.

上述したハブ2と慣性リング3との間隙部5に圧入されるゴム部材41は、クランクシャフト等の回転軸の捩り振動を低減させて破損を防止し、エンジンから伝達される振動や、当該振動により生じる騒音を低減させるものである。本発明は、ゴム部材として摩耗が生じやすい振動減衰効果に優れた高減衰ゴム部材を用いた場合に、特に、摩耗粉発生抑制の効果を発揮することができる。以下において、間隙部5に圧入する前のゴム部材をゴム部材41とし、圧入後のゴム部材を4として説明する。   The rubber member 41 press-fitted into the gap portion 5 between the hub 2 and the inertia ring 3 described above reduces torsional vibration of a rotating shaft such as a crankshaft to prevent breakage, and vibration transmitted from the engine, This reduces the noise generated by. The present invention can exhibit the effect of suppressing the generation of wear powder, particularly when a high-damping rubber member excellent in vibration damping effect that easily causes wear is used as the rubber member. In the following description, the rubber member before press-fitting into the gap 5 is referred to as a rubber member 41, and the rubber member after press-fitting is described as 4.

本発明におけるトーショナルダンパは、当該間隙部が、ハブ外周面と慣性リング内周面とによってゴム部材を圧縮保持する主圧縮間隙部と、トーショナルダンパの端面にいくにしたがってハブ外周面と慣性リング内周面が徐々に離間する方向に傾斜した傾斜間隙部とを備え、この主圧縮間隙部と傾斜間隙部を形成するハブ外周面と慣性リング内周面の表面粗さが十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上30μm以下で、かつ、傾斜間隙部を形成するハブ外周面と慣性リング内周面に、主圧縮間隙部を形成するハブ外周面と慣性リング内周面の表面粗さより表面粗さが小さい摩擦低減領域を備えることを特徴とする。   The torsional damper according to the present invention includes a main compression gap portion that compresses and holds the rubber member by the hub outer circumferential surface and the inertia ring inner circumferential surface, and the hub outer circumferential surface and the inertia as it goes to the end surface of the torsional damper. The inner circumferential surface of the ring is inclined so as to be gradually separated from each other, and the surface roughness of the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring forming the main compression gap and the inclined clearance is 10-point average roughness. (Rzjis) (JIS B0601-1994) 4 μm or more and 30 μm or less, and the hub outer peripheral surface and the inertia ring inner peripheral surface forming the inclined gap, and the hub outer peripheral surface and the inertia ring forming the main compression gap A friction reduction region having a surface roughness smaller than the surface roughness of the peripheral surface is provided.

本実施の形態において、図3及び図4に示すように、ハブ外周面25Aと慣性リング内周面3Aとの間に形成された間隙部5は、ゴム部材4を圧縮保持する主圧縮間隙部51と、当該ゴム部材41の当該間隙部5への圧入作業を容易とするための傾斜間隙部52とを備えている。   In this embodiment, as shown in FIGS. 3 and 4, the gap portion 5 formed between the hub outer peripheral surface 25 </ b> A and the inertia ring inner peripheral surface 3 </ b> A is a main compression gap portion that compresses and holds the rubber member 4. 51 and an inclined gap portion 52 for facilitating the press-fitting operation of the rubber member 41 into the gap portion 5.

上述した主圧縮間隙部51の断面は、ゴム部材4の圧入方向に一端から他端にわたって、回動軸からの距離が一定とされたストレート形状であってもよく、図4に示すように、当該主圧縮間隙部51のゴム部材4の圧入方向中央部の断面において、内径方向又は外径方向に凹んだ凹部形状を呈するものであっても良い。主圧縮間隙部51に当該凹部形状を採用した場合には、捩り振動によってゴム部材4がハブ2と慣性リング3との間隙部5から抜け出る方向に移動する不都合を効果的に抑制することができる。このような断面形状を採用した主圧縮間隙部51は、ゴム部材4の圧縮率が一様ではなく部分的に異なる。例えば、図4に示すように、主圧縮間隙部51には、圧縮率が異なるL〜Lの各領域があり、各領域はそれぞれt〜tに示す間隙寸法を有する。そこで、上述した当該主圧縮間隙部51におけるゴム部材4の圧縮率として、部分的な圧縮率の差を考慮し加重平均により算出した径方向平均圧縮率を採用した。なお、凹部を備える領域(この場合領域L)においては、当該領域における幅方向における中央の厚みを採用する。この径方向平均圧縮率は、以下の式(1)で表すことができる。 The cross section of the main compression gap 51 described above may have a straight shape in which the distance from the rotation shaft is constant from one end to the other end in the press-fitting direction of the rubber member 4, as shown in FIG. The main compression gap 51 may have a concave shape that is recessed in the inner diameter direction or the outer diameter direction in the cross section of the central portion of the rubber member 4 in the press-fitting direction. When the concave shape is employed for the main compression gap 51, it is possible to effectively suppress the disadvantage that the rubber member 4 moves in the direction of coming out of the gap 5 between the hub 2 and the inertia ring 3 due to torsional vibration. . In the main compression gap portion 51 adopting such a cross-sectional shape, the compression rate of the rubber member 4 is not uniform but partially different. For example, as shown in FIG. 4, the main compression gap portion 51 includes areas L 1 to L 3 having different compression ratios, and each area has a gap dimension indicated by t 1 to t 3 . Therefore, as the compression rate of the rubber member 4 in the main compression gap 51 described above, a radial average compression rate calculated by a weighted average in consideration of a partial difference in compression rate was adopted. In the region comprising the recesses (in this case the region L 2), adopt a central thickness in the width direction of the region. This radial direction average compression rate can be expressed by the following formula (1).

Figure 2018197572

ただし、t:圧入前のゴム部材の厚み
:空隙部に圧入したときの各領域におけるゴム部材の厚み
:トーショナルダンパの幅方向の長さ
:空隙部の各領域の幅方向の長さ
n:圧縮率が異なる領域の数であり、2〜7までの整数。
Figure 2018197572

However, t 0: thickness t n of the rubber member before press-: thickness of the rubber member in each region when pressed into the gap portion L 0: the width direction of the torsional damper length L n: each region of the air gap Length in the width direction n: the number of regions having different compression ratios, and an integer from 2 to 7.

ここで、式(1)を用いたときの具体例の1つについて図4を用いて説明する。図4において、主圧縮間隙部51に圧入されたゴム部材4は、それぞれ圧縮率が異なる各領域L〜Lの厚さがt、t、tであり、傾斜間隙部52に圧入されたゴム部材は、各領域L、Lの厚さが、t、tである。ここでは、t≠t≠t≠t≠tとする。また、図3に示すように、圧入前のゴム部材41の厚さをtとする。このときの径方向平均圧縮率(%)を下記式(2)に示す。 Here, one of specific examples when the expression (1) is used will be described with reference to FIG. In FIG. 4, the rubber member 4 press-fitted into the main compression gap portion 51 has thicknesses t 1 , t 2 , and t 3 in the regions L 1 to L 3 having different compression ratios. In the press-fitted rubber member, the thicknesses of the regions L 4 and L 5 are t 4 and t 5 , respectively. Here, it is assumed that t 1 ≠ t 2 ≠ t 3 ≠ t 4 ≠ t 5 . Further, as shown in FIG. 3, the thickness of the rubber member 41 before press-fitting is t 0 . The radial average compression ratio (%) at this time is shown in the following formula (2).

(数4)
{((t−t)/t)×(L/L)+((t−t)/t)×(L/L)+((t−t)/t)×(L/L)+((t−t)/t)×(L/L)+((t−t)/t)×(L/L)}×100・・・(2)
(Equation 4)
{((T 0 −t 1 ) / t 0 ) × (L 1 / L 0 ) + ((t 0 −t 2 ) / t 0 ) × (L 2 / L 0 ) + ((t 0 −t 3 ) / T 0 ) × (L 3 / L 0 ) + ((t 0 −t 4 ) / t 0 ) × (L 4 / L 0 ) + ((t 0 −t 5 ) / t 0 ) × (L 5 / L 0 )} × 100 (2)

このとき、上記式(2)の第1項〜第3項までの総和が主圧縮間隙部51の径方向平均圧縮率であり、第4項〜第5項までの総和が傾斜間隙部52の径方向平均圧縮率である。このように、図4では、主圧縮間隙部51と傾斜間隙部52の圧縮率が異なる領域の数が合計で5つの場合を示している。本発明では、主圧縮間隙部51に凹部がなく主圧縮間隙部51全体が均一の場合には、主圧縮間隙部51の圧縮率の異なる領域の数がn=1となる。2つある傾斜間隙部52の他の一方は拡開せず、主圧縮間隙部51が延長して形成されている場合には、傾斜間隙部52の他方のみが圧縮率が異なる領域を有するため、傾斜間隙部52の圧縮率が異なる領域はn=1となる。したがって、このような場合に、主圧縮間隙部51と傾斜間隙部52の圧縮率が異なる領域は合計でn=2となり、圧縮率が異なる領域の合計数2が最小値となる。また、主圧縮間隙部51の圧縮率の異なる領域は、図4に示す状態が最大である3となり、2つの傾斜間隙部52の各々が変曲点を有して拡開する場合の当該傾斜間隙部52の圧縮率の異なる領域の数は、それぞれがn=2となり、傾斜間隙部52は最大4となる。したがって、主圧縮間隙部51と傾斜間隙部52とを合計した圧縮率の異なる領域の合計数7が最大となる。   At this time, the sum total from the first term to the third term of the above formula (2) is the radial average compression ratio of the main compression gap 51, and the sum from the fourth term to the fifth term is the sum of the inclined gap 52. It is a radial direction average compression rate. As described above, FIG. 4 shows a case where the number of regions having different compression ratios of the main compression gap portion 51 and the inclined gap portion 52 is five in total. In the present invention, when the main compression gap 51 has no recess and the entire main compression gap 51 is uniform, the number of regions having different compression ratios of the main compression gap 51 is n = 1. When the other one of the two inclined gaps 52 does not expand and the main compression gap 51 is formed to be extended, only the other of the inclined gaps 52 has a region having a different compression rate. In the region where the compression ratio of the inclined gap 52 is different, n = 1. Therefore, in such a case, the areas where the compression ratios of the main compression gap 51 and the inclined gap 52 are different are n = 2 in total, and the total number 2 of the areas with different compression ratios is the minimum value. Further, the region where the compression ratio of the main compression gap 51 is different is 3 in the state shown in FIG. 4, and the inclination when each of the two inclined gaps 52 expands with an inflection point. The number of regions having different compression ratios of the gap 52 is n = 2, and the inclined gap 52 is 4 at the maximum. Accordingly, the total number 7 of regions having different compression ratios, which is the sum of the main compression gap 51 and the inclined gap 52, is maximized.

なお、上述したゴム部材4の主圧縮間隙部51における径方向平均圧縮率は、30%以上40%以下であることが好ましい。主圧縮間隙部51に圧入されたゴム部材4の圧縮量を30%以上40%以下の範囲に調整することにより、ゴム部材4の亀裂の発生を防止できると共に、十分な圧接力が付与されゴム部材4の捩れ移動を防止することができるからである。   In addition, it is preferable that the radial direction average compression rate in the main compression gap | interval part 51 of the rubber member 4 mentioned above is 30% or more and 40% or less. By adjusting the amount of compression of the rubber member 4 press-fitted into the main compression gap 51 within a range of 30% or more and 40% or less, the rubber member 4 can be prevented from cracking and a sufficient pressure contact force is imparted. This is because the torsional movement of the member 4 can be prevented.

また、傾斜間隙部52は、圧縮間隙部51のゴム部材4の圧入方向における端部に形成されたものであり、この傾斜間隙部52は、ゴム部材4を圧入する側の端部のみならず、両端に設けられていても良い。傾斜間隙部52は、ハブ外周面25Aの圧入方向の端部と、慣性リング内周面3Aの圧入方向の端部が、圧入方向における端面、すなわち、外方にいくにしたがってこれら外周面25Aと内周面3Aとが離間する方向に傾斜する各傾斜面52A、52Bにより構成される。当該傾斜面52A、52Bの断面形状は、平面であっても、曲面であっても良い。   The inclined gap 52 is formed at the end of the compression gap 51 in the press-fitting direction of the rubber member 4. The inclined gap 52 is not only the end on the side where the rubber member 4 is press-fitted. , May be provided at both ends. The inclined gap 52 is formed so that the end of the hub outer peripheral surface 25A in the press-fitting direction and the end of the inertia ring inner peripheral surface 3A in the press-fitting direction are end surfaces in the press-fitting direction, that is, the outer peripheral surface 25A. Each of the inclined surfaces 52A and 52B is inclined in a direction away from the inner peripheral surface 3A. The cross-sectional shape of the inclined surfaces 52A and 52B may be a flat surface or a curved surface.

当該傾斜間隙部52は、圧入されたゴム部材4の端部を主圧縮間隙部51の両端において、補助的に圧縮保持する。当該傾斜間隙部52によるゴム部材4の径方向圧縮率は、10%以上20%以下であることが好ましい。具体的には、当該傾斜間隙部52によるゴム部材4の径方向平均圧縮率は、上述した主圧縮間隙部51によるゴム部材4の径方向平均圧縮率と同様に、上述の式(1)にて表したとき、10%以上20%以下であることが好ましい。図4に示すように本実施の形態における傾斜間隙部52は、圧縮率が外方にいくにしたがって低下していくL〜Lの各領域があり、各領域はそれぞれt〜tに示す間隙寸法を有する。傾斜間隙部52を形成する各領域は、所定の傾きで端面にいくにしたがって拡開していくため、t及びtは、各領域の幅方向における中心位置におけるゴム部材4の厚みとする。 The inclined gap portion 52 compressively holds the end portion of the press-fitted rubber member 4 at both ends of the main compression gap portion 51. The radial compression ratio of the rubber member 4 by the inclined gap portion 52 is preferably 10% or more and 20% or less. Specifically, the radial average compression rate of the rubber member 4 by the inclined gap portion 52 is expressed by the above equation (1), similarly to the radial average compression rate of the rubber member 4 by the main compression gap portion 51 described above. It is preferable that it is 10% or more and 20% or less. As shown in FIG. 4, the inclined gap portion 52 in the present embodiment includes L 4 to L 5 regions where the compression rate decreases outward, and each region is t 4 to t 5. It has the gap dimension shown in FIG. Since each region forming the inclined gap portion 52 expands toward the end face with a predetermined inclination, t 4 and t 5 are the thickness of the rubber member 4 at the center position in the width direction of each region. .

このとき、当該傾斜間隙部52における径方向平均圧縮率をゼロとはせずに、10%以上20%以下とすることにより、ゴム部材4の端部において、当該ゴム部材4に加わる圧接力が完全に解除されてしまうことを回避することができる。これにより、当該ゴム部材4の端部に捩れ移動による引張荷重が負荷されて傾斜間隙部52を構成する傾斜面52A、52Bとの間で生じる摩擦を低減し、当該ゴム部材4の端部に皺が発生し、亀裂が生じる不都合を抑制することができる。   At this time, the radial compressive force applied to the rubber member 4 at the end of the rubber member 4 can be increased by setting the average radial compressibility in the inclined gap portion 52 to 10% or more and 20% or less without setting the radial average compression rate to zero. The complete release can be avoided. As a result, a tensile load due to torsional movement is applied to the end of the rubber member 4 to reduce the friction generated between the inclined surfaces 52A and 52B constituting the inclined gap 52, and the end of the rubber member 4 is reduced. It is possible to suppress the inconvenience of generating wrinkles and causing cracks.

また、当該傾斜間隙部52を構成する当該傾斜面52A、52Bの傾斜角度、すなわち、当該傾斜面52A又は52Bと、主圧縮間隙部51を構成するハブ外周面25A又は慣性リング内周面3Aとがなす角度θは、25°以上40°未満であることが好ましい。傾斜面52A又は52Bが曲面であるとき、当該角度θは、図5に示すように、当該曲面との接線Dと主圧縮間隙部51を構成するハブ外周面25A又は慣性リング内周面3Aとがなす角度であるものとする。各傾斜面52A、52Bの傾斜角度を当該範囲に設定することで、主圧縮間隙部51によるゴム部材4の圧縮面積を確保しつつ、傾斜間隙部52におけるゴム部材4の径方向平均圧縮率を10%以上20%以下の範囲に維持することができ、ゴム部材4の良好な圧入作業性を得ることができる。   Further, the inclination angle of the inclined surfaces 52A and 52B constituting the inclined gap portion 52, that is, the inclined surface 52A or 52B, and the hub outer peripheral surface 25A or the inertia ring inner peripheral surface 3A constituting the main compression gap portion 51. Is preferably 25 ° or more and less than 40 °. When the inclined surface 52A or 52B is a curved surface, as shown in FIG. 5, the angle θ is determined by the tangent D to the curved surface and the hub outer peripheral surface 25A or the inertia ring inner peripheral surface 3A constituting the main compression gap 51. Is the angle formed by. By setting the inclination angle of each of the inclined surfaces 52A and 52B within the range, the radial compression average of the rubber member 4 in the inclined gap 52 is secured while ensuring the compression area of the rubber member 4 by the main compression gap 51. It can be maintained in the range of 10% or more and 20% or less, and good press-fit workability of the rubber member 4 can be obtained.

上述した主圧縮間隙部51と傾斜間隙部52とを備えた間隙部5を形成するハブ外周面25Aと、慣性リング内周面3Aの表面粗さは、十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上30μm以下であり、傾斜間隙部52を構成する各傾斜面52A、52Bに、主圧縮間隙部51を構成するハブ外周面25A及び慣性リング内周面3Aより表面粗さが小さい摩擦低減領域53を備える。なお、摩擦低減領域53は、少なくとも圧入されるゴム部材4が密着される領域のことをいい、当該摩擦低減領域53が前記各斜面52A、53A全体にわたっていてもよいことはもちろんである。当該表面粗さの調整は、金属材料、樹脂材料、若しくは、金属と樹脂の複合材料等により構成されるハブ外周面25Aや慣性リング内周面3Aを機械加工や化学処理などによる表面処理によって行うことができる。   The surface roughness of the outer peripheral surface 25A of the hub and the inner peripheral surface 3A of the inertia ring that forms the gap 5 having the main compression gap 51 and the inclined gap 52 is 10-point average roughness (Rzjis) (JIS). B0601-1994) is 4 μm or more and 30 μm or less, and each of the inclined surfaces 52A, 52B constituting the inclined gap portion 52 has a surface roughness greater than that of the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A constituting the main compression gap portion 51. Is provided with a small friction reduction region 53. Note that the friction reduction region 53 means a region where at least the press-fitted rubber member 4 is in close contact, and the friction reduction region 53 may extend over the entire slopes 52A and 53A. The surface roughness is adjusted by surface treatment such as machining or chemical treatment on the outer peripheral surface 25A of the hub or the inner peripheral surface 3A of the inertia ring made of a metal material, a resin material, or a composite material of metal and resin. be able to.

本件発明では、具体的に、摩擦低減領域53のハブ外周面25Aと慣性リング内周面3Aの表面粗さが十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上15μm以下であり、当該摩擦低減領域53以外のハブ外周面25Aと慣性リング内周面3Aの表面粗さが十点平均粗さ(Rzjis)(JIS B0601−1994)で15μmより大きく30μm以下であることが好ましい。   In the present invention, specifically, the surface roughness of the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A of the friction reduction region 53 is 4 μm or more and 15 μm or less in terms of 10-point average roughness (Rzjis) (JIS B0601-1994). The surface roughness of the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A other than the friction reduction region 53 is preferably greater than 15 μm and less than 30 μm in terms of 10-point average roughness (Rzjis) (JIS B0601-1994).

傾斜間隙部52を構成するハブ外周面25A、すなわち、傾斜面52Aと、慣性リング内周面3A、すなわち、傾斜面52Bに、主圧縮間隙部51を構成するハブ外周面25A及び慣性リング内周面3Aの表面粗さよりも小さい、例えば、十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上15μm以下とする摩擦低減領域53が形成されることにより、当該傾斜間隙部52の表面が滑らかとなる。これにより、傾斜間隙部52におけるゴム部材4の端部と各傾斜面52A、52Bとの摩擦抵抗を小さくすることができ、これらが擦れ合って生じる当該ゴム部材4の摩耗粉の発生を著しく抑制することができる。   The outer peripheral surface 25A of the hub constituting the inclined gap portion 52, that is, the inclined surface 52A, and the inner peripheral surface 3A of the inertia ring, that is, the inclined surface 52B, the outer peripheral surface 25A of the hub constituting the main compression gap portion 51 and the inner periphery of the inertia ring. The surface of the inclined gap portion 52 is formed by forming a friction reduction region 53 that is smaller than the surface roughness of the surface 3A, for example, a ten-point average roughness (Rzjis) (JIS B0601-1994) of 4 μm to 15 μm. Becomes smooth. Thereby, the frictional resistance between the end portion of the rubber member 4 and the inclined surfaces 52A and 52B in the inclined gap portion 52 can be reduced, and the generation of wear powder of the rubber member 4 caused by the friction between these ends is remarkably suppressed. can do.

上述した摩擦低減領域53は、図5の部分拡大図に示すように、傾斜間隙部52と主圧縮間隙部51との境界よりも主圧縮間隙部51側から傾斜間隙部52にわたって形成されていてもよい。この場合、主圧縮間隙部51の端から拡開する方向に傾斜した傾斜間隙部52がはじまる位置よりも摩擦低減領域53が、例えば、寸法dの分だけ主圧縮間隙部51側寄りから形成されることとなる。これにより、主圧縮間隙部51と傾斜間隙部52におけるゴム部材4の径方向圧縮率の変曲点よりも表面粗さが変化する変曲点が主圧縮間隙部51寄りに位置するため、当該ゴム部材4の圧縮率の変曲点に加わる応力を主圧縮間隙部51寄りに分散させることができる。したがって、ゴム部材4に加わる局所的応力によるゴム部材4の亀裂をより一層効果的に回避することができる。   The friction reducing region 53 described above is formed from the main compression gap 51 side to the inclined gap 52 rather than the boundary between the inclined gap 52 and the main compression gap 51 as shown in the partial enlarged view of FIG. Also good. In this case, for example, the friction reduction region 53 is formed closer to the main compression gap 51 than the position where the inclined gap 52 inclined in the direction of expansion from the end of the main compression gap 51 starts, for example, by the dimension d. The Rukoto. As a result, the inflection point where the surface roughness changes from the inflection point of the radial compression rate of the rubber member 4 in the main compression gap 51 and the inclined gap 52 is located closer to the main compression gap 51. The stress applied to the inflection point of the compression rate of the rubber member 4 can be dispersed toward the main compression gap 51. Therefore, cracking of the rubber member 4 due to local stress applied to the rubber member 4 can be more effectively avoided.

本発明のトーショナルダンパ1は、トーショナルダンパ共振時におけるゴム部材4の表面温度60±5℃の当該ゴム部材4の損失係数(tanδpi)が0.23より大きい高減衰特性を備えている。このため、優れた振動低減効果を奏する。   The torsional damper 1 of the present invention has a high damping characteristic in which the loss coefficient (tan δpi) of the rubber member 4 having a surface temperature of 60 ± 5 ° C. during resonance of the torsional damper is greater than 0.23. For this reason, the outstanding vibration reduction effect is produced.

また、本発明におけるトーショナルダンパ1は、トーショナルダンパ共振時におけるゴム部材4の表面温度120±5℃での当該ゴム部材4の損失係数(tanδph)が0.21以上であり、当該トーショナルダンパ共振時におけるゴム部材4の表面温度120±5℃での当該ゴム部材4の損失係数(tanδph)とトーショナルダンパ共振時におけるゴム部材4の表面温度60±5℃での当該ゴム部材4の損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が0.66以上であることが好ましい。   The torsional damper 1 according to the present invention has a loss coefficient (tan δph) of the rubber member 4 at the surface temperature of 120 ± 5 ° C. at the time of resonance of the torsional damper of 0.21 or more. The loss factor (tan δph) of the rubber member 4 at a surface temperature of 120 ± 5 ° C. at the time of damper resonance and the rubber member 4 at a surface temperature of 60 ± 5 ° C. at the time of torsional damper resonance. The loss factor ratio (tan δph / tan δpi) with respect to the loss factor (tan δpi) is preferably 0.66 or more.

トーショナルダンパ共振時におけるゴム部材4の表面温度120±5℃でのゴム部材4の損失係数(tanδph)とトーショナルダンパ共振時におけるゴム部材4の表面温度60±5℃での当該ゴム部材4の損失係数(tanδpi)との損失係数比(tanδph/tanδpi)は、損失係数(tanδ)の温度依存性を表す指標である。高温使用時におけるゴム部材4の損失係数(tanδph)と使用標準時におけるゴム部材4の損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が大きい(1に近い)ことは、使用標準温度から高温使用温度までの温度範囲における損失係数(tanδ)の温度依存性が小さい、すなわち、温度変化に伴う損失係数(tanδ)の低下が少ないことを意味し、本発明において、当該ゴム部材4の表面温度120±5℃における当該ゴム部材4の損失係数(tanδph)とゴム部材4の表面温度60±5℃における当該ゴム部材4の損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が0.66以上であるため、ゴム部材の60℃から120℃までの温度範囲における温度変化に伴う損失係数の変化は少ないため、使用標準温度から高温側使用温度の範囲にわたり、優れた振動吸収特性を示すことが分かる。   The loss factor (tan δph) of the rubber member 4 when the surface temperature of the rubber member 4 is 120 ± 5 ° C. during the torsional damper resonance and the rubber member 4 when the surface temperature of the rubber member 4 is 60 ± 5 ° C. during the torsional damper resonance. The loss factor ratio (tan δph / tan δpi) to the loss factor (tan δpi) is an index representing the temperature dependence of the loss factor (tan δ). The loss factor ratio (tan δph) of the rubber member 4 at the time of use at a high temperature and the loss factor (tan δpi) of the rubber member 4 at the time of standard use is large (close to 1) from the use standard temperature. In the present invention, it means that the temperature dependence of the loss factor (tan δ) in the temperature range up to the high temperature is small, that is, the loss factor (tan δ) decreases with temperature change. The loss factor ratio (tanδph / tanδpi) between the loss factor (tanδph) of the rubber member 4 at a temperature of 120 ± 5 ° C and the loss factor (tanδpi) of the rubber member 4 at a surface temperature of 60 ± 5 ° C of the rubber member 4 is 0. Because it is above 66, the loss factor changes with the temperature change of the rubber member in the temperature range from 60 ° C to 120 ° C. Small order, over a range of high temperature side working temperature from using standard temperature, it is found to exhibit excellent vibration absorbing characteristics.

また、本発明においてダンパに圧入した状態でのゴム部材4のせん断歪みは、35%より大きく60%未満、より好ましくは、45%以上55%以下である。ここで用いるゴム部材4のせん断歪みは、相対ゴム歪みに相当するものであり、本発明では、高温時における補機の合計負荷トルクに一定の安全係数を乗算したトルクで測定した値である。なお、当該せん断歪みが大きいほど、振動減衰性能が高いことがよく知られている。本発明では、当該条件下でのゴム部材4のせん断歪みは、35%より大きく60%未満であるゴム部材4を採用する。当該条件におけるゴム部材4のせん断歪みを35%より大きく60%未満の範囲とすることにより、所定の振動吸収特性を確保しつつ、長期間使用したとしてもゴム部材の破断やゴム摩耗による摩耗粉発生等が生じにくくなり、トーショナルダンパとして要求される耐久性を満たすことが可能となる。さらに、当該条件におけるゴム部材4のせん断歪みを45%以上55%以下の範囲とすることにより、所定の振動吸収特性を確保しつつ、より高い耐久性を実現することが可能となる。   In the present invention, the shear strain of the rubber member 4 in a state where it is press-fitted into the damper is greater than 35% and less than 60%, and more preferably 45% or more and 55% or less. The shear strain of the rubber member 4 used here corresponds to a relative rubber strain, and in the present invention, it is a value measured by a torque obtained by multiplying the total load torque of the auxiliary machine at a high temperature by a certain safety factor. It is well known that the greater the shear strain, the higher the vibration damping performance. In the present invention, the rubber member 4 having a shear strain of greater than 35% and less than 60% under the above conditions is employed. Even if the rubber member 4 is used for a long period of time while ensuring the predetermined vibration absorption characteristics by setting the shear strain of the rubber member 4 in the range of more than 35% and less than 60% under the above conditions, the wear powder due to the rubber member breakage or rubber wear Occurrence and the like are less likely to occur, and the durability required as a torsional damper can be satisfied. Furthermore, by setting the shear strain of the rubber member 4 under the above conditions to be in the range of 45% or more and 55% or less, higher durability can be realized while ensuring predetermined vibration absorption characteristics.

さらに、本発明に用いるゴム部材41は、60℃における損失係数(tanδi)が0.39以上で、120℃における損失係数(tanδh)と60℃における損失係数(tanδi)との損失係数比(tanδh/tanδi)が0.87以上であることが好ましい。このようなゴム部材41をトーショナルダンパ1に用いることにより、通常使用温度から高温まで優れた動振動吸収を示すからである。   Further, the rubber member 41 used in the present invention has a loss coefficient (tan δi) at 60 ° C. of 0.39 or more, and the loss coefficient ratio (tan δh) between the loss coefficient (tan δh) at 120 ° C. and the loss coefficient (tan δi) at 60 ° C. / Tan δi) is preferably 0.87 or more. This is because using such a rubber member 41 for the torsional damper 1 exhibits excellent dynamic vibration absorption from the normal use temperature to a high temperature.

また、本発明に用いるゴム部材41は、当該ゴム部材41に1.4MPaの引張応力を複数回加えたときの伸び率が34%より大きく62%未満である特性を有することが好ましい。当該伸び率が34%以下であると、トーショナルダンパに装着した際に、所望の振動吸収性能が得られにくくなる問題があり、62%以上であると定トルクにおいて所望の耐久性が得られにくくなる問題があるからである。   Moreover, it is preferable that the rubber member 41 used in the present invention has a characteristic that the elongation percentage when the tensile stress of 1.4 MPa is applied to the rubber member 41 a plurality of times is greater than 34% and less than 62%. When the elongation is 34% or less, there is a problem that it is difficult to obtain a desired vibration absorption performance when mounted on a torsional damper. When the elongation is 62% or more, desired durability is obtained at a constant torque. This is because there is a problem that becomes difficult.

さらに、本発明に用いるゴム部材41は、50%伸長時のモジュラスが1.28MPaより大きく、1.82MPa未満である特性を有することが好ましい。当該50%伸長時のモジュラスが1.28MPa以下であるとトーショナルダンパとして要求される耐久性を満たすことが困難となり、当該50%伸長時のモジュラスが1.82MPa以上であるとゴムの練り加工性、加硫成形性が悪化する問題があるからである。   Furthermore, the rubber member 41 used in the present invention preferably has a characteristic that the modulus at 50% elongation is greater than 1.28 MPa and less than 1.82 MPa. When the modulus at 50% elongation is 1.28 MPa or less, it becomes difficult to satisfy the durability required as a torsional damper, and when the modulus at 50% elongation is 1.82 MPa or more, rubber kneading is performed. This is because there is a problem that the property and vulcanization formability deteriorate.

上述したような特性を備えたゴム部材41は、例えば、エチレン・プロピレン・ジエン三元コポリマー(EPDM)やシリコーンを主成分とするゴム組成物を加硫成形することにより実現することができる。具体的には、EPDM100重量部に対して、カーボンブラック100重量部以上、プロセスオイル40重量部以上が添加されたゴム組成物を周知の方法により所定形状(本実施例では、円筒状)に加硫成形することにより得ることができる。カーボンブラック量は、当該ゴム組成物を加硫成形して得られるゴム部材の損失係数(tanδ)に大きく影響し、EPDM100重量部に対して100重量部を下回ると、当該ゴム組成物を加硫成形して得られたゴム部材の損失係数(tanδ)が小さくなり、上述したような高い減衰性能を実現することが困難となる。   The rubber member 41 having the above-described characteristics can be realized by, for example, vulcanizing and molding a rubber composition mainly composed of ethylene / propylene / diene ternary copolymer (EPDM) or silicone. Specifically, a rubber composition in which 100 parts by weight or more of carbon black and 40 parts by weight or more of process oil are added to 100 parts by weight of EPDM is added to a predetermined shape (cylindrical in this embodiment) by a well-known method. It can be obtained by sulfur molding. The amount of carbon black greatly affects the loss factor (tan δ) of a rubber member obtained by vulcanizing and molding the rubber composition. When the amount is less than 100 parts by weight with respect to 100 parts by weight of EPDM, the rubber composition is vulcanized. The loss coefficient (tan δ) of the rubber member obtained by molding becomes small, and it becomes difficult to realize the high damping performance as described above.

また、本発明において、当該ゴム組成物のEPDMのポリマー分率は、20重量%以上40重量%以下であることが好ましい。ここで、EPDMのポリマー分率は、以下の式(3)により表される。   In the present invention, the EPDM polymer fraction of the rubber composition is preferably 20% by weight or more and 40% by weight or less. Here, the polymer fraction of EPDM is represented by the following formula (3).

(数5)
EPDMのポリマー分率(重量%)=EPDMポリマー重量部数÷合計重量部数×100・・・(3)
(Equation 5)
EPDM polymer fraction (% by weight) = EPDM polymer parts by weight / total parts by weight × 100 (3)

当該EPDMのポリマー分率が20重量%未満では、ゴム組成物の粘着性が上昇し、製造過程における練り加工性が悪化し、また、EPDMのポリマー分率が40重量%以上では、損失係数(tanδ)が所望の値よりも低下してしまう。   When the EPDM polymer fraction is less than 20% by weight, the tackiness of the rubber composition is increased, and the kneadability in the production process is deteriorated. When the EPDM polymer fraction is 40% by weight or more, the loss factor ( tan δ) falls below a desired value.

また、上述したゴム組成物に含まれるカーボンブラックの粒径は小さいほど好ましい。含まれるカーボンブラックの粒径が小さいほど、当該ゴム組成物を加硫成形して得られるゴム部材の損失係数(tanδ)が大きくなる。また、当該カーボンブラックの粒径は、当該カーボンブラックのヨウ素吸着量が大きいほど、小さくなる。したがって、当該ゴム組成物に含まれるカーボンブラックは、ヨウ素吸着量が70mg/g以上185mg/g以下の範囲であるカーボンブラックを用いることが好ましい。また、当該カーボンブラックは、当該カーボンブラックのDBP(可塑剤:フタル酸ジブチル(Dibutyl phthalate)吸油量が大きいほど、ストラクチャーが大きくなり、導電性が向上する。したがって、当該ゴム組成物に含まれるカーボンブラックは、DBP吸油量が40cm/100g以上120cm/100g以下の範囲にあるカーボンブラックを用いることが好ましい。こうすることで、当該カーボンブラックを含むゴム組成物を加硫成形して得られるゴム部材をトーショナルダンパに装着したときに、トーショナルダンパの帯電を防止し、耐久性を向上させることができる。 Moreover, the smaller the particle size of the carbon black contained in the rubber composition described above, the better. The smaller the particle size of the carbon black contained, the greater the loss factor (tan δ) of the rubber member obtained by vulcanization molding of the rubber composition. Moreover, the particle size of the carbon black becomes smaller as the iodine adsorption amount of the carbon black is larger. Therefore, it is preferable to use carbon black having an iodine adsorption amount in the range of 70 mg / g or more and 185 mg / g or less as the carbon black contained in the rubber composition. In addition, the carbon black has a larger structure and higher conductivity as the DBP (plasticizer: dibutyl phthalate) oil absorption of the carbon black increases. black, DBP oil absorption of 40 cm 3/100 g or more 120 cm 3/100 g is the use of carbon black in the following ranges preferred. in this way, obtained by vulcanizing a rubber composition comprising the carbon black When the rubber member is attached to the torsional damper, charging of the torsional damper can be prevented and durability can be improved.

なお、上述したゴム組成物に用いる加硫剤としては、過酸化物や、共架橋剤等を用いることができる。具体的に、過酸化物としては、1,1−ビス(tert−ブチルペルオキシ)シクロヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルペルオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルペルオキシ)ヘキシン−3、2,5−ジメチル−2,5−ジ(ベンゾイルペルオキシ)ヘキサン、1,3−ジ(2−tert−ブチルペルオキシイソプロピル)ベンゼン、ジtert−ブチルペルオキシド、ジクミルペルオキシド、N−ブチル−4,4−ジ(tert−ブチルペルオキシ)バレレート、tert−ブチルクミルペルオキシド等を用いることができる。   In addition, as a vulcanizing agent used for the rubber composition described above, a peroxide, a co-crosslinking agent, or the like can be used. Specifically, as the peroxide, 1,1-bis (tert-butylperoxy) cyclohexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2, 5-di (tert-butylperoxy) hexyne-3,2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 1,3-di (2-tert-butylperoxyisopropyl) benzene, ditert-butyl Peroxide, dicumyl peroxide, N-butyl-4,4-di (tert-butylperoxy) valerate, tert-butylcumyl peroxide and the like can be used.

共架橋剤としては、トリアリルイソシアネート、エチレングリコールジメタクリレート、トリメチロ−ルプロパントリメタクリレート、トリアリルシアヌレート、キノンジオキシム、1,2−ポリブタジエンなどを用いることができる。   As the co-crosslinking agent, triallyl isocyanate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, quinone dioxime, 1,2-polybutadiene, and the like can be used.

また、ゴム組成物には、上述した成分の他にも、周知のゴム添加剤としてプロセスオイル(鉱物油)や、可塑剤、亜鉛華、ステアリン酸亜鉛、老化防止剤などを含有することができる。   In addition to the components described above, the rubber composition can contain a process oil (mineral oil), a plasticizer, zinc white, zinc stearate, an anti-aging agent and the like as known rubber additives. .

以上の構成により、トーショナルダンパ1を製造する場合には、ハブ2と慣性リング3を図示しない支持台に略同心円状に配置して、図3に示すように、ハブ2と慣性リング3との間隙部5に円筒状のゴム部材41を圧入する。この際において、間隙部5は、ゴム部材41の径方向の厚みよりも狭く形成されているため、図示しない治具を用いてゴム部材41を圧縮しながら当該間隙部5内に圧入する。   With the above configuration, when the torsional damper 1 is manufactured, the hub 2 and the inertia ring 3 are arranged substantially concentrically on a support base (not shown), and as shown in FIG. A cylindrical rubber member 41 is press-fitted into the gap 5. At this time, since the gap 5 is formed to be narrower than the thickness of the rubber member 41 in the radial direction, the rubber member 41 is pressed into the gap 5 while being compressed using a jig (not shown).

さらに、本発明において、当該間隙部5の圧入方向における端部には、外方にいくにしたがって拡開した傾斜間隙部52が形成されているため、間隙寸法が主圧縮間隙部51よりも大きい傾斜間隙部52に沿って円滑にゴム部材41を圧入することができる。特に、本発明における傾斜間隙部52を形成するハブ外周面25Aと慣性リング内周面3Aには、主圧縮間隙部51を形成するハブ外周面25Aと慣性リング内周面3Aより表面粗さが小さい、例えば、十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上15μm未満である摩擦低減領域53を備えているため、摩耗が生じやすい高減衰特性を備えたゴム部材を用いた場合であっても、圧入作業時における皺等を原因とするゴム部材4の亀裂の発生を効果的に抑制することができ、しかも振動減衰効果が優れたゴム部材を用いることにより、振動減衰効果に優れ、かつ、耐久性の高いトーショナルダンパを実現することができる。   Furthermore, in the present invention, an inclined gap portion 52 that is expanded outward is formed at the end portion in the press-fitting direction of the gap portion 5, so that the gap size is larger than that of the main compression gap portion 51. The rubber member 41 can be smoothly press-fitted along the inclined gap portion 52. In particular, the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A forming the inclined gap 52 in the present invention have a surface roughness that is greater than that of the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A forming the main compression gap 51. For example, a rubber member having a high damping characteristic that easily causes wear is used because the friction reduction region 53 is small, for example, a ten-point average roughness (Rzjis) (JIS B0601-1994) of 4 μm or more and less than 15 μm. Even in this case, it is possible to effectively suppress the occurrence of cracks in the rubber member 4 due to wrinkles and the like during press-fitting work, and by using a rubber member having an excellent vibration damping effect, the vibration damping effect It is possible to realize a torsional damper that is excellent in durability and high durability.

また、慣性リング3とハブ2との間隙部5に圧入されたゴム部材4は、慣性リング3とハブ2との間において円周方向に相互にずれる捩れ移動が生じるが、当該ゴム部材4は、主圧縮間隙部51においてハブ外周面25Aと慣性リング内周面3Aとによって圧縮保持されているため、捩れ移動が抑制される。特に、本発明では、上述した摩擦低減領域53以外の主圧縮間隙部51におけるハブ外周面25A及び慣性リング内周面3Aの表面粗さは、傾斜間隙部52を構成する各傾斜面52A、52Bより大きい粗さ、例えば、十点平均粗さ(Rzjis)(JIS B0601−1994)で15μmより大きく30μm以下とすることにより、主圧縮間隙部51におけるゴム部材4と外周面25A及び内周面3Aとの間における物理的固着力を確保することができるため、捩れ移動を抑制できる。   Further, the rubber member 4 press-fitted into the gap portion 5 between the inertia ring 3 and the hub 2 causes a torsional movement that is shifted in the circumferential direction between the inertia ring 3 and the hub 2. Since the main compression gap 51 is compressed and held by the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A, torsional movement is suppressed. In particular, in the present invention, the surface roughness of the outer peripheral surface 25A of the hub and the inner peripheral surface 3A of the inertia ring in the main compression gap 51 other than the friction reduction region 53 described above is the inclined surfaces 52A, 52B constituting the inclined gap 52. By setting a larger roughness, for example, a ten-point average roughness (Rzjis) (JIS B0601-1994) to be larger than 15 μm and not larger than 30 μm, the rubber member 4 and the outer peripheral surface 25A and the inner peripheral surface 3A in the main compression gap 51 are formed. Therefore, the torsional movement can be suppressed.

また、ハブ2と慣性リング3との間隙部5の傾斜間隙部52に形成された摩擦低減領域53の表面粗さは、ゴム部材4を圧縮保持する主圧縮間隙部より小さく、例えば、十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上15μm以下である。したがって、当該傾斜間隙部52に保持されたゴム部材4に捩れ移動が生じたとしても、当該傾斜間隙部52を構成する各傾斜面52A、52Bとゴム部材4とが擦れ合って摩耗する不都合を著しく解消することができる。このため、摩耗が生じやすい高減衰特性を備えたゴム部材を用いた場合であっても、当該ゴム部材4と当該傾斜間隙部52を構成する各傾斜面52A、52Bとの摩擦によって摩耗粉が発生する不都合を効果的に抑制することができ、同時に当該ゴム部材4に皺や亀裂が発生する不都合を著しく抑制できる。   Further, the surface roughness of the friction reduction region 53 formed in the inclined gap portion 52 of the gap portion 5 between the hub 2 and the inertia ring 3 is smaller than that of the main compression gap portion that compresses and holds the rubber member 4, for example, ten points. The average roughness (Rzjis) (JIS B0601-1994) is 4 μm or more and 15 μm or less. Therefore, even if the rubber member 4 held in the inclined gap 52 is twisted and moved, the inclined surfaces 52A and 52B constituting the inclined gap 52 and the rubber member 4 are rubbed and worn out. It can be remarkably solved. For this reason, even when a rubber member having a high damping characteristic that easily causes wear is used, wear powder is generated by friction between the rubber member 4 and the inclined surfaces 52A and 52B constituting the inclined gap portion 52. The inconvenience which generate | occur | produces can be suppressed effectively, and the inconvenience which a crack and a crack generate | occur | produce in the said rubber member 4 can be suppressed remarkably simultaneously.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

1.トーショナルダンパ用ゴム部材の製造及び評価
(1)ゴム組成物の調整工程
実施例1〜実施例3は、まず、バンバリーミキサーにEPDM100重量部を投入し、回転数40rpmで1分間素練りした後、カーボンブラック140重量部、プロセスオイル70重量部、亜鉛華5重量部、ステアリン酸亜鉛1重量部、老化防止剤2重量部を投入して2分間混練し、さらに1分間混練した後、混練物をバンバリーミキサーから取り出した。続いて、取り出した混練物をロール間隔5mmとした12インチロールに巻き付けてシート状に成形し、成形した生地を室温にて12時間以上放置した。ここで、カーボンブラックは、ヨウ素吸着量が110mg/gであり、DBP吸油量が70cm/100gであるカーボンブラックを用いた。なお、ヨウ素吸着量は±7mg/g、DBP吸油量は±7cm/100gの許容範囲を有する。
1. Production and evaluation of rubber member for torsional damper (1) Adjustment process of rubber composition In Examples 1 to 3, first, 100 parts by weight of EPDM was put into a Banbury mixer and masticated at a rotational speed of 40 rpm for 1 minute. , 140 parts by weight of carbon black, 70 parts by weight of process oil, 5 parts by weight of zinc oxide, 1 part by weight of zinc stearate and 2 parts by weight of anti-aging agent were added and kneaded for 2 minutes, and further kneaded for 1 minute, Was removed from the Banbury mixer. Subsequently, the kneaded product taken out was wound around a 12-inch roll with a roll interval of 5 mm and formed into a sheet, and the formed dough was left at room temperature for 12 hours or more. Here, carbon black is the iodine adsorption amount 110 mg / g, DBP oil absorption amount using carbon black as a 70cm 3/100 g. Incidentally, the iodine adsorption of ± 7 mg / g, DBP oil absorption has a tolerance of ± 7cm 3 / 100g.

次に、上述した生地をロール間隔4mmとして6インチロールに巻き付けて、過酸化物としての2,5−ジメチル−2,5−ジ(tert−ブチルペルオキシ)ヘキサン3.5重量部と共架橋剤としてのトリメチロ−ルプロパントリメタクリレート2重量部を練り込み、切り返しを左右3回ずつ行い、丸め通しを5回行った後、シート状に成形した。   Next, the above-mentioned dough is wound around a 6-inch roll with a roll interval of 4 mm, and 3.5 parts by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane as a peroxide and a co-crosslinking agent. After kneading 2 parts by weight of trimethylolpropane trimethacrylate as above, turning back and forth 3 times each, rounding 5 times, and then forming into a sheet.

実施例1と実施例2とは、用いたEPDMが異なる以外は、同じ条件とした。すなわち、用いた市販のEPDMはエチレン重量比率と油展オイル量が異なり、実施例1では油展EPDMを用い、実施例2では、非油展EPDMを用いた。実施例3は、過酸化物としての2,5−ジメチル−2,5−ジ(tert−ブチルペルオキシ)ヘキサンを2.5重量部とする以外は、実施例1と同じ条件とした。各実施例1〜実施例3のゴム組成物の組成比及びEPDMポリマー分率は、後述する表1に評価とあわせて示す。この際、市販のEPDMに含まれる油展オイル量を考慮して添加するプロセスオイル量を調整し、上述の重量比とした。   Example 1 and Example 2 had the same conditions except that the EPDM used was different. That is, the commercially available EPDM used was different in ethylene weight ratio and oil-extended oil amount. In Example 1, oil-extended EPDM was used, and in Example 2, non-oil-extended EPDM was used. Example 3 was the same as Example 1 except that 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane as a peroxide was 2.5 parts by weight. The composition ratios and EPDM polymer fractions of the rubber compositions of Examples 1 to 3 are shown in Table 1 described later together with the evaluation. At this time, the amount of process oil to be added was adjusted in consideration of the amount of oil-extended oil contained in commercially available EPDM, and the above-mentioned weight ratio was obtained.

具体的には、実施例1におけるEPDMは、エチレン重量比率が55%以下の第1グレードと、油展オイル量40重量部以上の油展グレードとを混合してエチレン重量比率58%とした。この際、第1グレード(1G)、油展グレード(OG)及びプロセスオイル量(PO。油展グレードのポリマーに含まれるオイルを差し引いた量)の各重量部の関係は、以下のとおりである。   Specifically, the EPDM in Example 1 was prepared by mixing a first grade having an ethylene weight ratio of 55% or less and an oil-extended grade having an oil-extended oil amount of 40 parts by weight or more to an ethylene weight ratio of 58%. At this time, the relationship between the respective weight parts of the first grade (1G), the oil-extended grade (OG), and the process oil amount (PO, the amount obtained by subtracting the oil contained in the oil-extended grade polymer) is as follows. .

すなわち、第1グレード(1G)の添加量(重量部数)をA、使用する油展グレードのEPDMポリマーを100重量部としたときのポリマーと油展オイルの合計重量部数をDとしたとき、油展グレード(OG)の添加量(重量部数)Bは、(100−A)×D/100である。また、油展グレード(OG)を使用した場合のプロセスオイルの添加量(重量部数)Cは、(油展EPDMを使用しない場合のプロセスオイル添加量)−(A+B−100)である。ここでは、油展EPDMグレードをブレンドして使用する場合は、第1グレードのEPDMポリマーと油展EPDMグレードの油展オイルを除いたEPDMポリマーとの合計が100重量部となるように換算して示している。   That is, when the addition amount (parts by weight) of the first grade (1G) is A, and when the total weight part of the polymer and oil-extended oil is D when the oil-extended grade EPDM polymer used is 100 parts by weight, the oil The addition amount (parts by weight) B of the spreading grade (OG) is (100−A) × D / 100. Moreover, the addition amount (parts by weight) C of the process oil when the oil-extended grade (OG) is used is (process oil addition amount when the oil-extended EPDM is not used) − (A + B−100). Here, when blending and using oil-extended EPDM grades, it is converted so that the total of EPDM polymer of the first grade and EPDM polymer excluding oil-extended oil of oil-extended EPDM grade is 100 parts by weight. Show.

このように、油展グレードのポリマーを使用することで、混練時に添加するプロセスオイル量を抑制でき、カーボンブラックの分散性を向上させ、引張強さと伸びを向上させることができる。   Thus, by using an oil-extended grade polymer, the amount of process oil added during kneading can be suppressed, the dispersibility of carbon black can be improved, and the tensile strength and elongation can be improved.

(2)ゴム組成物の加硫工程
次に、上述のゴム組成物の調整工程において得られた生地を金型に収容し、180℃にて10分間のプレス加硫を行って2mm厚のゴムシートを作製し、更に150℃の恒温槽にて6時間の加熱処理を行った。
(2) Rubber composition vulcanization step Next, the dough obtained in the above rubber composition adjustment step is housed in a mold, and press vulcanized at 180 ° C for 10 minutes to give a rubber having a thickness of 2 mm. A sheet was prepared, and further heat-treated for 6 hours in a thermostatic bath at 150 ° C.

また、トーショナルダンパゴム組成物の組成比を変えた以外は、上記と同じ方法で表1に示す比較例1、比較例2のゴム部材(試験片)を作製した。なお、実施例1〜実施例3、比較例1〜比較例2で用いた加硫前のゴム組成物をそれぞれ組成物1〜組成物3、比較組成物1〜比較組成物2とする。また、組成物1〜組成物3、比較組成物1〜比較組成物2により加硫成形することにより形成されたゴム部材を試験片1〜試験片3、比較試験片1〜比較試験片2とする。比較例2は、実施例1〜3、比較例1とは異なる過酸化物(ジクミルペルオキシド)を3.5重量部用いた。   Moreover, the rubber member (test piece) of the comparative example 1 and the comparative example 2 which are shown in Table 1 by the same method except having changed the composition ratio of the torsional damper rubber composition was produced. The rubber compositions before vulcanization used in Examples 1 to 3 and Comparative Examples 1 to 2 are referred to as Composition 1 to Composition 3 and Comparative Composition 1 to Comparative Composition 2, respectively. Moreover, the rubber member formed by carrying out the vulcanization molding by the composition 1-the composition 3, the comparative composition 1-the comparative composition 2, and the test piece 1-the test piece 3, the comparative test piece 1-the comparative test piece 2 and To do. In Comparative Example 2, 3.5 parts by weight of a peroxide (dicumyl peroxide) different from Examples 1 to 3 and Comparative Example 1 was used.

(3)ゴム部材(試験片1〜試験片3、比較試験片1〜比較試験片2)の評価
a)損失係数(tanδi、tanδh)及び損失係数比(tanδh/tanδi)の評価
60℃における損失係数(tanδi)、120℃における損失係数(tanδh)及び120℃と60℃の損失係数比(tanδh/tanδi)を、JIS K6394に準拠して下記の条件で測定した。測定結果を表1に示す。
<測定条件>
・測定器:上島製作所製の粘弾性アナライザYR−7130
・変形方法:引張
・周波数;100Hz
・振幅:±1%
・プレロード:480mN
・試験片形状:加硫成形後のシート状ゴム部材から採取した。
20mm(つかみ間隔)×4mm(幅)×2mm(厚さ)の短冊形状片
(3) Evaluation of rubber members (test piece 1 to test piece 3, comparative test piece 1 to comparative test piece 2) a) Evaluation of loss factor (tan δi, tan δh) and loss factor ratio (tan δh / tan δi) Loss at 60 ° C The coefficient (tan δi), the loss coefficient at 120 ° C. (tan δh), and the loss coefficient ratio between 120 ° C. and 60 ° C. (tan δh / tan δi) were measured according to JIS K6394 under the following conditions. The measurement results are shown in Table 1.
<Measurement conditions>
Measuring instrument: Viscoelastic analyzer YR-7130 manufactured by Ueshima Seisakusho
・ Deformation method: Tensile ・ Frequency: 100 Hz
・ Amplitude: ± 1%
・ Preload: 480mN
-Test piece shape: It collected from the sheet-like rubber member after vulcanization molding.
20mm (grip interval) x 4mm (width) x 2mm (thickness) strip-shaped piece

Figure 2018197572
Figure 2018197572

b)硬さの評価
JIS K6253に準拠して、デュロメータAを使用し、1秒以内に読み取る方式でゴム部材の硬さを測定した。測定結果を表1に示す。
b) Evaluation of hardness Based on JIS K6253, the durometer A was used and the hardness of the rubber member was measured by the method read within 1 second. The measurement results are shown in Table 1.

c)引張強さ、伸び率、モジュラスの評価
JIS K6251に準拠して、50%伸張時モジュラス、300%伸張時モジュラス、300%伸張時モジュラス/50%伸張時モジュラス比をそれぞれ測定した。なお、試験片の形状はダンベル状5号形である。測定結果を表1に示す。
c) Evaluation of Tensile Strength, Elongation Rate and Modulus According to JIS K6251, the modulus at 50% extension, the modulus at 300% extension, the modulus at 300% extension / the modulus ratio at 50% extension were measured. In addition, the shape of a test piece is dumbbell-shaped No. 5. The measurement results are shown in Table 1.

d)応力1.4MPa時の伸び率(%)
下記の測定条件で繰り返し応力を複数回加えたときのゴム伸び率(%)を評価した。測定結果を表1に示す。
<測定条件>
・引張速度:100mm/min
・応力印加方法:0MPaから1.4MPaまで掃引した後、再度0MPaに戻し、再び1.4MPaまで掃引、これを10回〜50回程度繰り返す。
・試験片形状:ダンベル状5号形(JIS K 6251に準拠)
d) Elongation rate when stress is 1.4MPa (%)
Rubber elongation (%) was evaluated when repeated stress was applied multiple times under the following measurement conditions. The measurement results are shown in Table 1.
<Measurement conditions>
・ Tensile speed: 100 mm / min
Stress application method: after sweeping from 0 MPa to 1.4 MPa, returning to 0 MPa again, sweeping again to 1.4 MPa, and repeating this about 10 to 50 times.
-Specimen shape: Dumbbell shape No. 5 (conforms to JIS K 6251)

2.トーショナルダンパの製造及び評価
(1)トーショナルダンパの製造
上述したゴム部材(試験片1〜試験片3、比較試験片1〜比較試験片2)と同一組成の環状のダンパ用のゴム部材(図3のゴム部材41)を作製し、ハブ2と慣性リング3との間隙部5に圧入して実施例1a〜実施例3a、比較例1a〜比較例2aのトーショナルダンパを製造した。
2. Manufacture and evaluation of torsional damper (1) Manufacture of torsional damper Rubber member for annular damper having the same composition as the rubber members (test piece 1 to test piece 3, comparative test piece 1 to comparative test piece 2) described above ( A rubber member 41) shown in FIG. 3 was prepared and press-fitted into the gap 5 between the hub 2 and the inertia ring 3 to produce torsional dampers of Examples 1a to 3a and Comparative Examples 1a to 2a.

このとき、ハブ2と慣性リング3は前述した鋳鉄、フェノール樹脂或いは金属と樹脂の複合材料等により作製した。これらハブ2と慣性リング3との間隙部5におけるゴム部材4の径方向平均圧縮率は、主圧縮間隙部51で30%〜40%とし、傾斜間隙部52で10%〜20%となるように調整した。このときの傾斜間隙部52の傾斜角度は25°〜35°とし、主圧縮間隙部51及び傾斜間隙部52を構成するハブ外周面25Aと当該慣性リング内周面3Aの十点平均粗さ(Rzjis)(JIS B0601−1994)をすべて15μmより大きく30μm以下の範囲とした。   At this time, the hub 2 and the inertia ring 3 were made of the cast iron, phenol resin, or composite material of metal and resin described above. The average radial compression ratio of the rubber member 4 in the gap 5 between the hub 2 and the inertia ring 3 is 30% to 40% in the main compression gap 51 and 10% to 20% in the inclined gap 52. Adjusted. The inclination angle of the inclined gap portion 52 at this time is set to 25 ° to 35 °, and the ten-point average roughness of the hub outer peripheral surface 25A and the inertia ring inner peripheral surface 3A constituting the main compression gap portion 51 and the inclined gap portion 52 ( Rzjis) (JIS B0601-1994) were all in the range of more than 15 μm and 30 μm or less.

(2)トーショナルダンパの評価
a)損失係数(tanδpi、tanδph)及び損失係数比(tanδph/tanδpi)の評価
トーショナルダンパに圧入したゴム部材4の表面温度60±5℃における当該ゴム部材4の損失係数(tanδpi)、ゴム部材4の表面温度120±5℃における当該ゴム部材4の損失係数(tanδph)及び、損失係数比(tanδph/tanδpi)を高周波振動試験機による共振スイープ法(固有振動数測定)により、非接触表面温度計を用いて下記の条件で測定した。測定結果を表1に示す。
<測定条件>
・ゴム部材表面温度:60±5℃、120±5℃
・加振振幅:±1.7×10−3rad(±0.1°)
・スイープ速度:100Hz/min
(2) Evaluation of torsional damper a) Evaluation of loss factor (tan δpi, tan δph) and loss factor ratio (tan δph / tan δpi) The loss factor (tan δpi), the loss factor (tan δph) of the rubber member 4 at a surface temperature of 120 ± 5 ° C., and the loss factor ratio (tan δph / tan δpi) are determined by a resonance sweep method (natural frequency) using a high-frequency vibration tester. Measurement) was performed under the following conditions using a non-contact surface thermometer. The measurement results are shown in Table 1.
<Measurement conditions>
・ Rubber member surface temperature: 60 ± 5 ℃, 120 ± 5 ℃
Excitation amplitude: ± 1.7 × 10 −3 rad (± 0.1 °)
・ Sweep speed: 100Hz / min

b)せん断歪み(%)の評価
ゴム部材4のせん断歪み(耐久試験時のゴム歪み)(%)は、一定振幅を与えたときの環状ゴム部材の円周方向の変形量を環状ゴム部材の厚みで除算した値に100を乗算した値である。本実施例では、以下の試験条件で測定した。なお、下記の条件下で加振振幅(負荷トルク)はトーショナルダンパのプーリー溝3C(プーリー部)にベルトを介して連結されるエアコン、オルタネータ、ウォーターポンプなどの補機に加わる負荷トルクを合計したトルクに一定の安全係数を乗算した値である。測定結果を表1に示す。
<測定条件>
・雰囲気温度:100±3℃
・加振振幅(負荷トルク):±180N/m
・加振周波数:10Hz
b) Evaluation of shear strain (%) The shear strain (rubber strain during the durability test) (%) of the rubber member 4 is the amount of deformation in the circumferential direction of the annular rubber member when a constant amplitude is given. The value obtained by multiplying the value divided by the thickness by 100. In this example, the measurement was performed under the following test conditions. The vibration amplitude (load torque) under the following conditions is the total load torque applied to auxiliary equipment such as an air conditioner, alternator, and water pump connected to the pulley groove 3C (pulley part) of the torsional damper via a belt. It is a value obtained by multiplying the measured torque by a certain safety factor. The measurement results are shown in Table 1.
<Measurement conditions>
・ Ambient temperature: 100 ± 3 ℃
・ Excitation amplitude (load torque): ± 180 N / m
・ Excitation frequency: 10Hz

c)定トルク耐久性の評価
定トルク耐久性の評価は、ゴム部材4のせん断歪みの測定方法を用いて、耐久試験回数1.0×10回まで、ダンパに圧入されたゴム部材4のせん断歪み(%)の変化を測定して確認した。当該定トルク耐久性の評価において得られたトーショナルダンパの耐久性能特性線図を図6に示す。上述した表1において、定トルク耐久性の評価結果は、規定の試験回数後にゴム部材4の外観に異常がなかったものを「◎」、規定の試験回数後にゴム部材4の外観に変形が確認されたものを「○」、規定の試験回数までにゴム部材4が破損したものを「×」とした。
c) Evaluation of Constant Torque Durability The constant torque durability is evaluated by measuring the shearing force of the rubber member 4 up to 1.0 × 10 7 times using a method for measuring the shear strain of the rubber member 4. The change in shear strain (%) was measured and confirmed. FIG. 6 shows a durability performance characteristic diagram of the torsional damper obtained in the evaluation of the constant torque durability. In Table 1 described above, the constant torque durability evaluation result is “◎” when there is no abnormality in the appearance of the rubber member 4 after the specified number of tests, and deformation is confirmed in the appearance of the rubber member 4 after the specified number of tests. “○” indicates that the rubber member 4 was damaged, and “X” indicates that the rubber member 4 was damaged by the specified number of tests.

d)ゴム摩耗粉の評価
ゴム摩耗粉の評価は以下の条件により行い、ゴム摩耗粉の発生程度を目視で確認した。
<測定条件>
・ゴムせん断歪:±45%(ゴム捩れ角度=±1.59deg.)
・雰囲気温度:23±3℃
・加振周波数:30Hz
・試験回数:7.7×10
d) Evaluation of rubber wear powder The rubber wear powder was evaluated under the following conditions, and the degree of occurrence of the rubber wear powder was visually confirmed.
<Measurement conditions>
-Rubber shear strain: ± 45% (rubber twist angle = ± 1.59 deg.)
・ Ambient temperature: 23 ± 3 ℃
・ Excitation frequency: 30Hz
・ Number of tests: 7.7 × 10 6 times

上述した表1において、ゴム摩耗粉の発生程度の結果は、規定の試験回数後に摩耗粉の付着が極めて少量であるものを「○」、規定の試験回数後に少量の摩耗粉の付着が確認されたものを「△」、規定の試験回数後に大量の摩耗粉の付着が確認されたものを「×」とした。   In Table 1 above, the result of the degree of rubber wear powder generation is “○” when the amount of wear powder adheres very little after the specified number of tests, and a small amount of wear powder adheres after the specified number of tests. “△” was used, and “×” was the case where a large amount of wear powder was confirmed after the prescribed number of tests.

e)トーショナルダンパに圧入されたゴム部材のせん断歪みとゴム摩耗粉の関係
図6に示すように、比較例1aのトーショナルダンパのゴム部材4は、一定負荷トルクに対してゴム部材4のせん断歪みが35%であるゴム部材であるため、摩耗粉の発生も殆ど確認できなかった。また、一定負荷トルクに対してゴム部材4のせん断歪みが60%であるゴム部材4を用いた比較例2aのゴム部材は、規定の試験回数に至る前に破断してしまい、摩耗粉も大量に発生していた。これに対して、実施例1〜実施例3のトーショナルダンパのゴム部材のせん断歪みは、45%以上55%以下で一定負荷トルクに対して適度なゴムせん断歪みを有するため、規定の試験回数終了までゴム部材4の破断はなかったが、少量のゴム摩耗粉が発生した。
e) Relationship between shear strain of rubber member press-fitted into torsional damper and rubber wear powder As shown in FIG. 6, the rubber member 4 of the torsional damper of Comparative Example 1a is Since the rubber member has a shear strain of 35%, almost no generation of wear powder was confirmed. Further, the rubber member of Comparative Example 2a using the rubber member 4 in which the shear strain of the rubber member 4 is 60% with respect to a constant load torque is broken before reaching the specified number of tests, and a large amount of wear powder is generated. Had occurred. On the other hand, since the shear strain of the rubber member of the torsional damper of Examples 1 to 3 has an appropriate rubber shear strain for a constant load torque of 45% to 55%, the specified number of tests The rubber member 4 was not broken until the end, but a small amount of rubber abrasion powder was generated.

そこで、耐久性の評価におけるゴム摩耗粉の発生を極力抑制するために、前述の表1の実施例1〜実施例3のゴム組成物を用いて製作したゴム部材41をトーショナルダンパに圧入し、ゴム摩耗粉発生の原因となっていると考えられるトーショナルダンパのハブ外周面25Aと慣性リング内周面3Aで形成される傾斜間隙部52を構成する各傾斜面52A、52B表面の十点平均粗さ(Rzjis)(JIS B0601−1994)を4μm〜15μmに変化させて、ゴム摩耗粉の発生状況を調べた。以下の、表2に各傾斜面52A、52Bの表面粗さを変化させたゴム摩耗粉確認試験の結果を示す。なお、表2において「摩耗粉発生程度」の「○」、「△」、「×」の評価結果の意味は、表1と同じ意味である。   Therefore, in order to suppress the generation of rubber wear powder in the durability evaluation as much as possible, the rubber member 41 manufactured using the rubber composition of Examples 1 to 3 in Table 1 described above is pressed into the torsional damper. Ten points on the surfaces of the inclined surfaces 52A and 52B constituting the inclined gap portion 52 formed by the hub outer peripheral surface 25A of the torsional damper and the inner peripheral surface 3A of the inertia ring, which are considered to be the cause of the generation of rubber wear powder. The average roughness (Rzjis) (JIS B0601-1994) was changed from 4 μm to 15 μm, and the occurrence of rubber wear powder was examined. Table 2 below shows the results of a rubber wear powder confirmation test in which the surface roughness of each of the inclined surfaces 52A and 52B is changed. In Table 2, the meanings of the evaluation results of “◯”, “Δ”, and “×” of “Abrasion powder generation degree” are the same as those in Table 1.

表2において、比較例3a〜比較例5aは、傾斜間隙部52の表面粗さを変化させることによるゴム摩擦粉発生状況を確認するための対比例であり、実施例1〜実施例3と同様のゴム部材を用いた。比較例3a〜比較例5aは、実施例1a〜実施例3aと径方向平均圧縮率及び主圧縮間隙部51の十点平均粗さ(Rzjis)(JIS B0601−1994)は同様とし、傾斜間隙部52を構成する各傾斜面52A、52Bの十点平均粗さ(Rzjis)(JIS B0601−1994)を20μmとした点のみが異なる。   In Table 2, Comparative Example 3a to Comparative Example 5a are comparative for confirming the state of rubber friction powder generation by changing the surface roughness of the inclined gap portion 52, and are the same as those of Examples 1 to 3. The rubber member was used. Comparative Example 3a to Comparative Example 5a have the same radial average compression ratio and ten-point average roughness (Rzjis) (JIS B0601-1994) of Example 1a to Example 3a, and the inclined gap portion. The only difference is that the 10-point average roughness (Rzjis) (JIS B0601-1994) of each of the inclined surfaces 52A and 52B constituting 52 is set to 20 μm.

Figure 2018197572
Figure 2018197572

表2から、傾斜間隙部52を構成する傾斜面52A、52Bの表面粗さが小さいほど、摩耗粉が減少している傾向が把握できる。よって、傾斜間隙部52を構成する傾斜面52A、52Bを十点平均粗さ(Rzjis)(JIS B0601−1994)が4μm以上15μm以下となるように形成することで、せん断歪みが小さいゴム部材を用いた場合と同様に、摩耗粉の発生を抑制できることが分かる。   From Table 2, it can be grasped that the wear powder tends to decrease as the surface roughness of the inclined surfaces 52A and 52B constituting the inclined gap portion 52 is smaller. Therefore, by forming the inclined surfaces 52A and 52B constituting the inclined gap portion 52 so that the ten-point average roughness (Rzjis) (JIS B0601-1994) is 4 μm or more and 15 μm or less, a rubber member having a small shear strain is formed. It turns out that generation | occurrence | production of abrasion powder can be suppressed similarly to the case where it uses.

以上のことから、間隙部5の圧入入口部分の傾斜間隙部の表面粗さを、ゴム部材4を圧縮保持する主圧縮間隙部よりも小さく、例えば、十点平均粗さ(Rzjis)(JIS B0601−1994)で4μm以上15μm以下とすることで、ダンパ共振時におけるゴム部材4の表面温度60℃での損失係数(tanδpi)が0.23以上で、ゴム部材4のせん断歪みが45%以上55%以下の高減衰特性を備えたゴム部材であっても、傾斜間隙部を構成する各傾斜面との摩擦によって摩耗粉が発生する不都合を効果的に抑制し、皺や亀裂が発生する不都合を著しく抑制することができることがいえる。このように、傾斜間隙部の表面粗さを滑らかにすることで、摩耗しやすい高減衰特性を備えたゴム部材を用いて、長期間、所定の防振特性を維持することができるといえる。   From the above, the surface roughness of the inclined gap portion of the press-fitting inlet portion of the gap portion 5 is smaller than that of the main compression gap portion that compresses and holds the rubber member 4, for example, ten-point average roughness (Rzjis) (JIS B0601). -1994), the loss coefficient (tan δpi) at the surface temperature of the rubber member 4 at 60 ° C. during the damper resonance is 0.23 or more, and the shear strain of the rubber member 4 is 45% or more and 55. Even if it is a rubber member with a high damping characteristic of less than 10%, it is possible to effectively suppress the inconvenience that abrasion powder is generated due to friction with each inclined surface constituting the inclined gap portion, and the inconvenience that wrinkles and cracks are generated. It can be said that it can be remarkably suppressed. Thus, by smoothing the surface roughness of the inclined gap portion, it can be said that the predetermined vibration isolating characteristics can be maintained for a long period of time using a rubber member having a high damping characteristic that easily wears.

なお、上述した実施の形態では、トーショナルダンパは、クランクシャフトやカムシャフトに取り付けられる場合について説明しているが、本発明は、これに限定されることなく、種々の回転軸における捩り振動を低減するために適用することができる。さらに、本発明における高い減衰性能を示すゴム部材は、車両等に用いられるトーショナルダンパ以外にも、様々な用途に用いることができる。   In the above-described embodiment, the case where the torsional damper is attached to the crankshaft or the camshaft is described. However, the present invention is not limited to this, and torsional vibrations on various rotating shafts are described. It can be applied to reduce. Furthermore, the rubber member exhibiting high damping performance in the present invention can be used for various applications other than the torsional damper used in vehicles and the like.

本発明にかかるトーショナルダンパは、ハブ外周面と慣性リング内周面との間隙部の表面粗さが4μm以上30μm以下であり、かつ、当該間隙部の傾斜間隙部の表面粗さが、ゴム部材を圧縮保持する主圧縮間隙部の表面粗さよりも小さいため、傾斜間隙部における摩耗が生じにくく、従前のゴム部材よりも耐久性が良好で、高い減衰特性を備えたゴム部材を用いる場合において、特に有用である。   In the torsional damper according to the present invention, the surface roughness of the gap portion between the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring is 4 μm or more and 30 μm or less, and the surface roughness of the inclined gap portion of the gap portion is rubber. Since the surface roughness of the main compression gap that compresses and holds the member is smaller, wear in the inclined gap is less likely to occur, durability is better than conventional rubber members, and when using a rubber member with high damping characteristics Is particularly useful.

1 トーショナルダンパ
2 ハブ
3 慣性リング
3A 内周面
3B 外周面
3C プーリ溝(プーリー部)
4 ゴム部材(圧入後)
5 間隙部
21 ボス部
22 軸孔
23 キー溝
24 フランジ部
25 筒状部
25A 外周面(ハブ外周面)
41 ゴム部材(圧入前)
51 主圧縮間隙部
52 傾斜間隙部
52A、52B 傾斜面
53 摩擦低減領域
DESCRIPTION OF SYMBOLS 1 Torsional damper 2 Hub 3 Inertial ring 3A Inner peripheral surface 3B Outer peripheral surface 3C Pulley groove (pulley part)
4 Rubber member (after press fitting)
5 Gap part 21 Boss part 22 Shaft hole 23 Key groove 24 Flange part 25 Cylindrical part 25A Outer peripheral surface (hub outer peripheral surface)
41 Rubber member (before press fitting)
51 Main compression gap 52 Inclination gap 52A, 52B Inclined surface 53 Friction reduction region

Claims (11)

回転軸に固定され、当該回転軸と略同心円状の外周面を備えたハブと、当該ハブ外周面と対向し当該外周面と略同心円状の内周面を備えた慣性リングと、当該ハブ外周面と、当該慣性リング内周面との間隙部に圧入されたゴム部材とを備えたトーショナルダンパであって、
当該トーショナルダンパ共振時における当該ゴム部材の表面温度60±5℃での当該ゴム部材の損失係数(tanδpi)が0.23より大きく、高温時における補機の合計負荷トルクで測定したときの当該トーショナルダンパに圧入された状態でのゴム部材のせん断歪みが35%より大きく60%未満であり、
当該間隙部が、当該ハブ外周面と当該慣性リング内周面とにより形成される当該ゴム部材を圧縮保持する主圧縮間隙部と、当該ハブ外周面端部と当該慣性リング内周面端部に形成され、端面にいくにしたがって当該ハブ外周面と当該慣性リング内周面が離間する方向に傾斜した傾斜間隙部とを備え、
当該主圧縮間隙部と傾斜間隙部を形成する当該ハブ外周面と当該慣性リング内周面の表面粗さが4μm以上30μm以下であり、かつ、当該傾斜間隙部を形成するハブ外周面と慣性リング内周面に、当該主圧縮間隙部を形成するハブ外周面と慣性リング内周面より表面粗さが小さい摩擦低減領域を備えることを特徴とするトーショナルダンパ。
A hub that is fixed to the rotating shaft and has an outer peripheral surface that is substantially concentric with the rotating shaft; an inertia ring that is opposed to the outer peripheral surface of the hub and has an inner peripheral surface that is substantially concentric with the outer peripheral surface; A torsional damper including a rubber member press-fitted into a gap between the surface and the inner peripheral surface of the inertia ring,
The loss factor (tan δpi) of the rubber member at a surface temperature of 60 ± 5 ° C. at the time of resonance of the torsional damper is greater than 0.23, and the measurement is performed with the total load torque of the auxiliary machine at a high temperature. The shear strain of the rubber member when pressed into the torsional damper is greater than 35% and less than 60%,
The gap portion includes a main compression gap portion that compresses and holds the rubber member formed by the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring, and an end portion of the hub outer peripheral surface and an inner peripheral surface end portion of the inertia ring. Formed with an inclined gap portion inclined in a direction in which the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring are separated from each other toward the end surface;
The outer peripheral surface of the hub and the inner peripheral surface of the inertia ring that form the main compression gap portion and the inclined gap portion are 4 μm or more and 30 μm or less, and the outer peripheral surface of the hub and the inertia ring that form the inclined gap portion. A torsional damper comprising a hub outer peripheral surface forming the main compression gap portion and a friction reduction region having a smaller surface roughness than the inner peripheral surface of the inertia ring on the inner peripheral surface.
前記摩擦低減領域の前記ハブ外周面と前記慣性リング内周面の表面粗さが4μm以上15μm以下であり、当該摩擦低減領域以外のハブ外周面と前記慣性リング内周面の表面粗さが15μmより大きく30μm以下である請求項1に記載のトーショナルダンパ。   The surface roughness of the outer peripheral surface of the hub and the inner peripheral surface of the inertia ring in the friction reduction region is 4 μm or more and 15 μm or less, and the surface roughness of the outer peripheral surface of the hub other than the friction reduction region and the inner peripheral surface of the inertia ring is 15 μm. The torsional damper according to claim 1, wherein the torsional damper is larger than 30 μm. 以下の式(1)で表される前記ゴム部材の径方向平均圧縮率は、前記主圧縮間隙部の平均圧縮率と前記傾斜間隙部の平均圧縮率により定義され、前記主圧縮間隙部が30%以上40%以下であり、前記傾斜間隙部が10%以上20%以下である請求項1または請求項2に記載のトーショナルダンパ。
Figure 2018197572

ただし、t:圧入前のゴム部材の厚み
:空隙部に圧入したときの各領域におけるゴム部材の厚み
:トーショナルダンパの幅方向の長さ
:空隙部の各領域の幅方向の長さ
n:圧縮率が異なる領域の数であり、2〜7までの整数。
The radial average compression ratio of the rubber member represented by the following formula (1) is defined by the average compression ratio of the main compression gap and the average compression ratio of the inclined gap, and the main compression gap is 30. 3. The torsional damper according to claim 1, wherein the inclination gap is 10% or more and 20% or less.
Figure 2018197572

However, t 0: thickness t n of the rubber member before press-: thickness of the rubber member in each region when pressed into the gap portion L 0: the width direction of the torsional damper length L n: each region of the air gap Length in the width direction n: the number of regions having different compression ratios, and an integer from 2 to 7.
前記傾斜間隙部の傾斜角度が25°以上40°未満である請求項1〜請求項3のいずれか一項に記載のトーショナルダンパ。   The torsional damper according to any one of claims 1 to 3, wherein an inclination angle of the inclined gap portion is 25 ° or more and less than 40 °. 圧入前の前記ゴム部材に1.4MPaの引張応力を複数回加えたときの伸び率が34%より大きく62%未満である請求項1〜請求項4のいずれか一項に記載のトーショナルダンパ。   The torsional damper according to any one of claims 1 to 4, wherein an elongation rate when a tensile stress of 1.4 MPa is applied to the rubber member before press-fitting a plurality of times is greater than 34% and less than 62%. . トーショナルダンパ共振時における前記ゴム部材の表面温度120±5℃での前記ゴム部材の損失係数(tanδph)が0.21以上であり、
当該トーショナルダンパ共振時における前記ゴム部材の表面温度120±5℃での前記ゴム部材の損失係数(tanδph)とトーショナルダンパ共振時における前記ゴム部材の表面温度60±5℃での前記ゴム部材の損失係数(tanδpi)との損失係数比(tanδph/tanδpi)が0.66以上である請求項1〜請求項5のいずれか一項に記載のトーショナルダンパ。
The loss coefficient (tan δph) of the rubber member at a surface temperature of 120 ± 5 ° C. at the time of torsional damper resonance is 0.21 or more,
The loss factor (tan δph) of the rubber member when the surface temperature of the rubber member is 120 ± 5 ° C. during the torsional damper resonance and the rubber member when the surface temperature of the rubber member is 60 ± 5 ° C. during the torsional damper resonance 6. The torsional damper according to claim 1, wherein a loss factor ratio (tan δph / tan δpi) to a loss factor (tan δpi) is 0.66 or more.
圧入前の前記ゴム部材は、60℃における損失係数(tanδi)が0.39以上で、120℃における損失係数(tanδh)と60℃における損失係数(tanδi)との損失係数比(tanδh/tanδi)が0.87以上である請求項1〜請求項6のいずれか一項に記載のトーショナルダンパ。   The rubber member before press-fitting has a loss coefficient (tan δi) at 60 ° C. of 0.39 or more, and a loss coefficient ratio (tan δh / tan δi) between a loss coefficient (tan δh) at 120 ° C. and a loss coefficient (tan δi) at 60 ° C. The torsional damper according to any one of claims 1 to 6, wherein the torsional damper is 0.87 or more. 圧入前の前記ゴム部材の50%伸長時のモジュラスが1.28MPaより大きく、1.82MPa未満である請求項1〜請求項7のいずれか一項に記載のトーショナルダンパ。   The torsional damper according to any one of claims 1 to 7, wherein a modulus at 50% elongation of the rubber member before press-fitting is greater than 1.28 MPa and less than 1.82 MPa. 圧入前の前記ゴム部材は、ゴム組成物を加硫成形したものであって、
当該ゴム組成物は、EPDM100重量部に対して、カーボンブラック100重量部以上、プロセスオイル40重量部以上が添加され、前記EPDMのポリマー分率が20重量%以上40重量%以下である請求項1〜請求項8のいずれか一項に記載のトーショナルダンパ。
The rubber member before press-fitting is obtained by vulcanization molding of a rubber composition,
2. The rubber composition is added with 100 parts by weight or more of carbon black and 40 parts by weight or more of process oil with respect to 100 parts by weight of EPDM, and the polymer fraction of the EPDM is 20% by weight or more and 40% by weight or less. The torsional damper according to any one of claims 8 to 9.
前記カーボンブラックのヨウ素吸着量が70mg/g以上185mg/g以下である請求項9に記載のトーショナルダンパ。   The torsional damper according to claim 9, wherein the carbon black has an iodine adsorption of 70 mg / g or more and 185 mg / g or less. 前記カーボンブラックのDBP吸油量が40cm/100g以上120cm/100g以下である請求項8〜請求項10のいずれか一項に記載のトーショナルダンパ。 Torsional damper according to any one of the carbon black DBP oil absorption of 40 cm 3/100 g or more 120 cm 3/100 g or less is claim 8 according to claim 10.
JP2017101851A 2017-05-23 2017-05-23 Tortional damper Active JP6882067B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017101851A JP6882067B2 (en) 2017-05-23 2017-05-23 Tortional damper
CN201880034259.4A CN110678669A (en) 2017-05-23 2018-05-16 Torsional vibration damper
PCT/JP2018/018920 WO2018216567A1 (en) 2017-05-23 2018-05-16 Torsional damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101851A JP6882067B2 (en) 2017-05-23 2017-05-23 Tortional damper

Publications (2)

Publication Number Publication Date
JP2018197572A true JP2018197572A (en) 2018-12-13
JP6882067B2 JP6882067B2 (en) 2021-06-02

Family

ID=64396417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101851A Active JP6882067B2 (en) 2017-05-23 2017-05-23 Tortional damper

Country Status (3)

Country Link
JP (1) JP6882067B2 (en)
CN (1) CN110678669A (en)
WO (1) WO2018216567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370109B2 (en) 2019-04-25 2022-06-28 Fanuc Corporation Industrial robot and reach extending method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318000B2 (en) * 2019-12-20 2023-07-31 Nok株式会社 torsional damper
KR20220075431A (en) * 2019-12-20 2022-06-08 에누오케 가부시키가이샤 torsional damper
CN113217578B (en) * 2021-06-04 2023-03-21 潍柴动力股份有限公司 Shafting frequency modulation device and engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639538U (en) * 1986-07-08 1988-01-22
JPH0285543A (en) * 1988-09-20 1990-03-27 Toyoda Gosei Co Ltd Dynamic damper
JPH10196719A (en) * 1997-01-09 1998-07-31 Toyoda Gosei Co Ltd Damper pulley
JPH1144344A (en) * 1997-07-25 1999-02-16 Nok Megurasutikku Kk Damper
JP2010151217A (en) * 2008-12-25 2010-07-08 Fukoku Co Ltd Torsional damper
WO2015012018A1 (en) * 2013-07-25 2015-01-29 Nok株式会社 Epdm composition for torsional dampers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330352A1 (en) * 2009-06-30 2010-12-30 Gates Corporation Bonded Part with Laminated Rubber Member and Method of Making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639538U (en) * 1986-07-08 1988-01-22
JPH0285543A (en) * 1988-09-20 1990-03-27 Toyoda Gosei Co Ltd Dynamic damper
JPH10196719A (en) * 1997-01-09 1998-07-31 Toyoda Gosei Co Ltd Damper pulley
JPH1144344A (en) * 1997-07-25 1999-02-16 Nok Megurasutikku Kk Damper
JP2010151217A (en) * 2008-12-25 2010-07-08 Fukoku Co Ltd Torsional damper
WO2015012018A1 (en) * 2013-07-25 2015-01-29 Nok株式会社 Epdm composition for torsional dampers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370109B2 (en) 2019-04-25 2022-06-28 Fanuc Corporation Industrial robot and reach extending method therefor

Also Published As

Publication number Publication date
WO2018216567A1 (en) 2018-11-29
CN110678669A (en) 2020-01-10
JP6882067B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2018216567A1 (en) Torsional damper
WO2018079076A1 (en) Rubber damper member and torsional damper
JP6923315B2 (en) Tortional damper
JP3192082B2 (en) Resin pulley
JP7057684B2 (en) Rubber member and damper using it
JP4075469B2 (en) sticker
WO2018194162A1 (en) Rubber composition for torsional damper, and torsional damper
JP6674061B2 (en) V-ribbed belt and its use
JP2019131657A (en) Rubber member and damper using the same
KR20170095305A (en) Hydrogenated nitrile rubber composition and drivetrain oil seal
EP4080084A1 (en) Torsional damper
EP4080086A1 (en) Torsional damper
US10377932B2 (en) Sealing rubber composition and seal member
JP4668677B2 (en) Transmission belt
EP2933528A1 (en) Transmission belt
JP2018132117A (en) Torsional damper
EP4080083A1 (en) Torsional damper
EP4080085A1 (en) Torsional damper
JP2015532400A (en) Power transmission belt with thermoplastic film containing silicone elastomer
JP7472664B2 (en) Sealing Material
JP2004301254A (en) Sealing device for roller bearing
JP2006029493A (en) V-ribbed belt
JP7447688B2 (en) Sealing member
JP7476682B2 (en) Sealing Material
JP2009030799A (en) Pulley structure and accessory driving system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R150 Certificate of patent or registration of utility model

Ref document number: 6882067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250