JP2018197292A - Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable - Google Patents

Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable Download PDF

Info

Publication number
JP2018197292A
JP2018197292A JP2017101991A JP2017101991A JP2018197292A JP 2018197292 A JP2018197292 A JP 2018197292A JP 2017101991 A JP2017101991 A JP 2017101991A JP 2017101991 A JP2017101991 A JP 2017101991A JP 2018197292 A JP2018197292 A JP 2018197292A
Authority
JP
Japan
Prior art keywords
tube
polyvinyl chloride
shrinkable tube
mass
cal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017101991A
Other languages
Japanese (ja)
Inventor
一也 田中
Kazuya Tanaka
一也 田中
喜博 中川
Yoshihiro Nakagawa
喜博 中川
啓太 池田
Keita Ikeda
啓太 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017101991A priority Critical patent/JP2018197292A/en
Publication of JP2018197292A publication Critical patent/JP2018197292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a polyvinyl chloride-based heat shrinkable tube excellent in bloom resistance, bleeding resistance, heat stability, and flexibility.SOLUTION: There is provided a polyvinyl chloride-based heat shrinkable tube mainly containing a resin composition by blending 100 pts.mass of a polyvinyl chloride-based resin (A), 0.1 to 5.0 pts.mass of a methyl tin-based compound (B), and 20 to 70 pts.mass of a plasticizer (C) having solubility parameter in a range of 8.7 to 10.0 (cal/ml).SELECTED DRAWING: None

Description

本発明は、耐ブリード性、耐ブルーム性、熱安定性、柔軟性に優れたポリ塩化ビニル系熱収縮性チューブに関する。   The present invention relates to a polyvinyl chloride heat-shrinkable tube excellent in bleed resistance, bloom resistance, thermal stability and flexibility.

ポリ塩化ビニル系熱収縮性チューブは、その優れた機械的特性と経済性から、自動車のハーネスや電線・ケーブル等の被覆用途、コンデンサー、二次電池等の電気絶縁用途に広く用いられている。   Polyvinyl chloride heat-shrinkable tubes are widely used for covering applications such as automobile harnesses, electric wires and cables, and electrical insulation applications such as capacitors and secondary batteries because of their excellent mechanical properties and economy.

一方で、ポリ塩化ビニル系樹脂は、ポリマーの製造時、フィルム、シートなどの成形品の加工時、あるいは、使用時における熱、光、酸素などの作用により脱塩化水素反応を主体とする分解劣化、着色を生じる。そのため、鉛系化合物や、錫系化合物、脂肪酸金属塩、あるいは、エポキシ化合物やフェノール系化合物、ポリオールなどの非金属系化合物などの安定剤を配合する必要がある。   Polyvinyl chloride resin, on the other hand, decomposes and degrades mainly due to the dehydrochlorination reaction due to the effects of heat, light, oxygen, etc. during the production of polymers, the processing of molded products such as films and sheets, or during use. Cause coloration. Therefore, it is necessary to blend stabilizers such as lead compounds, tin compounds, fatty acid metal salts, or non-metallic compounds such as epoxy compounds, phenol compounds, and polyols.

また、ポリ塩化ビニル系樹脂に柔軟性を付与するために、フタル酸ジ2−エチルヘキシルに代表されるような可塑剤を配合する手法が一般的に用いられる。しかしながら、可塑剤を多量に配合する場合、安定剤のブルームや可塑剤のブリードが問題になることが多く、従来の技術においては安定剤のブルームと可塑剤のブリードの双方を抑制することが困難であった。このような問題を解決するため、例えば特許文献1には、特定の構造を有する可塑剤を用いた樹脂組成物が開示されている。   In order to impart flexibility to the polyvinyl chloride resin, a method of blending a plasticizer represented by di-2-ethylhexyl phthalate is generally used. However, when blending a large amount of plasticizer, stabilizer bloom and plasticizer bleed often become problems, and it is difficult to suppress both stabilizer bloom and plasticizer bleed in the prior art. Met. In order to solve such a problem, for example, Patent Document 1 discloses a resin composition using a plasticizer having a specific structure.

特開2016−44298号公報Japanese Unexamined Patent Publication No. 2016-44298

特許文献1の技術は、70℃程度での耐ブルーム性や耐ブリード性は改良されているものの、熱収縮性チューブには100℃を超えるような環境での長期間の使用に耐え得る品質が求められるため、このような従来技術では、熱収縮性チューブに求められるレベルの高温での使用時において、耐ブリード性と耐ブルーム性の双方に優れたポリ塩化ビニル系熱収縮性チューブを提供することは困難であった。   Although the technique of Patent Document 1 has improved bloom resistance and bleed resistance at about 70 ° C., the heat-shrinkable tube has a quality that can withstand long-term use in an environment exceeding 100 ° C. Therefore, such a conventional technique provides a polyvinyl chloride heat-shrinkable tube excellent in both bleed resistance and bloom resistance when used at a high temperature level required for a heat-shrinkable tube. It was difficult.

本発明者は、上述した課題を解決すべく鋭意検討した結果、ポリ塩化ビニル系樹脂に対して特定の安定剤、及び、特定の可塑剤を配合することで、耐ブリード性、耐ブルーム性、熱安定性に優れたポリ塩化ビニル系熱収縮性チューブを実現できることを見出し、本発明の完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor blended a specific stabilizer and a specific plasticizer with respect to the polyvinyl chloride resin, thereby preventing bleeding resistance, bloom resistance, The present inventors have found that a polyvinyl chloride heat-shrinkable tube having excellent thermal stability can be realized, and have completed the present invention.

すなわち発明は、ポリ塩化ビニル系樹脂(A)100質量部に対して、メチル錫系化合物(B)を0.1〜5.0質量部、及び、溶解度パラメータが8.7〜10.0(cal/ml)1/2の範囲にある可塑剤(C)を20〜70質量部配合してなる樹脂組成物を主成分としてなることを特徴とするポリ塩化ビニル系熱収縮性チューブである。 That is, the invention is based on 100 parts by mass of the polyvinyl chloride resin (A), 0.1 to 5.0 parts by mass of the methyltin compound (B), and a solubility parameter of 8.7 to 10.0 ( cal / ml) A polyvinyl chloride heat-shrinkable tube comprising a resin composition containing 20 to 70 parts by mass of a plasticizer (C) in a range of 1/2 as a main component.

本発明によれば、耐ブルーム性、耐ブリード性、熱安定性、柔軟性に優れたポリ塩化ビニル系熱収縮性チューブが得られるため、自動車のハーネスや電線・巻線・ケーブル等の被覆用途、あるいはコンデンサーや二次電池等の電気絶縁被覆用途などに適した熱収縮性チューブを提供することができる。   According to the present invention, a polyvinyl chloride heat-shrinkable tube excellent in bloom resistance, bleed resistance, thermal stability, and flexibility can be obtained, so that it can be used for covering automobile harnesses, electric wires, windings, cables, etc. Alternatively, it is possible to provide a heat-shrinkable tube suitable for electrical insulation coating applications such as capacitors and secondary batteries.

以下に本発明のポリ塩化ビニル系熱収縮性チューブ(以下、「本発明のチューブ」と称する)の実施形態を説明する。   Embodiments of the polyvinyl chloride heat-shrinkable tube of the present invention (hereinafter referred to as “the tube of the present invention”) will be described below.

<ポリ塩化ビニル系樹脂(A)>
本発明に用いるポリ塩化ビニル系樹脂(A)としては、任意の平均重合度の塩化ビニル系樹脂を用いることができる。好ましくは、ポリ塩化ビニル系樹脂(A)の平均重合度は1300〜4000である。平均重合度が1300以上であれば、十分な機械強度を得ることができる。一方、平均重合度が4000以下であれば、溶融粘度の増加に伴う発熱が生じることなく、分解による着色の発生を無くすことができる。
よって、このような観点から、ポリ塩化ビニル系樹脂(A)の平均重合度は、前述の範囲の中でも特に1500以上、或いは3800以下であるのがより一層好ましく、その中でも1700以上或いは3600以下であるのがさらに好ましい。
<Polyvinyl chloride resin (A)>
As the polyvinyl chloride resin (A) used in the present invention, a vinyl chloride resin having an arbitrary average degree of polymerization can be used. Preferably, the average degree of polymerization of the polyvinyl chloride resin (A) is 1300 to 4000. If the average degree of polymerization is 1300 or more, sufficient mechanical strength can be obtained. On the other hand, if the average degree of polymerization is 4000 or less, heat generation due to an increase in melt viscosity does not occur, and the occurrence of coloring due to decomposition can be eliminated.
Therefore, from such a viewpoint, the average degree of polymerization of the polyvinyl chloride resin (A) is more preferably 1500 or more, or 3800 or less, particularly within the above-mentioned range, and among these, 1700 or more or 3600 or less. More preferably.

前記ポリ塩化ビニル系樹脂(A)としては、塩化ビニルの単独重合体(「塩化ビニル系単独重合体」と称する)のほか、塩化ビニルと共重合可能な単量体との共重合体(以下、「塩化ビニル系共重合体」とする)、この塩化ビニル系共重合体以外の重合体に塩化ビニルをグラフト共重合させたグラフト共重合体(以下、塩化ビニル系グラフト共重合体)などを挙げることができる。   As the polyvinyl chloride resin (A), in addition to a homopolymer of vinyl chloride (referred to as “vinyl chloride homopolymer”), a copolymer with a monomer copolymerizable with vinyl chloride (hereinafter referred to as “vinyl chloride homopolymer”). , A “vinyl chloride copolymer”), a graft copolymer obtained by graft copolymerization of vinyl chloride with a polymer other than this vinyl chloride copolymer (hereinafter referred to as a vinyl chloride graft copolymer), etc. Can be mentioned.

前記塩化ビニル系共重合体は、共重合体中の塩化ビニル以外の構成単位の含有量が多くなると機械的特性が低下するため、塩化ビニル系共重合体中に占める塩化ビニルの割合が60〜99質量%であることが好ましい。
なお、前記塩化ビニル系単独重合体、及び、塩化ビニル系共重合体は、任意の方法、例えば乳化重合法、懸濁重合法などで重合することができる。
The vinyl chloride copolymer has a mechanical property that decreases as the content of constituent units other than vinyl chloride in the copolymer increases. Therefore, the proportion of vinyl chloride in the vinyl chloride copolymer is 60 to 60%. It is preferable that it is 99 mass%.
The vinyl chloride homopolymer and the vinyl chloride copolymer can be polymerized by an arbitrary method such as an emulsion polymerization method or a suspension polymerization method.

ここで、前記ポリ塩化ビニル系樹脂と共重合可能な単量体としては、分子中に反応性二重結合を有するものであればよい。例えばエチレン、プロピレン、ブチレンなどのα−オレフィン類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、ブチルビニルエーテル、セチルビニルエーテルなどのビニルエーテル類; アクリル酸、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸エチル、メタクリル酸フェニルなどのアクリル酸またはメタクリル酸のエステル類、スチレン、α−メチルスチレンなどの芳香族ビニル類、塩化ビニリデン、フッ化ビニルなどのハロゲン化ビニル類、N−フェニルマレイミド、N − シクロヘキシルマレイミドなどのN−置換マレイミド類などを挙げることができ、これらは単独、又は、2種以上の組み合わせで用いることができる。   Here, the monomer copolymerizable with the polyvinyl chloride resin may be any monomer having a reactive double bond in the molecule. For example, α-olefins such as ethylene, propylene and butylene, vinyl esters such as vinyl acetate and vinyl propionate, vinyl ethers such as butyl vinyl ether and cetyl vinyl ether; unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl acrylate , Esters of acrylic acid or methacrylic acid such as ethyl methacrylate and phenyl methacrylate, aromatic vinyls such as styrene and α-methylstyrene, vinyl halides such as vinylidene chloride and vinyl fluoride, N-phenylmaleimide, N-substituted maleimides such as N-cyclohexylmaleimide can be exemplified, and these can be used alone or in combination of two or more.

前記塩化ビニル系共重合体以外の重合体としては、塩化ビニルをグラフト共重合できるものであればよい。例えばエチレン・酢酸ビニル共重合体、エチレン・酢酸ビニル・一酸化炭素共重合体、エチレン・エチルアクリレート共重合体、エチレン・エチルアクリレート・一酸化炭素共重合体、エチレン・メチルメタクリレート共重合体、エチレン・プロピレン共重合体、アクリロニトリル・ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレンなどを挙げることができ、これらを単独、又は、2種以上の組み合わせで用いることができる。   As the polymer other than the vinyl chloride copolymer, any polymer that can graft-polymerize vinyl chloride may be used. For example, ethylene / vinyl acetate copolymer, ethylene / vinyl acetate / carbon monoxide copolymer, ethylene / ethyl acrylate copolymer, ethylene / ethyl acrylate / carbon monoxide copolymer, ethylene / methyl methacrylate copolymer, ethylene -A propylene copolymer, an acrylonitrile butadiene copolymer, a polyurethane, chlorinated polyethylene, a chlorinated polypropylene etc. can be mentioned, These can be used individually or in combination of 2 or more types.

<メチル錫系化合物(B)>
本発明に用いるメチル錫系化合物(B)としては、以下にあげる化合物を用いることができる。例えば、(モノ又はジ)錫(トリ又はジ)ヘキサノエート、(モノ又はジ)メチル錫2−エチルヘキサノエート、(モノ又はジ)メチル錫カプリノエート、(モノ又はジ)メチル錫ラウレート、(モノ又はジ)メチル錫ステアレート、(モノ又はジ)メチル錫パルミテートなどの脂肪酸塩系化合物や、(モノ又はジ)メチル錫エチルマレート、(モノ又はジ)メチル錫イソプロピルマレート、(モノ又はジ)メチル錫ブチルマレート、(モノ又はジ)メチル錫ヘキシルマレート、(モノ又はジ)メチル錫イソオクチルマレート、(モノ又はジ)メチル錫2−エチルヘキシルマレート、(モノ又はジ)メチル錫トリデシルマレート、(モノ又はジ)メチル錫ステアリルマレートなどのマレイン酸誘導体や、(モノ又はジ)メチル錫ドデシルメルカプチド、(モノ又はジ)メチル錫2−エチルヘキシルチオグリコラート、(モノ又はジ)メチル錫メルカプトエチルオレアートおよびメルカプトエチルタラートなどの含イオウ化合物などがあげられる。中でも、(モノ又はジ)メチル錫2−エチルヘキシルチオグリコラートなどの(モノ又はジ)メチル錫メルカプトエステルを用いることが好ましく、モノメチル錫2−エチルヘキシルチオグリコラートとジメチル錫2−エチルヘキシルチオグリコラートとを併用することが特に好ましい。
<Methyltin compound (B)>
As the methyltin compound (B) used in the present invention, the following compounds can be used. For example, (mono or di) tin (tri or di) hexanoate, (mono or di) methyltin 2-ethylhexanoate, (mono or di) methyltin caprynoate, (mono or di) methyltin laurate, (mono or Fatty acid salt compounds such as di) methyl tin stearate, (mono or di) methyl tin palmitate, (mono or di) methyl tin ethyl maleate, (mono or di) methyl tin isopropyl maleate, (mono or di) methyl tin Butyl malate, (mono or di) methyl tin hexyl malate, (mono or di) methyl tin isooctyl malate, (mono or di) methyl tin 2-ethylhexyl malate, (mono or di) methyl tin tridecyl malate, ( Maleic acid derivatives such as mono or di) methyl tin stearyl malate and (mono or di) methyl tin dodecyl mel Peptide, (mono or di) methyl tin 2-ethylhexyl thioglycolate, and (mono- or di) sulfur-containing compounds such as methyl tin mercaptoethyl oleate and mercaptoethyl thioglycolates like. Among them, it is preferable to use (mono or di) methyl tin mercaptoester such as (mono or di) methyl tin 2-ethylhexyl thioglycolate, and monomethyl tin 2-ethylhexyl thioglycolate and dimethyl tin 2-ethylhexyl thioglycolate It is particularly preferable to use in combination.

<可塑剤(C)>
本発明に用いる可塑剤は、Hoyの値を用いたSmallの式で算出した溶解度パラメータ(SP値)が8.7〜10.0(cal/ml)1/2の範囲にあるものが好ましく、8.8〜9.8(cal/ml)1/2の範囲にあるものがより好ましく、8.9〜9.6(cal/ml)1/2の範囲にあるものがさらに好ましい。可塑剤(C)の溶解度パラメータが上記の範囲内にあることにより、ポリ塩化ビニル樹脂(A)との相溶性に優れ、耐ブリード性に優れた熱収縮性チューブが得られる。
<Plasticizer (C)>
The plasticizer used in the present invention preferably has a solubility parameter (SP value) calculated by the Small formula using the Hoy value in the range of 8.7 to 10.0 (cal / ml) 1/2 . Those in the range of 8.8 to 9.8 (cal / ml) 1/2 are more preferable, and those in the range of 8.9 to 9.6 (cal / ml) 1/2 are more preferable. When the solubility parameter of the plasticizer (C) is within the above range, a heat-shrinkable tube having excellent compatibility with the polyvinyl chloride resin (A) and excellent bleed resistance can be obtained.

本発明において「溶解度パラメータ」または「SP値(δ)」とは、 Hildebrandの正則溶液の理論に基づき定められる、多成分系での各成分の活量を定めるパラメータである。溶解度パラメータには種々の計算法があるが、本願明細書では特に他に断りがないかぎりは、 Hoyの定数を用いてSmall法により算出したものを言う。
すなわち、溶解度パラメータδ [(cal/ml)1/2]は以下の式1で算出される。
δ =d*(ΣG)/M (式1)
ここでdは密度[g/ml] であり、GはHoyの各官能基の分子引力定数 [(cal・ml)1/2/mol]であり、Mは分子量[g/mol]である。
In the present invention, the “solubility parameter” or “SP value (δ)” is a parameter that determines the activity of each component in a multicomponent system, which is determined based on the theory of Hildebrand's regular solution. There are various calculation methods for the solubility parameter. In the present specification, unless otherwise specified, the solubility parameter is calculated by the Small method using Hoy's constant.
That is, the solubility parameter δ [(cal / ml) 1/2 ] is calculated by the following equation 1.
δ = d * (ΣG) / M (Formula 1)
Here, d is a density [g / ml], G is a molecular attractive constant [(cal · ml) 1/2 / mol] of each functional group of Hoy, and M is a molecular weight [g / mol].

溶解度パラメータが8.7〜10.0(cal/ml)1/2の範囲にある可塑剤(C)としては、具体的には、ジブチルフタレート(9.4(cal/ml)1/2)、ジ(2−エチルヘキシル)フタレート(8.9(cal/ml)1/2)、ブチルベンジルフタレート(9.9(cal/ml)1/2)、ジ(ブトキシエチル)フタレート(9.2(cal/ml)1/2)、ジブチルアジペート(8.9(cal/ml)1/2)、ジ(2−エチルヘキシル)アジペート(8.5(cal/ml)1/2)、ジ(ブトキシエチル)アジペート(8.8(cal/ml)1/2)、ジブチルセバケート(8.8(cal/ml)1/2)、トリ(2−エチルヘキシル)トリメリテート(8.9(cal/ml)1/2)、エポキシ化大豆油(9.00(cal/ml)1/2)、トリクレジルホスフェート(9.7(cal/ml)1/2)、トリエチレングリコールジ(2−エチル)ブチレート(8.7(cal/ml)1/2)、ジブチルカルビトールアジペート(8.8(cal/ml)1/2)、メチレンビスブチルチオグリコレート(9.5(cal/ml)1/2)、アセチルクエン酸トリブチル(9.0(cal/ml)1/2)などがあげられる。 Specific examples of the plasticizer (C) having a solubility parameter in the range of 8.7 to 10.0 (cal / ml) 1/2 include dibutyl phthalate (9.4 (cal / ml) 1/2 ). Di (2-ethylhexyl) phthalate (8.9 (cal / ml) 1/2 ), butylbenzyl phthalate (9.9 (cal / ml) 1/2 ), di (butoxyethyl) phthalate (9.2 ( cal / ml) 1/2 ), dibutyl adipate (8.9 (cal / ml) 1/2 ), di (2-ethylhexyl) adipate (8.5 (cal / ml) 1/2 ), di (butoxyethyl) ) Adipate (8.8 (cal / ml) 1/2 ), dibutyl sebacate (8.8 (cal / ml) 1/2 ), tri (2-ethylhexyl) trimellitate (8.9 (cal / ml) 1 / 2 ), Epoxidized soybean oil (9.00 (cal / ml) 1/2 ), tricresyl phosphate (9.7 (cal / ml) 1/2 ), triethylene glycol di (2-ethyl) butyrate (8.7 (Cal / ml) 1/2 ), dibutyl carbitol adipate (8.8 (cal / ml) 1/2 ), methylene bisbutylthioglycolate (9.5 (cal / ml) 1/2 ), acetyl And tributyl acid (9.0 (cal / ml) 1/2 ).

また、前記可塑剤(C)の分子量は400以上、2000以下であることが好ましく、450以上、1800以下であることがより好ましく、500以上、1600以下であることがさらに好ましい。前記可塑剤(C)の分子量がかかる範囲内にあれば、可塑剤の過剰なブリードを生じることなく、ポリ塩化ビニル系樹脂(A)の柔軟性を向上することができる。   The molecular weight of the plasticizer (C) is preferably 400 or more and 2000 or less, more preferably 450 or more and 1800 or less, and further preferably 500 or more and 1600 or less. If the molecular weight of the plasticizer (C) is within such a range, the flexibility of the polyvinyl chloride resin (A) can be improved without causing excessive bleeding of the plasticizer.

<各成分の配合割合>
ポリ塩化ビニル系樹脂(A)100質量部に対するメチル錫系化合物(B)の配合量は0.1〜5.0質量部であることが好ましい。メチル錫系化合物(B)の配合量の下限は、0.5質量部以上であることが好ましく、1.0質量部以上であることがさらに好ましい。また、メチル錫系化合物(B)の配合量の上限は、4.5質量部以下であることがより好ましく、4.0質量部以下であることがさらに好ましい。メチル錫系化合物(B)の配合割合がかかる範囲内にあれば、ポリ塩化ビニル系樹脂(A)の成形加工性を低下させることなく、熱安定性を向上することができる。
<Combination ratio of each component>
It is preferable that the compounding quantity of the methyl tin-type compound (B) with respect to 100 mass parts of polyvinyl chloride-type resin (A) is 0.1-5.0 mass parts. The lower limit of the compounding amount of the methyltin compound (B) is preferably 0.5 parts by mass or more, and more preferably 1.0 part by mass or more. Moreover, as for the upper limit of the compounding quantity of a methyltin type compound (B), it is more preferable that it is 4.5 mass parts or less, and it is further more preferable that it is 4.0 mass parts or less. If the mixing ratio of the methyltin compound (B) is within such a range, the thermal stability can be improved without deteriorating the moldability of the polyvinyl chloride resin (A).

また、ポリ塩化ビニル系樹脂(A)に対する溶解度パラメータが8.7〜10.0(cal/ml)1/2の範囲にある可塑剤(C)の配合量は20〜70質量部であることが好ましい。可塑剤(C)の配合量の下限は、30質量部以上であることがより好ましく、40質量部以上であることがさらに好ましい。また、可塑剤(C)の配合量の上限は、60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましい。可塑剤(C)の配合量がかかる範囲内にあれば、実用上問題ない寸法安定性を維持しながら、ポリ塩化ビニル樹脂(A)に柔軟性を付与することができる。 Moreover, the compounding quantity of the plasticizer (C) in which the solubility parameter with respect to the polyvinyl chloride resin (A) is in the range of 8.7 to 10.0 (cal / ml) 1/2 is 20 to 70 parts by mass. Is preferred. As for the minimum of the compounding quantity of a plasticizer (C), it is more preferred that it is 30 mass parts or more, and it is still more preferred that it is 40 mass parts or more. Moreover, as for the upper limit of the compounding quantity of a plasticizer (C), it is more preferable that it is 60 mass parts or less, and it is further more preferable that it is 50 mass parts or less. When the blending amount of the plasticizer (C) is within such a range, flexibility can be imparted to the polyvinyl chloride resin (A) while maintaining dimensional stability that is not problematic in practice.

なお、本発明のチューブを構成する樹脂組成物には、本発明の効果を損なわない範囲で熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、抗菌・防かび剤、帯電防止剤、滑剤、顔料、染料などの添加剤を配合することもできる。   The resin composition constituting the tube of the present invention includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a light stabilizer, an antibacterial / antifungal agent, an antistatic agent, as long as the effects of the present invention are not impaired. Additives such as lubricants, pigments and dyes can also be blended.

<柔軟性>
本発明のチューブの柔軟性は、振動周波数:10Hz、昇温速度:3℃/分、歪み:0.1%の条件下で貯蔵弾性率を測定した。23℃における貯蔵弾性率で表すことができ、前記貯蔵弾性率が100MPa〜1000MPaであることが好ましい。貯蔵弾性率が上記範囲内であれば、本発明のチューブ被覆後の物品の曲げ加工等の二次加工性が優れたものとなり好ましい。
<Flexibility>
As for the flexibility of the tube of the present invention, the storage elastic modulus was measured under the conditions of vibration frequency: 10 Hz, heating rate: 3 ° C./min, and strain: 0.1%. It can represent with the storage elastic modulus in 23 degreeC, and it is preferable that the said storage elastic modulus is 100 MPa-1000 MPa. When the storage elastic modulus is within the above range, it is preferable because secondary workability such as bending of the article after the tube coating of the present invention is excellent.

<収縮率>
本発明のチューブは、98±2℃の熱風オーブン内に5分間静置した後の長さ方向の収縮率が0〜40%であることが好ましい。上限値としてはより好ましくは35%以下、さらに好ましくは30%以下である。また径方向の収縮率は20〜70%であることが好ましい。下限値としてはより好ましくは25%以上、さらに好ましくは30%以上であり、上限値としてはより好ましくは60%以下、さらに好ましくは50%以下である。収縮率が上記範囲内であれば、被覆後の外観は良好なものとすることができ、低温で十分に収縮させることができるため、好ましい。
<Shrinkage rate>
The tube of the present invention preferably has a contraction rate in the length direction of 0 to 40% after being left in a hot air oven at 98 ± 2 ° C. for 5 minutes. As an upper limit, More preferably, it is 35% or less, More preferably, it is 30% or less. The shrinkage in the radial direction is preferably 20 to 70%. The lower limit is more preferably 25% or more, still more preferably 30% or more, and the upper limit is more preferably 60% or less, still more preferably 50% or less. If the shrinkage rate is within the above range, the appearance after coating can be good, and it can be sufficiently shrunk at a low temperature, which is preferable.

<チューブの製造方法>
本発明のチューブの製造方法としては特に限定されないが、例えば、ポリ塩化ビニル系樹脂(A)、メチル錫系化合物(B)、可塑剤(C)、および、その他添加剤の混合物を、単軸押出機を用いて原料を融解させ、丸ダイを用いて未延伸チューブを押出し、ついで延伸してシームレスの熱収縮性チューブとする方法が好ましい方法として挙げられる。その他、TダイやIダイを用いて押出・延伸したフィルムを融着、溶着又は接着などにより貼合せてチューブ形状とする方法、さらに前記チューブ又はフィルムをスパイラル状に貼合せてチューブ形状とする方法などがあげられる。
<Method for producing tube>
Although it does not specifically limit as a manufacturing method of the tube of this invention, For example, the mixture of a polyvinyl chloride resin (A), a methyltin type compound (B), a plasticizer (C), and other additives is uniaxial. A preferred method is to melt the raw material using an extruder, extrude an unstretched tube using a round die, and then stretch to obtain a seamless heat-shrinkable tube. In addition, a method in which a film extruded / stretched using a T die or an I die is bonded by fusion, welding, or bonding to form a tube, and further, the tube or film is bonded in a spiral to form a tube. Etc.

ここで、丸ダイを用いて未延伸チューブを押出し、次いで延伸して熱収縮性チューブとする方法についてさらに詳細に説明する。
ポリ塩化ビニル系樹脂(A)、メチル錫系化合物(B)、可塑剤(C)、および、その他添加剤の混合物を、単軸押出機を用いて溶融、混練し、丸ダイから連続的に押し出した後、強制的に冷却することで実質的に未延伸のチューブを成型する。強制冷却の手段としては、低温の水に浸漬する方法、冷風による方法等を用いることができる。中でも低温の水に浸漬する方法が、冷却効率が高く有効である。この実質的に未延伸のチューブを連続的に次の延伸工程に供給してもよく、また一度ロール状に巻き取った後、次の延伸工程の原反として用いても良い。中でも、製造効率や熱効率の点から実質的に未延伸のチューブを連続的に次の延伸工程に供給する方法が好ましい。
Here, the method of extruding an unstretched tube using a round die and then stretching to obtain a heat-shrinkable tube will be described in more detail.
A mixture of the polyvinyl chloride resin (A), the methyltin compound (B), the plasticizer (C), and other additives is melted and kneaded using a single screw extruder, and continuously from a round die. After extrusion, the tube is forcibly cooled to form a substantially unstretched tube. As a means for forced cooling, a method of immersing in low-temperature water, a method using cold air, or the like can be used. Of these, the method of immersing in low-temperature water is effective because of its high cooling efficiency. The substantially unstretched tube may be continuously supplied to the next stretching step, or may be used as a raw material for the next stretching step after being wound into a roll. Especially, the method of supplying a substantially unstretched tube to the next extending process continuously from the point of manufacturing efficiency or thermal efficiency is preferable.

前記方法にて得られた実質的に未延伸のチューブは、ガラス転移温度以上の温度に加熱した後、チューブ内側より圧縮気体で加圧し、延伸する。延伸方法は特に限定されるものではないが、例えば未延伸チューブの一方の端から圧縮気体による圧力を管の内側に加えつつ一定速度で送り出し、次いで温水又は赤外線ヒーター等により加熱し、径方向の延伸倍率を規制するために冷却された円筒管の中を通して固定倍率の延伸を行う。円筒管の適当な位置で延伸される様に温度条件等を調整する。
円筒管で冷却された延伸後のチューブは、一対のニップロールにより挟んで延伸張力を保持しながら延伸チューブとして引き取り巻取られる。延伸は、長さ方向又は径方向のいずれの順序でもよいが、同時に行うのが好ましい。
The substantially unstretched tube obtained by the above method is heated to a temperature equal to or higher than the glass transition temperature, and then pressurized with a compressed gas from the inside of the tube and stretched. The stretching method is not particularly limited, but, for example, it is fed from one end of an unstretched tube at a constant speed while applying pressure by a compressed gas to the inside of the tube, and then heated by hot water or an infrared heater, etc. In order to regulate the draw ratio, drawing at a fixed ratio is performed through a cooled cylindrical tube. The temperature conditions and the like are adjusted so that the cylinder tube is stretched at an appropriate position.
The stretched tube cooled by the cylindrical tube is sandwiched by a pair of nip rolls and is taken up and wound as a stretched tube while maintaining the stretching tension. Stretching may be performed in any order in the length direction or the radial direction, but is preferably performed simultaneously.

延伸条件は、可塑剤やその他添加剤の配合割合や、目的とする熱収縮率などにより調整される。
長さ方向の延伸倍率は、未延伸チューブの送り速度と延伸後のニップロール速度との比で決められ、径方向の延伸倍率は未延伸外径と延伸チューブ外径の比で決められる。これ以外の延伸加圧方法として、未延伸チューブ送り出し側と延伸チューブ引き取り側双方をニップロールに挟み封入した圧縮気体の内圧を維持する方法も採用できる。
The stretching conditions are adjusted by the blending ratio of the plasticizer and other additives, the target heat shrinkage rate, and the like.
The stretching ratio in the length direction is determined by the ratio of the feed speed of the unstretched tube and the nip roll speed after stretching, and the stretching ratio in the radial direction is determined by the ratio of the unstretched outer diameter to the stretched tube outer diameter. As another stretching and pressurizing method, a method of maintaining the internal pressure of the compressed gas in which both the unstretched tube feed side and the stretched tube take-up side are sandwiched and sealed between nip rolls can be employed.

本発明のチューブは、実質的に未延伸のチューブを径方向、及び長さ方向に延伸して作製される。このとき径方向の延伸倍率は、1.3〜5.0倍が好ましく、1.4〜4.8倍がより好ましく、さらに好ましくは1.5〜4.6倍である。また、長さ方向には未延伸でもよいが、好ましくは1.02倍以上で2.0倍以下、好ましくは1.5倍以下、より好ましくは1.3倍以下の範囲の倍率で延伸させて得られたものが好ましい。ここで、熱収縮性チューブの径方向の延伸倍率が1.3倍以上であれば被覆するのに足りる収縮量が得られ、また5.0倍以下であれば、延伸時にチューブが破断することなく、外観良好な熱収縮性チューブが得られる。   The tube of the present invention is produced by stretching a substantially unstretched tube in the radial direction and the length direction. At this time, the draw ratio in the radial direction is preferably 1.3 to 5.0 times, more preferably 1.4 to 4.8 times, and still more preferably 1.5 to 4.6 times. Although it may be unstretched in the length direction, it is preferably stretched at a magnification in the range of 1.02 times to 2.0 times, preferably 1.5 times or less, more preferably 1.3 times or less. What was obtained was preferable. Here, if the draw ratio in the radial direction of the heat-shrinkable tube is 1.3 times or more, an amount of shrinkage sufficient for coating can be obtained, and if it is 5.0 times or less, the tube breaks during drawing. And a heat-shrinkable tube with good appearance can be obtained.

本発明のチューブの用途は、耐ブルーム性、耐ブリード性、熱安定性、柔軟性に優れているため、これら特性を求められる用途であれば特に制限されるものではないが、例えば、自動車用ハーネスや電線・巻線・ケーブル等の被覆用途、コンデンサーや二次電池等の電気絶縁用途に好適に使用することができる。   The use of the tube of the present invention is excellent in bloom resistance, bleed resistance, thermal stability, and flexibility, and is not particularly limited as long as these properties are required. It can be suitably used for coating applications such as harnesses, electric wires, windings and cables, and electrical insulation applications such as capacitors and secondary batteries.

以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明は、何ら実施例および比較例に限定されない。以下に示す実施例の数値は、上記の実施形態において記載される数値(すなわち、上限値または下限値)に代替することができる。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples and comparative examples. The numerical values in the following examples can be substituted for the numerical values (that is, the upper limit value or the lower limit value) described in the above embodiment.

<ポリ塩化ビニル系樹脂(A)>
(A)−1:大洋塩ビ(株)の商品名TH−2500(平均重合度2400〜2600)
<Polyvinyl chloride resin (A)>
(A) -1: Trade name TH-2500 (average polymerization degree 2400-2600) of Taiyo PVC Co., Ltd.

<メチル錫系化合物(B)>
(B)−1:日東化成(株)の商品名TVS#AT−1500(モノメチル錫2−エチルヘキシルチオグリコラート/ジメチル錫2−エチルヘキシルチオグリコラート混合物)
<Methyltin compound (B)>
(B) -1: Trade name TVS # AT-1500 of Nitto Kasei Co., Ltd. (monomethyltin 2-ethylhexylthioglycolate / dimethyltin 2-ethylhexylthioglycolate mixture)

<可塑剤(C)>
(C)−1:ジェイプラス(株)の商品名TOTM(トリ(2−エチルヘキシル)トリメリテート、SP値:8.9(cal/ml)1/2、重量平均分子量:547)
(C)−2:(株)ADEKAの商品名アデカサイザーPN−9302(アジピン酸系ポリエステル化合物、SP値:9.1(cal/ml)1/2、重量平均分子量:1600)
<Plasticizer (C)>
(C) -1: Trade name TOTM (tri (2-ethylhexyl) trimellitate, SP value: 8.9 (cal / ml) 1/2 , weight average molecular weight: 547) of JPLUS Co., Ltd.
(C) -2: Adeka Sizer PN-9302 (trade name of ADEKA) (adipic acid-based polyester compound, SP value: 9.1 (cal / ml) 1/2 , weight average molecular weight: 1600)

<滑剤(D)>
(D)−1:花王(株)の商品名カオーワックス230−2(酸化ポリエチレンワックスとクエン酸ジエステル化合物の混合物)
<Lubricant (D)>
(D) -1: Kao Wax 230-2, trade name of Kao Corporation (mixture of oxidized polyethylene wax and citric acid diester compound)

(1)耐ブリード性
厚さ0.25mm、外径6mm、長さ200mmのチューブを105℃の熱風オーブン内に48時間静置した後、チューブ表面の状態を以下の基準で官能評価した。チューブ表面の状態に全く変化がないものを○、明確なべたつき感があるものを×とした。
(1) Bleed resistance After a tube having a thickness of 0.25 mm, an outer diameter of 6 mm, and a length of 200 mm was left in a hot air oven at 105 ° C. for 48 hours, the state of the tube surface was subjected to sensory evaluation based on the following criteria. The case where there was no change in the state of the tube surface was marked with ◯, and the case where there was a clear stickiness was marked with ×.

(2)耐ブルーム性
厚さ0.25mm、外径6mm、長さ200mmのチューブを40℃の熱風オーブン内に480時間静置した後、チューブ表面の状態を以下の基準で官能評価した。チューブ表面の状態に全く変化がないものを○、チューブ表面に白化が見られるものを×とした。
(2) Bloom resistance After a tube having a thickness of 0.25 mm, an outer diameter of 6 mm, and a length of 200 mm was left in a hot air oven at 40 ° C. for 480 hours, the state of the tube surface was subjected to sensory evaluation based on the following criteria. The case where there was no change in the state of the tube surface was indicated by ○, and the case where whitening was observed on the tube surface was indicated by ×.

(3)熱安定性
チューブから10mm×10mmの試験片を切り出し、200℃の熱風オーブンにて60分間加熱した後の外観を目視にて観察した。
(3) Thermal stability A 10 mm × 10 mm test piece was cut out from the tube, and the appearance after heating in a hot air oven at 200 ° C. for 60 minutes was visually observed.

(4)柔軟性
動的粘弾性測定機(アイティ計測(株)の商品名:粘弾性スペクトロメーターVA−200)を用いて、振動周波数:10Hz、昇温速度:3℃/分、歪み:0.1%の条件下で貯蔵弾性率を測定した。23℃における貯蔵弾性率が100MPa〜1000MPaの範囲にあるものを合格とした。
(4) Flexibility Using a dynamic viscoelasticity measuring device (trade name of IT Measurement Co., Ltd .: Viscoelastic Spectrometer VA-200), vibration frequency: 10 Hz, heating rate: 3 ° C./min, strain: 0 The storage modulus was measured under the condition of 1%. A storage elastic modulus at 23 ° C. in the range of 100 MPa to 1000 MPa was regarded as acceptable.

(実施例1)
(A)−1を100質量部に対して、(B)−1を3部、(C)−1を30部、(D)−1を1部配合した混合物を、単軸押出機を用いて樹脂温度200℃にて混練した後、丸ダイより厚さ0.9mm、外径4.0mmのチューブを押出した。次いで、延伸温度90℃、径方向の延伸倍率2.0倍で延伸した後、冷却して折りたたみ、ロール状に巻き取った。得られたチューブは厚さ0.25mm、外径6mmであった。得られたチューブについて耐ブリード性、耐ブルーム性、熱安定性、柔軟性の評価を行った。結果を表1に示す。
Example 1
Using a single screw extruder, a mixture containing (A) -1 at 100 parts by mass, 3 parts of (B) -1, 30 parts of (C) -1 and 1 part of (D) -1 was used. After kneading at a resin temperature of 200 ° C., a tube having a thickness of 0.9 mm and an outer diameter of 4.0 mm was extruded from a round die. Next, the film was stretched at a stretching temperature of 90 ° C. and a stretching ratio of 2.0 times in the radial direction, cooled, folded, and wound into a roll. The obtained tube had a thickness of 0.25 mm and an outer diameter of 6 mm. The obtained tube was evaluated for bleed resistance, bloom resistance, thermal stability and flexibility. The results are shown in Table 1.

(実施例2)
(A)−1を100質量部に対して、(C)−1を50部とした以外は実施例1と同様の方法にてチューブの作製、評価を行った。結果を表1に示す。
(Example 2)
A tube was produced and evaluated in the same manner as in Example 1 except that (A) -1 was changed to 100 parts by mass and (C) -1 was changed to 50 parts. The results are shown in Table 1.

(実施例3)
(A)−1を100質量部に対して、(C)−1に代えて(C)−2を40部配合した以外は実施例1と同様の方法にてチューブの作製、評価を行った。結果を表1に示す。
Example 3
The tube was prepared and evaluated in the same manner as in Example 1, except that 40 parts of (C) -2 was blended in place of (C) -1 with respect to 100 parts by mass of (A) -1. . The results are shown in Table 1.

(比較例1)
メチル錫系化合物(B)の代わりに、日東化成(株)の商品名:TVS#MP−300K(ジブチル錫マレートエステル系化合物、以下(M)−1とする。)を用い、(A)−1を100質量部に対して、(M)−1を3部、(C)−1を50部とした以外は実施例1と同様の方法にてチューブの作製、評価を行った。結果を表1に示す。
(Comparative Example 1)
In place of the methyltin compound (B), Nitto Kasei Co., Ltd. trade name: TVS # MP-300K (dibutyltin malate ester compound, hereinafter referred to as (M) -1) is used. The tube was prepared and evaluated in the same manner as in Example 1 except that -1 was 100 parts by mass, 3 parts for (M) -1 and 50 parts for (C) -1. The results are shown in Table 1.

(比較例2)
メチル錫系化合物(B)の代わりに、日東化成(株)の商品名:TVS#8831(ジオクチル錫メルカプトエステル系化合物、以下(M)−2とする。)を用い、(A)−1を100質量部に対して、(M)−2を3部、(C)−1を50部とした以外は実施例1と同様の方法にてチューブの作製、評価を行った。結果を表1に示す。
(Comparative Example 2)
In place of the methyltin compound (B), a product name of Nitto Kasei Co., Ltd .: TVS # 8831 (dioctyltin mercaptoester compound, hereinafter referred to as (M) -2) is used, and (A) -1 is used. A tube was prepared and evaluated in the same manner as in Example 1 except that 3 parts of (M) -2 and 50 parts of (C) -1 were used with respect to 100 parts by mass. The results are shown in Table 1.

(比較例3)
溶解度パラメータが8.7〜10.0(cal/ml)1/2の範囲にある可塑剤(C)の代わりに、(株)ジェイプラスの商品名DINA(ジイソノニルアジペート、SP値:8.5(cal/ml)1/2、重量平均分子量:427、以下(P)−1とする。)を用い、(A)−1を100質量部に対して、(P)−1を50部とした以外は実施例1と同様の方法にてチューブの作製、評価を行った。結果を表1に示す。
(Comparative Example 3)
In place of the plasticizer (C) having a solubility parameter in the range of 8.7 to 10.0 (cal / ml) 1/2 , trade name DINA (diisononyl adipate, SP value: 8.5) of J-Plus Co., Ltd. (Cal / ml) 1/2 , weight average molecular weight: 427, hereinafter referred to as (P) -1), and (A) -1 is 100 parts by mass and (P) -1 is 50 parts. A tube was prepared and evaluated in the same manner as in Example 1 except that. The results are shown in Table 1.

Figure 2018197292
Figure 2018197292

実施例1〜3で得られたチューブは、耐ブルーム性、耐ブリード性、熱安定性、柔軟性全てに優れるものであった。一方、本発明の要件を満たさない比較例1〜3のチューブは、いずれかの品質を満たすことができないものであった。   The tubes obtained in Examples 1 to 3 were excellent in all of bloom resistance, bleed resistance, thermal stability, and flexibility. On the other hand, the tubes of Comparative Examples 1 to 3 that do not satisfy the requirements of the present invention cannot satisfy any quality.

本発明のポリ塩化ビニル系熱収縮性チューブは、耐ブルーム性、耐ブリード性、熱安定性、柔軟性に優れており、自動車用ハーネスや電線・巻線・ケーブル等の被覆用途、コンデンサーや二次電池等の電気絶縁用途に好適に使用することができる。   The polyvinyl chloride heat-shrinkable tube of the present invention is excellent in bloom resistance, bleed resistance, thermal stability and flexibility, and is used for coating harnesses for automobile harnesses, electric wires, windings, cables, capacitors, and the like. It can be suitably used for electrical insulation applications such as secondary batteries.

Claims (5)

ポリ塩化ビニル系樹脂(A)100質量部に対して、メチル錫系化合物(B)を0.1〜5.0質量部、及び、溶解度パラメータが8.7〜10.0(cal/ml)1/2の範囲にある可塑剤(C)を20〜70質量部配合してなる樹脂組成物を主成分としてなることを特徴とするポリ塩化ビニル系熱収縮性チューブ。 0.1 to 5.0 parts by mass of a methyltin compound (B) and a solubility parameter of 8.7 to 10.0 (cal / ml) with respect to 100 parts by mass of the polyvinyl chloride resin (A) A polyvinyl chloride heat-shrinkable tube comprising a resin composition containing 20 to 70 parts by mass of a plasticizer (C) in a range of 1/2 as a main component. 前記(B)が、(モノまたはジ)メチル錫メルカプトエステルであることを特徴とする請求項1に記載のポリ塩化ビニル系熱収縮性チューブ。   The polyvinyl chloride heat-shrinkable tube according to claim 1, wherein the (B) is (mono or di) methyltin mercaptoester. 前記(C)の重量平均分子量が400〜2000であることを特徴とする請求項1または2に記載のポリ塩化ビニル系熱収縮性チューブ。   The polyvinyl chloride heat-shrinkable tube according to claim 1 or 2, wherein the weight average molecular weight of (C) is 400 to 2000. 前記(C)が、トリ(2−エチルヘキシル)トリメリテートであることを特徴とする請求項1〜3のいずれかに記載のポリ塩化ビニル系熱収縮性チューブ。   The polyvinyl chloride heat-shrinkable tube according to any one of claims 1 to 3, wherein (C) is tri (2-ethylhexyl) trimellitate. 請求項1〜4のいずれかに記載のポリ塩化ビニル系熱収縮性チューブを被覆してなる電線、巻線、及びケーブル。   An electric wire, a winding, and a cable formed by coating the polyvinyl chloride heat-shrinkable tube according to any one of claims 1 to 4.
JP2017101991A 2017-05-23 2017-05-23 Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable Pending JP2018197292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017101991A JP2018197292A (en) 2017-05-23 2017-05-23 Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101991A JP2018197292A (en) 2017-05-23 2017-05-23 Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable

Publications (1)

Publication Number Publication Date
JP2018197292A true JP2018197292A (en) 2018-12-13

Family

ID=64663789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101991A Pending JP2018197292A (en) 2017-05-23 2017-05-23 Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable

Country Status (1)

Country Link
JP (1) JP2018197292A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718138A (en) * 1993-07-05 1995-01-20 Kyodo Yakuhin Kk Halogen-containing resin composition having excellent processability
JPH09194662A (en) * 1996-01-16 1997-07-29 Katsuta Kako Kk Vinyl chloride resin composition
JP2003211541A (en) * 2002-01-17 2003-07-29 Otsuka Denki Kk Composite heat-shrinkable tube, composite heat- shrinkable tube for dyeing, method of dyeing, fishing hook, composite heat-shrinkable tube for protecting electric wire connection part, and protecting method for electric wire connection part
JP2011234576A (en) * 2010-04-28 2011-11-17 Sumitomo Wiring Syst Ltd Manufacturing method of wire harness sheath material
JP2016044298A (en) * 2014-08-27 2016-04-04 リケンテクノス株式会社 Vinyl chloride resin composition
WO2017030000A1 (en) * 2015-08-19 2017-02-23 Dic株式会社 Plasticizer for vinyl chloride resin, vinyl chloride resin composition, wire harness, and dashboard

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718138A (en) * 1993-07-05 1995-01-20 Kyodo Yakuhin Kk Halogen-containing resin composition having excellent processability
JPH09194662A (en) * 1996-01-16 1997-07-29 Katsuta Kako Kk Vinyl chloride resin composition
JP2003211541A (en) * 2002-01-17 2003-07-29 Otsuka Denki Kk Composite heat-shrinkable tube, composite heat- shrinkable tube for dyeing, method of dyeing, fishing hook, composite heat-shrinkable tube for protecting electric wire connection part, and protecting method for electric wire connection part
JP2011234576A (en) * 2010-04-28 2011-11-17 Sumitomo Wiring Syst Ltd Manufacturing method of wire harness sheath material
JP2016044298A (en) * 2014-08-27 2016-04-04 リケンテクノス株式会社 Vinyl chloride resin composition
WO2017030000A1 (en) * 2015-08-19 2017-02-23 Dic株式会社 Plasticizer for vinyl chloride resin, vinyl chloride resin composition, wire harness, and dashboard

Similar Documents

Publication Publication Date Title
US4426477A (en) Thermoplastic resin composition
US20070270532A1 (en) Polyvinyl Chloride Fiber and Process for Production Thereof
CN101864186B (en) Stabilized polymer compositions
WO2007013647A1 (en) Polyvinylidene chloride resin composition, biaxially stretched film, and method for producing such biaxially stretched film
US4058471A (en) Plasticized polymeric compositions based on vinyl chloride polymers
JP5881549B2 (en) Vinylidene chloride resin wrap film
US20160260519A1 (en) Sustainable poly(vinyl halide) mixtures for thin-film applications
CN107690447B (en) Plasticizer composition
JP2018197292A (en) Polyvinyl chloride-based heat shrinkable tube, wire by coating tube, coil, and cable
JP6739202B2 (en) Method for producing vinylidene chloride resin film and method for recycling pile liquid used in the method
JP3965438B2 (en) Vinyl chloride resin composition for covering electric wire and electric wire coated with the composition
JPS581739A (en) Polyvinyl chloride film and production thereof
JP6995533B2 (en) Manufacturing method of polyvinyl chloride resin molded product
KR102148780B1 (en) Vinyl chloride-based film for food packaging
JP6823654B2 (en) Manufacturing method of polyvinyl chloride artificial hair fiber
JP2021088777A (en) Artificial hair fiber and hair decorative product
JP2007107137A (en) Polyvinyl chloride-based fiber, method for producing the same, and fiber for artificial hair comprising the same
JPS585353A (en) Vinyl chloride film and production thereof
JPWO2016189987A1 (en) Wrap film
JP2006282999A (en) Vinylidene chloride-based resin composition and film formed out of the same
JP2017132866A (en) Heat-shrinkable tube and member coated with the tube
JP6507744B2 (en) PVC film for food packaging
JP2020500996A (en) Plasticizer composition
JP3770932B2 (en) Capacitor
JP6872461B2 (en) Polychlorinated resin wrapping film and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210921