JP2018195547A - Opening/closing device for dc power system - Google Patents

Opening/closing device for dc power system Download PDF

Info

Publication number
JP2018195547A
JP2018195547A JP2017112064A JP2017112064A JP2018195547A JP 2018195547 A JP2018195547 A JP 2018195547A JP 2017112064 A JP2017112064 A JP 2017112064A JP 2017112064 A JP2017112064 A JP 2017112064A JP 2018195547 A JP2018195547 A JP 2018195547A
Authority
JP
Japan
Prior art keywords
contact
semiconductor switch
voltage
switch
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017112064A
Other languages
Japanese (ja)
Inventor
嶋田 隆一
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017112064A priority Critical patent/JP2018195547A/en
Publication of JP2018195547A publication Critical patent/JP2018195547A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

To eliminate leakage current and increase withstanding voltage of a hybrid switch configured by parallel-connecting a semiconductor switch and a metal contact switch, and that uses a metal contact for energization and uses the semiconductor switch for cutoff.SOLUTION: An opening/closing device uses a triple metal contact. For opening the contact, a conduction contact is opened first, and then, a next contact is opened to turn off a gate of a semiconductor switch, and at that time the conduction contact is in an open distance state that withstands a restriking voltage, and thereafter, a last contact is opened to disconnect a semiconductor switch circuit, and all contacts are in an open state.SELECTED DRAWING: Figure 1

Description

本発明は、直流電力系の開閉装置に関し、通電は金属接点で行い、遮断は半導体スイッチで行う、所謂、ハイブリッドスイッチに関し、太陽光発電パネルを多数直列接続した太陽電池ストリングのような高圧定電流電源や高電圧の2次電池のような電圧源や、電気自動車、スマートハウス、スマートグリッド等の直流電力設備の直流電流を安全に開閉させることが可能な開閉装置に関する。  The present invention relates to a DC power system switchgear, which is energized by a metal contact, and interrupted by a semiconductor switch, so-called a hybrid switch. The present invention relates to an open / close device capable of safely opening / closing a direct current of a voltage source such as a power source or a high voltage secondary battery, or a DC power facility such as an electric vehicle, a smart house, or a smart grid.

本発明は、直流電流の開閉装置に関し、直流電流をアークの発生すること無く遮断するために、半導体スイッチで遮断するが、通電は導通損失の低い金属接点スイッチで連続通電する金属接点と半導体スイッチを併用するハイブリッドな開閉装置に関する。  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct current switchgear and relates to a metal contact and a semiconductor switch that are continuously energized by a metal contact switch having a low conduction loss, although the direct current is interrupted by a semiconductor switch in order to interrupt the direct current without arcing The present invention relates to a hybrid switchgear that uses both.

近年、半導体スイッチの進歩により、絶縁ゲートを持ったパワー用MOSFETやIGBTなどでは,高電圧・大電流のオン・オフが可能になったが、半導体デバイスはまだ、金属接点に較べれば、通電中の電気抵抗が大きく、発熱が生じ、連続通電では大きな冷却装置が必要である。一方、直流電流の10A程度以上の遮断を金属接点の開極で行うと電流が遮断されずにアーク放電となって電流が連続する。開極時に発生する高温のアークプラズマにより接点金属を溶かし消耗するので、アークを短時間で消滅させなければ電流は遮断できない。例えば、アークを消弧するにはアーク長を磁気によって伸長して、冷却して消弧する方法があるが、アークによって電極が消耗して接点の寿命が短くなってしまう。  In recent years, with the advancement of semiconductor switches, power MOSFETs and IGBTs with insulated gates can be turned on and off at high voltages and large currents, but semiconductor devices are still energized compared to metal contacts. The electric resistance is large, heat is generated, and a large cooling device is required for continuous energization. On the other hand, if the interruption of the direct current of about 10 A or more is performed by opening the metal contact, the electric current is not interrupted but arc discharge occurs and the current continues. Since the contact metal is melted and consumed by the high-temperature arc plasma generated at the time of opening, the current cannot be interrupted unless the arc is extinguished in a short time. For example, in order to extinguish the arc, there is a method in which the arc length is extended by magnetism and the arc is extinguished by cooling, but the electrode is consumed by the arc and the life of the contact is shortened.

近年シリコン・カーバイド系の半導体が実用化されて、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)で数kVの高耐電圧の半導体スイッチが実用化されようとしている。この高耐圧の半導体スイッチを使って、これまで金属接点では困難であったアークなしの高電圧の直流電力系の開閉器が提供できるようになった。しかし、まだまだ、半導体スイッチの通電損は金属接点より大きく、連続通電では半導体スイッチの冷却装置が必要となり、大型になってしまうのが欠点である。そこで、両方の利点を組み合わせて、通電は金属接点で、遮断時のみ半導体スイッチで通電し、そして遮断するハイブリッドな無アーク開閉器、遮断器が望まれている。  In recent years, silicon carbide semiconductors have been put into practical use, and high-withstand-voltage semiconductor switches of several kV are being put into practical use in MOSFETs (Metal Oxide Field Effect Effect Transistors). Using this high-breakdown-voltage semiconductor switch, it has become possible to provide a high-voltage DC power system switch without arc, which has been difficult with metal contacts. However, the energization loss of the semiconductor switch is still larger than that of the metal contact, and the continuous energization requires a cooling device for the semiconductor switch, resulting in a large size. Therefore, by combining both advantages, a hybrid arc-free switch and circuit breaker are desired which are energized with a metal contact and energized with a semiconductor switch only at the time of interruption.

本発明は特許5864006で開示された金属接点と半導体スイッチの並列接続による無アーク開閉器は、開状態時のリーク電流、半導体スイッチの耐電圧で決まるサージ耐圧の問題を改良するものである。  The arc-free switch according to the present invention disclosed in Japanese Patent No. 5864006 improves the problem of surge withstand voltage determined by the leakage current in the open state and the withstand voltage of the semiconductor switch.

特許5864006号「直流電力系の安全装置」Patent 5864006 "DC power system safety device" 特願2015−199768「再起電圧制御装置」Japanese Patent Application No. 2015-199768 “Restart Voltage Control Device”

電気学会編「放電ハンドブック」第2部 第6章 アーク放電The Electrotechnical Society "Discharge Handbook" Part 2 Chapter 6 Arc Discharge

機械金属接点の良い点は、通電時のオン抵抗は、無視できるほど小さく、発熱など考慮する必要が無い、逆に、オフ時の絶縁抵抗は、一般には、導通が無いと言って、即ちリーク電流が無いと認識されている。また、オフ時の耐電圧は開極距離が1mmで、約3kVの放電破壊電圧があると期待されている。先行特許文献1に示された機械接点と半導体スイッチの並列によるハイブリッド開閉回路は、オン時は期待通りであるがオフ時の絶縁抵抗や耐電圧は、半導体スイッチ回路のリーク電流や耐電圧に制限される。これが十分ではなく、ハイブリッドスイッチの普及と信頼を妨げていると考える。  The good point of the mechanical metal contact is that the on-resistance when energized is negligibly small and it is not necessary to consider heat generation. Conversely, the insulation resistance when off is generally said that there is no conduction, that is, leakage. It is recognized that there is no current. Further, the withstand voltage at the OFF time is expected to have a discharge breakdown voltage of about 3 kV with an opening distance of 1 mm. The hybrid switching circuit in which the mechanical contact and the semiconductor switch shown in Prior Patent Document 1 are in parallel is as expected when turned on, but the insulation resistance and withstand voltage when turned off are limited to the leakage current and withstand voltage of the semiconductor switch circuit. Is done. I think that this is not enough and hinders the spread and trust of hybrid switches.

先行特許文献1では、半導体スイッチの制御は機械接点のb接点のオンで半導体スイッチをオフにするが、機械金属接点では、オン時、接点の跳ね返りや摺動で多数回オン/オフを繰り返す、所謂チャタリングを起こすことがあり、そのため半導体スイッチがオン/オフを繰り返す問題がある。その対策となったが先行特許文献2では、半導体スイッチを使って、ミラー積分回路を構成することで多数回オン/オフを繰り返すことを防ぐことが可能だが、半導体スイッチのジュール損が増える欠点があった。  In the prior art document 1, the control of the semiconductor switch turns off the semiconductor switch by turning on the b contact of the mechanical contact, but the mechanical metal contact is repeatedly turned on / off by rebounding or sliding of the contact when turned on. So-called chattering may occur, and there is a problem that the semiconductor switch is repeatedly turned on and off. Although it was a countermeasure, in the prior art document 2, it is possible to prevent repeated ON / OFF many times by configuring a Miller integrating circuit using a semiconductor switch, but there is a disadvantage that Joule loss of the semiconductor switch increases. there were.

本発明は上記の2点に鑑みなされたものであり、その目的は、従来のハイブリッドスイッチに直列スイッチを付加し、オフ時の絶縁抵抗を一般の開閉器と同じになるように、かつ半導体スイッチの遮断時に十分な電極距離を確保すること、機械接点のオフは、チャタリングが無いか、あっても頻度が少ないので、半導体スイッチのゲートによるオフを、制御接点のオフにより行うことで解決するが、それらをシーケンスや時間遅れの制御法ではなく3つの接点電極の配置と駆動法によって確実に実現する手段を提供することにある。    The present invention has been made in view of the above two points, and an object of the present invention is to add a series switch to a conventional hybrid switch so that the insulation resistance when OFF is the same as that of a general switch, and a semiconductor switch Ensuring a sufficient electrode distance when shutting off, and mechanical contact off, there is no chattering, or even if it is less frequent, it can be solved by turning off the semiconductor switch by turning off the control contact. It is an object of the present invention to provide means for reliably realizing these by the arrangement and driving method of three contact electrodes, not by a sequence or a time delay control method.

諜題を解決するための手段Means to solve the problem

上記目的を達成するために、3連の接点の電極構造または配置で行うが、開極距離をそれぞれ設け、d1は半導体スイッチの遮断に要する時間=(d1/速度V)、数10マイクロSであるが、を確保し、d2は半導体スイッチの遮断後に発生する再起電圧に耐える開極距離を確保するようにする。  In order to achieve the above object, the electrode structure or the arrangement of the triple contacts is performed. However, an opening distance is provided, and d1 is a time required for shutting off the semiconductor switch = (d1 / speed V), tens of micro S However, d2 is set so as to secure an opening distance that can withstand a re-emergence voltage generated after the semiconductor switch is shut off.

発明の効果Effect of the invention

このように、金属接点を開極距離をd1、d2の間隔を持つ3連のスイッチとすることで、開極動作時に、半導体スイッチの制御のタイミングとサージ電圧に対する耐電圧に必要な開極距離が確実に得られ、リーク電流の無い、無アークの直流開閉装置を実現する。  Thus, by making the metal contact a triple switch having an opening distance of d1 and d2, the opening distance necessary for the control timing of the semiconductor switch and the withstand voltage against the surge voltage during the opening operation. Is achieved, and an arc-free DC switchgear with no leakage current is realized.

このような構成の直流電流の開閉装置は、開極時に時間的タイミングと絶縁距離を確実に得られるので、単純動作の電磁駆動や、手動作動、リミットスイッチのような不確実な作動でも、高信頼な直流開閉器が実現できる。  The DC current switchgear with such a configuration can reliably obtain time timing and insulation distance at the time of opening, so even a simple operation electromagnetic drive, manual operation, uncertain operation such as limit switch, etc. A reliable DC switch can be realized.

本発明に係る直流電力系の開閉装置の実施方法を示した説明図である。It is explanatory drawing which showed the implementation method of the switch apparatus of the DC power type | system | group which concerns on this invention. 本発明に係る直流電力系の開閉装置の電流1方向の場合の方法を示した回路図である。(実施例1)It is the circuit diagram which showed the method in the case of the electric current 1 direction of the switch apparatus of the DC power system which concerns on this invention. (Example 1) 本発明に係る電流双方向の場合の開閉装置の回路説明図である。(実施例2)It is circuit explanatory drawing of the switchgear in the case of current bidirectional | two-way based on this invention. (Example 2) 電磁駆動型の3連接点の電極構造を説明する図である。It is a figure explaining the electrode structure of an electromagnetic drive type triple contact. 順次駆動型の3連接点の閉極時の動作を模式図で示す。The operation at the time of closing of the sequential drive type triple contact is shown in a schematic view. (1)3極の電磁開閉器の固定電極の極間距離を変えている写真と(2)直流電流遮断時の半導体電流、再起電圧、および、SiC−MOSFETのゲート電圧のそれぞれ波形である。(1) A photograph of changing the distance between the fixed electrodes of a three-pole electromagnetic switch, and (2) waveforms of a semiconductor current, a regenerated voltage, and a gate voltage of a SiC-MOSFET when a direct current is interrupted.

図1に示すように3つの金属接点を一括駆動する三連の開閉器において、電極間隔を異なるようにして、極間が、最も短いS1、最も大きなS3、中間のS2とすると、間隔の短い接点から順次、S1,S2、S3の順でオンになり、開極はS3,S2,S1の順にオフになる。
3接点を一動作で開閉動作をおこなうが、可動電極と固定電極の極間を異なるようにして、順次、3つの接点が開閉する構造の開閉器で、最初に閉極する接点を開始接点(S1)とし、次に閉極する接点を制御接点(S2)とし、最後に閉極する接点を通電接点(S3)とし、開極時はこの逆のシーケンスで順次開極する3連のスイッチの接点を用いて、S1には、半導体スイッチを接続して、電源と負荷をつなぐ主接点となる導通接点(S3)と並列接続して、制御接点(S2)のON/OFF信号またはその電流で前記半導体スイッチ(MOSFET)のゲートをON/OFFする。
As shown in FIG. 1, in a triple switch that collectively drives three metal contacts, if the electrode spacing is different and the distance between the electrodes is the shortest S1, the largest S3, and the middle S2, the distance is short. The contacts are sequentially turned on in the order of S1, S2, and S3 from the contact points, and the opening is turned off in the order of S3, S2, and S1.
The three contacts are opened and closed in one operation, but the contact between the movable electrode and the fixed electrode is made different so that the three contacts are opened and closed sequentially. S1), the next contact to be closed is the control contact (S2), the last contact to be closed is the energization contact (S3), and when opening the three switches that are sequentially opened in the reverse sequence Using a contact, a semiconductor switch is connected to S1 and connected in parallel with a conduction contact (S3) that becomes a main contact for connecting a power source and a load. By an ON / OFF signal of the control contact (S2) or its current The gate of the semiconductor switch (MOSFET) is turned on / off.

可動電極を閉極位置から移動始めて、S3がオフする時、S1とS2はまだオン状態で、半導体スイッチはオン状態であり、金属接点S3の電流は開極する瞬間に電流は放電アークになって極間を流れ続けようとする。金属電極が電流を流しつつ開極するとき、アーク放電が発生するが、非特許文献1によると接点アークについて、きわめて短いアークの電圧対電流特性が報告されている。接点アークには最小アーク電圧Vminと最小アーク電流Iminがあって、アーク発生のための電極上の陰極点(カソードスポット)を維持するには最低の電圧と電流があって、放電アーク開始の接点間の電圧は接点金属により異なるが、10Vから20Vの範囲で、最小アーク電圧Vminは電流によっても変化しないが、アーク長が大きくなるにしたがって接点アーク電圧は大きくなると報告されている。  When the movable electrode starts to move from the closed position and S3 is turned off, S1 and S2 are still in the on state, the semiconductor switch is in the on state, and the current of the metal contact S3 becomes a discharge arc at the moment of opening. Will continue to flow between the poles. When a metal electrode is opened while a current is flowing, arc discharge occurs. However, according to Non-Patent Document 1, a very short arc voltage-current characteristic has been reported for a contact arc. The contact arc has a minimum arc voltage Vmin and a minimum arc current Imin, and has a minimum voltage and current to maintain the cathode spot (cathode spot) on the electrode for generating the arc. The voltage between them varies depending on the contact metal, but in the range of 10V to 20V, the minimum arc voltage Vmin does not change with current, but it is reported that the contact arc voltage increases as the arc length increases.

S3が開極するとき、半導体スイッチはオン状態であるから、半導体オン電圧は数Vである。S3からS1に転流するに必要な時間Tを概算すると

Figure 2018195547
遮断電流Iを100A、スイッチ回路のインダクタンスLを数十nH、とすると転流時間T=10nSのオーダーである。回路インダクタンスが小さいため、電流は瞬時に半導体スイッチに移り、最小アーク電流以下になってアークは消滅するので、発生しないか、発生しても10nSのマイクロ・アークとなって、観測も難しい。When S3 is opened, the semiconductor switch is on, so the semiconductor on-voltage is several volts. Approximate time T required for commutation from S3 to S1
Figure 2018195547
When the cut-off current I is 100 A and the inductance L of the switch circuit is several tens of nH, the commutation time T is on the order of 10 nS. Since the circuit inductance is small, the current instantaneously moves to the semiconductor switch, and the arc disappears when the current is less than the minimum arc current. Therefore, even if it occurs, it becomes a 10 nS micro arc, and observation is difficult.

S3の電極間隔がd2になるとS2がオフし、半導体スイッチがオフして、電流が遮断されて再起電圧が発生する。このときのS3の電極間隔はd2で、空気中では約3kV/mmの絶縁耐力があるので極間の耐電圧が再起電圧以上になっている必要がある。

Figure 2018195547
数KVの耐電圧が期待される場合でもd2は1mm程度あれば十分である。When the electrode interval of S3 becomes d2, S2 is turned off, the semiconductor switch is turned off, the current is interrupted, and a regenerative voltage is generated. At this time, the electrode interval of S3 is d2, and since it has a dielectric strength of about 3 kV / mm in the air, the withstand voltage between the electrodes needs to be equal to or higher than the regenerative voltage.
Figure 2018195547
Even when a withstand voltage of several KV is expected, d2 of about 1 mm is sufficient.

図1は、本発明の実施例の基本的構成図であって、
直流電流が流れている閉極状態から、アークを発生しない開極の手順を説明する。
電流が流れている金属接点S3が先に開極するがその時、S2、S1はオン状態で、ゲート電源がゲートに接続されているので半導体スイッチが飽和状態でオンしている。通電電流はS3の開極後、数10nSで半導体スイッチに転流する。やがて、S2もオフすると、ゲート電圧はゼロになり、半導体スイッチは電流を遮断する。再起電圧が発生するが、S3の開極間隔はd2であり、絶縁破壊する心配はない。最後にS1は開極するが半導体スイッチには電流が無く、無電流でS1は開極する。
すなわち、閉極時の導通損失は少ない金属接点とゲート電圧制御で電流遮断できる半導体スイッチとのハイブリッド開閉器に図1の三連の開閉機構を用いれば、直流電流アークを発生せずに開極することができ、開極時のリーク電流も無くすることができる。
FIG. 1 is a basic configuration diagram of an embodiment of the present invention.
A procedure for opening without causing an arc from a closed state where a direct current flows will be described.
The metal contact S3 through which current flows is opened first, but at that time, S2 and S1 are in the on state, and the gate power supply is connected to the gate, so that the semiconductor switch is in the saturated state. The energizing current is commutated to the semiconductor switch at several tens of nS after the opening of S3. Eventually, when S2 is also turned off, the gate voltage becomes zero and the semiconductor switch cuts off the current. Although a regenerative voltage is generated, the opening interval of S3 is d2, and there is no fear of dielectric breakdown. Finally, S1 is opened, but there is no current in the semiconductor switch, and S1 is opened when there is no current.
That is, if the triple switching mechanism shown in FIG. 1 is used in a hybrid switch composed of a metal contact with little conduction loss at the time of closing and a semiconductor switch capable of interrupting current by gate voltage control, the opening can be performed without generating a DC current arc. And leakage current at the time of opening can be eliminated.

第1実施形態:図2、請求項2は、本発明の1実施例の基本的回路図であって、最小の部品点数で実現でき、直流電流を、アークを発生せずに開極し、MOSFET:2により電流を遮断することが出来る。
開極の手順を説明する。
電流が流れている金属接点S3が先に開極するがその時S2はオン状態で、抵抗R1:4はここでは数10kΩとゲート抵抗Rg:5は数100kΩとし、定電圧ダイオード:6の回路でゲートに接続されているので定電圧ダイオードの電圧(ここでは12V)で半導体スイッチが飽和状態でオンしている。ここで半導体スイッチはオン電圧が低い必要があるので、オン抵抗の低いMOSFET、オン電圧の低いIGBT、など絶縁ゲート構造の半導体スイッチであればよい。通電電流はS3の開極後、数10nSで半導体スイッチに転流する。やがて、S2もオフすると、ゲート電圧は抵抗Rgによりゼロになって半導体スイッチは電流を遮断する。再起電圧が発生するが、S3の開極間隔はd2であり、絶縁破壊する心配はない。最後にS1は開極するが半導体スイッチには電流が無く、無電流でS1は開極する。
開極が終わると空気の層によりリーク電流は無く、かつサージ電圧も電極間隔で決まる耐電圧まで耐えることができる。
First Embodiment: FIG. 2 and claim 2 are basic circuit diagrams of an embodiment of the present invention, which can be realized with a minimum number of parts, and a direct current is opened without generating an arc. MOSFET: 2 can cut off the current.
The opening procedure will be described.
The metal contact S3 through which the current flows is opened first. At that time, the S2 is in the ON state, the resistance R1: 4 is several tens kΩ here, the gate resistance Rg: 5 is several hundred kΩ, and the constant voltage diode is six. Since it is connected to the gate, the semiconductor switch is turned on in a saturated state by the voltage of the constant voltage diode (here, 12 V). Here, since the semiconductor switch needs to have a low on-voltage, any semiconductor switch having an insulated gate structure such as a MOSFET having a low on-resistance or an IGBT having a low on-voltage may be used. The energizing current is commutated to the semiconductor switch at several tens of nS after the opening of S3. Eventually, when S2 is also turned off, the gate voltage becomes zero by the resistor Rg, and the semiconductor switch cuts off the current. Although a regenerative voltage is generated, the opening interval of S3 is d2, and there is no fear of dielectric breakdown. Finally, S1 is opened, but there is no current in the semiconductor switch, and S1 is opened when there is no current.
When the opening is finished, there is no leakage current due to the air layer, and the surge voltage can withstand the withstand voltage determined by the electrode spacing.

第2実施形態:図3、請求項3は、半導体回路接点(S1)はダイオード・ブリッジ:7の交流端子を介して、導通接点(S3)と並列接続して、ダイオード・ブリッジの直流端子のプラスには半導体スイッチ(MOSFET:2)のドレインを、マイナス端子にはソース端子をそれぞれ接続し、制御接点(S2)のON/OFF信号で半導体スイッチ(MOSFET)をON/OFFする。  2nd Embodiment: FIG. 3 and claim 3 are the semiconductor circuit contact (S1) connected in parallel with the conduction contact (S3) through the AC terminal of the diode bridge: 7, and the DC terminal of the diode bridge The drain of the semiconductor switch (MOSFET: 2) is connected to the plus, the source terminal is connected to the minus terminal, and the semiconductor switch (MOSFET) is turned on / off by the ON / OFF signal of the control contact (S2).

〔電極構造の実施形態1:図4〕
図4は本発明の実施例の直流電流接続装置の構造説明図である。
可動電極は3つの接点を一括して、駆動して固定電極に接触させるが、図4のように電極間隔がS2はS1よりd1だけ長くなっており、S3はS2より、さらにd2だけ長くなるように設定されている。S1,S2,S3の接点を手動、または機械駆動のカムなどにより、順次押されて開閉される。この例では、開動作時、S3がオフしたあと、再起電圧が発生するのはS2がオフされる時点で、すでに開極しているS3の耐電圧が十分ある必要があるが、その時、d2の間隔が空いている。
[Embodiment 1 of electrode structure: FIG. 4]
FIG. 4 is an explanatory diagram of the structure of the direct current connection device according to the embodiment of the present invention.
The movable electrode collectively drives the three contacts to contact the fixed electrode. As shown in FIG. 4, the electrode interval S2 is longer than S1 by d1, and S3 is longer than S2 by d2. Is set to The contacts of S1, S2, and S3 are sequentially opened or closed by being manually or mechanically driven by a cam or the like. In this example, during the opening operation, after S3 is turned off, the regenerated voltage is generated when S2 is turned off, and it is necessary that the withstand voltage of S3 already opened is sufficient. There is a gap in.

〔電極構造の実施形態2:図5〕
図5は本発明の実施例1、請求項2の回路構成、図2の直流電流接続装置を、例えばスライドスイッチの3連接点で実施し、閉極時から開極する動作を模式図で示している。
(1)はS1,S2,S3がすべてオン状態で金属接点の導通状態を示している。半導体スイッチには、ゲート電圧がオンであっても、電流はほとんど流れない。
(2)では、S3がオフされるが、この時、S2,S1がオンであるためにS3の電圧は半導体スイッチのオン電圧とダイオード・ブリッジのオ順方向電圧の和で、それは接点アーク電圧より低く、電流はS1の半導体スイッチ回路に転流する。
(3)でS2がオフになると半導体スイッチがオフになり再起電圧が発生し、電流が遮断される。この時、開極間隔d2がこの再起電圧に耐えることが必要である。
(4)では半導体スイッチ回路も電流ゼロであるのでS1はアークなしで解放される。
結局、(1)から(4)で無アークで閉から開状態になる。
[Embodiment 2: Electrode Structure: FIG. 5]
FIG. 5 is a schematic diagram showing the circuit configuration of the first embodiment of the present invention, the circuit configuration of claim 2, and the DC current connection device of FIG. ing.
(1) shows the conductive state of the metal contacts when S1, S2 and S3 are all on. Even if the gate voltage is on, almost no current flows through the semiconductor switch.
In (2), S3 is turned off. At this time, since S2 and S1 are on, the voltage of S3 is the sum of the ON voltage of the semiconductor switch and the forward voltage of the diode bridge, which is the contact arc voltage. Lower, the current commutates to the S1 semiconductor switch circuit.
When S2 is turned off in (3), the semiconductor switch is turned off, a re-emergence voltage is generated, and the current is interrupted. At this time, it is necessary that the opening interval d2 withstands this re-induced voltage.
In (4), since the semiconductor switch circuit also has zero current, S1 is released without arcing.
Eventually, from (1) to (4), the arc is closed and opened.

〔電磁開閉装置と電圧電流波形:図6〕
図6の(1)は本発明の電極構造の実施形態1:図4の場合の実施例である。
S1、S2,S3の固定電極はそれぞれ、d1、d2だけ、極間距離を変えている。d1は約0.5mm、d2は約1mmで、オフする時間差はS3−S2は1.2mS、S2−S1は0.5mSであった。
(2)は遮断時の電流波形、SiC−MOSFETのゲート電圧、再起電圧波形である。S3がオフされて、その電流が半導体スイッチに転流されて電流が流れだすのが半導体電流で、ここでは7Aである。S2がオフされて、ゲート電圧が下がり、半導体電流は遮断されて、再起電圧が発生している。実験ではSiC(シリコンカーバイド)−MOSFET(1.2kV、5A)の半導体スイッチであるが、800Vを越える再起電圧で問題なくオフして、d2の電極距離で絶縁破壊されることなく開極が進み、S1が無電流でオフされているのがわかる。
[Electromagnetic switchgear and voltage / current waveform: Fig. 6]
FIG. 6 (1) shows an embodiment of the electrode structure according to the first embodiment of the present invention shown in FIG.
The fixed electrodes S1, S2, and S3 change the distance between the electrodes by d1 and d2, respectively. d1 was about 0.5 mm, d2 was about 1 mm, and the time difference for turning off was 1.2 mS for S3-S2 and 0.5 mS for S2-S1.
(2) is a current waveform at the time of interruption, a gate voltage of the SiC-MOSFET, and a re-emergence voltage waveform. When S3 is turned off, the current is commutated to the semiconductor switch and the current starts to flow, which is 7A here. S2 is turned off, the gate voltage is lowered, the semiconductor current is cut off, and a re-starting voltage is generated. In the experiment, it is a semiconductor switch of SiC (silicon carbide) -MOSFET (1.2 kV, 5 A), but it turns off without any problem at a regenerative voltage exceeding 800 V, and the opening proceeds without breaking down at the electrode distance of d2. , S1 is turned off with no current.

安全に係わる電流の開閉装置は高い信頼性が必要である。本発明は直流電流の開閉に関して、機械接点を通電接点に使うハイブリッド開閉器であって、開閉器のオフ時、リーク電流がなく、サージ電圧に耐えるように、空気の層がある断路がある。
このように半導体スイッチと機械接点のハイブリッド開閉器はアークによる溶融、欠損がないので開閉器の開閉寿命を延ばし、これまで困難であった手動やリミットスイッチ駆動機構でも可能な直流電流開閉器を提供することができる。
Highly reliable current switching devices for safety are required. The present invention is a hybrid switch that uses a mechanical contact as a current-carrying contact for direct current switching, and there is a disconnection with an air layer so that there is no leakage current when the switch is off and withstands surge voltage.
In this way, the hybrid switch between the semiconductor switch and the mechanical contact extends the switching life of the switch because it is not melted or broken by an arc, and provides a DC current switch that can be used with manual or limit switch drive mechanisms that have been difficult until now. can do.

本発明の開閉装置は、直流電力用開閉装置の種々な問題を解決して耐久性、信頼性があがるので、太陽光発電、電池貯蔵、直流配電、電気自動車など直流電力の応用がさらに進展すると考えられる。  Since the switchgear of the present invention solves various problems of DC power switchgear and has improved durability and reliability, the application of DC power such as solar power generation, battery storage, DC power distribution, and electric vehicles will further advance. Conceivable.

1:直流電源
2:MOSFET
3:三連の開閉機構
4:抵抗R1
5:ゲート抵抗Rg
6:Zener Diode(定電圧ダイオード)
7:ダイオード・ブリッジ
1: DC power supply 2: MOSFET
3: Triple opening / closing mechanism 4: Resistance R1
5: Gate resistance Rg
6: Zener Diode (constant voltage diode)
7: Diode bridge

Claims (5)

直流電流の開閉器であって、該開閉装置は3つの金属接点を持ち、
電源と負荷との間に、第一の接点、導通接点(S3)を挿入して連続通電スイッチとし、第2の接点、半導体回路接点(S1)には半導体スイッチ回路を介して、先の導通接点S3と並列に接続し、第3の接点、制御接点(S2)は、そのオンまたはオフで前記半導体スイッチ回路をオン/オフ制御を行うためのゲート制御接点とし、
この3つの金属接点の接点S1、S2、S3を閉極するときは、S1,S2,S3の順序にて順次オンし、開極するときにはS3,S2,S1の順に順次オフするが、制御接点S2がオフするとき、導通接点S3の極間距離d2が電流遮断後の再起電圧に対して絶縁破壊しない電極間隔であることを特徴とした開閉装置。
A direct current switch, the switchgear having three metal contacts;
The first contact and conduction contact (S3) are inserted between the power source and the load to form a continuous energization switch, and the second contact and semiconductor circuit contact (S1) are connected to the previous conduction through the semiconductor switch circuit. Connected in parallel with the contact S3, the third contact, the control contact (S2) is a gate control contact for performing on / off control of the semiconductor switch circuit by turning on or off,
When closing the contacts S1, S2, and S3 of the three metal contacts, the contacts are sequentially turned on in the order of S1, S2, and S3. When the contacts are opened, the contacts are sequentially turned off in the order of S3, S2, and S1. A switchgear characterized in that, when S2 is turned off, the inter-electrode distance d2 of the conducting contact S3 is an electrode interval that does not cause dielectric breakdown with respect to the regenerated voltage after the current interruption.
直流電流方向が1方向である場合、半導体回路接点(S1)に絶縁ゲートの半導体スイッチを接続し、そのゲート駆動電圧を制御接点S2のオンにより直流電源からの電圧を分圧して得る請求項1に記載の開閉装置。  When the direct current direction is one direction, an insulated gate semiconductor switch is connected to the semiconductor circuit contact (S1), and the gate drive voltage is obtained by dividing the voltage from the direct current power source by turning on the control contact S2. The switchgear described in 1. 半導体回路接点(S1)はダイオード・ブリッジの交流端子を介して、導通接点(S3)と並列接続して、そのダイオード・ブリッジの直流端子のプラスには半導体スイッチ(MOSFET)のドレインを、マイナス端子にはソース端子をそれぞれ接続し、制御接点(S2)のオン/オフ信号で半導体スイッチをオン/オフ制御する請求項1に記載の開閉装置。  The semiconductor circuit contact (S1) is connected in parallel with the conduction contact (S3) via the AC terminal of the diode bridge, the drain of the semiconductor switch (MOSFET) is connected to the positive terminal of the diode bridge, and the negative terminal The switchgear according to claim 1, wherein source terminals are connected to each other, and the semiconductor switch is on / off controlled by an on / off signal of the control contact (S 2). 半導体回路接点(S1)、制御接点(S2)、導通接点(S3)を3極の電磁駆動開閉器とし、その電極間隔をそれぞれ、d1、d2の差を付け、極間d2は再起電圧に耐え、絶縁破壊しない電極間隔であることを特徴とする請求項1、2および3に記載の開閉装置。  The semiconductor circuit contact (S1), the control contact (S2), and the conduction contact (S3) are three-pole electromagnetically driven switches. The distance between the electrodes is d1 and d2, respectively. The switchgear according to any one of claims 1, 2, and 3, wherein the electrode spacing does not cause dielectric breakdown. 半導体回路接点(S1)、制御接点(S2)、導通接点(S3)を手動駆動、または機械駆動するがS1、S2、S3の順に投入し、S3,S2,S1の順に解放するが、S2がオフする時点でS3の開極間隔が再起電圧に耐える状態であることを特徴とする請求項1、2および3に記載の開閉装置。  The semiconductor circuit contact (S1), the control contact (S2), and the conduction contact (S3) are manually driven or mechanically driven, but are inserted in the order of S1, S2, and S3, and released in the order of S3, S2, and S1, but S2 is The switchgear according to any one of claims 1, 2, and 3, wherein the opening interval of S3 is in a state that can withstand a regenerated voltage at the time of turning off.
JP2017112064A 2017-05-19 2017-05-19 Opening/closing device for dc power system Pending JP2018195547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017112064A JP2018195547A (en) 2017-05-19 2017-05-19 Opening/closing device for dc power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112064A JP2018195547A (en) 2017-05-19 2017-05-19 Opening/closing device for dc power system

Publications (1)

Publication Number Publication Date
JP2018195547A true JP2018195547A (en) 2018-12-06

Family

ID=64571872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112064A Pending JP2018195547A (en) 2017-05-19 2017-05-19 Opening/closing device for dc power system

Country Status (1)

Country Link
JP (1) JP2018195547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034124A (en) * 2019-08-13 2021-03-01 嶋田 隆一 DC current switchgear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034124A (en) * 2019-08-13 2021-03-01 嶋田 隆一 DC current switchgear
JP7143984B2 (en) 2019-08-13 2022-09-29 隆一 嶋田 DC switchgear

Similar Documents

Publication Publication Date Title
EP3200213B1 (en) Direct current circuit breaker
US9948089B2 (en) DC circuit breaker device
CN106663557B (en) For interrupting the separating switch of DC current
EP2940820B1 (en) Apparatus and method for interrupting direct current
JP6781972B2 (en) Arc-free current connection device
US11195675B2 (en) Low-voltage circuit breaker device
CN107851527B (en) For carrying out the disconnecting switch of DC current interruption
CN109950866B (en) Current breaker
JP6713660B2 (en) Arc-free current switchgear
CN109361202B (en) Current injection type circuit breaker
JP6591210B2 (en) DC cutoff device, DC cutoff method
JP2018195547A (en) Opening/closing device for dc power system
JP2018125270A (en) DC power system safety switchgear
US10325984B2 (en) Monolithically integrated semiconductor switch, in particular a power circuit breaker
JP2021034124A (en) DC current switchgear
JP6694177B2 (en) DC breaker
JP2018032611A (en) Ac current switchgear
JP3581219B2 (en) Composite switching device
JP7017758B2 (en) DC current switchgear using reed relay
KR20140062845A (en) Complex switch and switching method using the same
JP7250266B1 (en) DC current interrupter
CN210780712U (en) High-voltage large-current bidirectional semiconductor switch
WO2016199407A1 (en) Direct-current interruption apparatus, direct-current interruption method
JP7165317B1 (en) DC switchgear
CN114974955A (en) Hybrid circuit breaker