WO2016199407A1 - Direct-current interruption apparatus, direct-current interruption method - Google Patents

Direct-current interruption apparatus, direct-current interruption method Download PDF

Info

Publication number
WO2016199407A1
WO2016199407A1 PCT/JP2016/002759 JP2016002759W WO2016199407A1 WO 2016199407 A1 WO2016199407 A1 WO 2016199407A1 JP 2016002759 W JP2016002759 W JP 2016002759W WO 2016199407 A1 WO2016199407 A1 WO 2016199407A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
current
semiconductor switch
semiconductor
parallel
Prior art date
Application number
PCT/JP2016/002759
Other languages
French (fr)
Japanese (ja)
Inventor
丹羽 芳充
隆司 大嶋
正将 安藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016199407A1 publication Critical patent/WO2016199407A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • Embodiments of the present invention relate to a DC interrupting device and a DC interrupting method used for interrupting a DC current.
  • a shut-off device is used.
  • direct current power transmission there is no difficulty in the case of alternating current interruption because there is no current zero point in the transmitted direct current.
  • the current DC circuit breaker includes, for example, an energization path having a switch (switch) and a current interrupt path provided in parallel with the energization path and capable of gradually reducing the current.
  • a switch switch
  • the switch on the current path is closed and a current is passed through the current path.
  • the current interrupting path is temporarily turned on so that the current at the time of the accident can flow instead of the energizing path.
  • the current at the time of the accident is commutated to the current interrupting path side, and then the current in the current interrupting path is immediately limited to complete the breaking.
  • the current path of the DC interrupter is preferably as small as possible. This is because the electric resistance becomes a power loss during normal operation. Moreover, the faster the current switching from the current path to the current interrupt path of the DC interrupter, the better. This is because the current at the time of the accident increases as the delay increases, and the value of the current to be interrupted by the current interrupt path increases. When the current to be cut off increases, a large capacity current cut-off path is required, and the cut-off device increases in size.
  • the problem to be solved by the present invention is to provide a direct current interrupting device and a direct current interrupting method capable of suppressing a current-carrying loss at a normal time and avoiding an increase in size.
  • the DC circuit breaker of the embodiment has a switch, a semiconductor switch, a non-linear resistor, and a capacitor.
  • the switch is a non-semiconductor device.
  • the semiconductor switch is connected in parallel with the switch.
  • the nonlinear resistor is further connected in parallel to the switch and the semiconductor switch.
  • the capacitor is further connected in parallel to the switch, the semiconductor switch, and the nonlinear resistor.
  • the DC cutoff method of the embodiment is a DC cutoff method using the above-described DC cutoff device, and is the following method. That is, (1) starting the electrode opening control of the switch, and (2) after starting the electrode opening control of the switch, the semiconductor switch in which the current flowing through the switch can be made to flow (3) After the confirmation is obtained, the semiconductor switch is turned off.
  • movement of the direct-current circuit interrupter shown in FIG. 2 is a timing chart (capacitor + nonlinear resistor current) for explaining the operation of the DC interrupter shown in FIG.
  • the lineblock diagram showing the direct-current circuit breaker of a 2nd embodiment. 3 is a timing chart (total current) for explaining the operation of the DC interrupter shown in FIG.
  • movement of the direct-current circuit breaker shown in FIG. 3 is a timing chart (capacitor + non-linear resistor current) for explaining the operation of the DC interrupter shown in FIG.
  • FIG. 3 is a timing chart for explaining the operation of the DC breaker shown in FIG. 2 (applied voltage to the DC breaker).
  • the circuit diagram which shows the structural example of the commutation element 41 shown in FIG. 7 is a timing chart (total current) for explaining the operation of the DC interrupter shown in FIG.
  • FIG. 7 is a timing chart (semiconductor switch current) for explaining the operation of the DC interrupter shown in FIG. 7 is a timing chart (capacitor + nonlinear resistor current) for explaining the operation of the DC interrupter shown in FIG. The timing chart explaining the operation
  • FIG. 1 shows the configuration of the DC interrupter of the first embodiment.
  • the DC circuit breaker includes a switch 11, a semiconductor switch 12, a nonlinear resistor 13, a capacitor 14, a switch 21, a current detection unit 22, a current detection unit 23, and a control unit 50.
  • the switches 11 and 21 are non-semiconductor devices such as vacuum switches and gas switches, for example. Since it is a non-semiconductor device, power loss can be greatly reduced, unlike a configuration in which current is supplied to an on-state semiconductor device for energization during normal energization.
  • the control of the electrode opening (and electrode closing) of the switches 11 and 21 is performed by the control unit 50 as described above. Although the switch 21 and the switch 11 are connected in series, when the pressure resistance of the switch 11 is sufficiently high, the switch 21 can be omitted.
  • the semiconductor switch 12 is controlled by the control unit 50 between an on state (a state in which current can flow) and an off state (a state in which current is interrupted).
  • the semiconductor switch 12 is provided in parallel with the switch 11.
  • two anti-parallel connection parallel connection in which the forward directions are opposite to each other
  • IGBT insulated gate bipolar transistor
  • the unit element is configured, and a plurality of unit elements are connected in series so as to have two terminals as a whole.
  • Other unit elements include an anti-parallel connection configuration of thyristors. The reason for connecting a large number in series is to ensure a withstand voltage in a DC cut-off state.
  • a simplified display is used as a symbol.
  • the non-linear resistor 13 is connected in parallel with the series connection elements of the switches 11 and 21.
  • the nonlinear resistor 13 functions at the final stage of the breaking operation of the DC breaker. Specifically, after the switches 11 and 21 become non-current and the semiconductor switch 12 becomes non-current, the current temporarily flows in a state where the charging voltage to the capacitor 14 reaches a predetermined level.
  • the capacitor 14 is further connected in parallel to a non-linear resistor 13 connected in parallel with the series connection elements of the switches 11 and 21.
  • the current detection unit 22 detects the current flowing through the DC breaker and transmits it to the control unit 50. For this reason, the current detection unit 22 is provided in series outside the parallel connection of the switches 11 and 21, the nonlinear resistor 13 and the capacitor 14. As a specific example of current detection, for example, a resistor having a very small resistance value is inserted and the voltage across the resistor is detected.
  • the current detector 23 detects the current flowing through the semiconductor switch 12 and transmits it to the controller 50. For this reason, the current detection unit 23 is provided in series with the semiconductor switch 12. A specific example of this current detection is the same as that of the current detection unit 22 described above.
  • control unit 50 controls the opening and closing of the switches 11 and 21 and the on / off control of the semiconductor switch 12.
  • the current detection results are obtained from the current detection units 22 and 23, and information about the accident is obtained from an accident detection device (not shown).
  • the occurrence of an accident may be determined by the control unit 50 by utilizing the current detection unit 22.
  • the current can flow due to the arc resistance between the electrodes.
  • the current quickly commutates to the semiconductor switch 12 that is in the state.
  • the current flowing through the semiconductor switch 12 is, for example, the current that should be cut off at the time of an accident. finish.
  • the fact that the capacitor 14 is connected in parallel to the non-linear resistor 13 has an effect of gradually increasing the voltage generated at both ends of the non-linear resistor 13 instead of increasing rapidly. As a result, the maximum voltage to be applied to the switches 11 and 21 in the open state is suppressed, and the withstand voltage characteristics can be relaxed, so that the options of the switches 11 and 21 are expanded.
  • the switches 11 and 21 are closed during normal energization, and current flows, and the on-state semiconductor device is not used for energization, so that power loss is greatly reduced. be able to. Further, when the semiconductor switch 12 is turned off, it can be said that the current flowing is still shortly after the current is quickly commutated, so that the allowable current increases as the semiconductor switch 12 (the semiconductor switch 12 increases in size). Can be avoided.
  • the switch 21 is provided in series with the switch 11.
  • the switch 11 having a lower withstand voltage characteristic can be used. Since the switch 11 is connected to the semiconductor switch 12 in parallel and has a very small electrical conductivity even when the switch 11 is turned off, the voltage applied after the DC circuit breaker completes the DC circuit breakage is mostly. This is because the switch 21 side takes charge. For example, when the switch 21 is a high-breakdown-pressure gas switch and the switch 11 is a low-breakdown-pressure vacuum switch, this is a realistic configuration.
  • 2A to 2D are timing charts showing the operation of the DC interrupter shown in FIG. 1
  • FIG. 2A shows a time-series change in the total current (that is, the current detected by the current detection unit 22).
  • the first stage in the figure (the stage before time A) is a state in which a normal current flows, and the breakdown is all the current flowing in the switches 21 and 11. As a matter of course, no current flows through the semiconductor switch 12 and the parallel connection of the nonlinear resistor 13 and the capacitor 14 before the time A (see FIGS. 2B and 2C).
  • the state in which current does not flow through the switch 11 and current flows only through the semiconductor switch 12 is obtained by comparing the current detection result from the current detection unit 22 with the current detection result from the current detection unit 23 in the control unit 50. It can be understood that they are almost equal. That is, the control unit 50 can confirm that the current flowing through the switch 11 has been all commutated to the semiconductor switch 12 in a state where the current can flow through the current detection result. Note that the voltage applied to both ends of the switch 11 in a state where a current flows only in the semiconductor switch 12 is a voltage drop due to the on-resistance of the semiconductor switch 12, and is estimated to be several kV, for example.
  • control unit 50 controls the semiconductor switch 12 to turn off the semiconductor switch 12 after the time when the electrode open state of the switches 11 and 21 is considered to be finally established (time E). .
  • time E the time when the electrode open state of the switches 11 and 21 is considered to be finally established.
  • time F a current flows through the nonlinear resistor 13
  • the resistance value increases due to the non-linearity of the resistance
  • the current value is substantially zero due to the increased resistance value
  • the current interruption is completed (time G).
  • a DC voltage for example, 300 kV
  • the capacitor 14 is charged by the capacitor 14 being connected in parallel to the nonlinear resistor 13, the voltage generated at both ends of the nonlinear resistor 13 is gradually increased and its peak is reduced. (See after time E in FIG. 2D). As a result, the maximum voltage to be applied to the switches 11 and 21 in the open state is suppressed, and the withstand voltage characteristics can be relaxed, so that the options of the switches 11 and 21 are expanded.
  • FIG. 3 shows a DC circuit breaker according to the second embodiment.
  • the same components as those already described are denoted by the same reference numerals, and the description thereof will be omitted unless there is a point to be added.
  • this 2nd Embodiment there is no switch 21 which existed in the form shown in FIG. Regarding the influence caused by eliminating the switch 21, particularly the influence on the switch 11A, the description of the switch 11 in FIG. 1 can be referred to.
  • a switch 31 is newly provided in series with the semiconductor switch 12.
  • the switch 31 is a non-semiconductor device, and its electrode opening / closing control is performed by the control unit 50A.
  • the electrode opening control is started slightly before the switch 31 is turned off, the current is reduced by the arc resistance, and the semiconductor switch 12 cuts off the reduced current. Therefore, an increase in allowable current for the semiconductor switch 12 can be avoided.
  • FIG. 4A to 4D are timing charts showing the operation of the DC interrupter shown in FIG.
  • the electrode opening control of the switch 31 at the time E ⁇ b> 1 is started slightly before the time E that is the timing for turning off the semiconductor switch 12.
  • the arc resistance of the switch 31 is generated and the current of the semiconductor switch 12 is reduced. That is, an increase in allowable current for the semiconductor switch 12 can be avoided.
  • the description in FIG. 2 already described can be referred to.
  • FIG. 5 shows a DC interrupter according to a third embodiment.
  • the same components as those already described are denoted by the same reference numerals, and the description thereof is omitted unless there is a point to be added.
  • the switch 21 introduced in the form shown in FIG. 3 is also provided while the switch 21 existing in the form shown in FIG. 1 is provided.
  • the advantages of providing the switch 21, particularly the advantages for the switch 11, have already been mentioned in the description with reference to FIG. 1.
  • the advantages of the switch 31 have already been mentioned in the description with reference to FIG.
  • the electrodes of the switches 21 and 31 are controlled by the control unit 50B.
  • FIG. 6 shows a DC interrupter of a fourth embodiment.
  • the same components as those already described are denoted by the same reference numerals, and the description thereof is omitted unless there is a point to be added.
  • This fourth embodiment is based on the first embodiment shown in FIG. 1 as the configuration, and is a form in which a commutation element 41 is newly connected in parallel with the switch 11.
  • the commutation element 41 includes at least an element in which a functional element having a charge / discharge function and a semiconductor switch are connected in series.
  • the commutation element 41 is controlled by the control unit 50C.
  • the control unit 50C has on / off control of the semiconductor switch of the commutation element 41, and has a control function of charging the functional element of the commutation element 41 in advance and discharging at a predetermined timing.
  • FIG. 7 shows a configuration example of the commutation element 41.
  • the commutation element 41 includes a capacitor 41a, a reactor 41b, and a semiconductor switch 41c connected in series.
  • the capacitor 41a corresponds to the functional element having the charge / discharge function.
  • the semiconductor switch 41c is turned off under the control of the control unit 51C, the capacitor 41a is previously charged (that is, charged) between the two electrodes under the control of the control unit 51C. Is possible. Since the semiconductor switch 41c connected to one electrode of the capacitor 41a is in the OFF state, the charge accumulated in the capacitor 41a is hardly discharged in that state.
  • switching to the ON state of the semiconductor switch 41c by the control unit 50C is performed simultaneously with the start of the electrode opening control of the switches 11 and 21.
  • the current arc current
  • the current is more quickly commutated to the semiconductor switch 12 which is in a state where current can be passed.
  • the commutation element 41 causes current commutation to the semiconductor switch 12 to occur more quickly, so that the current is cut off when the current is smaller. Therefore, an increase in allowable current for the semiconductor switch 12 can be avoided.
  • FIG. 8A to 8D are timing charts showing the operation of the DC interrupter shown in FIG. As shown in FIG. 8, at time C, the electrode opening control of the switches 11 and 21 is started. At the same time, the commutation element 41 is activated, that is, the semiconductor switch 41c is turned on and the capacitor 41a is accumulated. Discharge the charge.
  • the time D is advanced compared to the case shown in FIG. 2, and thus the time E is also advanced than the case shown in FIG.
  • the time E is a timing at which the semiconductor switch 12 is turned off. Therefore, an increase in the allowable current can be further avoided as the semiconductor switch 12.
  • the description in FIG. 2 already described can be referred to.
  • the semiconductor switch is connected in parallel with the switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

According to the embodiments, a direct-current interruption apparatus has a switch, a semiconductor switch, a non-linear resistor, and a capacitor. The switch is a non-semiconductor device. The semiconductor switch is connected in parallel to the switch. The non-linear resistor is additionally connected in parallel to the switch and the semiconductor switch. The capacitor is additionally connected in parallel to the switch, the semiconductor switch, and the non-linear resistor.

Description

直流遮断装置、直流遮断方法DC cutoff device, DC cutoff method
 本発明の実施形態は、直流電流を遮断するために用いられる直流遮断装置および直流遮断方法に関する。 Embodiments of the present invention relate to a DC interrupting device and a DC interrupting method used for interrupting a DC current.
 一般に電力を送るには、事故等に備え送電電流を遮断する機能を系統として有していることが求められる。この目的で遮断装置が用いられるが、特に直流送電では、送電される直流に電流ゼロ点がないため交流遮断の場合にはない困難さがある。 Generally, in order to send electric power, it is required that the system has a function of cutting off the transmission current in preparation for an accident or the like. For this purpose, a shut-off device is used. In particular, in direct current power transmission, there is no difficulty in the case of alternating current interruption because there is no current zero point in the transmitted direct current.
 現状の直流遮断装置には、例えば、開閉器(スイッチ)を有する通電路と、通電路と並列に設けられた、電流を漸減させることができる電流遮断路とが備えられる。通常時は、通電路上の開閉器を閉じて通電路を通して電流を流す。事故時は、電流遮断路を一時的に導通させることにより通電路に代わって事故時の電流を流せる状態にする。その一方で開閉器を開き通電路の電流を不通にすることにより電流遮断路の側に事故時の電流を転流し、その後速やかに電流遮断路の電流を限流させて遮断を完了する。 The current DC circuit breaker includes, for example, an energization path having a switch (switch) and a current interrupt path provided in parallel with the energization path and capable of gradually reducing the current. Normally, the switch on the current path is closed and a current is passed through the current path. In the event of an accident, the current interrupting path is temporarily turned on so that the current at the time of the accident can flow instead of the energizing path. On the other hand, by opening the switch and disabling the current in the energizing path, the current at the time of the accident is commutated to the current interrupting path side, and then the current in the current interrupting path is immediately limited to complete the breaking.
 直流遮断装置の通電路は、電気抵抗が小さいほど好ましい。この電気抵抗は、通常時の電力損失になるためである。また、直流遮断装置の通電路から電流遮断路への電流切り替えは速いほど好ましい。遅くなるほど事故時の電流が増加していき、電流遮断路が遮断すべき電流の値が大きくなるためである。遮断すべき電流が大きくなると、電流遮断路として大容量のものが必要になり、遮断装置として大型化する。 The current path of the DC interrupter is preferably as small as possible. This is because the electric resistance becomes a power loss during normal operation. Moreover, the faster the current switching from the current path to the current interrupt path of the DC interrupter, the better. This is because the current at the time of the accident increases as the delay increases, and the value of the current to be interrupted by the current interrupt path increases. When the current to be cut off increases, a large capacity current cut-off path is required, and the cut-off device increases in size.
 本発明が解決しようとする課題は、通常時の通電損失を低く抑えかつ大型化を回避することが可能な直流遮断装置および直流遮断方法を提供することである。 The problem to be solved by the present invention is to provide a direct current interrupting device and a direct current interrupting method capable of suppressing a current-carrying loss at a normal time and avoiding an increase in size.
 実施形態の直流遮断装置は、開閉器と半導体スイッチと非線形抵抗器とキャパシタとを持つ。開閉器は、非半導体デバイスである。半導体スイッチは、前記開閉器と並列に接続されている。非線形抵抗器は、前記開閉器および前記半導体スイッチにさらに並列に接続されている。キャパシタは、前記開閉器、前記半導体スイッチ、および前記非線形抵抗器にさらに並列に接続されている。 The DC circuit breaker of the embodiment has a switch, a semiconductor switch, a non-linear resistor, and a capacitor. The switch is a non-semiconductor device. The semiconductor switch is connected in parallel with the switch. The nonlinear resistor is further connected in parallel to the switch and the semiconductor switch. The capacitor is further connected in parallel to the switch, the semiconductor switch, and the nonlinear resistor.
 また、実施形態の直流遮断方法は、上記の直流遮断装置による直流遮断方法であって次のような方法である。すなわち、(1)前記開閉器の電極開制御を開始し、(2)前記開閉器の電極開制御の開始後、前記開閉器に流れていた電流が電流を流せる状態にされている前記半導体スイッチにすべて転流されたことの確認を行い、(3)前記確認が得られた後、前記半導体スイッチをオフ状態に切り替える。 Further, the DC cutoff method of the embodiment is a DC cutoff method using the above-described DC cutoff device, and is the following method. That is, (1) starting the electrode opening control of the switch, and (2) after starting the electrode opening control of the switch, the semiconductor switch in which the current flowing through the switch can be made to flow (3) After the confirmation is obtained, the semiconductor switch is turned off.
第1実施形態の直流遮断装置を示す構成図。The lineblock diagram showing the direct-current circuit breaker of a 1st embodiment. 図1に示した直流遮断装置の動作を説明するタイミングチャート(全電流)。The timing chart (total current) explaining the operation | movement of the DC circuit breaker shown in FIG. 図1に示した直流遮断装置の動作を説明するタイミングチャート(半導体スイッチの電流)。The timing chart (current of a semiconductor switch) explaining operation | movement of the direct-current circuit interrupter shown in FIG. 図1に示した直流遮断装置の動作を説明するタイミングチャート(キャパシタ+非線形抵抗器の電流)。2 is a timing chart (capacitor + nonlinear resistor current) for explaining the operation of the DC interrupter shown in FIG. 図1に示した直流遮断装置の動作を説明するタイミングチャート(直流遮断装置への印加電圧)。The timing chart explaining the operation | movement of the DC circuit breaker shown in FIG. 1 (applied voltage to a DC circuit breaker). 第2実施形態の直流遮断装置を示す構成図。The lineblock diagram showing the direct-current circuit breaker of a 2nd embodiment. 図2に示した直流遮断装置の動作を説明するタイミングチャート(全電流)。3 is a timing chart (total current) for explaining the operation of the DC interrupter shown in FIG. 図2に示した直流遮断装置の動作を説明するタイミングチャート(半導体スイッチの電流)。The timing chart (current of a semiconductor switch) explaining the operation | movement of the direct-current circuit breaker shown in FIG. 図2に示した直流遮断装置の動作を説明するタイミングチャート(キャパシタ+非線形抵抗器の電流)。3 is a timing chart (capacitor + non-linear resistor current) for explaining the operation of the DC interrupter shown in FIG. 図2に示した直流遮断装置の動作を説明するタイミングチャート(直流遮断装置への印加電圧)。FIG. 3 is a timing chart for explaining the operation of the DC breaker shown in FIG. 2 (applied voltage to the DC breaker). 第3実施形態の直流遮断装置を示す構成図。The lineblock diagram showing the direct-current circuit breaker of a 3rd embodiment. 第4実施形態の直流遮断装置を示す構成図。The lineblock diagram showing the DC circuit breaker of a 4th embodiment. 図6中に示した転流要素41の構成例を示す回路図。The circuit diagram which shows the structural example of the commutation element 41 shown in FIG. 図6に示した直流遮断装置の動作を説明するタイミングチャート(全電流)。7 is a timing chart (total current) for explaining the operation of the DC interrupter shown in FIG. 図6に示した直流遮断装置の動作を説明するタイミングチャート(半導体スイッチの電流)。7 is a timing chart (semiconductor switch current) for explaining the operation of the DC interrupter shown in FIG. 図6に示した直流遮断装置の動作を説明するタイミングチャート(キャパシタ+非線形抵抗器の電流)。7 is a timing chart (capacitor + nonlinear resistor current) for explaining the operation of the DC interrupter shown in FIG. 図6に示した直流遮断装置の動作を説明するタイミングチャート(直流遮断装置への印加電圧)。The timing chart explaining the operation | movement of the DC circuit breaker shown in FIG. 6 (applied voltage to a DC circuit breaker).
(第1実施形態)
 以上を踏まえ、以下では実施形態の直流遮断装置を図面を参照しながら説明する。図1は、第1実施形態の直流遮断装置の構成を示している。図1に示すように、この直流遮断装置は、開閉器11、半導体スイッチ12、非線形抵抗器13、キャパシタ14、開閉器21、電流検出部22、電流検出部23、制御部50を有する。
(First embodiment)
Based on the above, the DC interrupter of the embodiment will be described below with reference to the drawings. FIG. 1 shows the configuration of the DC interrupter of the first embodiment. As shown in FIG. 1, the DC circuit breaker includes a switch 11, a semiconductor switch 12, a nonlinear resistor 13, a capacitor 14, a switch 21, a current detection unit 22, a current detection unit 23, and a control unit 50.
 この装置の概略動作は以下である。通常時は、開閉器11、21をともに閉じて図示左から右へ(または図示右から左へ;以下では、説明の便宜上、図示左から図示右へ通常時に通電しているものとする)電流を流す。事故等で電流遮断を要するときは、制御部50からの制御で開閉器11、21の電極開制御を開始し、これにより、開閉器11を流れていた電流を、電流を流せる状態に制御されている半導体スイッチ12の側にすべて転流する。 The general operation of this device is as follows. In normal times, both the switches 11 and 21 are closed and left to right in the figure (or from right to left in the figure; hereinafter, for convenience of explanation, it is assumed that current is normally applied from the left to the right in the figure). Shed. When current interruption is required due to an accident or the like, the electrode opening control of the switches 11 and 21 is started by the control from the control unit 50, whereby the current that has been flowing through the switch 11 is controlled to a state in which current can flow. All commutation is performed on the semiconductor switch 12 side.
 そして開閉器11、21の電極開制御完了後速やかに半導体スイッチ12をオフ状態にする。このオフへの切り替えで、一時的にキャパシタ14および非線形抵抗器13に電流が流れるが、非線形抵抗器13の非線形性によりこの電流は限流され遮断が完了する。以下では構成物それぞれについて説明する。 Then, immediately after the electrode opening control of the switches 11 and 21 is completed, the semiconductor switch 12 is turned off. This switching to OFF temporarily causes a current to flow through the capacitor 14 and the nonlinear resistor 13, but this current is limited by the nonlinearity of the nonlinear resistor 13 and the interruption is completed. Below, each component is demonstrated.
 開閉器11、21は、例えば、真空開閉器やガス開閉器のような非半導体デバイスである。非半導体デバイスであることから、通常の通電時において、通電のためオン状態の半導体デバイスに電流を流す構成とは異なり、電力損失を大きく減じることができる。開閉器11、21の電極開(および電極閉)の制御は上記のように制御部50によりなされる。開閉器21と開閉器11とは直列に接続されているが、開閉器11の耐圧性が十分高い場合には開閉器21は設けないようにすることも可能である。 The switches 11 and 21 are non-semiconductor devices such as vacuum switches and gas switches, for example. Since it is a non-semiconductor device, power loss can be greatly reduced, unlike a configuration in which current is supplied to an on-state semiconductor device for energization during normal energization. The control of the electrode opening (and electrode closing) of the switches 11 and 21 is performed by the control unit 50 as described above. Although the switch 21 and the switch 11 are connected in series, when the pressure resistance of the switch 11 is sufficiently high, the switch 21 can be omitted.
 半導体スイッチ12は、そのオン状態(電流を流せる状態)とオフ状態(電流を遮断する状態)とが制御部50により制御される。この半導体スイッチ12は、開閉器11と並列に設けられている。半導体スイッチ12の具体例としては、例えば、IGBT(insulated gate bipolar transistor)とダイオードとの逆並列接続(順方向が互いに逆になる並列接続)要素を2つ逆方向に直列に向い合せに接続して単位要素を構成し、この単位要素を多数直列に接続して全体として2つの端子を有するようにした構成物が挙げられる。単位要素としては、ほかに、サイリスタの逆並列接続構成も挙げられる。多数直列に接続するのは、直流遮断状態において耐圧を確保するためである。図示では、記号として簡略化した表示を用いている。 The semiconductor switch 12 is controlled by the control unit 50 between an on state (a state in which current can flow) and an off state (a state in which current is interrupted). The semiconductor switch 12 is provided in parallel with the switch 11. As a specific example of the semiconductor switch 12, for example, two anti-parallel connection (parallel connection in which the forward directions are opposite to each other) of an IGBT (insulated gate bipolar transistor) and a diode are connected in series in the reverse direction. The unit element is configured, and a plurality of unit elements are connected in series so as to have two terminals as a whole. Other unit elements include an anti-parallel connection configuration of thyristors. The reason for connecting a large number in series is to ensure a withstand voltage in a DC cut-off state. In the drawing, a simplified display is used as a symbol.
 非線形抵抗器13は、開閉器11、21の直列接続要素と並列に接続されている。この非線形抵抗器13は、この直流遮断器の遮断動作の最終段階で機能するものである。具体的には開閉器11、21が電流不通になり、半導体スイッチ12も電流不通になった後、キャパシタ14への充電電圧が所定に達した状態において電流が一時的に流れる。 The non-linear resistor 13 is connected in parallel with the series connection elements of the switches 11 and 21. The nonlinear resistor 13 functions at the final stage of the breaking operation of the DC breaker. Specifically, after the switches 11 and 21 become non-current and the semiconductor switch 12 becomes non-current, the current temporarily flows in a state where the charging voltage to the capacitor 14 reaches a predetermined level.
 キャパシタ14は、開閉器11、21の直列接続要素と並列に接続されている非線形抵抗器13にさらに並列に接続されている。これにより、開閉器11、21も半導体スイッチ12も電流不通に移行した直後、キャパシタ14には充電電流が流れる。したがって、非線形抵抗器13の両端に生じる電圧の上昇が緩やかになってピークが抑えられるため、開閉器11や半導体スイッチ12の耐圧特性を緩く設定することを可能にしている。 The capacitor 14 is further connected in parallel to a non-linear resistor 13 connected in parallel with the series connection elements of the switches 11 and 21. As a result, the charging current flows through the capacitor 14 immediately after the switches 11, 21 and the semiconductor switch 12 are switched to the current interruption. Therefore, since the voltage rise generated at both ends of the nonlinear resistor 13 is moderated and the peak is suppressed, the breakdown voltage characteristics of the switch 11 and the semiconductor switch 12 can be set loosely.
 電流検出部22は、この直流遮断器に流れる電流を検出し、これを制御部50に伝える。このため、電流検出部22は、開閉器11、21と非線形抵抗器13とキャパシタ14との並列接続の外側に直列に設けられている。電流検出の具体例として、例えば、ごく小さい抵抗値を有する抵抗器を挿入しその両端電圧を検出することが挙げられる。 The current detection unit 22 detects the current flowing through the DC breaker and transmits it to the control unit 50. For this reason, the current detection unit 22 is provided in series outside the parallel connection of the switches 11 and 21, the nonlinear resistor 13 and the capacitor 14. As a specific example of current detection, for example, a resistor having a very small resistance value is inserted and the voltage across the resistor is detected.
 電流検出部23は、半導体スイッチ12に流れる電流を検出し、これを制御部50に伝える。このため、電流検出部23は、半導体スイッチ12と直列に設けられている。この電流検出の具体例については、上記の電流検出部22と同様である。 The current detector 23 detects the current flowing through the semiconductor switch 12 and transmits it to the controller 50. For this reason, the current detection unit 23 is provided in series with the semiconductor switch 12. A specific example of this current detection is the same as that of the current detection unit 22 described above.
 制御部50は、上記で言及したように、開閉器11、21の電極開、電極閉の制御、半導体スイッチ12のオンオフ制御を行う。これらの制御のため、電流検出部22、23から電流検出の結果を得、また、不図示の事故検出装置から事故に関する情報を得る。なお、事故発生の旨は、電流検出部22を活用することにより制御部50で判断するようにしてもよい。 As described above, the control unit 50 controls the opening and closing of the switches 11 and 21 and the on / off control of the semiconductor switch 12. For these controls, the current detection results are obtained from the current detection units 22 and 23, and information about the accident is obtained from an accident detection device (not shown). The occurrence of an accident may be determined by the control unit 50 by utilizing the current detection unit 22.
 この第1実施形態によれば、以上のような構成をもつことにより、例えば事故情報に基づいて開閉器11、21の電極開制御が開始されると、電極間のアーク抵抗によって、電流を流せる状態にされている半導体スイッチ12の側に電流が素早く転流する。このとき半導体スイッチ12に流れている電流は、例えば事故時の遮断すべき電流そのものなので、開閉器11、21の電極開制御完了後素早く半導体スイッチ12をオフ状態に切り替えることで直流遮断動作がほぼ終了する。 According to the first embodiment, when the electrode opening control of the switches 11 and 21 is started based on the accident information, for example, the current can flow due to the arc resistance between the electrodes. The current quickly commutates to the semiconductor switch 12 that is in the state. At this time, the current flowing through the semiconductor switch 12 is, for example, the current that should be cut off at the time of an accident. finish.
 半導体スイッチ12をオフ状態に切り替えた後、詳細には、非線形抵抗器13とキャパシタ14との並列要素に、その直前に半導体スイッチ12に流れていた電流と同じ値の電流が流れる。この電流は、当初はキャパシタ14を充電する電流であるためその両端電圧を上昇させる。キャパシタ14の両端電圧上昇が所定に達すると非線形抵抗器13に電流が流れ始め、抵抗の非線形性により抵抗値が増大することから、電流は減少し、増大した抵抗値により実質的に電流ゼロに至って電流遮断が完了する。 More specifically, after switching the semiconductor switch 12 to the OFF state, a current having the same value as the current flowing in the semiconductor switch 12 immediately before flows through the parallel element of the nonlinear resistor 13 and the capacitor 14. Since this current is initially a current for charging the capacitor 14, the voltage at both ends thereof is increased. When the voltage rise across the capacitor 14 reaches a predetermined value, a current starts to flow through the non-linear resistor 13 and the resistance value increases due to the non-linearity of the resistance. Therefore, the current decreases, and the increased resistance value substantially reduces the current to zero. Finally, the current interruption is completed.
 非線形抵抗器13にキャパシタ14が並列に接続されていることは、非線形抵抗器13の両端に生じる電圧を急増ではなく漸増させる効果を生む。これにより、開状態に至っている開閉器11、21に印加されることになる最大電圧が抑制され、その耐圧特性を緩くできるので開閉器11、21の選択肢が広がる。 The fact that the capacitor 14 is connected in parallel to the non-linear resistor 13 has an effect of gradually increasing the voltage generated at both ends of the non-linear resistor 13 instead of increasing rapidly. As a result, the maximum voltage to be applied to the switches 11 and 21 in the open state is suppressed, and the withstand voltage characteristics can be relaxed, so that the options of the switches 11 and 21 are expanded.
 この直流遮断装置では、もとより、通常の通電時においては開閉器11、21が閉状態になって電流を流しており、通電のためオン状態の半導体デバイスが用いられないため、電力損失を大きく減じることができる。また、半導体スイッチ12がオフにされるときは電流が素早く転流されたあとで間もなく、その流れる電流はまだ小さいと言えるので、半導体スイッチ12として許容電流の増大化(半導体スイッチ12として大型化)を避けることができる。 In this DC interrupter, the switches 11 and 21 are closed during normal energization, and current flows, and the on-state semiconductor device is not used for energization, so that power loss is greatly reduced. be able to. Further, when the semiconductor switch 12 is turned off, it can be said that the current flowing is still shortly after the current is quickly commutated, so that the allowable current increases as the semiconductor switch 12 (the semiconductor switch 12 increases in size). Can be avoided.
 なお、この第1実施形態では、開閉器11に直列に開閉器21を設けているが、これにより開閉器11としてより低耐圧特性のものを採用することができる。開閉器11には半導体スイッチ12が並列に接続されていてオフ時にも極めてわずかであるが導電性を有するため、この直流遮断装置が直流遮断を完了した後に印加される電圧は、その大部分を開閉器21の側が受け持つことになるためである。例えば、開閉器21を高耐圧のガス開閉器、開閉器11を低耐圧の真空開閉器とする場合に、現実的な構成である。 In the first embodiment, the switch 21 is provided in series with the switch 11. However, the switch 11 having a lower withstand voltage characteristic can be used. Since the switch 11 is connected to the semiconductor switch 12 in parallel and has a very small electrical conductivity even when the switch 11 is turned off, the voltage applied after the DC circuit breaker completes the DC circuit breakage is mostly. This is because the switch 21 side takes charge. For example, when the switch 21 is a high-breakdown-pressure gas switch and the switch 11 is a low-breakdown-pressure vacuum switch, this is a realistic configuration.
 次に、図2を参照して、図1に示した直流遮断装置についてその時系列的な動作をさらに説明する。図2Aから図2Dは、図1に示した直流遮断装置の動作をタイミングチャートで示している。 Next, with reference to FIG. 2, the time series operation of the DC interrupter shown in FIG. 1 will be further described. 2A to 2D are timing charts showing the operation of the DC interrupter shown in FIG.
 図2Aには、全電流(つまり、電流検出部22により検出される電流)の時系列的な変化が示されている。図示の最初の段階(時刻A以前の段階)は、通常時の電流が流れている状態であり、その内訳はすべて開閉器21、11に流れている電流である。当然と言えるが時刻A以前の段階で半導体スイッチ12、および非線形抵抗器13とキャパシタ14との並列接続に電流は流れていない(図2B、図2Cを参照)。 FIG. 2A shows a time-series change in the total current (that is, the current detected by the current detection unit 22). The first stage in the figure (the stage before time A) is a state in which a normal current flows, and the breakdown is all the current flowing in the switches 21 and 11. As a matter of course, no current flows through the semiconductor switch 12 and the parallel connection of the nonlinear resistor 13 and the capacitor 14 before the time A (see FIGS. 2B and 2C).
 時刻Aにおいて直流送電系統に事故が発生すると、図2Aに示すように全電流は増加していく。事故発生の旨は不図示の事故検出装置により検出され(時刻B)、その情報は制御部50に伝えられる。これを受けて制御部50は、開閉器11、21の電極開制御を開始する(時刻C)。これにより、開閉器11にアーク抵抗が生じて両端間に電圧が生じるため、開閉器11に流れていた電流は、電流を流せるように制御されている半導体スイッチ12の側に転流する。そして、開閉器11の電極開制御を続け電極間が広がっていくと、いずれは開閉器11の側に電流は流れず、半導体スイッチ12の側だけに電流が流れる状態になる(時刻D)。 When an accident occurs in the DC power transmission system at time A, the total current increases as shown in FIG. 2A. The fact that an accident has occurred is detected by an accident detection device (not shown) (time B), and the information is transmitted to the control unit 50. Receiving this, the control part 50 starts the electrode opening control of the switches 11 and 21 (time C). As a result, an arc resistance is generated in the switch 11 and a voltage is generated between both ends. Therefore, the current flowing in the switch 11 is commutated to the semiconductor switch 12 that is controlled so that the current can flow. When the electrode opening control of the switch 11 is continued and the distance between the electrodes spreads, the current does not flow to the switch 11 side, and the current flows only to the semiconductor switch 12 side (time D).
 開閉器11に電流が流れず半導体スイッチ12だけに電流が流れる状態は、制御部50において、電流検出部22からの電流検出結果と電流検出部23からの電流検出結果とを比較してこれらがほぼ等しくなることで了知できる。つまり、制御部50は、電流検出結果により、開閉器11に流れていた電流が電流を流せる状態にされている半導体スイッチ12にすべて転流されたことの確認を行うことができる。なお、半導体スイッチ12だけに電流が流れる状態において開閉器11の両端に印加される電圧は、半導体スイッチ12のオン抵抗による電圧降下分であり、例えば数kVと見積もられる。 The state in which current does not flow through the switch 11 and current flows only through the semiconductor switch 12 is obtained by comparing the current detection result from the current detection unit 22 with the current detection result from the current detection unit 23 in the control unit 50. It can be understood that they are almost equal. That is, the control unit 50 can confirm that the current flowing through the switch 11 has been all commutated to the semiconductor switch 12 in a state where the current can flow through the current detection result. Note that the voltage applied to both ends of the switch 11 in a state where a current flows only in the semiconductor switch 12 is a voltage drop due to the on-resistance of the semiconductor switch 12, and is estimated to be several kV, for example.
 時刻Dのあと、開閉器11、21の電極開状態が最終的に確立したと考えられる時点以後(時刻E)で、半導体スイッチ12をオフ状態にすべく制御部50は半導体スイッチ12を制御する。これにより、図2Cに示すように、非線形抵抗器13およびキャパシタ14に電流が一時的に流れる。 After time D, the control unit 50 controls the semiconductor switch 12 to turn off the semiconductor switch 12 after the time when the electrode open state of the switches 11 and 21 is considered to be finally established (time E). . Thereby, as shown to FIG. 2C, an electric current flows into the nonlinear resistor 13 and the capacitor 14 temporarily.
 一時的に流れる最初の段階では、その直前に半導体スイッチ12に流れていた電流と同じ値の電流が流れる。これはキャパシタ14への充電電流になり、これでキャパシタ14が充電されてその両端電圧が上昇するに伴い今度は非線形抵抗器13に電流が流れる(時刻F)。非線形抵抗器13に電流が流れると、抵抗の非線形性により抵抗値が増大し、増大した抵抗値により実質的に電流ゼロに至って電流遮断が完了する(時刻G)。時刻G以降は、この直流送電系統に応じた直流電圧(例えば300kV)がこの直流遮断装置に印加された状態になる(図2Dを参照)。 In the first stage of flowing temporarily, a current having the same value as the current flowing in the semiconductor switch 12 immediately before that flows. This becomes a charging current for the capacitor 14, and as the capacitor 14 is charged and the voltage across the capacitor rises, a current flows through the nonlinear resistor 13 (time F). When a current flows through the non-linear resistor 13, the resistance value increases due to the non-linearity of the resistance, the current value is substantially zero due to the increased resistance value, and the current interruption is completed (time G). After time G, a DC voltage (for example, 300 kV) corresponding to the DC power transmission system is applied to the DC circuit breaker (see FIG. 2D).
 すでに説明しているが、非線形抵抗器13にキャパシタ14が並列に接続されていることによってキャパシタ14に充電がされていくため、非線形抵抗器13の両端に生じる電圧は漸増しそのピークがなまる(図2Dの時刻E以降を参照)。これにより、開状態に至っている開閉器11、21に印加されることになる最大電圧が抑制され、その耐圧特性を緩くできるので開閉器11、21の選択肢が広がる。 As already described, since the capacitor 14 is charged by the capacitor 14 being connected in parallel to the nonlinear resistor 13, the voltage generated at both ends of the nonlinear resistor 13 is gradually increased and its peak is reduced. (See after time E in FIG. 2D). As a result, the maximum voltage to be applied to the switches 11 and 21 in the open state is suppressed, and the withstand voltage characteristics can be relaxed, so that the options of the switches 11 and 21 are expanded.
(第2実施形態)
 次に、図3は、第2実施形態の直流遮断装置を示している。図3中においてすでに説明した構成要素と同一のものには同一符号を付し加えるべき点がない限りその説明は省略する。この第2実施形態では、図1に示した形態では存在した開閉器21がない。開閉器21を排したことによる影響、その特に開閉器11Aに対する影響については、開閉器11についての図1での説明を参照できる。
(Second Embodiment)
Next, FIG. 3 shows a DC circuit breaker according to the second embodiment. In FIG. 3, the same components as those already described are denoted by the same reference numerals, and the description thereof will be omitted unless there is a point to be added. In this 2nd Embodiment, there is no switch 21 which existed in the form shown in FIG. Regarding the influence caused by eliminating the switch 21, particularly the influence on the switch 11A, the description of the switch 11 in FIG. 1 can be referred to.
 この第2実施形態では、図1に示したものとの更なる違いとして、半導体スイッチ12と直列に新たに開閉器31を設けている。開閉器31は、非半導体デバイスであり、その電極開閉の制御は制御部50Aにより行われる。このように開閉器31を設けることにより、半導体スイッチ12のオフ移行時の電流値をさらに抑制する効果が得られる。 In the second embodiment, as a further difference from that shown in FIG. 1, a switch 31 is newly provided in series with the semiconductor switch 12. The switch 31 is a non-semiconductor device, and its electrode opening / closing control is performed by the control unit 50A. By providing the switch 31 as described above, an effect of further suppressing the current value when the semiconductor switch 12 is turned off can be obtained.
 すなわち、開閉器31を半導体スイッチ12のオフ移行よりわずかに前に電極開制御を開始すればそのアーク抵抗によって電流が減じ、その減じた電流を半導体スイッチ12が遮断することになるためである。したがって、一層、半導体スイッチ12として許容電流の増大化を避けることができる。 That is, if the electrode opening control is started slightly before the switch 31 is turned off, the current is reduced by the arc resistance, and the semiconductor switch 12 cuts off the reduced current. Therefore, an increase in allowable current for the semiconductor switch 12 can be avoided.
 図4Aから図4Dは、図3に示した直流遮断装置の動作をタイミングチャートで示している。図4中に示すように、時刻E1での開閉器31の電極開制御開始は、半導体スイッチ12をオフするタイミングである時刻Eよりわずかに前に行う。これにより、開閉器31のアーク抵抗が生じて半導体スイッチ12の電流が減じる。すなわち、半導体スイッチ12として許容電流の増大化を避けることができる。図4に示したほかの点については、すでに説明した図2での説明を参照できる。 4A to 4D are timing charts showing the operation of the DC interrupter shown in FIG. As shown in FIG. 4, the electrode opening control of the switch 31 at the time E <b> 1 is started slightly before the time E that is the timing for turning off the semiconductor switch 12. Thereby, the arc resistance of the switch 31 is generated and the current of the semiconductor switch 12 is reduced. That is, an increase in allowable current for the semiconductor switch 12 can be avoided. Regarding the other points shown in FIG. 4, the description in FIG. 2 already described can be referred to.
(第3実施形態)
 次に、図5は、第3実施形態の直流遮断装置を示している。図5中においてすでに説明した構成要素と同一のものには同一符号を付し加えるべき点がない限りその説明は省略する。この第3実施形態は、図1に示した形態で存在した開閉器21を設けつつ、図3に示した形態で導入した開閉器31をも設けるようにしたものである。開閉器21を設けたことによる利点、その特に開閉器11に対する利点については、図1を参照した説明ですでに言及している。開閉器31の利点については、図3を参照した説明ですでに言及している。開閉器21、31は、制御部50Bによりその電極開閉が制御される。
(Third embodiment)
Next, FIG. 5 shows a DC interrupter according to a third embodiment. In FIG. 5, the same components as those already described are denoted by the same reference numerals, and the description thereof is omitted unless there is a point to be added. In the third embodiment, the switch 21 introduced in the form shown in FIG. 3 is also provided while the switch 21 existing in the form shown in FIG. 1 is provided. The advantages of providing the switch 21, particularly the advantages for the switch 11, have already been mentioned in the description with reference to FIG. 1. The advantages of the switch 31 have already been mentioned in the description with reference to FIG. The electrodes of the switches 21 and 31 are controlled by the control unit 50B.
(第4実施形態)
 次に、図6は、第4実施形態の直流遮断装置を示している。図6中においてすでに説明した構成要素と同一のものには同一符号を付し加えるべき点がない限りその説明は省略する。この第4実施形態は、その構成として図1に示した第1実施形態を基本としており、さらに、新たに転流要素41を開閉器11と並列に接続して設けた形態である。
(Fourth embodiment)
Next, FIG. 6 shows a DC interrupter of a fourth embodiment. In FIG. 6, the same components as those already described are denoted by the same reference numerals, and the description thereof is omitted unless there is a point to be added. This fourth embodiment is based on the first embodiment shown in FIG. 1 as the configuration, and is a form in which a commutation element 41 is newly connected in parallel with the switch 11.
 転流要素41は、充放電機能を有する機能素子と半導体スイッチとが直列に接続された要素を少なくとも含んでいる。転流要素41は、制御部50Cにより制御される。制御部50Cは、転流要素41の半導体スイッチをオンオフ制御するとともに、転流要素41の機能素子にあらかじめ充電しかつ所定のタイミングで放電する制御機能を有する。 The commutation element 41 includes at least an element in which a functional element having a charge / discharge function and a semiconductor switch are connected in series. The commutation element 41 is controlled by the control unit 50C. The control unit 50C has on / off control of the semiconductor switch of the commutation element 41, and has a control function of charging the functional element of the commutation element 41 in advance and discharging at a predetermined timing.
 図7は、転流要素41の構成例を示している。この転流要素41は、キャパシタ41aとリアクトル41bと半導体スイッチ41cとが直列に接続されたものである。キャパシタ41aが上記の充放電機能を有する機能素子に当たる。制御部51Cの制御で半導体スイッチ41cがオフ状態にされている状態において、キャパシタ41aには、制御部51Cからの制御により両電極間に電荷をあらかじめ蓄積しておく(つまり充電しておく)ことが可能である。キャパシタ41aの一方の電極につながる半導体スイッチ41cがオフ状態であるため、その状態ではキャパシタ41aに蓄積した電荷はほとんど放電しない。 FIG. 7 shows a configuration example of the commutation element 41. The commutation element 41 includes a capacitor 41a, a reactor 41b, and a semiconductor switch 41c connected in series. The capacitor 41a corresponds to the functional element having the charge / discharge function. In the state in which the semiconductor switch 41c is turned off under the control of the control unit 51C, the capacitor 41a is previously charged (that is, charged) between the two electrodes under the control of the control unit 51C. Is possible. Since the semiconductor switch 41c connected to one electrode of the capacitor 41a is in the OFF state, the charge accumulated in the capacitor 41a is hardly discharged in that state.
 その後、所定のタイミングで、制御部50Cにより半導体スイッチ41cをオン状態に切り替えると、キャパシタ41aの両電極間にその一方から他方へループする電流路が存在する場合には放電が起こる。リアクトル41bは、このときの電流の流れを緩く保つために挿入している。なお、キャパシタ41aの充電極性は、図示右側がプラス、図示左側がマイナスである。 After that, when the semiconductor switch 41c is switched on by the control unit 50C at a predetermined timing, a discharge occurs when there is a current path that loops from one to the other between both electrodes of the capacitor 41a. The reactor 41b is inserted in order to keep the current flow at this time loose. The charging polarity of the capacitor 41a is positive on the right side and negative on the left side.
 制御部50Cによる半導体スイッチ41cのオン状態に切り替えは、この形態では、開閉器11、21の電極開制御を開始するときと同時に行うようにする。これにより、開閉器11に流れる電流(アーク電流)を減少させることが可能であり、これにより、その後は、電流を流せる状態にされている半導体スイッチ12に電流が一層素早く転流する。
 開閉器11のアーク電流を減少させることにより、開閉器11の電極損傷を軽減化し寿命を長期化できる。
In this embodiment, switching to the ON state of the semiconductor switch 41c by the control unit 50C is performed simultaneously with the start of the electrode opening control of the switches 11 and 21. As a result, it is possible to reduce the current (arc current) flowing through the switch 11, and thereafter, the current is more quickly commutated to the semiconductor switch 12 which is in a state where current can be passed.
By reducing the arc current of the switch 11, the electrode damage of the switch 11 can be reduced and the life can be extended.
 また、半導体スイッチ12に関しては、そのオフ移行時の電流値をさらに抑制する効果が得られる。すなわち、転流要素41により半導体スイッチ12への電流の転流が一層素早く生じるので、その電流がより小のときこれを遮断することになるためである。したがって、一層、半導体スイッチ12として許容電流の増大化を避けることができる。 Further, with respect to the semiconductor switch 12, an effect of further suppressing the current value at the time of turning off can be obtained. That is, the commutation element 41 causes current commutation to the semiconductor switch 12 to occur more quickly, so that the current is cut off when the current is smaller. Therefore, an increase in allowable current for the semiconductor switch 12 can be avoided.
 図8Aから図8Dは、図7に示した直流遮断装置の動作をタイミングチャートで示している。図8中に示すように、時刻Cで、開閉器11、21の電極開制御が開始されるが、これと同時に転流要素41を起動、つまり半導体スイッチ41cをオン状態にしてキャパシタ41aの蓄積電荷を放電する。 8A to 8D are timing charts showing the operation of the DC interrupter shown in FIG. As shown in FIG. 8, at time C, the electrode opening control of the switches 11 and 21 is started. At the same time, the commutation element 41 is activated, that is, the semiconductor switch 41c is turned on and the capacitor 41a is accumulated. Discharge the charge.
 そうすると、時刻Dは、図2に示す場合よりも前倒しになり、これにより時刻Eも図2に示す場合よりも前倒しになる。時刻Eは、半導体スイッチ12をオフに切り替えるタイミングであり、したがって、一層、半導体スイッチ12として許容電流の増大化を避けることができる。図8に示したほかの点については、すでに説明した図2での説明を参照できる。 Then, the time D is advanced compared to the case shown in FIG. 2, and thus the time E is also advanced than the case shown in FIG. The time E is a timing at which the semiconductor switch 12 is turned off. Therefore, an increase in the allowable current can be further avoided as the semiconductor switch 12. Regarding the other points shown in FIG. 8, the description in FIG. 2 already described can be referred to.
 以上説明したように、各実施形態の直流遮断装置によれば、開閉器と並列に半導体スイッチが接続されている。このような構成をもつことにより、例えば事故情報に基づいて開閉器の電極開制御が開始されると、電極間のアーク抵抗によって、オン状態にされている半導体スイッチに電流が素早く転流する。このとき半導体スイッチに流れている電流は、例えば事故時の遮断すべき電流そのものなので、その後素早く半導体スイッチをオフ状態に切り替えることで直流遮断動作がほぼ終了する。 As described above, according to the DC interrupter of each embodiment, the semiconductor switch is connected in parallel with the switch. With such a configuration, for example, when electrode opening control of the switch is started based on accident information, current is quickly commutated to the semiconductor switch that is turned on due to the arc resistance between the electrodes. At this time, the current flowing through the semiconductor switch is, for example, the current that should be cut off at the time of an accident.
 厳密には、半導体スイッチをオフ状態に切り替えた後、非線形抵抗器とキャパシタとの並列要素には、その直前に半導体スイッチに流れていた電流と同じ値の電流が流れる。その電流は当初はキャパシタへの充電電流になってキャパシタが充電されることにより電圧が上昇する。電圧が上昇すると非線形抵抗器に電流が流れ、それにより非線形抵抗器の抵抗が増して電流は減少し、さらに実質的に電流ゼロに至って電流遮断が完了する。 Strictly speaking, after switching the semiconductor switch to the OFF state, a current having the same value as the current flowing in the semiconductor switch immediately before flows through the parallel element of the nonlinear resistor and the capacitor. The current initially becomes a charging current for the capacitor, and the voltage is increased by charging the capacitor. When the voltage increases, a current flows through the non-linear resistor, thereby increasing the resistance of the non-linear resistor and decreasing the current. Further, the current reaches zero and the current interruption is completed.
 非線形抵抗器にキャパシタが並列に接続されていることは、非線形抵抗器に生じる降下電圧を急増ではなく漸増させる効果を生む。これにより、開状態に至っている開閉器に印加されることになる電圧が抑制され、その耐圧特性を緩くできるので開閉器の選択肢が広がる。 The fact that the capacitor is connected in parallel to the non-linear resistor has the effect of gradually increasing the voltage drop generated in the non-linear resistor instead of a sudden increase. As a result, the voltage to be applied to the open / closed switch is suppressed and the withstand voltage characteristic can be relaxed, thereby widening the choice of switch.
 この直流遮断装置では、もとより、通常の通電時においては開閉器が閉状態になって電流を流しており、通電のためオン状態の半導体デバイスが用いられないため、電力損失を大きく減じることができる。また、半導体スイッチがオフにされるとき、その流れる電流は素早く転流された後でまだ小さいので、半導体スイッチとして許容電流の増大化を避けることができる。 In this DC circuit breaker, of course, during normal energization, the switch is closed and current flows, and since the on-state semiconductor device is not used for energization, power loss can be greatly reduced. . Also, when the semiconductor switch is turned off, the current flowing through it is still small after being quickly commutated, so that an increase in allowable current can be avoided as a semiconductor switch.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 11、11A…開閉器、12…半導体スイッチ、13…非線形抵抗器、14…キャパシタ、21…開閉器、22…電流検出部、23…電流検出部、31…開閉器、41…転流要素、41a…キャパシタ、41b…リアクトル、41c…半導体スイッチ、50、50A、50B、50C…制御部。 DESCRIPTION OF SYMBOLS 11, 11A ... Switch, 12 ... Semiconductor switch, 13 ... Nonlinear resistor, 14 ... Capacitor, 21 ... Switch, 22 ... Current detection part, 23 ... Current detection part, 31 ... Switch, 41 ... Commutation element, 41a ... capacitor, 41b ... reactor, 41c ... semiconductor switch, 50, 50A, 50B, 50C ... control unit.

Claims (5)

  1.  非半導体デバイスである開閉器と、
     前記開閉器と並列に接続された半導体スイッチと、
     前記開閉器および前記半導体スイッチにさらに並列に接続された非線形抵抗器と、
     前記開閉器、前記半導体スイッチ、および前記非線形抵抗器にさらに並列に接続されたキャパシタと
     を具備する直流遮断装置。
    A switch that is a non-semiconductor device;
    A semiconductor switch connected in parallel with the switch;
    A non-linear resistor further connected in parallel to the switch and the semiconductor switch;
    A DC circuit breaker comprising: the switch; the semiconductor switch; and a capacitor connected in parallel to the nonlinear resistor.
  2.  前記開閉器と前記半導体スイッチとの並列接続に対して直列に接続された、前記開閉器より高耐圧特性を有する第2の開閉器をさらに具備し、
     前記非線形抵抗器および前記キャパシタが、前記開閉器と前記半導体スイッチとの並列接続と前記第2の開閉器との直列接続に対して、それぞれ、並列に接続されている
     請求項1記載の直流遮断装置。
    A second switch connected in series with the parallel connection of the switch and the semiconductor switch, and having a higher withstand voltage than the switch;
    2. The DC cutoff according to claim 1, wherein the nonlinear resistor and the capacitor are connected in parallel with respect to a parallel connection of the switch and the semiconductor switch and a series connection of the second switch, respectively. apparatus.
  3.  前記半導体スイッチと直列に接続された、非半導体デバイスである第2の開閉器をさらに具備し、
     前記開閉器が、前記半導体スイッチと前記第2の開閉器との直列接続に対して並列に接続されている
     請求項1記載の直流遮断装置。
    A second switch which is a non-semiconductor device connected in series with the semiconductor switch;
    The DC breaker according to claim 1, wherein the switch is connected in parallel to a series connection of the semiconductor switch and the second switch.
  4.  前記開閉器と並列にさらに接続された、第2の半導体スイッチと第2のキャパシタとが直列に接続された要素をさらに具備する請求項1記載の直流遮断装置。 The DC circuit breaker according to claim 1, further comprising an element connected in series with a second semiconductor switch and a second capacitor, further connected in parallel with the switch.
  5.  非半導体デバイスである開閉器と、前記開閉器と並列に接続された半導体スイッチと、前記開閉器および前記半導体スイッチにさらに並列に接続された非線形抵抗器と、前記開閉器、前記半導体スイッチ、および前記非線形抵抗器にさらに並列に接続されたキャパシタと、を具備する直流遮断装置による直流遮断方法であって、
     前記開閉器の電極開制御を開始し、
     前記開閉器の電極開制御の開始後、前記開閉器に流れていた電流が電流を流せるにされている前記半導体スイッチにすべて転流されたことの確認を行い、
     前記確認が得られた後、前記半導体スイッチをオフ状態に切り替える
     直流遮断方法。
    A switch that is a non-semiconductor device, a semiconductor switch connected in parallel to the switch, a non-linear resistor connected in parallel to the switch and the semiconductor switch, the switch, the semiconductor switch, and A DC cut-off method by a DC cut-off device comprising a capacitor further connected in parallel to the non-linear resistor,
    Start electrode opening control of the switch,
    After the start of the electrode opening control of the switch, confirm that all the current that was flowing through the switch has been commutated to the semiconductor switch that is allowed to flow current,
    A DC cutoff method for switching the semiconductor switch to an off state after the confirmation is obtained.
PCT/JP2016/002759 2015-06-09 2016-06-07 Direct-current interruption apparatus, direct-current interruption method WO2016199407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-116795 2015-06-09
JP2015116795A JP2017004726A (en) 2015-06-09 2015-06-09 Dc blocking device and dc blocking method

Publications (1)

Publication Number Publication Date
WO2016199407A1 true WO2016199407A1 (en) 2016-12-15

Family

ID=57503395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002759 WO2016199407A1 (en) 2015-06-09 2016-06-07 Direct-current interruption apparatus, direct-current interruption method

Country Status (2)

Country Link
JP (1) JP2017004726A (en)
WO (1) WO2016199407A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115127B2 (en) * 2018-08-06 2022-08-09 富士電機株式会社 switch device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394514A (en) * 1986-10-08 1988-04-25 寺崎電気産業株式会社 Circuit breaker
JPH1031924A (en) * 1996-07-15 1998-02-03 Toshiba Corp Compound switching device
JPH10126961A (en) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd Current limiting apparatus
JP2004014241A (en) * 2002-06-05 2004-01-15 Toshiba Corp Dc breaker
JP2005190671A (en) * 2003-12-24 2005-07-14 Toshiba Corp Dc breaker
WO2014053554A1 (en) * 2012-10-05 2014-04-10 Abb Technology Ag Circuit breaker with stacked breaker modules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394514A (en) * 1986-10-08 1988-04-25 寺崎電気産業株式会社 Circuit breaker
JPH1031924A (en) * 1996-07-15 1998-02-03 Toshiba Corp Compound switching device
JPH10126961A (en) * 1996-10-17 1998-05-15 Fuji Electric Co Ltd Current limiting apparatus
JP2004014241A (en) * 2002-06-05 2004-01-15 Toshiba Corp Dc breaker
JP2005190671A (en) * 2003-12-24 2005-07-14 Toshiba Corp Dc breaker
WO2014053554A1 (en) * 2012-10-05 2014-04-10 Abb Technology Ag Circuit breaker with stacked breaker modules

Also Published As

Publication number Publication date
JP2017004726A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6223887B2 (en) DC cutoff device, DC cutoff method
KR101521545B1 (en) Device and method to interrupt high voltage direct current
JP6049957B2 (en) DC circuit breaker
EP3242309B1 (en) High voltage dc circuit breaker
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
US10476255B2 (en) DC circuit breaker
EP3413330B1 (en) Direct current circuit breaker
EP3242367B1 (en) Dc circuit breaker
US11049670B2 (en) Mechatronic circuit-breaker device
WO2016199416A1 (en) Direct-current interruption apparatus, direct-current interruption method
JP5031607B2 (en) DC high-speed vacuum circuit breaker
JP6386955B2 (en) DC cutoff device and DC cutoff method
JP6448431B2 (en) DC breaker
WO2016199407A1 (en) Direct-current interruption apparatus, direct-current interruption method
JP2018533835A (en) Circuit breaker for high voltage DC networks using forced oscillation of current
EP3276648B1 (en) Direct current interruption device
JP2020502767A (en) Reverse current injection type DC cut-off device and method using vacuum gap switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807115

Country of ref document: EP

Kind code of ref document: A1