JP2018194447A - Radiation source storage container - Google Patents

Radiation source storage container Download PDF

Info

Publication number
JP2018194447A
JP2018194447A JP2017098717A JP2017098717A JP2018194447A JP 2018194447 A JP2018194447 A JP 2018194447A JP 2017098717 A JP2017098717 A JP 2017098717A JP 2017098717 A JP2017098717 A JP 2017098717A JP 2018194447 A JP2018194447 A JP 2018194447A
Authority
JP
Japan
Prior art keywords
main body
radiation source
lid
body member
source container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098717A
Other languages
Japanese (ja)
Other versions
JP6710384B2 (en
Inventor
直之 堀江
Naoyuki Horie
直之 堀江
義矢 川畑
Yoshiya Kawabata
義矢 川畑
敏治 竹石
Toshiharu Takeishi
敏治 竹石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Atox Co Ltd
Original Assignee
Kyushu University NUC
Atox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Atox Co Ltd filed Critical Kyushu University NUC
Priority to JP2017098717A priority Critical patent/JP6710384B2/en
Publication of JP2018194447A publication Critical patent/JP2018194447A/en
Application granted granted Critical
Publication of JP6710384B2 publication Critical patent/JP6710384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • X-Ray Techniques (AREA)
  • Packages (AREA)

Abstract

To provide a radiation source storage container capable of preventing deformation and breakage of the container due to thermal expansion, while maintaining the shield performance of radiation.SOLUTION: A radiation source storage container C is stored with a lead radiation source storage container 2. A main body 4 includes: a first bottomed cylindrical main body member 4a; and a second bottomed cylindrical main body member 4b on which a first ridge part 4b4 for forming a predetermined gap with the first main body member 4a is provided on the outer circumferential surface when inserted into the first main body member 4a. The lid 5 includes: a first bottomed cylindrical lid member 5a and a second columnar lid member 5b in which the second ridge part 5b1 for forming the predetermined gap with the first lid member 5a when inserted into the first lid member 5a is provided on the outer circumferential surface. The smallest outer diameter of the second lid member 5b is larger than the maximum outer diameter of a portion formed with a lead of the radiation source storage container 2.SELECTED DRAWING: Figure 1

Description

本発明は、中性子線等の放射線を発生する放射線源を運搬する際に、その放射線源を収容する放射線源収容容器に関する。   The present invention relates to a radiation source storage container that stores a radiation source that generates radiation such as a neutron beam.

中性子線等の放射線を発生する放射性同位元素等(以下、「放射線源」という。)は、原子力施設等の事業所外では、「放射性同位元素等による放射線障害の防止に関する法律施行規則」に基づいて設計された容器(以下、「放射線源収容容器」という。)に収容した状態で運搬を行わなければならない。   Radioisotopes that generate radiation such as neutrons (hereinafter referred to as “radiation sources”) are based on the “Regulation for Enforcement of Law Concerning the Prevention of Radiation Hazards due to Radioisotopes, etc.” outside facilities such as nuclear facilities. It must be transported in a state where it is contained in a container designed in this manner (hereinafter referred to as “radiation source container”).

放射線源収容容器としては、所定の放射線を遮蔽する第1遮蔽材料(例えば、ガンマ線を遮蔽可能な炭素鋼、鉛等)からなり、放射線源が埋め込まれた内側容器と、鋼材、アルミニウム等からなり、内側容器を収容する外側容器とを備えたものがある。   The radiation source container is made of a first shielding material that shields predetermined radiation (for example, carbon steel or lead that can shield gamma rays), and is made of an inner container in which the radiation source is embedded, steel, aluminum, or the like. And an outer container containing the inner container.

この種の放射線源収容容器では、内側容器と外側容器との間に、第1遮蔽材料とは異なる種類の放射線を遮蔽する第2遮蔽材料(例えば、中性子線を遮蔽可能な水素、ホウ素等の原子を多量に含む樹脂等)を配置したものが知られている(例えば、特許文献1参照。)。   In this type of radiation source container, a second shielding material that shields radiation of a different type from the first shielding material (for example, hydrogen, boron, etc. capable of shielding a neutron beam) is provided between the inner container and the outer container. A resin in which a resin containing a large amount of atoms is arranged is known (for example, see Patent Document 1).

特許文献1に記載の放射線源収容容器では、外部環境からの熱又は放射線源からの熱等によって第2遮蔽材料が熱膨張した際に、その熱膨張に起因する内圧の上昇による外側容器の変形・破損を防止するために、スペーサ等を用いて第2遮蔽材料と外側容器との間に所定の空隙を形成し、その内圧の上昇を抑制している。   In the radiation source container described in Patent Document 1, when the second shielding material is thermally expanded due to heat from the external environment or heat from the radiation source, the outer container is deformed due to an increase in internal pressure due to the thermal expansion. In order to prevent breakage, a predetermined gap is formed between the second shielding material and the outer container using a spacer or the like to suppress an increase in the internal pressure.

特開2001−083296号公報JP 2001-083296 A

ところで、放射線源収容容器としては、上方に開口部を有する有底筒状の本体(特許文献1における外側容器と第2遮蔽材料で構成された容器に相当する部分)に、放射線源の埋め込まれた放射線源収容体(特許文献1における内側容器に相当する部分)を収容した後、蓋を本体の開口部に対して嵌め込むタイプのものがある。   By the way, as a radiation source storage container, a radiation source is embedded in a bottomed cylindrical main body (a portion corresponding to a container composed of an outer container and a second shielding material in Patent Document 1) having an opening above. There is a type in which a radiation source container (portion corresponding to the inner container in Patent Document 1) is accommodated and then a lid is fitted into the opening of the main body.

蓋は、通常、本体と同様に、鋼材等からなる容器の内部に第2遮蔽材料を配置して構成される。そのため、蓋においても、本体と同様に、外部環境からの熱又は放射線源からの熱等によって第2遮蔽材料が熱膨張した際に、その熱膨張に起因する内圧の上昇による容器の変形・破損が発生するおそれがある。そして、蓋に変形・破損が生じた場合には、蓋が嵌め込まれている本体にも変形・破損が生じてしまうおそれがある。   The lid is usually configured by arranging a second shielding material inside a container made of steel or the like, like the main body. Therefore, in the case of the lid as well as the main body, when the second shielding material is thermally expanded due to heat from the external environment or heat from the radiation source, the container is deformed or damaged due to an increase in internal pressure due to the thermal expansion. May occur. When the lid is deformed / damaged, the main body into which the lid is fitted may be deformed / damaged.

そのような蓋の変形・破損を防止する方法としては、特許文献1に記載の本体の構成のように、蓋の容器とその容器の内部に配置される第2遮蔽材料との間に、所定の空隙を形成して、内圧の上昇を抑制する方法が考えられる。   As a method for preventing such deformation and breakage of the lid, as in the configuration of the main body described in Patent Document 1, a predetermined amount is provided between the lid container and the second shielding material disposed inside the container. A method of suppressing the increase of the internal pressure by forming a gap of the above is conceivable.

しかし、そのような空隙を蓋に形成すると、放射線源の周りに第2遮蔽材料が存在しない領域ができてしまい、放射線源収容容器全体としての放射線の遮蔽性能の低下を招くおそれがあった。   However, when such a gap is formed in the lid, a region where the second shielding material does not exist around the radiation source is formed, and there is a possibility that the radiation shielding performance as the whole radiation source container is deteriorated.

本発明は以上の点に鑑みてなされたものであり、放射線の遮蔽性能を維持しつつ、熱膨張による容器の変形・破損を防止することのできる放射線源収容容器を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a radiation source container that can prevent deformation and breakage of the container due to thermal expansion while maintaining radiation shielding performance. .

上記目的を達成するために、本発明の放射線源収容容器は、
上方に開口部を有する有底筒状の本体と、前記本体の前記開口部に嵌合される蓋とを備え、前記本体の内部に、所定の放射線を遮蔽する第1遮蔽材料に放射線源が埋め込まれた柱状の放射線源収容体を収容する放射線源収容容器であって、
前記本体は、有底筒状の第1本体部材と、前記第1遮蔽材料とは異なる種類の放射線を遮蔽する第2遮蔽材料で形成され、該第1本体部材の内部に配置された有底筒状の第2本体部材とを備え、
前記第2本体部材は、所定の厚さを有する底部と、前記底部の上方に連設された前記放射線源収容体が嵌め込まれる第1筒状部と、前記第1筒状部の上方に連設され、前記第1筒状部よりも内径が大きく、前記蓋が嵌め込まれる第2筒状部とを有し、
前記第2本体部材の外周面には、径方向外側に向かって突出し、該第2本体部材と前記第1本体部材との間に所定の空隙を形成するための複数の第1突出部が形成され、
前記蓋は、有底筒状の第1蓋部材と、前記第2遮蔽材料で形成され、該第1蓋部材の内部に配置された柱状の第2蓋部材とを備え、
前記第2蓋部材の外周面には、径方向外側に向かって突出し、該第2蓋部材と前記第1蓋部材との間に所定の空隙を形成するための複数の第2突出部が形成され、
前記第2蓋部材の最小外径は、前記放射線源収容体の前記第1遮蔽材料で形成されている部分の最大外径よりも大きく構成されていることを特徴とする。
In order to achieve the above object, the radiation source container according to the present invention comprises:
A bottomed cylindrical main body having an opening above and a lid fitted to the opening of the main body, and a radiation source is provided in the first shielding material that shields predetermined radiation inside the main body A radiation source storage container for storing an embedded columnar radiation source container,
The main body is formed of a bottomed cylindrical first main body member and a second shielding material that shields different types of radiation from the first shielding material, and is disposed within the first main body member. A cylindrical second body member,
The second main body member includes a bottom portion having a predetermined thickness, a first tubular portion into which the radiation source container continuously provided above the bottom portion is fitted, and a continuous portion above the first tubular portion. An inner diameter larger than that of the first tubular portion, and a second tubular portion into which the lid is fitted,
A plurality of first protrusions are formed on the outer peripheral surface of the second main body member so as to protrude outward in the radial direction and to form a predetermined gap between the second main body member and the first main body member. And
The lid includes a bottomed cylindrical first lid member and a columnar second lid member formed of the second shielding material and disposed inside the first lid member;
A plurality of second projecting portions are formed on the outer peripheral surface of the second lid member so as to project outward in the radial direction and form a predetermined gap between the second lid member and the first lid member. And
A minimum outer diameter of the second lid member is configured to be larger than a maximum outer diameter of a portion formed of the first shielding material of the radiation source container.

このように、本発明の放射線源収容容器においては、蓋の外観形状を規定する容器である第1蓋部材と、その内部に配置されている第2蓋部材との間に、第2蓋部材の外周面に設けられた複数の第2突出部によって、空隙が形成されている。   Thus, in the radiation source storage container of the present invention, the second lid member is disposed between the first lid member that is a container that defines the external shape of the lid and the second lid member disposed inside the first lid member. An air gap is formed by the plurality of second protrusions provided on the outer peripheral surface of the first protrusion.

これにより、蓋の内部の第2蓋部材(第2遮蔽材料)が熱膨張したとしても、蓋の内部における内圧の上昇が抑制される。その結果、第1蓋部材の変形・破損が防止される。   Thereby, even if the 2nd cover member (2nd shielding material) inside a lid | cover expands thermally, the raise of the internal pressure in the inside of a lid | cover is suppressed. As a result, deformation and breakage of the first lid member are prevented.

また、この放射線源収容容器において、本体の内周側部分を構成する第2遮蔽材料製の第2本体部材では、第1筒状部の内径(すなわち、放射線源収容体の外径)よりも第2筒状部の内径(すなわち、蓋の外径)が大きくなるように構成されている。これに加え、蓋の第2遮蔽材料製の第2蓋部材では、その最小外径(すなわち、第2蓋部材の外周面に形成されている第2突出部を除いた部分の径)が、放射線源収容体の最大外径よりも大きくなるように構成されている。   Moreover, in this radiation source storage container, in the 2nd main body member made from the 2nd shielding material which comprises the inner peripheral part of a main body, rather than the internal diameter (namely, outer diameter of a radiation source storage body) of a 1st cylindrical part The inner diameter of the second cylindrical portion (that is, the outer diameter of the lid) is configured to be large. In addition to this, in the second lid member made of the second shielding material of the lid, its minimum outer diameter (that is, the diameter of the portion excluding the second protrusion formed on the outer peripheral surface of the second lid member) It is comprised so that it may become larger than the largest outer diameter of a radiation source container.

これにより、本体に蓋を嵌合した際には、蓋の第1蓋部材と第2蓋部材との間の空隙と放射線源収容体との間にも、第2遮蔽材料が存在するようになる。すなわち、所定の放射線を遮蔽する第1遮蔽材料に放射線源を囲まれている放射線源収容体は、全方向において隙間なく、十分な厚さを有する第2遮蔽材料によって囲まれた状態となる。その結果、この放射線源収容容器は、蓋に空隙を設けているにもかかわらず、十分な遮蔽性能を発揮できる。   Thus, when the lid is fitted to the main body, the second shielding material is also present between the gap between the first lid member and the second lid member of the lid and the radiation source container. Become. That is, the radiation source container in which the radiation source is surrounded by the first shielding material that shields predetermined radiation is surrounded by the second shielding material having a sufficient thickness without any gap in all directions. As a result, this radiation source container can exhibit a sufficient shielding performance despite the gap provided in the lid.

また、本発明の放射線源収容容器においては、
前記第1本体部材の軸線を横切る平面における該第1本体部材の断面積に対する前記第1本体部材と前記第2本体部材との空隙の割合、及び、前記第1蓋部材の軸線を横切る平面における該第1蓋部材の断面積の前記第1蓋部材と前記第2蓋部材との空隙の割合は少なくとも一方は、8%以上であることが好ましい。
In the radiation source container of the present invention,
The ratio of the gap between the first main body member and the second main body member to the cross-sectional area of the first main body member in the plane crossing the axis of the first main body member, and the plane crossing the axis of the first lid member It is preferable that at least one of the ratio of the gap between the first lid member and the second lid member in the cross-sectional area of the first lid member is 8% or more.

このように、空隙の割合を8%以上とすると、内圧の上昇を効果的に抑制することができることが実験的に判明している。   Thus, it has been experimentally found that the increase in internal pressure can be effectively suppressed when the void ratio is 8% or more.

また、本発明の放射線源収容容器においては、
前記第2遮蔽材料は、パラフィン又は熱可塑性樹脂であることが好ましい。
In the radiation source container of the present invention,
The second shielding material is preferably paraffin or a thermoplastic resin.

このように、加熱された際に流動性が高くなる材料を第2遮蔽材料として採用すると、仮に放射線源収容容器に対し想定している以上の熱が加えられても、その第2遮蔽材料は空隙を埋めるように移動するだけであるので、第2遮蔽材料の熱膨張によって内圧が大きく上昇することが防止される。   As described above, when a material having high fluidity when heated is adopted as the second shielding material, even if more heat than expected is applied to the radiation source container, the second shielding material is Since it only moves so as to fill the gap, the internal pressure is prevented from significantly increasing due to the thermal expansion of the second shielding material.

また、本発明の放射線源収容容器においては、第2遮蔽材料がパラフィン又は熱可塑性樹脂である場合、
前記放射線源収容体及び前記蓋を前記本体に対して設置した状態で、前記第2本体部材が溶融状態となって前記第2本体部材と前記第1本体部材との間の空隙を埋めるように流動した場合に、流動後における該第2本体部材の上面が前記放射線源収容体の上面よりも高い位置で維持されるように、該第2本体の体積が設定されていることが好ましい。
Moreover, in the radiation source storage container of the present invention, when the second shielding material is paraffin or a thermoplastic resin,
In a state where the radiation source container and the lid are installed with respect to the main body, the second main body member is in a molten state so as to fill a gap between the second main body member and the first main body member. When flowing, it is preferable that the volume of the second main body is set so that the upper surface of the second main body member after the flow is maintained at a position higher than the upper surface of the radiation source container.

このように構成すると、仮に第2本体部材が大きく流動した場合であっても、放射線源収容体の周囲が第1遮蔽材料及び第2遮蔽材料で囲まれた状態が維持される。これにより、第2本体部材の状態にかかわらず、遮蔽性能を維持することが可能となる。   If comprised in this way, even if it is a case where the 2nd main body member flows largely, the state where the circumference | surroundings of the radiation source container were enclosed with the 1st shielding material and the 2nd shielding material is maintained. Thereby, it becomes possible to maintain shielding performance irrespective of the state of the second main body member.

実施形態に係る放射線源収容容器の軸線に沿う断面形状を示す模式図であり、運搬時の状態を示す。It is a schematic diagram which shows the cross-sectional shape which follows the axis line of the radiation source storage container which concerns on embodiment, and shows the state at the time of conveyance. 図1の放射線源収容容器の軸線に沿う断面形状を示す模式図であり、放射線源を収容した後、本体に蓋を固定する前の状態を示す。It is a schematic diagram which shows the cross-sectional shape in alignment with the axis line of the radiation source storage container of FIG. 1, and shows the state before fixing a lid | cover to a main body after accommodating a radiation source. 図1の放射線源収容容器のIII−III線断面図。The III-III sectional view taken on the line of the radiation source storage container of FIG. 図1の放射線源収容容器のパラフィンが溶融した後の状態における軸線に沿う断面形状を示す模式図。The schematic diagram which shows the cross-sectional shape in alignment with the axis line in the state after the paraffin of the radiation source storage container of FIG. 1 fuse | melted. 図4の放射線源収容容器のV−V線断面図。The VV sectional view taken on the line of the radiation source storage container of FIG. 図1の放射線源収容容器に用いられるパラフィンの性能を示すグラフであり、縦軸は膨張力を示し、横軸は加熱状態の保持時間を示す。It is a graph which shows the performance of the paraffin used for the radiation source storage container of FIG. 1, a vertical axis | shaft shows expansion force and a horizontal axis shows the holding time of a heating state.

以下、図面を参照して、本発明の実施形態に係る放射線源収容容器について説明する。   Hereinafter, a radiation source container according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、放射線源収容容器Cは、中性子線等の放射線を発生する放射性同位元素等である放射線源1を、原子力施設等の事業所外で運搬する際に収容するための容器である。   As shown in FIG. 1, the radiation source storage container C is a container for storing the radiation source 1, which is a radioactive isotope or the like that generates radiation such as neutron beams, when it is transported outside a business facility such as a nuclear facility. It is.

放射線源収容容器Cは、放射線源1を収容する略柱状の放射線源収容体2と、放射線源収容体2の上面に固定されている環状の遮蔽プレート3と、上方に開口部を有する有底筒状であり、放射線源収容体2及び遮蔽プレート3を内部に収容可能な本体4と、本体4の開口部に嵌合可能な略柱状の蓋5と、本体4の下方に設けられた複数の脚部6と、本体4の上方に設けられた複数の吊りピース7とを備えている。   The radiation source container C is a substantially columnar radiation source container 2 that houses the radiation source 1, an annular shielding plate 3 that is fixed to the upper surface of the radiation source container 2, and a bottom that has an opening above it. A cylindrical main body 4 that can accommodate the radiation source container 2 and the shielding plate 3 therein, a substantially columnar lid 5 that can be fitted into an opening of the main body 4, and a plurality of parts provided below the main body 4. Leg portions 6 and a plurality of suspension pieces 7 provided above the main body 4.

図2に示すように、放射線源収容体2では、有底筒状の第1収容部材2aと、第1収容部材2aに上端面が略一致するように挿入されており、第1収容部材2aよりも肉厚な有底筒状の第2収容部材2bと、第1収容部材2aの上端面及び第2収容部材2bの上端面に載置されており、第1収容部材2aよりも大径の環状の第3収容部材2cと、第3収容部材2cを貫くようにして第2収容部材2bの開口部に挿入されており、上端縁にフランジが設けられた有底筒状の第4収容部材2dとで、放射線源1を収容する容器が構成されている。   As shown in FIG. 2, in the radiation source container 2, the bottomed cylindrical first housing member 2a and the first housing member 2a are inserted so that their upper end surfaces substantially coincide with each other, and the first housing member 2a. A thicker bottomed cylindrical second housing member 2b, and is placed on the upper end surface of the first housing member 2a and the upper end surface of the second housing member 2b, and has a larger diameter than the first housing member 2a. The annular third housing member 2c, and a fourth tubular housing with a bottom, which is inserted into the opening of the second housing member 2b so as to penetrate the third housing member 2c and has a flange at the upper edge. A container for accommodating the radiation source 1 is constituted by the member 2d.

また、放射線源収容体2では、第4収容部材2dに挿入される柱状の第5収容部材2eと、第5収容部材2eの上部に載置される第6収容部材2fとで、蓋が構成されている。   Further, in the radiation source container 2, a lid is constituted by the columnar fifth housing member 2e inserted into the fourth housing member 2d and the sixth housing member 2f placed on the upper part of the fifth housing member 2e. Has been.

第1収容部材2a、第3収容部材2c、第4収容部材2d及び第6収容部材2fは、ライニング材である鋼板によって形成されている。第2収容部材2b及び第5収容部材2eは、ガンマ線遮蔽材としての鉛材(第1遮蔽材料)によって形成されている。   The 1st accommodating member 2a, the 3rd accommodating member 2c, the 4th accommodating member 2d, and the 6th accommodating member 2f are formed with the steel plate which is a lining material. The second housing member 2b and the fifth housing member 2e are formed of a lead material (first shielding material) as a gamma ray shielding material.

環状の第3収容部材2cには、上面側からボルトによって、上端縁にフランジが設けられた有底筒状の第4収容部材2dのフランジ及び環状の遮蔽プレート3が固定されている。   To the annular third housing member 2c, the flange of the bottomed tubular fourth housing member 2d provided with a flange at the upper end edge and the annular shielding plate 3 are fixed by bolts from the upper surface side.

フランジ付きの有底筒状の第4収容部材2dの内部には、放射線源1を収容した後に、柱状の第5収容部材2eが挿入される。ここで、第5収容部材2eの軸線方向の寸法は、放射線源1とともに第4収容部材2dに収容した際に、第5収容部材2eの上端面と第4収容部材2dのフランジ部の上面とが略一致するような長さとなっている。そのため、第4収容部材2dのフランジに載置されている円盤状の第6収容部材2fの下面には、第5収容部材2eの上端面が当接している。   After accommodating the radiation source 1, the columnar fifth accommodating member 2e is inserted into the bottomed cylindrical fourth accommodating member 2d with the flange. Here, when the dimension of the 5th accommodating member 2e is accommodated in the 4th accommodating member 2d with the radiation source 1, it is the upper end surface of the 5th accommodating member 2e, and the upper surface of the flange part of the 4th accommodating member 2d. The length is such that approximately matches. Therefore, the upper end surface of the fifth housing member 2e is in contact with the lower surface of the disk-like sixth housing member 2f placed on the flange of the fourth housing member 2d.

第6収容部材2fは、第4収容部材2dのフランジに対してボルト止めされている。これにより、第6収容部材2fの下面に当接している第5収容部材2eを介して、放射線源1の位置が、放射線源収容体2の内部で固定されている。   The sixth housing member 2f is bolted to the flange of the fourth housing member 2d. As a result, the position of the radiation source 1 is fixed inside the radiation source housing 2 via the fifth housing member 2e in contact with the lower surface of the sixth housing member 2f.

遮蔽プレート3は、パラフィンで形成されている。遮蔽プレート3は、放射線源収容体2の上部に突出しているボルト等によって、蓋5と放射線源収容体2との間に形成されてしまう隙間を埋めて、放射線源収容容器C全体としての遮蔽性能を向上させている。蓋5と放射線源収容体2との間の隙間が非常に狭い場合等には、遮蔽プレート3を省略してもよい。   The shielding plate 3 is made of paraffin. The shielding plate 3 shields the radiation source container C as a whole by filling a gap formed between the lid 5 and the radiation source container 2 with a bolt or the like protruding above the radiation source container 2. Improves performance. When the gap between the lid 5 and the radiation source container 2 is very narrow, the shielding plate 3 may be omitted.

本体4は、上方に開口部を有する有底筒状の第1本体部材4aと、第1本体部材4aに上端面が略一致するように挿入されており、第1本体部材4aよりも肉厚な有底筒状の第2本体部材4bと、第2本体部材4bの上端面に載置されており、第2本体部材4bの肉厚と略一致する径を有する環状の第3本体部材4cと、第2本体部材4bに挿入されている円筒状の第4本体部材4dとで構成されている。   The main body 4 is inserted into the bottomed cylindrical first main body member 4a having an opening on the upper side and the first main body member 4a so that the upper end surfaces thereof substantially coincide with each other, and is thicker than the first main body member 4a. A bottomed cylindrical second main body member 4b and an annular third main body member 4c which is placed on the upper end surface of the second main body member 4b and has a diameter substantially equal to the thickness of the second main body member 4b. And a cylindrical fourth main body member 4d inserted into the second main body member 4b.

第1本体部材4a、第3本体部材4c及び第4本体部材4dは、ライニング材である鋼板によって形成されている。第2本体部材4bは、鉛材とは異なる種類の放射線を遮蔽する材料、具体的にはパラフィン(第2遮蔽材料)によって形成されている。   The 1st main body member 4a, the 3rd main body member 4c, and the 4th main body member 4d are formed with the steel plate which is a lining material. The 2nd main body member 4b is formed with the material which shields the kind of radiation different from a lead material, specifically, paraffin (2nd shielding material).

第1本体部材4aの底面は、軸線方向外側に向かって突出するように湾曲した曲面として構成されている。これは、荷重の集中する底面を曲面とすることにより、底面に対して第2本体部材4bの熱膨張等によって加わってしまう圧力を分散させて、底面における変形・破損を防止するためである。   The bottom surface of the first body member 4a is configured as a curved surface that is curved so as to protrude outward in the axial direction. This is because the bottom surface on which the load concentrates is a curved surface, so that the pressure applied by the second body member 4b due to thermal expansion or the like is distributed to the bottom surface to prevent deformation / breakage on the bottom surface.

なお、第1本体部材4aの底面を曲面としているので、放射線源収容容器Cは、本体4の底面を接地させた状態で自立することができない。そこで、放射線源収容容器Cは、下部に設けた複数の脚部6を介して自立可能な構成とされている。また、脚部6の各々には、孔が設けられており、その孔に固定用のワイヤー等が係止可能となっている。   Since the bottom surface of the first main body member 4a is a curved surface, the radiation source container C cannot stand by itself with the bottom surface of the main body 4 grounded. Therefore, the radiation source container C is configured to be able to stand on its own via a plurality of legs 6 provided in the lower part. Each of the leg portions 6 is provided with a hole, and a fixing wire or the like can be locked in the hole.

なお、鋼板の厚さが十分である場合等、第1本体部材4aの底面における変形・破損を別途手段によって十分に防止できるのであれば、底面を平坦な形状としてもよい。   In addition, when the thickness of the steel plate is sufficient, the bottom surface may have a flat shape as long as deformation / breakage on the bottom surface of the first main body member 4a can be sufficiently prevented by a separate means.

第2本体部材4bは、第1本体部材4aの底面から放射線源収容体2の下面までの厚さを有する底部4b1と、底部4b1の上方に連設され、放射線源収容体2が嵌め込まれる第1筒状部4b2と、第1筒状部4b2の上方に連設され、第1筒状部4b2よりも内径が大きく、蓋5が嵌め込まれる第2筒状部4b3とで構成されている。   The second main body member 4b is connected to the bottom 4b1 having a thickness from the bottom surface of the first main body member 4a to the lower surface of the radiation source container 2, and the bottom 4b1, and the second main body member 4b is fitted into the radiation source container 2. The first cylindrical portion 4b2 and the second cylindrical portion 4b3 are provided continuously above the first cylindrical portion 4b2, have a larger inner diameter than the first cylindrical portion 4b2, and are fitted with the lid 5.

環状の第3本体部材4cの外周縁は、第1本体部材4aの上端縁に溶接されている。第3本体部材4cの内周縁は、円筒状の第4本体部材4dの上端縁に溶接されている。また、第4本体部材4dの下端縁は、放射線源収容体2の環状の第3収容部材2cの外周縁に溶接されている。すなわち、放射線源収容容器Cでは、本体4と放射線源収容体2との間に密閉空間が形成され、その密閉空間内に第2遮蔽材料で形成された第2本体部材4bが配置された構造となっている。   The outer peripheral edge of the annular third main body member 4c is welded to the upper end edge of the first main body member 4a. The inner peripheral edge of the third body member 4c is welded to the upper edge of the cylindrical fourth body member 4d. Further, the lower end edge of the fourth main body member 4 d is welded to the outer peripheral edge of the annular third housing member 2 c of the radiation source housing 2. That is, in the radiation source container C, a sealed space is formed between the main body 4 and the radiation source container 2, and a second body member 4b formed of the second shielding material is disposed in the sealed space. It has become.

図3に示すように、第2本体部材4bの外周面には、径方向外側に向かって突出し、軸線に沿って延びる複数の第1突条部4b4(第1突出部)が、等間隔に設けられている。第2本体部材4bと第1本体部材4aとの間には、第1突条部4b4によって、所定の空隙が形成されている。   As shown in FIG. 3, a plurality of first protrusions 4 b 4 (first protrusions) projecting radially outward and extending along the axis are formed at equal intervals on the outer peripheral surface of the second main body member 4 b. Is provided. A predetermined gap is formed between the second main body member 4b and the first main body member 4a by the first protrusions 4b4.

これにより、本体4の内部の第2本体部材4b(第2遮蔽材料)が熱膨張したとしても、本体4の内部における内圧の上昇が抑制される。その結果、第1本体部材4a、第3本体部材4c及び第4本体部材4d、並びに、本体4に嵌め込まれる蓋5の変形・破損が防止されている。   Thereby, even if the 2nd main body member 4b (2nd shielding material) inside the main body 4 thermally expands, the raise of the internal pressure inside the main body 4 is suppressed. As a result, the first main body member 4a, the third main body member 4c, the fourth main body member 4d, and the lid 5 fitted into the main body 4 are prevented from being deformed or damaged.

図2に示すように、蓋5は、上方に開口部を有する有底筒状の第1蓋部材5aと、第1蓋部材5aに上端面が略一致するように挿入されている柱状の第2蓋部材5bと、第1蓋部材5aの上端面及び第2蓋部材5bの上端面に載置されている円盤状の第3蓋部材5cと、第3蓋部材5cの上面に取り付けられた複数のアイナット5dとで構成されている。   As shown in FIG. 2, the lid 5 has a bottomed cylindrical first lid member 5a having an opening on the upper side, and a columnar first lid inserted so that the upper end surface thereof substantially coincides with the first lid member 5a. 2 lid members 5b, a disc-shaped third lid member 5c mounted on the upper end surface of the first lid member 5a and the upper end surface of the second lid member 5b, and attached to the upper surface of the third lid member 5c. It comprises a plurality of eyenuts 5d.

第1蓋部材5a及び第3蓋部材5cは、鋼板によって形成されている。第2蓋部材5bは、鉛材とは異なる種類の放射線を遮蔽する材料、具体的にはパラフィン(第2遮蔽材料)によって形成されている。   The first lid member 5a and the third lid member 5c are formed of a steel plate. The second lid member 5b is made of a material that shields different types of radiation from the lead material, specifically paraffin (second shielding material).

有底筒状の第1蓋部材5aの上端縁は、円盤状の第3蓋部材5cの下面に溶接されている。すなわち、蓋5では、第1蓋部材5aと第3蓋部材5cとの間に密閉空間が形成され、その密閉空間に第2遮蔽材料で形成された第2蓋部材5bが配置された構造となっている。   The upper end edge of the bottomed cylindrical first lid member 5a is welded to the lower surface of the disk-shaped third lid member 5c. That is, the lid 5 has a structure in which a sealed space is formed between the first lid member 5a and the third lid member 5c, and the second lid member 5b formed of the second shielding material is disposed in the sealed space. It has become.

図3に示すように、第2蓋部材5bの外周面には、径方向外側に向かって突出し、軸線に沿って延びる複数の第2突条部5b1(第2突出部)が、等間隔に設けられている。第2蓋部材5bと第1蓋部材5aとの間には、第2突条部5b1によって、所定の空隙が形成されている。   As shown in FIG. 3, a plurality of second protrusions 5 b 1 (second protrusions) protruding outward in the radial direction and extending along the axis are formed at equal intervals on the outer peripheral surface of the second lid member 5 b. Is provided. A predetermined gap is formed between the second lid member 5b and the first lid member 5a by the second protrusion 5b1.

これにより、蓋5の内部の第2蓋部材5b(第2遮蔽材料)が熱膨張したとしても、蓋5の内部における内圧の上昇が抑制される。その結果、第1蓋部材5a及び第3蓋部材5c、並びに、蓋5が嵌め込まれる本体4の変形・破損が防止されている。   Thereby, even if the 2nd cover member 5b (2nd shielding material) inside the lid | cover 5 thermally expands, the raise of the internal pressure in the inside of the lid | cover 5 is suppressed. As a result, the first lid member 5a, the third lid member 5c, and the main body 4 into which the lid 5 is fitted are prevented from being deformed or damaged.

ところで、図1及び図2に示すように、第2蓋部材5bの最小外径(すなわち、第2突条部5b1を除いた部分の外径)は、放射線源収容体2の鉛材で形成されている部分の最大外径(すなわち、第2収容部材2bの外径)よりも、大きく構成されている。   By the way, as shown in FIG.1 and FIG.2, the minimum outer diameter (namely, the outer diameter of the part except 2nd protrusion 5b1) of the 2nd cover member 5b is formed with the lead material of the radiation source container 2. As shown in FIG. It is configured to be larger than the maximum outer diameter (that is, the outer diameter of the second housing member 2b) of the portion that is formed.

これに加え、上記したように、本体4の内周側部分を構成する第2遮蔽材料製の第2本体部材4bでは、第1筒状部4b2の内径(すなわち、放射線源収容体2の外径)よりも第2筒状部4b3の内径(すなわち、蓋5の外径)が大きくなるように構成されている。   In addition, as described above, in the second main body member 4b made of the second shielding material constituting the inner peripheral portion of the main body 4, the inner diameter of the first cylindrical portion 4b2 (that is, the outer side of the radiation source container 2). The inner diameter of the second cylindrical portion 4b3 (that is, the outer diameter of the lid 5) is larger than the diameter).

これにより、本体4に蓋5を嵌合した際には、蓋5の第1蓋部材5aと第2蓋部材5bとの間の空隙と放射線源収容体2との間にも、第2遮蔽材料であるパラフィンが存在するようになっている。   Thereby, when the lid 5 is fitted to the main body 4, the second shielding is also provided between the radiation source container 2 and the gap between the first lid member 5 a and the second lid member 5 b of the lid 5. Paraffin, which is a material, is present.

すなわち、第1遮蔽材料である鉛で放射線源1を囲んでいる放射線源収容体2は、全方向において隙間なく、十分な厚さを有する第2遮蔽材料であるパラフィンによって囲まれた状態となる。その結果、この放射線源収容容器Cは、蓋5に空隙を設けているにもかかわらず、十分な遮蔽性能を発揮できるようになっている。   That is, the radiation source container 2 that surrounds the radiation source 1 with lead, which is the first shielding material, is surrounded by paraffin, which is the second shielding material having a sufficient thickness without any gap in all directions. . As a result, the radiation source storage container C can exhibit a sufficient shielding performance even though the gap is provided in the lid 5.

本体4の上方に設けられた複数の吊りピース7には、孔が形成されている。放射線源収容体Cは、吊りピース7の孔及び蓋5の第3蓋部材5cの上面に取り付けられているアイナット5dに運搬用クレーンのフック等を係止して、吊り下げて移動させられる。   Holes are formed in the plurality of suspension pieces 7 provided above the main body 4. The radiation source container C is moved by being suspended by hooking a hook or the like of a transportation crane to the eyenut 5d attached to the hole of the suspension piece 7 and the upper surface of the third lid member 5c of the lid 5.

次に、第2本体部材4b及び第2蓋部材5bを形成している第2遮蔽材料であるパラフィンについて説明する。   Next, paraffin which is the second shielding material forming the second main body member 4b and the second lid member 5b will be described.

中性子線を遮蔽するためのパラフィンとしては、融点が摂氏88度のものが用いられている。そのようなパラフィンでは、「放射性同位元素等による放射線障害の防止に関する法律施行規則」に規定されるA型輸送物に係る技術上の基準(摂氏−40度〜摂氏70度の温度範囲)に基づく性能試験において、熱膨張は生じるものの、亀裂・破損等は生じないことが実証されている。   As the paraffin for shielding neutron rays, a paraffin having a melting point of 88 degrees Celsius is used. For such paraffin, based on the technical standard (temperature range of -40 degrees Celsius to 70 degrees Celsius) for A-type transports stipulated in the "Regulation for Enforcement of Laws on Prevention of Radiation Hazards due to Radioisotopes" In performance tests, it has been demonstrated that although thermal expansion occurs, no cracks or breakage occur.

ところで、その性能試験は、通常、パラフィン材のみで形成された試料を用いて行われ、本実施形態の放射線源収容容器Cのように、その周囲をライニング材としての鋼材で囲まれて密閉された試料を用いては行われない。そのため、実際の製品においては、性能試験においては問題とならない程度のパラフィン材の熱膨張の影響(すなわち、内圧の上昇)も、十分に考慮することが好ましいと考えられる。   By the way, the performance test is usually performed using a sample formed only of a paraffin material, and is surrounded and sealed with a steel material as a lining material, like the radiation source container C of the present embodiment. This is not done with a fresh sample. Therefore, in an actual product, it is considered preferable to sufficiently consider the influence of thermal expansion of the paraffin material (that is, increase in internal pressure) that does not cause a problem in the performance test.

そこで、本実施形態の放射線源収容容器Cでは、図3に示すように、第2本体部材4bの外周面に、径方向外側に向かって突出する複数の第1突条部4b4(第1突出部)を等間隔に設け、その第1突条部4b4によって、第2本体部材4bと第1本体部材4aとの間に所定の空隙を形成している。   Therefore, in the radiation source storage container C of the present embodiment, as shown in FIG. 3, a plurality of first protrusions 4 b 4 (first protrusions) protruding outward in the radial direction on the outer peripheral surface of the second main body member 4 b. Part) are provided at equal intervals, and a predetermined gap is formed between the second main body member 4b and the first main body member 4a by the first protrusions 4b4.

また、第2蓋部材5bの外周面に、径方向外側に向かって突出する複数の第2突条部5b1(第2突出部)を等間隔に設け、その第2突条部5b1によって、第2蓋部材5bと第1蓋部材5aとの間に所定の空隙を形成している。   In addition, a plurality of second protrusions 5b1 (second protrusions) that protrude radially outward are provided at equal intervals on the outer peripheral surface of the second lid member 5b, and the second protrusions 5b1 provide the first protrusions 5b1. A predetermined gap is formed between the two lid members 5b and the first lid member 5a.

これらの空隙が形成されている放射線源収容容器Cでは、仮に放射線源収容容器Cに想定している以上の熱が加えられても、パラフィンは空隙を埋めるように移動するだけであり、パラフィンの熱膨張によって内圧が大きく上昇することが防止される。   In the radiation source container C in which these voids are formed, even if heat more than expected is applied to the radiation source container C, the paraffin simply moves so as to fill the voids. The internal pressure is prevented from greatly increasing due to thermal expansion.

なお、このような内圧の上昇防止効果を得るためには、第2遮蔽材料が加熱によって流動性を得ることができるものであればよい。例えば、パラフィンに代わり、熱可塑性樹脂を採用してもよい。   In order to obtain such an effect of preventing the increase in internal pressure, it is sufficient that the second shielding material can obtain fluidity by heating. For example, a thermoplastic resin may be employed instead of paraffin.

また、図4及び図5に示すように、放射線源収容容器Cでは、放射線源収容体2及び蓋5を本体4に対して設置した状態で、パラフィンが溶融状態となって第1本体部材4aと第2本体部材4bとの間の空隙を埋めるように流動した場合に、流動後における第2本体部材4b(具体的には、第2筒状部4b3)の上面が、放射線源収容体2の上面よりも高い位置で維持されるように、第2本体部材4bの体積が設定されている。   As shown in FIGS. 4 and 5, in the radiation source container C, the paraffin is in a molten state in a state where the radiation source container 2 and the lid 5 are installed on the main body 4, and the first main body member 4 a. When the fluid flows so as to fill the gap between the first body member 4b and the second body member 4b, the upper surface of the second body member 4b (specifically, the second cylindrical portion 4b3) after the flow is the radiation source container 2. The volume of the second main body member 4b is set so as to be maintained at a position higher than the upper surface of the second main body member 4b.

これにより、仮に第2本体部材4bを構成するパラフィンの流動性が非常に高くなってしまうほどパラフィンが溶融した場合であっても(すなわち、第2本体部材4bの状態にかかわらず)、放射線源収容体2の周囲が第1遮蔽材料である鉛材及び十分な厚さを有する第2遮蔽材料であるパラフィンで囲まれた状態が維持され、遮蔽性能が維持されるように構成されている。   Thereby, even if the paraffin is melted so that the fluidity of the paraffin constituting the second main body member 4b becomes very high (that is, regardless of the state of the second main body member 4b), the radiation source The state where the periphery of the container 2 is surrounded by the lead material which is the first shielding material and the paraffin which is the second shielding material having a sufficient thickness is maintained, and the shielding performance is maintained.

なお、第2遮蔽材料として、融点の高い樹脂等を用いている場合には、これほど大きく第2遮蔽材料が流動する可能性が低くなる。そのような場合には、必ずしも、第2本体部材4bの体積を、流動した場合に、流動後における第2本体部材4bの上面が放射線源収容体2の上面よりも高い位置で維持されるような体積に設定しなくてもよい。   In addition, when using resin etc. with high melting | fusing point as a 2nd shielding material, possibility that a 2nd shielding material will flow so much will become low. In such a case, when the volume of the second main body member 4 b flows, the upper surface of the second main body member 4 b after the flow is not necessarily maintained at a position higher than the upper surface of the radiation source container 2. It is not necessary to set a large volume.

ここで、突出部を用いて形成されている空隙の大きさについて説明する。   Here, the size of the gap formed using the protrusion will be described.

図3に示すように、本体4の第1本体部材4aと第2本体部材4bとの間に形成されている空隙は、第1本体部材4aの軸線を横切る平面における第1本体部材4aの断面積に対する割合が8%以上となるように構成されている。同様に、蓋5の第1蓋部材5aと第2蓋部材5bとの間に形成されている空隙は、第1蓋部材5aの軸線を横切る平面における第1蓋部材5aの断面積に対する割合が8%以上となるように構成されている。   As shown in FIG. 3, the gap formed between the first main body member 4a and the second main body member 4b of the main body 4 is a breakage of the first main body member 4a in a plane crossing the axis of the first main body member 4a. It is comprised so that the ratio with respect to an area may be 8% or more. Similarly, the gap formed between the first lid member 5a and the second lid member 5b of the lid 5 has a ratio with respect to the cross-sectional area of the first lid member 5a in a plane crossing the axis of the first lid member 5a. It is configured to be 8% or more.

このように、空隙の割合を8%以上とすると、第2本体部材4b又は第2蓋部材5bの胴の厚さを抑えたまま、内圧の上昇を効果的に抑制することができることが実験的に判明している。以下にその実験の詳細について説明する。   As described above, when the void ratio is 8% or more, it is experimentally possible to effectively suppress the increase in internal pressure while suppressing the thickness of the body of the second main body member 4b or the second lid member 5b. Has been found. Details of the experiment will be described below.

この実験では、恒温装置の内部に膨張力測定機を配置して、常温から摂氏70度まで恒温装置の内部の温度を上昇させ、摂氏70度の保持時間における膨張力を測定した。   In this experiment, an expansion force measuring machine was arranged inside the thermostatic device, the temperature inside the thermostatic device was raised from room temperature to 70 degrees Celsius, and the expansion force at a holding time of 70 degrees Celsius was measured.

膨張力測定機としては、内部に略柱状のパラフィン材を挿入可能なシリンダーチューブ、及び、シリンダーチューブに挿入されたパラフィン材の端面に当接するシリンダロッドによって構成されたものを使用した。試料としては、外周部分にパラフィン材の体積から算出した緩衝空間(空隙)を設けた略柱状のものを使用した。緩衝空間率は0%,5%,8%の3種類とした。   As the expansion force measuring device, a cylinder tube in which a substantially columnar paraffin material can be inserted, and a cylinder rod that comes into contact with the end surface of the paraffin material inserted into the cylinder tube were used. As the sample, a substantially columnar one provided with a buffer space (void) calculated from the volume of the paraffin material on the outer peripheral portion was used. There were three buffer space ratios: 0%, 5%, and 8%.

試料の温度測定方法としては、膨張力測定機の表面に熱電対を取り付け温度測定器で確認した。試料の膨張力測定は、シリンダロットの押し力をロードセルで感知させ、フォースゲージで変換し読み取りを行った。   As a method for measuring the temperature of the sample, a thermocouple was attached to the surface of the expansion force measuring machine, and the temperature was measured with a thermometer. The sample expansion force was measured by detecting the pushing force of the cylinder lot with a load cell, converting it with a force gauge, and reading.

上記の実験に係る実験結果のグラフを、図6として示す。図6において、縦軸は膨張力を示し、横軸は加熱状態の保持時間を示す。   A graph of the experimental results related to the above experiment is shown in FIG. In FIG. 6, the vertical axis represents the expansion force, and the horizontal axis represents the heating time.

図6に示すように、緩衝空間率0%の試料及び5%の試料は、保持時間の増加により急激に膨張力が上昇することが推測できた。そのため、緩衝空間率8%の試料であっても、膨張力が保持時間に対して比例して増加すると推測される。   As shown in FIG. 6, it was estimated that the expansion force suddenly increased with the increase of the holding time in the sample with a buffer space ratio of 0% and the sample with 5%. Therefore, even for a sample with a buffer space ratio of 8%, it is estimated that the expansion force increases in proportion to the holding time.

また、各試料を摂氏70度の環境で40分保持した時の膨張力を比較すると、緩衝空間率0%の試料では約935N、5%の試料では約580N、8%の試料では約315Nの膨張力が発生した。この膨張力を圧力に換算すると、緩衝空間率0%の試料では約0.59MPa、5%の試料では約0.36MPa、8%の試料では約0.20MPaの圧力が発生することになる。   Further, when comparing the expansion force when each sample is held for 40 minutes in an environment of 70 degrees Celsius, the sample with a buffer space ratio of 0% is about 935 N, the sample with 5% is about 580 N, and the sample with 8% is about 315 N. Expansion force was generated. When this expansion force is converted into pressure, a pressure of about 0.59 MPa is generated for a sample with a buffer space ratio of 0%, a pressure of about 0.36 MPa for a sample of 5%, and a pressure of about 0.20 MPa for a sample of 8%.

ここで、ライニング材の胴の厚さを計算する場合、胴の計算上必要な厚さは、最高使用圧力に比例することが知られている。これに基づけば、緩衝空間率0%の試料の圧力から算出した胴の計算上必要な厚さを1とした場合、5%の試料では約0.61、8%の試料では約0.34の厚さで、0%の試料と同等の性能を得ることができると推測できる。   Here, when calculating the thickness of the cylinder of the lining material, it is known that the thickness required for calculating the cylinder is proportional to the maximum working pressure. Based on this, assuming that the thickness required for the calculation of the cylinder calculated from the pressure of the sample having a buffer space ratio of 0% is 1, the sample of 5% is about 0.61, and the sample of 8% is about 0.34. It can be inferred that the same performance as that of the 0% sample can be obtained with the thickness.

すなわち、放射線源収容容器を作製するに際しては、パラフィン材の体積を100%に近づけるように充填(すなわち、緩衝空間率0%)して製作するよりも、体積を92%程度に抑えて充填(すなわち、緩衝空間率8%)して製作すると、胴の計算上必要な厚さは約1/3に抑制することが可能となることが分かった。すなわち、緩衝空間率(空隙)を8%以上とすることにより、胴の厚さを抑えたまま、内圧の上昇を効果的に抑制することができることが分かった。   That is, when producing the radiation source storage container, the volume of the paraffin material is reduced to about 92% rather than being filled so that the volume of the paraffin material approaches 100% (that is, the buffer space ratio is 0%) ( That is, it was found that the thickness required for calculation of the cylinder can be reduced to about 1/3 when manufactured with a buffer space ratio of 8%. That is, it was found that by setting the buffer space ratio (void) to 8% or more, it is possible to effectively suppress the increase in internal pressure while suppressing the thickness of the trunk.

以上、図示の実施形態について説明したが、本発明はこのような形態に限られるものではない。   Although the illustrated embodiment has been described above, the present invention is not limited to such a form.

例えば、上記実施形態においては、第1遮蔽材料として鉛を採用し、第2遮蔽材料としてパラフィンを採用している。しかし、本発明の遮蔽材料はこれらに限定されるものではなく、2つの遮蔽材料は、互いに異なる種類の放射線を遮蔽するものであればよい。   For example, in the said embodiment, lead is employ | adopted as a 1st shielding material and paraffin is employ | adopted as a 2nd shielding material. However, the shielding material of the present invention is not limited to these, and the two shielding materials only need to shield different types of radiation.

また、上記実施形態においては、第1突条部4b4によって第1本体部材4aと第2本体部材4bとの間に空隙を形成しており、第2突条部5b1によって、第1蓋部材5aと第2蓋部材5bとの間に空隙を形成している。しかし、本発明の第1突出部及び第2突出部は、径方向外側に向かって突出しているものであればよく、軸線に沿って延びるものでなくてもよい。   Moreover, in the said embodiment, the space | gap is formed between the 1st main body member 4a and the 2nd main body member 4b by the 1st protrusion part 4b4, and the 1st cover member 5a is formed by the 2nd protrusion part 5b1. And a second lid member 5b. However, the 1st protrusion part and 2nd protrusion part of this invention should just protrude toward the radial direction outer side, and do not need to extend along an axis line.

例えば、軸線に沿って間隔を存して複数の突起を並べてラインを形成し、そのラインを周方向に複数並べるようにして形成されていてもよい。また、周方向に突起を1つずつ配置してもよい。   For example, a plurality of protrusions may be arranged at intervals along the axis to form a line, and a plurality of the lines may be arranged in the circumferential direction. Moreover, you may arrange | position a protrusion one by one in the circumferential direction.

また、上記実施形態においては、本体4の第1本体部材4aと第2本体部材4bとの間に形成されている空隙は、第1本体部材4aの軸線を横切る平面における第1本体部材4aの断面積に対する割合が8%以上となるように構成されている。   Moreover, in the said embodiment, the space | gap formed between the 1st main body member 4a of the main body 4 and the 2nd main body member 4b is the 1st main body member 4a in the plane which crosses the axis line of the 1st main body member 4a. It is comprised so that the ratio with respect to a cross-sectional area may be 8% or more.

同様に、蓋5の第1蓋部材5aと第2蓋部材5bとの間に形成されている空隙は、第1蓋部材5aの軸線を横切る平面における第1蓋部材5aの断面積に対する割合が8%以上となるように構成されている。   Similarly, the gap formed between the first lid member 5a and the second lid member 5b of the lid 5 has a ratio with respect to the cross-sectional area of the first lid member 5a in a plane crossing the axis of the first lid member 5a. It is configured to be 8% or more.

しかし、本発明における空隙は、必ずしも本体及び蓋の両方において割合を8%以上とする必要はなく、本体及び蓋の形状に応じて、それぞれ適宜大きさを変更してもよい。   However, the gap in the present invention does not necessarily have to be 8% or more in both the main body and the lid, and the size may be appropriately changed according to the shapes of the main body and the lid.

1…放射線源、2…放射線源収容体、2a…第1収容部材、2b…第2収容部材、2c…第3収容部材、2d…第4収容部材、2e…第5収容部材、2f…第6収容部材、3…遮蔽プレート、4…本体、4a…第1本体部材、4b…第2本体部材、4b1…底部、4b2…第1筒状部、4b3…第2筒状部、4b4…第1突条部(第1突出部)、4c…第3本体部材、4d…第4本体部材、5…蓋、5a…第1蓋部材、5b…第2蓋部材、5b1…第2突条部(第2突出部)、5c…第3蓋部材、5d…アイナット、6…脚部、7…吊りピース、C…放射線源収容容器。 DESCRIPTION OF SYMBOLS 1 ... Radiation source, 2 ... Radiation source accommodating body, 2a ... 1st accommodating member, 2b ... 2nd accommodating member, 2c ... 3rd accommodating member, 2d ... 4th accommodating member, 2e ... 5th accommodating member, 2f ... 1st 6 housing member, 3 ... shielding plate, 4 ... main body, 4a ... 1st main body member, 4b ... 2nd main body member, 4b1 ... bottom part, 4b2 ... 1st cylindrical part, 4b3 ... 2nd cylindrical part, 4b4 ... 1st 1 projecting portion (first projecting portion), 4c... 3rd main body member, 4d... 4th main body member, 5... Lid, 5a ... 1st lid member, 5b. (2nd protrusion part) 5c ... 3rd cover member, 5d ... Eye nut, 6 ... Leg part, 7 ... Hanging piece, C ... Radiation source storage container.

Claims (4)

上方に開口部を有する有底筒状の本体と、前記本体の前記開口部に嵌合される蓋とを備え、前記本体の内部に、所定の放射線を遮蔽する第1遮蔽材料に放射線源が埋め込まれた柱状の放射線源収容体を収容する放射線源収容容器であって、
前記本体は、有底筒状の第1本体部材と、前記第1遮蔽材料とは異なる種類の放射線を遮蔽する第2遮蔽材料で形成され、該第1本体部材の内部に配置された有底筒状の第2本体部材とを備え、
前記第2本体部材は、所定の厚さを有する底部と、前記底部の上方に連設された前記放射線源収容体が嵌め込まれる第1筒状部と、前記第1筒状部の上方に連設され、前記第1筒状部よりも内径が大きく、前記蓋が嵌め込まれる第2筒状部とを有し、
前記第2本体部材の外周面には、径方向外側に向かって突出し、該第2本体部材と前記第1本体部材との間に所定の空隙を形成するための複数の第1突出部が形成され、
前記蓋は、有底筒状の第1蓋部材と、前記第2遮蔽材料で形成され、該第1蓋部材の内部に配置された柱状の第2蓋部材とを備え、
前記第2蓋部材の外周面には、径方向外側に向かって突出し、該第2蓋部材と前記第1蓋部材との間に所定の空隙を形成するための複数の第2突出部が形成され、
前記第2蓋部材の最小外径は、前記放射線源収容体の前記第1遮蔽材料で形成されている部分の最大外径よりも大きく構成されていることを特徴とする放射線源収容容器。
A bottomed cylindrical main body having an opening above and a lid fitted to the opening of the main body, and a radiation source is provided in the first shielding material that shields predetermined radiation inside the main body A radiation source storage container for storing an embedded columnar radiation source container,
The main body is formed of a bottomed cylindrical first body member and a second shielding material that shields different types of radiation from the first shielding material, and has a bottomed structure disposed inside the first body member. A cylindrical second body member,
The second main body member includes a bottom portion having a predetermined thickness, a first tubular portion into which the radiation source container continuously provided above the bottom portion is fitted, and a continuous portion above the first tubular portion. An inner diameter larger than that of the first tubular portion, and a second tubular portion into which the lid is fitted,
A plurality of first protrusions are formed on the outer peripheral surface of the second main body member so as to protrude outward in the radial direction and to form a predetermined gap between the second main body member and the first main body member. And
The lid includes a bottomed cylindrical first lid member and a columnar second lid member formed of the second shielding material and disposed inside the first lid member;
A plurality of second projecting portions are formed on the outer peripheral surface of the second lid member so as to project outward in the radial direction and form a predetermined gap between the second lid member and the first lid member. And
The radiation source container according to claim 1, wherein a minimum outer diameter of the second lid member is configured to be larger than a maximum outer diameter of a portion formed of the first shielding material of the radiation source container.
請求項1に記載の放射線源収容容器において、
前記第1本体部材の軸線を横切る平面における該第1本体部材の断面積に対する前記第1本体部材と前記第2本体部材との空隙の割合、及び、前記第1蓋部材の軸線を横切る平面における該第1蓋部材の断面積の前記第1蓋部材と前記第2蓋部材との空隙の割合の少なくとも一方は、8%以上であることを特徴とする放射線源収容容器。
The radiation source container according to claim 1,
The ratio of the gap between the first main body member and the second main body member to the cross-sectional area of the first main body member in the plane crossing the axis of the first main body member, and the plane crossing the axis of the first lid member At least one of the ratios of the gaps between the first lid member and the second lid member in the cross-sectional area of the first lid member is 8% or more.
請求項1又は請求項2に記載の放射線源収容容器において、
前記第2遮蔽材料は、パラフィン又は熱可塑性樹脂であることを特徴とする放射線源収容容器。
In the radiation source container according to claim 1 or 2,
The radiation source container, wherein the second shielding material is paraffin or a thermoplastic resin.
請求項3に記載の放射線源収容容器において、
前記放射線源収容体及び前記蓋を前記本体に対して設置した状態で、前記第2本体部材が溶融状態となって前記第2本体部材と前記第1本体部材との間の空隙を埋めるように流動した場合に、流動後における該第2本体部材の上面が前記放射線源収容体の上面よりも高い位置で維持されるように、該第2本体部材の体積が設定されていることを特徴とする放射線源収容容器。
The radiation source container according to claim 3,
In a state where the radiation source container and the lid are installed with respect to the main body, the second main body member is in a molten state so as to fill a gap between the second main body member and the first main body member. When the fluid flows, the volume of the second body member is set so that the upper surface of the second body member after the fluid flow is maintained at a position higher than the upper surface of the radiation source container. A radiation source container.
JP2017098717A 2017-05-18 2017-05-18 Radiation source container Active JP6710384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098717A JP6710384B2 (en) 2017-05-18 2017-05-18 Radiation source container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098717A JP6710384B2 (en) 2017-05-18 2017-05-18 Radiation source container

Publications (2)

Publication Number Publication Date
JP2018194447A true JP2018194447A (en) 2018-12-06
JP6710384B2 JP6710384B2 (en) 2020-06-17

Family

ID=64570231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098717A Active JP6710384B2 (en) 2017-05-18 2017-05-18 Radiation source container

Country Status (1)

Country Link
JP (1) JP6710384B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083296A (en) * 1999-09-10 2001-03-30 Hitachi Ltd Container for housing exothermic substance
JP2001235597A (en) * 2000-02-23 2001-08-31 Ishikawajima Harima Heavy Ind Co Ltd Spent fuel storage device
JP2005024514A (en) * 2003-07-04 2005-01-27 Kobe Steel Ltd Transportation storage cask for radioactive material
JP2015528107A (en) * 2012-06-28 2015-09-24 テーエヌ・アンテルナシオナルTNInternational Package for transporting and / or storing radioactive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083296A (en) * 1999-09-10 2001-03-30 Hitachi Ltd Container for housing exothermic substance
JP2001235597A (en) * 2000-02-23 2001-08-31 Ishikawajima Harima Heavy Ind Co Ltd Spent fuel storage device
JP2005024514A (en) * 2003-07-04 2005-01-27 Kobe Steel Ltd Transportation storage cask for radioactive material
JP2015528107A (en) * 2012-06-28 2015-09-24 テーエヌ・アンテルナシオナルTNInternational Package for transporting and / or storing radioactive material

Also Published As

Publication number Publication date
JP6710384B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP5463412B2 (en) Cask equipment for transporting and / or storing high level waste.
US4663533A (en) Storage and shipping cask for spent nuclear fuel
US10636537B2 (en) Secondary startup neutron source
JP6548577B2 (en) Package for transport and storage of radioactive material, including improved means for mounting a shock absorber cover
JP2018194447A (en) Radiation source storage container
JP2021502542A (en) Small reactor containment system
US3569714A (en) Protected radioisotopic heat source
JP2007139677A (en) Radioactive material storage container, and manufacturing method therefor
JP6129501B2 (en) Radioactive substance storage container gantry and radioactive substance storage container support structure
Balaguru et al. Measurement of the Residual Stresses and Investigation of Their Effects on a Hardfaced Grid Plate due to Thermal Cycling in a Pool Type Sodium‐Cooled Fast Reactor
JP6276505B2 (en) Radioactive substance storage container gantry, manufacturing method thereof, and structure
JP6574394B2 (en) Radioactive material storage container
JP2019135496A (en) Radioactive material storing container
RU2686476C1 (en) Container cover for spent nuclear fuel transportation and storage
JP6209110B2 (en) Radioactive material storage container
JP2016217798A (en) Nuclear transformation device and nuclear reactor
JP2020016561A (en) Storage container and storage method of radioactive material or container storing radioactive material
Hensel et al. Thermal Gradient Within DOE 3013 Containers During Storage
JP2020067287A (en) Spent fuel storage container
JP7104664B2 (en) Storage container for radioactive materials and its manufacturing method
JP2021177150A (en) Cask
JP6053394B2 (en) Radioactive material storage container
Smith et al. Containment Vessel Temperature for Pu-238 Heat Source Container Under Ambient, Free Convection and Low Emissivity Cooling Conditions
Li et al. Structural Design and Verification of the CNFC-HTR New Fuel Transport Container
UA153110U (en) CONTAINER FOR TRANSPORTATION AND/OR STORAGE OF USED NUCLEAR FUEL

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170605

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6710384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250