JP2018194198A - Oxygen carrier material - Google Patents

Oxygen carrier material Download PDF

Info

Publication number
JP2018194198A
JP2018194198A JP2017096169A JP2017096169A JP2018194198A JP 2018194198 A JP2018194198 A JP 2018194198A JP 2017096169 A JP2017096169 A JP 2017096169A JP 2017096169 A JP2017096169 A JP 2017096169A JP 2018194198 A JP2018194198 A JP 2018194198A
Authority
JP
Japan
Prior art keywords
oxygen carrier
carrier material
oxygen
manganese
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017096169A
Other languages
Japanese (ja)
Inventor
靖 原
Yasushi Hara
靖 原
宏平 岩永
Kohei Iwanaga
宏平 岩永
武泰 大庭
Takeyasu Oba
武泰 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Ikutoku Gakuen School Corp
Original Assignee
Tosoh Corp
Ikutoku Gakuen School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Ikutoku Gakuen School Corp filed Critical Tosoh Corp
Priority to JP2017096169A priority Critical patent/JP2018194198A/en
Publication of JP2018194198A publication Critical patent/JP2018194198A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

To provide an oxygen carrier material for chemical loop combustion with high activity, using inexpensive waste.SOLUTION: Manganese slag is used for an oxygen carrier material.SELECTED DRAWING: None

Description

本発明は酸素キャリア材料に関する。さらに詳しくは、ケミカルループ燃焼に適した酸素キャリア材料に関するものである。   The present invention relates to oxygen carrier materials. More particularly, the present invention relates to an oxygen carrier material suitable for chemical loop combustion.

地球温暖化の主要な原因物質とされている化石燃料由来のCOについて、その排出量の低減化技術が注目されている。ケミカルループ燃焼法(Chemical−looping Combustion、化学燃焼)は、化石燃料の燃焼に空気中の酸素ではなく、酸化物(主に金属酸化物)中の酸素を利用する間接燃焼技術である。酸化物が還元され化石燃料が酸化される反応器(還元塔または燃料反応器)と、還元された酸化物が空気中の酸素で酸化される第二の反応器(酸化塔または空気反応器)から成るシステムが最も単純な構成で、主に循環流動層技術が用いられる。理想的には酸化物MOと炭素での反応式は以下となり、還元塔からは純粋なCOを回収し、酸化塔からは高濃度Nが排出される。
2MO+C→2M+CO(還元塔、主に吸熱)
2M+O→2MO(酸化塔、発熱)
二つの反応式を合計すると単に炭素が燃焼していることになり、MOは酸素を運搬する役割を持つため酸素キャリアともよばれる。
As for CO 2 derived from fossil fuel, which is regarded as a main cause of global warming, attention has been paid to a technology for reducing the emission amount. Chemical-looping combustion (chemical combustion) is an indirect combustion technique that uses oxygen in oxides (mainly metal oxides) for combustion of fossil fuels instead of oxygen in air. A reactor (reduction tower or fuel reactor) in which the oxide is reduced and the fossil fuel is oxidized, and a second reactor (oxidation tower or air reactor) in which the reduced oxide is oxidized with oxygen in the air The system consisting of is the simplest configuration, mainly using circulating fluidized bed technology. Ideally, the reaction formula between the oxide MO and carbon is as follows. Pure CO 2 is recovered from the reduction tower, and high concentration N 2 is discharged from the oxidation tower.
2MO + C → 2M + CO 2 (reduction tower, mainly endothermic)
2M + O 2 → 2MO (oxidation tower, exothermic)
The sum of the two reaction formulas means that carbon is simply burning, and MO is also called an oxygen carrier because it has a role of transporting oxygen.

このように、原理的にCOを分離しつつ燃焼反応を行えるため、他のCO分離回収技術と比較して発電効率の低下が少なく済む技術とされている。また、本燃焼法はそもそも燃焼におけるエクセルギー損失を低減させる技術として考案されたため、COを回収しない場合でも発電効率は高く、流動層を用いるためホットスポットが生じにくく空気由来のNOx発生がみられないなどの特徴も持つ。 Thus, since the combustion reaction can be performed in principle while separating CO 2 , it is a technique that requires less reduction in power generation efficiency compared to other CO 2 separation and recovery techniques. In addition, since this combustion method was originally devised as a technique for reducing exergy loss in combustion, even when CO 2 is not recovered, the power generation efficiency is high, and since a fluidized bed is used, hot spots are unlikely to occur and air-derived NOx is generated. It also has features such as not being able to.

酸素キャリアとしては主にニッケル、鉄、銅といった金属やカルシウムが検討されてきた。一般に、ニッケル、鉄が高活性で過去には多く検討されてきた。マンガン,銅は耐熱性が低いため、燃焼、再生温度の制限がある。これらの酸素キャリアの反応速度の向上等を目的とした微量成分の添加に関する研究も活発に行われている。特許文献1には、A、ABO又はABO(Aは、Ca,Ba,Sr又はMgを表し、Bは、Fe、Cu又はMnを表す。)から選択される少なくとも1以上の酸化物イオン伝導体を含む酸素キャリア材料が開示されている。特許文献2には、CaO,TiO及びFeを含む焼結体よりなる酸素キャリア担体が開示されている。特許文献3には、酸化鉄と、酸化アルミニウムと、前記酸化鉄の一部及び前記酸化アルミニウムの一部から形成された固溶体とを含む酸素キャリアが開示されている。 As oxygen carriers, metals such as nickel, iron, copper, and calcium have been mainly studied. In general, nickel and iron are highly active and have been studied in the past. Manganese and copper have low heat resistance, so there are restrictions on combustion and regeneration temperatures. Studies on the addition of trace components for the purpose of improving the reaction rate of these oxygen carriers have been actively conducted. In Patent Document 1, at least one selected from A 2 B 2 O 5 , ABO 3 or ABO 4 (A represents Ca, Ba, Sr or Mg, and B represents Fe, Cu or Mn). An oxygen carrier material containing the above oxide ion conductor is disclosed. Patent Document 2 discloses an oxygen carrier carrier made of a sintered body containing CaO, TiO 2 and Fe 2 O 3 . Patent Document 3 discloses an oxygen carrier containing iron oxide, aluminum oxide, and a solid solution formed from part of the iron oxide and part of the aluminum oxide.

酸素キャリアは、高温で酸化・還元を繰り返すため、劣化が激しく、コストが課題となっている。そのため、安価な天然鉱石の利用が検討されている。天然鉱石としては、鉄鉱石、マンガン鉱石などが多く検討されており(非特許文献1参照)、その中でも活性が高く、安価な天然チタン鉄鉱石(イルメナイト)が最有力となっている。また、酸素キャリアの劣化には、化石燃料などに含まれる硫黄分も影響することが知られている。非特許文献2には、硫黄分で、鉄とマンガンから成る酸素キャリアが劣化することが報告されている。   Oxygen carriers undergo repeated oxidation and reduction at high temperatures, so they are severely degraded and cost is an issue. For this reason, the use of inexpensive natural ores is being studied. As the natural ore, iron ore, manganese ore, and the like have been studied a lot (see Non-Patent Document 1), and among them, natural titanium iron ore (ilmenite) that is highly active and inexpensive is the most prominent. Further, it is known that the sulfur content contained in fossil fuel or the like also affects the deterioration of the oxygen carrier. Non-Patent Document 2 reports that the oxygen carrier composed of iron and manganese deteriorates due to the sulfur content.

以上のように、酸素キャリアには多くの課題があり、未だ実用化に至っていない。   As described above, oxygen carriers have many problems and have not yet been put into practical use.

一方、マンガン鉱石からマンガン成分を抽出し、二酸化マンガンを製造した残渣であるマンガン鉱滓は用途が無く、消石灰と混合して不溶化処理した後、処分場に埋め立て処理することにより廃棄されてきた。しかし、近年の環境問題に対する意識の高まりにより、処分場の確保は年々難しくなっており、埋め立てには多額の費用を必要とするため、環境に負荷を与えることなく、マンガン鉱滓を処理、有効活用することが求められてきた(特許文献4参照)。なお、マンガン鉱滓の代表的組成は、SiO(8.9%)、Al(8.5%)、Fe(28.5%)、CaO(5.1%)、NaO(0.6%)、KO(4.1%)、MnO(22.3%)、SO(20.5%)であり、鉄、カルシウム、マンガンなどケミカルループ燃焼に有効な成分を含んでいるが、逆に金属酸化物を被毒する多量の硫黄分も含んでいる。 On the other hand, manganese ore, which is a residue obtained by extracting a manganese component from manganese ore and producing manganese dioxide, has no use and has been discarded by being mixed with slaked lime and insolubilized and then landfilled at a disposal site. However, due to increasing awareness of environmental issues in recent years, it has become difficult to secure a disposal site every year, and landfilling requires a large amount of money, so manganese slag can be treated and effectively used without impacting the environment. It has been demanded (see Patent Document 4). The typical composition of manganese ore is SiO 2 (8.9%), Al 2 O 3 (8.5%), Fe 2 O 3 (28.5%), CaO (5.1%), Na 2 O (0.6%), K 2 O (4.1%), MnO (22.3%), SO 3 (20.5%), effective for chemical loop combustion of iron, calcium, manganese, etc. Containing components, but also contains a large amount of sulfur that poisons metal oxides.

特開2014−031282号公報JP 2014-031282 A 特開2015−025651号公報Japanese Patent Laying-Open No. 2015-025651 特開2016−080238号公報Japanese Patent Laid-Open No. 2006-080238 特開平10−152354号公報JP-A-10-152354

International Journal of Greenhouse Gas Control 8(2012)56−60International Journal of Greenhouse Gas Control 8 (2012) 56-60 Journal of Environmental Sciences 26 (2014) 1062-1070Journal of Environmental Sciences 26 (2014) 1062-1070

本発明は上記の課題に鑑みてなされたものであり、その目的は、処分問題のあるマンガン鉱滓を有効利用し、ケミカルループ燃焼用の安価、高活性、しかも劣化しにくい酸素キャリア材料を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an oxygen carrier material that is inexpensive, highly active, and hardly deteriorates for chemical loop combustion, by effectively using manganese ore with disposal problems. There is.

本発明者は、ケミカルループ燃焼用酸素キャリア材料について鋭意検討した結果、廃棄物のマンガン鉱滓が、硫黄を含有していても高活性で、しかも劣化しにくく、安価な酸素キャリア材料となるという新規な事実を見いだした。   As a result of intensive studies on the oxygen carrier material for chemical loop combustion, the present inventors have found that the waste manganese slag becomes a low-priced oxygen carrier material that is highly active even if it contains sulfur, and that is not easily deteriorated. I found some facts.

すなわち、本発明は、以下の[1]乃至[8]に関する。   That is, the present invention relates to the following [1] to [8].

[1]マンガン鉱滓を含んでなることを特徴とする酸素キャリア材料。   [1] An oxygen carrier material comprising manganese ore.

[2]マンガン鉱滓が、水分、SiO、Al、Fe、MnSOを含んでなる上記[1]に記載の酸素キャリア材料。 [2] The oxygen carrier material according to [1], wherein the manganese slag contains moisture, SiO 2 , Al 2 O 3 , Fe 2 O 3 , and MnSO 4 .

[3]さらに金属酸化物を含んでなる上記[1]又は[2]に記載の酸素キャリア材料。   [3] The oxygen carrier material according to [1] or [2], further comprising a metal oxide.

[4]金属酸化物が、SiO、Al、Fe、CaO、MnO、チタン鉄鉱石、マンガン鉱石から成る群より選ばれる少なくとも一種である上記[3]に記載の酸素キャリア材料。 [4] The oxygen carrier according to [3], wherein the metal oxide is at least one selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MnO, titanium iron ore, and manganese ore. material.

[5]粒径が、10μm以上1000μm以下、又は10μm以上500μm以下である噴霧、上記[1]乃至[4]のいずれかに記載の酸素キャリア材料。   [5] A spray having a particle size of 10 μm or more and 1000 μm or less, or 10 μm or more and 500 μm or less, or the oxygen carrier material according to any one of the above [1] to [4].

[6]ケミカルループ燃焼後、粉末状になった上記[1]乃至[5]のいずれかに記載の酸素キャリア材料に、さらにマンガン鉱滓を加え、噴霧乾燥造粒する酸素キャリア材料の再生方法。   [6] A method for regenerating an oxygen carrier material in which manganese ore is further added to the oxygen carrier material according to any one of the above [1] to [5], which is powdered after chemical loop combustion, and spray dried and granulated.

[7]ケミカルループ燃焼後の上記[1]乃至[5]のいずれかに記載の酸素キャリア材料を含んでなるセメント材料。   [7] A cement material comprising the oxygen carrier material according to any one of [1] to [5] after chemical loop combustion.

[8]上記[1]乃至[5]のいずれかに記載の酸素キャリア材料を用いるケミカルループ燃焼法。   [8] A chemical loop combustion method using the oxygen carrier material according to any one of [1] to [5].

本発明の酸素キャリア材料は、ケミカルループ燃焼法において高活性で、しかも劣化しにくく、さらには処分問題のある廃棄物を使用することができるため、コスト、環境面にも優れており、工業的に極めて有用である。   The oxygen carrier material of the present invention is highly active in the chemical loop combustion method, is not easily deteriorated, and can be used as a waste having a disposal problem. Very useful.

実施例2に記載の酸素キャリアの、950℃における酸素反応速度測定結果である。3 is a result of measuring an oxygen reaction rate at 950 ° C. of the oxygen carrier described in Example 2. FIG. 実施例3に記載の酸素キャリアの、900℃における酸素反応速度測定結果である。4 is a result of measuring an oxygen reaction rate of the oxygen carrier described in Example 3 at 900 ° C. FIG. 実施例4に記載の酸素キャリアの、900℃における繰り返し還元特性の測定結果である。It is a measurement result of the repeated reduction characteristic in 900 degreeC of the oxygen carrier as described in Example 4. FIG. 実施例4に記載の酸素キャリアの、900℃における繰り返し酸化特性の測定結果である。なお、負の反応速度はキャリアが酸化していることを示す。7 is a measurement result of repeated oxidation characteristics of the oxygen carrier described in Example 4 at 900 ° C. FIG. A negative reaction rate indicates that the carrier is oxidized. 比較例1に記載の酸素キャリアの、900℃における繰り返し還元特性の測定結果である。3 is a measurement result of repeated reduction characteristics of the oxygen carrier described in Comparative Example 1 at 900 ° C. FIG. 比較例1に記載の酸素キャリアの、900℃における繰り返し酸化特性の測定結果である。なお、負の反応速度はキャリアが酸化していることを示す。3 is a measurement result of repeated oxidation characteristics of the oxygen carrier described in Comparative Example 1 at 900 ° C. FIG. A negative reaction rate indicates that the carrier is oxidized.

本発明の酸素キャリア材料の必須成分は、マンガン鉱滓である。   An essential component of the oxygen carrier material of the present invention is manganese ore.

本発明の酸素キャリア材料に用いられるマンガン鉱滓は、酸化マンガンを製造するため、マンガン鉱からマンガン成分を抽出した残渣である。マンガン鉱滓について詳細に記す。マンガンを含有する原料マンガン鉱石を乾燥、粉砕した後、硫酸を用いて溶解し、マンガンを硫酸溶液中に抽出する。この抽出工程で得られるマンガンを含有する水溶液中には、硫酸に不溶なケイ酸を主体とする固形物が含まれているため、この時点で一回目のろ過を行い固形物と抽出物を分離する。しかし分離された抽出液には鉄、アルカリ金属等の元素が溶存しているため、これらを順次空気あるいは酸化剤を用いて酸化した後、石灰石で中和して水酸化物の形にしたり、または硫化して硫化物の形にする等して固形物として沈殿させる精製工程を施し、その後同様にろ過処理して沈殿した固形物を分離し、硫酸マンガンを含む精製液を得る。こうして得られた精製液を次にチタン陽極と黒鉛陰極を備えた電解槽に供給し、電流を流して電解を行い二酸化マンガンを析出させる。前記マンガン抽出工程および精製工程で発生する固形物がマンガン鉱滓である。マンガン鉱滓は主に水分、SiO、Al、Fe、MnSOから構成されている。なお、本発明の酸素キャリア材料において、硫黄分が含まれているマンガン鉱滓が硫黄で被毒されることなく、酸素キャリアとして作用する原因は不明であるが、マンガン鉱滓中にある他の成分との相互作用によるものと推測している。 The manganese ore used in the oxygen carrier material of the present invention is a residue obtained by extracting a manganese component from manganese ore in order to produce manganese oxide. The manganese mine is described in detail. The raw material manganese ore containing manganese is dried, pulverized, dissolved with sulfuric acid, and manganese is extracted into a sulfuric acid solution. The manganese-containing aqueous solution obtained in this extraction step contains solids mainly composed of silicic acid insoluble in sulfuric acid. At this point, the first filtration is performed to separate the solids from the extract. To do. However, since elements such as iron and alkali metals are dissolved in the separated extract, these are sequentially oxidized using air or an oxidizing agent, and then neutralized with limestone to form a hydroxide, Alternatively, it is subjected to a purification step in which it is precipitated as a solid by sulfidation to form a sulfide, and thereafter, the solid is precipitated by filtration in the same manner to obtain a purified liquid containing manganese sulfate. The purified solution thus obtained is then supplied to an electrolytic cell equipped with a titanium anode and a graphite cathode, and electrolysis is performed by passing an electric current to deposit manganese dioxide. The solid matter generated in the manganese extraction process and the purification process is manganese ore. Manganese iron ore is mainly composed of moisture, SiO 2 , Al 2 O 3 , Fe 2 O 3 , and MnSO 4 . In addition, in the oxygen carrier material of the present invention, the manganese slag containing sulfur is not poisoned with sulfur, and the cause of acting as an oxygen carrier is unknown, but with other components in the manganese slag It is presumed to be due to the interaction.

本発明の酸素キャリア材料には、酸素キャリア材料の使用性、活性、耐久性を改善するために、マンガン鉱滓の他、金属酸化物を含有していてもよい。金属酸化物を含有することにより、酸素キャリア材料を成型・造粒しやすくなり、また酸化還元速度の向上、耐熱性の向上、耐被毒性能の向上が期待できる。酸素キャリア材料に含有する金属酸化物としては、SiO、Al、Fe、CaO、MnO、チタン鉄鉱石、マンガン鉱石等であり、これらは一種または二種以上含有することができる。 In order to improve the usability, activity, and durability of the oxygen carrier material, the oxygen carrier material of the present invention may contain a metal oxide in addition to manganese ore. By containing a metal oxide, the oxygen carrier material can be easily molded and granulated, and an improvement in oxidation-reduction rate, improvement in heat resistance, and improvement in poisoning resistance can be expected. Examples of the metal oxide contained in the oxygen carrier material include SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MnO, titanium iron ore, manganese ore, and the like, which may be contained singly or in combination. it can.

本発明の酸素キャリア材料は、成型・造粒することが好ましい。形状としては球状、タブレット状、ペレット状、粒子状など特に限定はなく、一般にケミカルループ燃焼法に使用される流動層反応器には粒子状が適している。成型、造粒法としては、一般に知られている成型、造粒法が適用できる。中でも噴霧乾燥造粒が工業的に最も適しており、押出成形した後、粉砕、分級して使用するなど、他の方法でも一向に差支えない。酸素キャリア材料の粒径は10μm以上1000μm以下、又は10μm以上500μm以下が好ましく、特に好ましくは50μm以上500μm以下である。酸素キャリア材料の成型、造粒時にバインダー、増粘剤などの有機物、カーボンを添加することができる。バインダー、増粘剤により好ましい粒径の酸素キャリアが得られ、また有機物、カーボンにより多孔質の酸素キャリアとすることができる。   The oxygen carrier material of the present invention is preferably molded and granulated. The shape is not particularly limited, such as a spherical shape, a tablet shape, a pellet shape, and a particle shape, and the particle shape is generally suitable for a fluidized bed reactor used in a chemical loop combustion method. As the molding and granulation method, generally known molding and granulation methods can be applied. Among them, spray drying granulation is industrially most suitable, and other methods such as extruding, pulverizing and classifying can be used. The particle size of the oxygen carrier material is preferably 10 μm or more and 1000 μm or less, or 10 μm or more and 500 μm or less, and particularly preferably 50 μm or more and 500 μm or less. Organic substances such as binders and thickeners and carbon can be added during molding and granulation of the oxygen carrier material. An oxygen carrier having a preferable particle diameter can be obtained by the binder and the thickener, and a porous oxygen carrier can be obtained by the organic substance and carbon.

本発明の酸素キャリア材料は、必要に応じ乾燥した後、好ましくは700〜1300℃で大気雰囲気下焼成する。焼成することにより、摩耗に強い酸素キャリアとすることができる。   The oxygen carrier material of the present invention is fired at 700 to 1300 ° C. in an air atmosphere after drying as necessary. By baking, an oxygen carrier resistant to abrasion can be obtained.

本発明の酸素キャリア材料を用い、化石燃料のケミカルループ燃焼を行う。化石燃料としては、石炭、石油、メタン、エタン、プロパン等の炭化水素ガス、それらを含んだ天然ガス及びコークス炉ガス(COG)などを用いることができる。   Chemical loop combustion of fossil fuel is performed using the oxygen carrier material of the present invention. As the fossil fuel, hydrocarbon gas such as coal, petroleum, methane, ethane, propane, natural gas containing them, coke oven gas (COG), and the like can be used.

一般にケミカルループ燃焼方法は、酸化塔において、酸素キャリア粒子を空気中の酸素によって酸化する空気反応工程と、還元塔において、酸素キャリア粒子を燃料によって還元する燃料反応工程と、粒子分離器で酸素キャリア粒子のうち粗大粒子及び微小粒子を除去し、残りの酸素キャリア粒子を回収して酸化塔又は還元塔へ供給する分離工程とを備えている。   In general, the chemical loop combustion method includes an air reaction step in which oxygen carrier particles are oxidized with oxygen in the air in an oxidation tower, a fuel reaction step in which oxygen carrier particles are reduced with fuel in a reduction tower, and an oxygen carrier in a particle separator. A separation step in which coarse particles and fine particles are removed from the particles, and the remaining oxygen carrier particles are recovered and supplied to the oxidation tower or reduction tower.

本発明の酸素キャリア材料は、ケミカルループ燃焼法の酸素キャリアとして使用すると、摩耗、粉砕が生じ、一部が粉末状になる。こうした粉末状の酸素キャリア材料は、ケミカルループ燃焼法の反応器外に排出されるが、排出された粉末状酸素キャリア材料も有効に活用することができる。粉末状酸素キャリア材料は、マンガン鉱滓及び/又は金属酸化物と混合し、成型、造粒することで再び酸素キャリア材料として再生することができる。   When the oxygen carrier material of the present invention is used as an oxygen carrier in a chemical loop combustion method, wear and pulverization occur, and a part thereof is powdered. Such powdery oxygen carrier material is discharged out of the reactor of the chemical loop combustion method, but the discharged powdered oxygen carrier material can also be used effectively. The powdered oxygen carrier material can be recycled again as an oxygen carrier material by mixing with manganese ore and / or metal oxide, molding and granulating.

また前記特許文献4に記載のようマンガン鉱滓を含むセメント原料として使用することができる。ケミカルループ燃焼後の酸素キャリア材料は水分など揮発成分を含まないため、ケミカルループ燃焼前のマンガン鉱滓よりもセメント原料として適している。   Further, as described in Patent Document 4, it can be used as a cement raw material containing manganese ore. Since the oxygen carrier material after chemical loop combustion does not contain volatile components such as moisture, it is more suitable as a cement raw material than manganese ore before chemical loop combustion.

本発明を以下の実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
東ソー日向株式会社のマンガン鉱滓を70℃で4時間乾燥し、酸素キャリアを調製した。この酸素キャリアの酸素供給量、酸素供給速度を熱天秤分析装置(島津製作所製TGA−50)で評価した。空気を流通しながら900℃まで昇温した後の重量と、4.2%水素/窒素に切り替えた重量変化を測定し、酸素供給量を算出した結果、酸素キャリア1mgが放出できる酸素量は3.9mmolであったことから、酸素キャリア材料として好適である。
Example 1
Manganese ore from Tosoh Hinata Co., Ltd. was dried at 70 ° C. for 4 hours to prepare an oxygen carrier. The oxygen supply amount and oxygen supply rate of this oxygen carrier were evaluated with a thermobalance analyzer (TGA-50 manufactured by Shimadzu Corporation). The weight after heating up to 900 ° C. while circulating air and the change in weight switched to 4.2% hydrogen / nitrogen were measured, and the oxygen supply amount was calculated. As a result, the amount of oxygen that could be released by 1 mg of oxygen carrier was 3 Since it was .9 mmol, it is suitable as an oxygen carrier material.

実施例2
東ソー日向株式会社のマンガン鉱滓を70℃で4時間乾燥し、粉砕、分級し、75−100μmに揃えた酸素キャリアを調製した。酸素キャリア及びアルミナ100μm微小ビーズを石英管(内径4mmφ)に充填し、これをガスクロマトグラフィー(島津製作所製GC−8A)に取り付け、アルゴンを10mL/minで流通しながら950℃に昇温した。これに水素を定量管で1mL注入し、酸素キャリアの酸素反応速度を測定した。結果を図1に示す。なお、還元率とは、酸素キャリアに含まれる、ケミカルループ燃焼に利用できる酸素の利用率である。
Example 2
Manganese ore from Tosoh Hinata Co., Ltd. was dried at 70 ° C. for 4 hours, pulverized and classified to prepare an oxygen carrier of 75-100 μm. An oxygen carrier and 100 μm alumina microbeads were filled in a quartz tube (inner diameter 4 mmφ), attached to a gas chromatography (GC-8A manufactured by Shimadzu Corporation), and heated to 950 ° C. while circulating argon at 10 mL / min. 1 mL of hydrogen was injected into this through a metering tube, and the oxygen reaction rate of the oxygen carrier was measured. The results are shown in FIG. The reduction rate is the utilization rate of oxygen contained in the oxygen carrier and available for chemical loop combustion.

実施例3
900℃における酸素反応速度を測定した以外は実施例2と同じ方法でマンガン鉱滓酸素キャリアの酸素反応速度を測定した。結果を図2に示す。なお、還元率とは、酸素キャリアに含まれる、ケミカルループ燃焼に利用できる酸素の利用率である。
Example 3
The oxygen reaction rate of the manganese slag oxygen carrier was measured in the same manner as in Example 2 except that the oxygen reaction rate at 900 ° C. was measured. The results are shown in FIG. The reduction rate is the utilization rate of oxygen contained in the oxygen carrier and available for chemical loop combustion.

実施例4
東ソー日向株式会社のマンガン鉱滓を70℃で4時間乾燥し、粉砕、分級し、75−100μmに揃えた酸素キャリアを調製した。この酸素キャリアの耐久性を熱天秤分析装置(島津製作所製TGA−50)で評価した。酸化性ガス(17.5%酸素/窒素)流通下で900℃まで昇温した後、温度を保持したまま(a)還元性ガス(8.33%水素/窒素)流通、(b)不活性ガス(純窒素)流通、(c)酸化性ガス(同上)流通、(d)不活性ガス(純窒素)流通を順に6回繰り返し、重量変化から酸素の反応量と反応速度を算出した。結果を図3及び図4に示す。なお、還元率とは、酸素キャリアに含まれる、ケミカルループ燃焼に利用できる酸素の利用率である。マンガン鉱滓は6ループ目でも反応速度に変化が見られず、安定して酸素の吸収及び放出が可能であることが明らかである。また、評価前後で酸素キャリアの外観に違いは見られなかった。
Example 4
Manganese ore from Tosoh Hinata Co., Ltd. was dried at 70 ° C. for 4 hours, pulverized and classified to prepare an oxygen carrier of 75-100 μm. The durability of this oxygen carrier was evaluated with a thermobalance analyzer (TGA-50 manufactured by Shimadzu Corporation). After the temperature was raised to 900 ° C. under a flow of oxidizing gas (17.5% oxygen / nitrogen), the temperature was maintained (a) a reducing gas (8.33% hydrogen / nitrogen) flowed, (b) inert Gas (pure nitrogen) flow, (c) oxidizing gas (same as above) flow, and (d) inert gas (pure nitrogen) flow were repeated six times in order, and the oxygen reaction amount and reaction rate were calculated from the weight change. The results are shown in FIGS. The reduction rate is the utilization rate of oxygen contained in the oxygen carrier and available for chemical loop combustion. It is clear that the manganese slag shows no change in the reaction rate even at the 6th loop and can absorb and release oxygen stably. In addition, there was no difference in the appearance of the oxygen carrier before and after the evaluation.

比較例1
酸化鉄(III)(和光純薬)を酸素キャリアとして使用した他は実施例4と同様の方法で耐久性を評価した。結果を図5及び図6に示す。なお、還元率とは、酸素キャリアに含まれる、ケミカルループ燃焼に利用できる酸素の利用率である。酸化鉄(III)は2ループ目以降酸化が充分に進んでおらず、劣化による性能低下が明らかである。評価前後で酸素キャリアの外観を顕微鏡を用いて比較したところ、評価後は溶融が進行していた。
Comparative Example 1
Durability was evaluated in the same manner as in Example 4 except that iron (III) oxide (Wako Pure Chemical Industries) was used as an oxygen carrier. The results are shown in FIGS. The reduction rate is the utilization rate of oxygen contained in the oxygen carrier and available for chemical loop combustion. Iron oxide (III) is not sufficiently oxidized after the second loop, and it is clear that the performance is deteriorated due to deterioration. When the appearance of the oxygen carrier was compared before and after the evaluation using a microscope, melting proceeded after the evaluation.

実施例4と比較例1より、本発明のマンガン鉱滓を含んでなる酸素キャリア材は、酸化鉄(III)からなる酸素キャリア材よりも劣化しにくいものである。   From Example 4 and Comparative Example 1, the oxygen carrier material containing the manganese ore of the present invention is less likely to deteriorate than the oxygen carrier material made of iron (III) oxide.

Claims (8)

マンガン鉱滓を含んでなることを特徴とする酸素キャリア材料。 An oxygen carrier material comprising a manganese slag. マンガン鉱滓が、水分、SiO、Al、Fe、MnSOを含んでなることを特徴とする請求項1に記載の酸素キャリア材料。 The oxygen carrier material according to claim 1, wherein the manganese slag contains moisture, SiO 2 , Al 2 O 3 , Fe 2 O 3 , and MnSO 4 . さらに金属酸化物を含んでなることを特徴とする請求項1又は2に記載の酸素キャリア材料。 The oxygen carrier material according to claim 1 or 2, further comprising a metal oxide. 金属酸化物が、SiO、Al、Fe、CaO、MnO、チタン鉄鉱石、マンガン鉱石から成る群より選ばれる少なくとも一種である請求項3に記載の酸素キャリア材料。 The oxygen carrier material according to claim 3, wherein the metal oxide is at least one selected from the group consisting of SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MnO, titanium iron ore, and manganese ore. 粒径が、10μm以上1000μm以下、又は10μm以上500μm以下であることを特徴とする、請求項1乃至4のいずれかに記載の酸素キャリア材料。 5. The oxygen carrier material according to claim 1, wherein the particle size is 10 μm or more and 1000 μm or less, or 10 μm or more and 500 μm or less. ケミカルループ燃焼後、粉末状になった請求項1乃至5のいずれかに記載の酸素キャリア材料に、さらにマンガン鉱滓を加え、噴霧乾燥造粒することを特徴とする酸素キャリア材料の再生方法。 A method for regenerating an oxygen carrier material, comprising adding manganese slag to the oxygen carrier material according to any one of claims 1 to 5 in powder form after chemical loop combustion, and spray drying granulation. ケミカルループ燃焼後の請求項1乃至5のいずれかに記載の酸素キャリア材料を含んでなることを特徴とするセメント材料。 A cement material comprising the oxygen carrier material according to any one of claims 1 to 5 after chemical loop combustion. 請求項1乃至5のいずれかに記載の酸素キャリア材料を用いることを特徴とするケミカルループ燃焼法。 A chemical loop combustion method using the oxygen carrier material according to claim 1.
JP2017096169A 2017-05-15 2017-05-15 Oxygen carrier material Pending JP2018194198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017096169A JP2018194198A (en) 2017-05-15 2017-05-15 Oxygen carrier material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017096169A JP2018194198A (en) 2017-05-15 2017-05-15 Oxygen carrier material

Publications (1)

Publication Number Publication Date
JP2018194198A true JP2018194198A (en) 2018-12-06

Family

ID=64571517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017096169A Pending JP2018194198A (en) 2017-05-15 2017-05-15 Oxygen carrier material

Country Status (1)

Country Link
JP (1) JP2018194198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791351A (en) * 2019-11-25 2020-02-14 华中科技大学 Preparation method, product and device of spherical composite oxygen carrier
CN114774165A (en) * 2022-03-10 2022-07-22 天津大学 Oxygen decoupling oxygen carrier, preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172989A (en) * 1981-04-03 1982-10-25 Nippon Chem Ind Co Ltd:The Harmless solid fuel
JPH10152354A (en) * 1996-11-22 1998-06-09 Tosoh Corp Method for treating manganese slag
JP2012077354A (en) * 2010-10-01 2012-04-19 Jfe Steel Corp Method for melting/preparing low carbon aluminum killed steel excellent in cleanliness
CN104930518A (en) * 2015-05-18 2015-09-23 华中科技大学 Method for treating solid waste in low-carbon mode and restraining generation of dioxin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172989A (en) * 1981-04-03 1982-10-25 Nippon Chem Ind Co Ltd:The Harmless solid fuel
JPH10152354A (en) * 1996-11-22 1998-06-09 Tosoh Corp Method for treating manganese slag
JP2012077354A (en) * 2010-10-01 2012-04-19 Jfe Steel Corp Method for melting/preparing low carbon aluminum killed steel excellent in cleanliness
CN104930518A (en) * 2015-05-18 2015-09-23 华中科技大学 Method for treating solid waste in low-carbon mode and restraining generation of dioxin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791351A (en) * 2019-11-25 2020-02-14 华中科技大学 Preparation method, product and device of spherical composite oxygen carrier
CN114774165A (en) * 2022-03-10 2022-07-22 天津大学 Oxygen decoupling oxygen carrier, preparation method and application
CN114774165B (en) * 2022-03-10 2024-01-23 天津大学 Oxygen decoupling oxygen carrier, preparation method and application

Similar Documents

Publication Publication Date Title
Matzen et al. Use of natural ores as oxygen carriers in chemical looping combustion: A review
Mendiara et al. Use of an Fe-based residue from alumina production as an oxygen carrier in chemical-looping combustion
Ohtsuka et al. Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas
AU2012253332B2 (en) Oxygen carrying materials
Song et al. Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal
Slimane et al. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization
Dudek On the utilization of coal samples in direct carbon solid oxide fuel cell technology
CN103534368A (en) Method for obtaining metals and rare earth metals from scrap
JP2012112027A (en) Method for recovering lithium, cobalt and other metal
KR102287827B1 (en) Catalysts Based on Natural Minerals and Process for Gasification Using the Same
Kuo et al. Electric arc furnace dust as an alternative low-cost oxygen carrier for chemical looping combustion
Yan et al. Preparation and performance of Cu-based bimetallic oxygen carriers in chemical looping combustion with gaseous and solid fuels
Gao et al. Preparation and chemical looping combustion properties of Fe2O3/Al2O3 derived from metallurgy iron-bearing dust
Wang et al. Chemical looping combustion characteristics of coal with a novel CaSO4–Ca2CuO3 mixed oxygen carrier
JP2018194198A (en) Oxygen carrier material
Kim et al. Adsorption/desorption behavior of carbonyl sulfide gas on Scheelite type MWO4 adsorbent
Wang et al. Reaction characteristic investigation of the combined template-method-made CaSO4–Mn3O4 mixed oxygen carrier with lignite
Kuang et al. Comparison of metallic oxide, natural ore and synthetic oxygen carrier in chemical looping combustion process
Dolan et al. Sulfur removal from coal‐derived syngas: thermodynamic considerations and review
CN102527392B (en) Ternary catalyst for catalytic coal gasification and preparation method thereof
EA005832B1 (en) Method for the production of hydrogen
Wang et al. SO2-induced dual active sites formation over VOx/Fe2O3 for accelerating NH3 selective catalytic reduction of NOx
Zhang et al. Sulfur evolution and capture behavior by a solid waste of red mud during chemical looping combustion of petroleum coke
He et al. A green strategy for the selective recovery of lithium and the synthesis of CoFe 2 O 4 catalyst for CO oxidation from spent lithium-ion batteries
Atimtay Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817