JP2018193587A - Method of producing metal product by electroforming - Google Patents

Method of producing metal product by electroforming Download PDF

Info

Publication number
JP2018193587A
JP2018193587A JP2017098657A JP2017098657A JP2018193587A JP 2018193587 A JP2018193587 A JP 2018193587A JP 2017098657 A JP2017098657 A JP 2017098657A JP 2017098657 A JP2017098657 A JP 2017098657A JP 2018193587 A JP2018193587 A JP 2018193587A
Authority
JP
Japan
Prior art keywords
model
conductive
rubber
metal
rubber mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098657A
Other languages
Japanese (ja)
Other versions
JP6993108B2 (en
Inventor
拓夫 戸田
Takuo Toda
拓夫 戸田
真一 池田
Shinichi Ikeda
真一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CASTEM CO Ltd
Original Assignee
CASTEM CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASTEM CO Ltd filed Critical CASTEM CO Ltd
Priority to JP2017098657A priority Critical patent/JP6993108B2/en
Publication of JP2018193587A publication Critical patent/JP2018193587A/en
Application granted granted Critical
Publication of JP6993108B2 publication Critical patent/JP6993108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To produce a metal product by performing electroforming only once, without a need for forming an electroconductive film or for carrying out conductive processing on the surface of a vanishing material.SOLUTION: First, a liquid mixture 14 of liquid rubber and a liquid hardener is poured into a container 13 containing a model 12 disposed thereinside to bury the model therein, and subsequently the liquid mixture is hardened to produce a rubber mold 16. Thereafter, the model is extracted from the rubber mold and an electroconductive vanishing material 18 is poured into a cavity 16a formed in the rubber mold and is hardened to produce an electroconductive vanishing model 19. Subsequently, the electroconductive vanishing model extracted from the rubber mold and electroforming metal are immersed in the electrolytic liquid present in an electrolytic tank, and an electric current is supplied to them to form a metal layer on the surface of the electroconductive vanishing model by electrodeposition. Further, the electroconductive vanishing model with a metal layer formed on the surface thereof is taken out of the electrolytic tank and is heated to cause the electroconductive vanishing model to vanish, thereby producing a metal product comprising a metal layer.SELECTED DRAWING: Figure 1

Description

本発明は、中空の金属パイプ等の複雑な形状の金属製品を電鋳によって製造する方法に関するものである。   The present invention relates to a method for producing a metal product having a complicated shape such as a hollow metal pipe by electroforming.

従来、ろうを付着して形成されたろう型の表面に導電性被膜を形成し、この導電性被膜が形成されたろう型と電鋳金属を電解液の中に入れて電流を流しろう型の導電性被膜に電鋳金属を電着させてパン焼き型を成形し、更にろう型及び導電性被膜を取外してパン焼き型を取出す、パン焼き型の製造方法が開示されている(例えば、特許文献1参照。)。このパン焼き型の製造方法では、ろう型及び導電性被膜を熱又は化学反応によって溶融し、電着金属層、即ちパン焼き型を取出す。   Conventionally, a conductive film is formed on the surface of a solder mold formed by adhering a solder, and the solder mold and the electroformed metal are placed in an electrolytic solution and the current flows through the solder mold. A method for producing a baking mold is disclosed, in which an electroformed metal is electrodeposited on the film to form a baking mold, and then the wax mold and the conductive film are removed to remove the baking mold (see, for example, Patent Document 1). . In this bread baking mold manufacturing method, the solder mold and the conductive film are melted by heat or chemical reaction, and the electrodeposited metal layer, that is, the bread baking mold is taken out.

このパン焼き型の製造方法では、高価な雄型と雌型を使用せず、短時間で簡単にパン焼き型を製造することができるので、パン焼き型を安価に形成することができる。   In this bread baking mold manufacturing method, a bread baking mold can be easily manufactured in a short time without using expensive male molds and female molds, so that the bread baking molds can be formed at low cost.

一方、冷却又は加熱用の流体通路を有する樹脂成形用の金型を電鋳加工法により製造する金型の方法が開示されている(例えば、特許文献2参照。)。この金型の製造方法では、先ず、成形品と同等な外形を有するマスターモデルの表面に、電鋳加工により内面側電着金属層を形成する。次いで、この内面側電着金属層の表面部に、流体通路となるべき溝を形成した後に、この溝を、溶解、気化、燃焼等の化学的又は物理的な手段により除去可能な消失性材料で埋める。次に、内面側電着金属層の表面に、引続き電鋳加工を施すことにより、溝内が消失性材料で埋まった形態のまま、溝の開口部に蓋をするように外面側電着金属層を形成する。更に、溝内に埋まっている消失性材料を化学的又は物理的な手段で除去させる。また、マスターモデルの表面には、電鋳加工を行う前に予め導電処理が行われる。更に、消失性材料としては、加熱により除去可能なワックスやパラフィンが用いられるが、低融点合金半田、合成樹脂、天然樹脂等を採用することができる。この後、必要に応じて、溝内の消失性材料の表面に導電処理が行われる。   On the other hand, a mold method for manufacturing a mold for resin molding having a fluid passage for cooling or heating by an electroforming method is disclosed (for example, see Patent Document 2). In this mold manufacturing method, first, an inner surface side electrodeposited metal layer is formed by electroforming on the surface of a master model having an outer shape equivalent to that of a molded product. Next, after forming a groove to be a fluid passage in the surface portion of the inner surface-side electrodeposited metal layer, the lossable material can be removed by chemical or physical means such as dissolution, vaporization, and combustion. Fill with. Next, the surface of the inner surface side electrodeposited metal layer is continuously subjected to electroforming, so that the outer surface side electrodeposited metal is covered with the disappearance material while covering the groove opening. Form a layer. Further, the disappearing material buried in the groove is removed by chemical or physical means. In addition, the surface of the master model is subjected to a conductive treatment in advance before electroforming. Further, as the disappearing material, wax or paraffin that can be removed by heating is used, and low melting point alloy solder, synthetic resin, natural resin, or the like can be used. Thereafter, a conductive treatment is performed on the surface of the extinguishing material in the groove as necessary.

このように構成された金型の製造方法では、電着金属層を、内面側電着金属層及び外面側電着金属層の2段階で形成し、そのうち内面側電着金属層に形成した溝に化学的又は物理的な手段で除去可能な消失性材料を埋込むことにより、流体通路を形成したので、表面転写性に優れた樹脂成形用の金型を作製できるとともに、この金型は温度調節性に優れ、この金型を用いた成形品の成形サイクルの短縮化を図ることができる。   In the mold manufacturing method configured as described above, the electrodeposited metal layer is formed in two stages of the inner surface side electrodeposited metal layer and the outer surface side electrodeposited metal layer, and the groove formed in the inner surface side electrodeposited metal layer. Since a fluid passage was formed by embedding an extinguishing material that can be removed by chemical or physical means, a mold for resin molding having excellent surface transferability can be produced. The controllability is excellent, and the molding cycle of a molded product using this mold can be shortened.

特開2000−279082号公報(請求項2、段落[0010]、[0019]、図5〜図9)JP 2000-279082 A (Claim 2, paragraphs [0010] and [0019], FIGS. 5 to 9) 特開2014−205318号公報(請求項1、段落[0010]、[0016]、[0019]、図1〜図3)Japanese Patent Laying-Open No. 2014-205318 (Claim 1, paragraphs [0010], [0016], [0019], FIGS. 1 to 3)

しかし、上記従来の特許文献1に示されたパン焼き型の製造方法は、ろう型の表面に導電性被膜を形成しなければならず、また導電性被膜を化学反応により溶融させてパン焼き型を取出さなければならず、工数が増大する不具合があった。また、上記従来の特許文献1に示されたパン焼き型の製造方法は、ろう型の導電性被膜を形成した一方向の面からなるパン焼き型しか作製できない問題点もあった。一方、上記従来の特許文献2に示された金型の製造方法では、マスターモデルの表面や溝内の消失性材料の表面に導電処理を行わなければならず、工数が増大する問題点があった。また、上記従来の特許文献2に示された金型の製造方法では、電鋳加工を2回行わなければならず、また流体通路となるべき溝を加工治具及び切削工具等を用いて形成した後に、この溝を消失性材料で埋めなければならず、工数が増大する問題点があった。   However, in the method for manufacturing a baking mold shown in the above-mentioned conventional patent document 1, a conductive film must be formed on the surface of the wax mold, and the conductive film is melted by a chemical reaction to take out the baking mold. There was a problem that the man-hour increased. In addition, the conventional baking method disclosed in Patent Document 1 has a problem in that only a baking die having a unidirectional surface on which a wax-type conductive film is formed can be produced. On the other hand, in the conventional mold manufacturing method disclosed in Patent Document 2, the surface of the master model and the surface of the extinguishing material in the groove must be subjected to conductive treatment, which increases the number of steps. It was. Further, in the mold manufacturing method disclosed in the above-mentioned conventional patent document 2, electroforming must be performed twice, and a groove to be a fluid passage is formed using a processing jig, a cutting tool, or the like. After that, the groove has to be filled with a disappearing material, which increases the number of steps.

本発明の第1の目的は、消失材料の表面に導電性被膜の形成や導電処理を行う必要がなく、1回の電鋳加工で金属製品を作製できる、金属製品の電鋳による製造方法を提供することにある。本発明の第2の目的は、複雑な形状の金属製品の全面を作製できる、金属製品の電鋳による製造方法を提供することにある。   The first object of the present invention is to provide a method for producing a metal product by electroforming, in which it is not necessary to form a conductive film or conducting a conductive treatment on the surface of the disappearing material, and a metal product can be produced by a single electroforming process. It is to provide. The second object of the present invention is to provide a method for producing a metal product by electroforming, which can produce the entire surface of the metal product having a complicated shape.

本発明の第1の観点は、図1及び図2に示すように、内部にモデル12を設置した容器13に液状ゴム及び液状硬化剤の液状混合物14を流込むか或いは複数のゴムブロック内にモデルを配置して熱及び圧力をかけることによりモデルを液状混合物14内又はゴムブロック内に埋没させる工程と、容器13内の液状混合物14を硬化させるか或いはゴムブロックを冷却してゴム型16を作製する工程と、ゴム型16を容器13から取出した後にこのゴム型16からモデル12を取出してゴム型16内にモデル12に相応する形状のキャビティ16aを形成する工程と、ゴム型16のキャビティ16aに導電性を有する消失材料18を注入して硬化させることにより導電性消失模型19を作製する工程と、導電性消失模型19をゴム型16から取出した後に導電性消失模型19と電鋳金属板21を電解槽22中の電解液23に浸漬する工程と、電解液23中の導電性消失模型19と電鋳金属板21との間に電流を流して導電性消失模型19の表面に電着による金属層26を形成する工程と、表面に金属層26が形成された導電性消失模型19を電解槽22から取出し加熱して導電性消失模型19を消失させることにより金属層26からなる金属製品11を作製する工程とを含む金属製品の電鋳による製造方法である。   The first aspect of the present invention is that, as shown in FIGS. 1 and 2, a liquid mixture 14 of liquid rubber and a liquid curing agent is poured into a container 13 in which a model 12 is installed, or in a plurality of rubber blocks. The process of immersing the model in the liquid mixture 14 or in the rubber block by placing the model and applying heat and pressure, and curing the liquid mixture 14 in the container 13 or cooling the rubber block to form the rubber mold 16. A step of manufacturing, a step of taking out the model 12 from the rubber die 16 after taking out the rubber die 16 from the container 13, and forming a cavity 16a having a shape corresponding to the model 12 in the rubber die 16, and a cavity of the rubber die 16 A step of producing a conductive disappearance model 19 by injecting and curing a disappearance material 18 having conductivity into 16 a, and removing the conductive disappearance model 19 from the rubber mold 16. Between the step of immersing the conductive disappearance model 19 and the electroformed metal plate 21 in the electrolytic solution 23 in the electrolytic bath 22 and the current between the conductive disappearance model 19 and the electroformed metal plate 21 in the electrolytic solution 23. To form a metal layer 26 by electrodeposition on the surface of the conductive disappearance model 19, and to remove the conductive disappearance model 19 with the metal layer 26 formed on the surface from the electrolytic cell 22 and heat it. The manufacturing method by electroforming of the metal product including the process of producing the metal product 11 made of the metal layer 26 by eliminating 19.

本発明の第2の観点は、第1の観点に基づく発明であって、更に図1に示すように、ゴム型16の耐熱温度が−40〜150℃であり、導電性消失模型19がゴム型16の融点より低い融点−19〜98℃の低融点金属により形成されたことを特徴とする。   The second aspect of the present invention is an invention based on the first aspect, and as shown in FIG. 1, the heat resistance temperature of the rubber mold 16 is −40 to 150 ° C., and the conductive disappearance model 19 is a rubber. It is formed of a low melting point metal having a melting point of -19 to 98 ° C. lower than the melting point of the mold 16.

本発明の第3の観点は、第2の観点に基づく発明であって、更に低融点金属が、ビスマス、鉛、錫、インジウム、カドミウム、タリウム、ガリウム及びアンチモンからなる群より選ばれた3種以上の合金であることを特徴とする。   The third aspect of the present invention is the invention based on the second aspect, wherein the low melting point metal is further selected from the group consisting of bismuth, lead, tin, indium, cadmium, thallium, gallium and antimony. It is the above alloy.

本発明の第1の観点の金属製品の電鋳による製造方法では、ゴム型のキャビティに導電性を有する消失材料を注入して硬化させることにより導電性消失模型を作製するので、この導電性消失模型と電鋳金属板との間に電解液中で電流を流すと、導電性消失模型の表面に電着による金属層からなる金属製品を作製できる。この結果、消失材料の表面に導電性被膜の形成や導電処理を行う必要がなく、1回の電鋳加工で金属製品を作製できる。また、ろう型の導電性被膜を形成した一方向の面からなるパン焼き型しか作製できない従来のパン焼き型の製造方法と比較して、本発明では、異形状のパイプ等の複雑な形状の金属製品の全面を作製できる。   In the manufacturing method by electroforming of a metal product according to the first aspect of the present invention, a conductive disappearance model is prepared by injecting a cured disappearance material into a rubber mold cavity and curing it. When a current is passed in the electrolytic solution between the model and the electroformed metal plate, a metal product composed of a metal layer by electrodeposition on the surface of the conductive disappearance model can be produced. As a result, it is not necessary to form a conductive coating or conducting a conductive treatment on the surface of the disappearing material, and a metal product can be produced by a single electroforming process. In addition, compared with a conventional bread baking mold manufacturing method that can only produce a bread baking mold having a unidirectional surface on which a solder-type conductive coating is formed, the present invention has a complicated shape metal product such as an irregularly shaped pipe. The entire surface can be manufactured.

本発明の第2の観点の金属製品の電鋳による製造方法では、導電性消失模型をゴム型の融点より低い融点の低融点金属により形成したので、ゴム型が溶融することなく、ゴム型のキャビティに導電性を有する消失材料を注入して硬化させることにより導電性消失模型を作製することができる。また、電鋳により表面に金属層が形成された導電性消失模型を、導電性消失模型の融点以上であって金属層の融点以下の温度で加熱することにより、導電性消失模型が消失して、金属層からなる金属製品を作製することができる。   In the method for producing a metal product by electroforming according to the second aspect of the present invention, since the conductive disappearance model is formed of a low melting point metal having a melting point lower than the melting point of the rubber mold, the rubber mold does not melt. A conductive disappearance model can be produced by injecting and curing a disappearance material having conductivity into the cavity. In addition, by heating a conductive disappearance model having a metal layer formed on the surface by electroforming at a temperature not lower than the melting point of the conductive disappearance model and not higher than the melting point of the metal layer, the conductive disappearance model disappears. A metal product comprising a metal layer can be produced.

本発明実施形態の金属製品の電鋳による製造手順を示す前半の工程図である。It is process drawing of the first half which shows the manufacturing procedure by electroforming of the metal product of embodiment of this invention. その金属製品の電鋳による製造手順を示す後半の工程図である。It is process drawing of the latter half which shows the manufacturing procedure by electroforming of the metal product.

次に本発明を実施するための形態を図面に基づいて説明する。図2(c)に示すように、金属製品11は、この実施の形態では、中心線が二次元的ではなく三次元的に複雑に湾曲する金属パイプである。この金属製品11は、銅、ニッケル、金、銀等の電鋳可能な金属により形成される。この金属製品11を電鋳により製造するには、先ず、内部にモデル12(図1(a))を設置した容器13に液状ゴム及び液状硬化剤の液状混合物14を流込んでモデル12を埋没させた後に、容器13内の液状混合物14を硬化させてゴム型16を作製する(図1(b))。このモデル12は、金属製品11である金属パイプの内面形状に相当する形状を外面形状とする複雑に湾曲する円柱状に形成されているため、3Dプリンタを用いて、アクリルニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、ポリ乳酸樹脂(PLA樹脂)、アクリル樹脂等の材料により作製される。また、図1(b)中の符号17は、容器13内でモデル12を支持する支持部材である。また、この支持部材17をモデル12とともにゴム型16から取出したときに形成される空間は、後述の導電性を有する消失材料18をキャビティ16aに流込むための湯道になる。なお、モデルの形状は、複雑に湾曲する柱状の他に、一般的な樹脂若しくは金属の射出成型法では成形できない形状等であってもよい。また、モデルが比較的簡単な形状であれば、モデルを3Dプリンタを用いずに機械加工等により作製してもよい。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 2 (c), the metal product 11 is a metal pipe whose center line is not two-dimensionally curved but complicated in three dimensions in this embodiment. The metal product 11 is formed of a metal that can be electroformed, such as copper, nickel, gold, or silver. In order to manufacture the metal product 11 by electroforming, first, the model 12 is buried by pouring a liquid mixture 14 of liquid rubber and a liquid curing agent into a container 13 in which the model 12 (FIG. 1A) is installed. Thereafter, the liquid mixture 14 in the container 13 is cured to produce a rubber mold 16 (FIG. 1B). Since this model 12 is formed in a cylindrical shape that is curved in a complicated manner with the shape corresponding to the inner surface of the metal pipe 11 that is the metal product 11 as the outer surface, using a 3D printer, acrylonitrile butadiene styrene resin is used. It is made of a material such as (ABS resin), polylactic acid resin (PLA resin), or acrylic resin. Reference numeral 17 in FIG. 1B denotes a support member that supports the model 12 in the container 13. Further, the space formed when the support member 17 is taken out from the rubber mold 16 together with the model 12 becomes a runner for flowing a lost material 18 having conductivity described later into the cavity 16a. The shape of the model may be a shape that cannot be molded by a general resin or metal injection molding method in addition to a complicatedly curved columnar shape. If the model has a relatively simple shape, the model may be produced by machining or the like without using a 3D printer.

上記液状ゴムとしては、シリコーンゴム等が挙げられる。液状ゴムとしてシリコーンゴムを用いる場合には、液状ゴムを硬化させる液状硬化剤が添加される。この液状硬化剤はシリコーンゴム100質量%に対して5〜10質量%添加される。ここで、液状硬化剤の添加量をシリコーンゴム100質量%に対して5〜10質量%の範囲内に限定したのは、5質量%未満では、硬化スピードが遅いか或いは硬化せず、10質量%を超えると、硬化したゴム型16が裂け易くなるからである。また、硬化したゴム型の耐熱温度は−40〜150℃である。   Examples of the liquid rubber include silicone rubber. When silicone rubber is used as the liquid rubber, a liquid curing agent for curing the liquid rubber is added. This liquid hardening | curing agent is added 5-10 mass% with respect to 100 mass% of silicone rubber. Here, the addition amount of the liquid curing agent is limited to the range of 5 to 10% by mass with respect to 100% by mass of the silicone rubber. This is because if it exceeds%, the cured rubber mold 16 is easily torn. The heat resistant temperature of the cured rubber mold is −40 to 150 ° C.

なお、この実施の形態では、内部にモデルを設置した容器に液状ゴム及び液状硬化剤の液状混合物を流込んでゴム型を作製したが、複数のゴムブロック内にモデルを配置して、ホットプレス機と呼ばれる熱加硫装置にかけることによりゴムブロックを軟化させ、モデルをゴムブロック内に埋没させた後、ゴムブロックを冷却してゴム型を作製してもよい。この場合、ゴムブロックは、焼きゴムと呼ばれるシリコーンゴム等で形成され、耐熱温度(最高仕様温度)は280℃である。また、加硫温度は120〜150℃であることが好ましい。例えば、約120℃でゴム型厚1mmに対して1分間の比率で加硫時間が設定される。これにより、ゴムブロックが溶融することなく軟化して、モデルを損傷することなくゴムブロック内に埋没させることができる。更に、上記複数のゴムブロックは一対のゴムブロックであることが好ましい。   In this embodiment, a rubber mold was produced by pouring a liquid mixture of liquid rubber and a liquid curing agent into a container in which a model was installed, but the model was placed in a plurality of rubber blocks, and a hot press was used. The rubber block may be softened by being applied to a heat vulcanizer called a machine, the model is buried in the rubber block, and then the rubber block is cooled to produce a rubber mold. In this case, the rubber block is formed of silicone rubber or the like called baked rubber, and the heat resistant temperature (maximum specification temperature) is 280 ° C. Moreover, it is preferable that vulcanization temperature is 120-150 degreeC. For example, the vulcanization time is set at a rate of 1 minute for a rubber mold thickness of 1 mm at about 120 ° C. Thereby, the rubber block is softened without melting, and the model can be buried in the rubber block without being damaged. Further, the plurality of rubber blocks are preferably a pair of rubber blocks.

次いで、ゴム型16を容器13から取出した後に、このゴム型16からモデル12を取出してゴム型16内にモデル12に相応する形状のキャビティ16aを形成する(図1(c))。ゴム型16からモデル12を取出すとき、モデル12とともに支持部材17も取出す。これによりゴム型16内には、モデル12に相応する形状のキャビティ16aと、支持部材17に相応する形状の湯道16bとが形成される。ここで、ゴム型16からモデル12を取出す方法としては、次の2つの方法がある。
(1) 第1の方法は、ゴム型16を複数のゴム片に切って、ゴム型16からモデル12及び支持部材17を取出す方法である。この方法では、上記複数のゴム片を組合せてゴム型16を復元すると、複数のゴム片同士が互いに密着して、ゴム型16のキャビティ16a内面にパーティングラインが殆ど現れず、モデル12の外面をゴム型16のキャビティ16a内面に忠実に転写できる。
(2) 第2の方法は、ゴム型16を弾性変形させることにより、モデル12及び支持部材17をこの支持部材17の底面側から取出す方法である。この方法では、ゴム型16を損傷させずにモデル12をゴム型16から取出すことができ、ゴム型16のキャビティ16a内面にパーティングラインが現れず、モデル12の外面をゴム型16のキャビティ16a内面に忠実に転写できる。
Next, after the rubber mold 16 is taken out from the container 13, the model 12 is taken out from the rubber mold 16 and a cavity 16a having a shape corresponding to the model 12 is formed in the rubber mold 16 (FIG. 1C). When the model 12 is removed from the rubber mold 16, the support member 17 is also removed together with the model 12. As a result, a cavity 16 a having a shape corresponding to the model 12 and a runner 16 b having a shape corresponding to the support member 17 are formed in the rubber mold 16. Here, there are the following two methods for removing the model 12 from the rubber mold 16.
(1) The first method is a method of cutting the rubber mold 16 into a plurality of rubber pieces and taking out the model 12 and the support member 17 from the rubber mold 16. In this method, when the rubber mold 16 is restored by combining the plurality of rubber pieces, the plurality of rubber pieces are brought into close contact with each other, so that almost no parting line appears on the inner surface of the cavity 16a of the rubber mold 16 and the outer surface of the model 12 Can be faithfully transferred to the inner surface of the cavity 16 a of the rubber mold 16.
(2) The second method is a method of taking out the model 12 and the support member 17 from the bottom surface side of the support member 17 by elastically deforming the rubber mold 16. In this method, the model 12 can be removed from the rubber mold 16 without damaging the rubber mold 16, no parting line appears on the inner surface of the cavity 16 a of the rubber mold 16, and the outer surface of the model 12 is connected to the cavity 16 a of the rubber mold 16. Can be faithfully transferred to the inner surface.

そして、ゴム型16のキャビティ16aに導電性を有する消失材料18を注入して硬化させることにより導電性消失模型19を作製する(図1(d))。ゴム型16のキャビティ16aに導電性を有する消失材料18を注入するために、ゴム型16を上下反転させる。これにより導電性を有する消失材料18の注入口である湯口16cがゴム型16の上面に位置する。また、ゴム型16を複数のゴム片に切った場合には、復元したゴム型16がバラバラにならないように、ゴム型16を容器13に再び入れるか、或いはゴム型16の外周面を治具(図示せず)で固定することが好ましい。また、上記導電性消失模型19は、ゴム型16の耐熱温度より低い融点−19〜98℃の低融点金属により形成されることが好ましい。具体的には、低融点金属は、ビスマス(Bi)、鉛(Pb)、錫(Sn)、インジウム(In)、カドミウム(Cd)、タリウム(Tl)、ガリウム(Ga)及びアンチモン(Sb)からなる群より選ばれた3種以上の合金であることが好ましい。更に具体的には、低融点金属としては、ローズ(Rose's)合金、セロセーフ(CerroSAFE)、ウッド(Wood's)合金、フィールド(Field)合金、セロロー(Cerrolow)136、セロロー(Cerrolow)117、Bi−Pb−Sn−In−Cd−Tl合金、ガリンスタン(Galinstan)等が挙げられる。これらの合金の低融点金属の含有割合(質量%)と融点は次の通りである。
(1) ローズ(Rose's)合金……Bi:Pb:Sn=50:25:25、融点:98℃。
(2) セロセーフ(CerroSAFE)……Bi:Pb:Sn:Cd=42.5:37.7:11.3:8.5、融点:74℃。
(3)ウッド(Wood's)合金……Bi:Pb:Sn:Cd=50:26.7:13.3:10、融点:70℃。
(4) フィールド(Field)合金……Bi:Sn:In=32.5:16.5:51、融点:62℃。
(5) セロロー(Cerrolow)136……Bi:Pb:Sn:In=49:18:12:21、融点:58℃。
(6) セロロー(Cerrolow)117……Bi:Pb:Sn:In:Cd=44.7:22.6:8.3:19.1:5.3、融点:47.2℃。
(7) Bi−Pb−Sn−In−Cd−Tl合金……Bi:Pb:Sn:In:Cd:Tl=40.3:22.2:10.7:17.7:8.1:1.1、融点:41.5℃。
(8) ガリンスタン(Galinstan)……Bi:Sn:In:Ga:Sb=1.5未満:9.5〜10.5:21〜22:68〜69:1.5未満、融点:−19℃。
ここで、導電性消失模型19を形成する低融点金属の好ましい融点を−19〜98℃の範囲内に限定したのは、−19℃未満の低融点金属は存在せず、98℃を超えると導電性消失模型19が溶融する前にゴム型16が溶融してしまうからである。即ち、上記温度範囲の低融点金属を用いると、ゴム型16が溶融することなく、ゴム型16のキャビティ16aに導電性を有する消失材料18を注入して硬化させることにより、導電性消失模型19を作製できる。なお、上記(1)〜(8)の低融点合金のうち(3)〜(8)の低融点合金は共晶である。
Then, a conductive disappearance model 19 is produced by injecting and curing a disappearance material 18 having conductivity into the cavity 16a of the rubber mold 16 (FIG. 1 (d)). In order to inject the lost material 18 having conductivity into the cavity 16a of the rubber mold 16, the rubber mold 16 is turned upside down. As a result, the gate 16c, which is an inlet for the lost material 18 having conductivity, is positioned on the upper surface of the rubber mold 16. Further, when the rubber mold 16 is cut into a plurality of rubber pieces, the rubber mold 16 is reinserted into the container 13 or the outer peripheral surface of the rubber mold 16 is fixed to the jig so that the restored rubber mold 16 does not fall apart It is preferable to fix with (not shown). The conductive disappearance model 19 is preferably formed of a low melting point metal having a melting point of −19 to 98 ° C. lower than the heat resistance temperature of the rubber mold 16. Specifically, the low melting point metals are bismuth (Bi), lead (Pb), tin (Sn), indium (In), cadmium (Cd), thallium (Tl), gallium (Ga) and antimony (Sb). It is preferable that it is 3 or more types of alloys chosen from the group which consists of. More specifically, the low melting point metals include Rose's alloy, CerroSAFE, Wood's alloy, Field alloy, Cerrolow 136, Cerrolow 117, Bi-Pb. -Sn-In-Cd-Tl alloy, Galinstan, etc. are mentioned. The contents (mass%) and melting points of low melting point metals in these alloys are as follows.
(1) Rose's alloy: Bi: Pb: Sn = 50: 25: 25, melting point: 98 ° C.
(2) CerroSAFE: Bi: Pb: Sn: Cd = 42.5: 37.7: 11.3: 8.5, melting point: 74 ° C.
(3) Wood's alloy: Bi: Pb: Sn: Cd = 50: 26.7: 13.3: 10, melting point: 70 ° C.
(4) Field alloy: Bi: Sn: In = 32.5: 16.5: 51, melting point: 62 ° C.
(5) Cerrolow 136... Bi: Pb: Sn: In = 49: 18: 12: 21, melting point: 58.degree.
(6) Cerrolow 117: Bi: Pb: Sn: In: Cd = 44.7: 22.6: 8.3: 19.1: 5.3, melting point: 47.2 ° C.
(7) Bi-Pb-Sn-In-Cd-Tl alloy: Bi: Pb: Sn: In: Cd: Tl = 40.3: 22.2: 10.7: 17.7: 8.1: 1 1. Melting point: 41.5 ° C.
(8) Galinstan: Bi: Sn: In: Ga: Sb = less than 1.5: 9.5 to 10.5: 21 to 22:68 to 69: 1.5, melting point: −19 ° C. .
Here, the preferable melting point of the low melting point metal forming the conductive disappearance model 19 is limited to the range of −19 to 98 ° C. When there is no low melting point metal below −19 ° C., and the melting point exceeds 98 ° C. This is because the rubber mold 16 is melted before the conductive disappearance model 19 is melted. That is, when a low melting point metal in the above temperature range is used, the conductive disappearance model 19 is obtained by injecting and curing the disappearance material 18 having conductivity into the cavity 16a of the rubber mold 16 without melting the rubber mold 16. Can be produced. Of the low melting point alloys (1) to (8), the low melting point alloys (3) to (8) are eutectic.

次に、導電性消失模型19をゴム型16から取出した後に(図1(e)及び図1(f))、導電性消失模型19と電鋳金属板21を電解槽22中の電解液23に浸漬する(図2(a))。ここで、ゴム型16から取出した導電性消失模型19には、湯道16c内で固化した模型用スプルー24が導電性消失模型19と一体的に成形されるため(図1(e))、この模型用スプルー24を切り落とすことにより導電性消失模型19が作製される(図1(f))。また、電解液23に浸漬する電鋳金属板21の金属の種類は、導電性消失模型19の表面に電着される銅、ニッケル、金、銀等の電鋳金属である。電解液23は電鋳金属の種類により適宜選択される。例えば、電鋳金属が銅である場合は、酸性硫酸銅浴を用いることが好ましく、電鋳金属がニッケルである場合は、スルファミン酸ニッケル浴を用いることが好ましい。そして、電解液23中の導電性消失模型19と電鋳金属板21との間に電流を流して導電性消失模型19の表面に電着による金属層26を形成する(図2(a))。具体的には、直流電源27のプラス極に電鋳金属板21を接続し、直流電源27のマイナス極に導電性消失模型19を接続した状態で、電鋳金蔵板21及び導電性消失模型19間に2〜5Vの直流電圧を印加する。これにより電鋳金属板21(陽極)の表面で電鋳金属のイオン化(溶解)が発生し、導電性消失模型19(陰極)の表面に電鋳金属の還元による析出(電着)が発生して、導電性消失模型19の表面に金属層26が形成される。   Next, after removing the conductive disappearance model 19 from the rubber mold 16 (FIGS. 1 (e) and 1 (f)), the conductive disappearance model 19 and the electroformed metal plate 21 are connected to the electrolytic solution 23 in the electrolytic cell 22. (Fig. 2 (a)). Here, in the conductive disappearance model 19 taken out from the rubber mold 16, the model sprue 24 solidified in the runner 16c is integrally formed with the conductive disappearance model 19 (FIG. 1 (e)). By cutting off the model sprue 24, the conductive disappearance model 19 is produced (FIG. 1 (f)). Further, the type of metal of the electroformed metal plate 21 immersed in the electrolytic solution 23 is an electroformed metal such as copper, nickel, gold, or silver that is electrodeposited on the surface of the conductive disappearance model 19. The electrolytic solution 23 is appropriately selected depending on the type of electroformed metal. For example, when the electroformed metal is copper, it is preferable to use an acidic copper sulfate bath, and when the electroformed metal is nickel, it is preferable to use a nickel sulfamate bath. Then, a current is passed between the conductive disappearance model 19 and the electroformed metal plate 21 in the electrolytic solution 23 to form a metal layer 26 by electrodeposition on the surface of the conductive disappearance model 19 (FIG. 2A). . Specifically, the electroformed metal plate 21 and the conductive disappearance model 19 are connected in a state where the electroformed metal plate 21 is connected to the positive pole of the DC power supply 27 and the conductive disappearance model 19 is connected to the negative pole of the DC power supply 27. A DC voltage of 2 to 5 V is applied between them. As a result, ionization (dissolution) of the electroformed metal occurs on the surface of the electroformed metal plate 21 (anode), and precipitation (electrodeposition) due to reduction of the electroformed metal occurs on the surface of the conductive disappearance model 19 (cathode). Thus, the metal layer 26 is formed on the surface of the conductive disappearance model 19.

更に、表面に金属層26が形成された導電性消失模型19を電解槽22から取出し(図2(b))、加熱して導電性消失模型19を消失させることにより金属層26からなる金属製品11を作製する(図2(c))。ここで、表面に金属層26が形成された導電性消失模型19を加熱する前に、この導電性消失模型19の上面及び下面に電着された金属層26を切り落とす(図2(b))。この状態で、表面に金属層26が形成された導電性消失模型19を所定の温度、即ち導電性消失模型19の融点以上であって金属層26の融点以下の温度(例えば、100℃)に加熱すると、金属層26が溶融することなく、導電性消失模型19が溶融して筒状の金属層26内から流れ落ちるので、中空の金属製品11が完成する。この結果、消失材料の表面に導電性被膜の形成や導電処理を行う必要がなく、1回の電鋳加工で金属製品11を作製できる。   Further, the conductive disappearance model 19 having the metal layer 26 formed on the surface is taken out from the electrolytic cell 22 (FIG. 2 (b)), and the conductive disappearance model 19 is disappeared by heating to make a metal product made of the metal layer 26. 11 is produced (FIG. 2C). Here, before heating the conductive disappearance model 19 having the metal layer 26 formed on the surface, the electrodeposited metal layer 26 is cut off on the upper and lower surfaces of the conductive disappearance model 19 (FIG. 2B). . In this state, the conductive disappearance model 19 having the metal layer 26 formed on the surface is set to a predetermined temperature, that is, a temperature higher than the melting point of the conductive disappearance model 19 and lower than the melting point of the metal layer 26 (for example, 100 ° C.). When heated, the conductive layer 19 is melted and flows down from the cylindrical metal layer 26 without melting the metal layer 26, so that the hollow metal product 11 is completed. As a result, it is not necessary to form a conductive coating or conducting a conductive treatment on the surface of the disappearing material, and the metal product 11 can be produced by a single electroforming process.

このように製造された中空の金属製品11は、電鋳(電気分解による電着)により形成されるため、モデル12の複雑な形状も精巧に再現できる。   Since the hollow metal product 11 manufactured in this way is formed by electroforming (electrodeposition by electrolysis), the complicated shape of the model 12 can be precisely reproduced.

11 金属製品
12 モデル
13 容器
14 液状ゴム及び液状硬化剤の液状混合物
16 ゴム型
16a キャビティ
18 導電性を有する消失材料
19 導電性消失模型
21 電鋳金属板
22 電解槽
23 電解液
26 金属層
DESCRIPTION OF SYMBOLS 11 Metal product 12 Model 13 Container 14 Liquid mixture of liquid rubber and liquid hardening agent 16 Rubber mold 16a Cavity 18 Dissipative material with conductivity 19 Conductivity disappearance model 21 Electroformed metal plate 22 Electrolytic tank 23 Electrolytic solution 23 Electrolyte 26 Metal layer

Claims (3)

内部にモデルを設置した容器に液状ゴム及び液状硬化剤の液状混合物を流込むか或いは複数のゴムブロック内にモデルを配置して熱及び圧力をかけることにより前記モデルを液状混合物内又はゴムブロック内に埋没させる工程と、
前記容器内の液状混合物を硬化させるか或いは前記ゴムブロックを冷却してゴム型を作製する工程と、
前記ゴム型を前記容器から取出した後にこのゴム型から前記モデルを取出して前記ゴム型内に前記モデルに相応する形状のキャビティを形成する工程と、
前記ゴム型のキャビティに導電性を有する消失材料を注入して硬化させることにより導電性消失模型を作製する工程と、
前記導電性消失模型を前記ゴム型から取出した後に前記導電性消失模型と電鋳金属を電解槽中の電解液に浸漬する工程と、
前記電解液中の導電性消失模型と電鋳金属との間に電流を流して前記導電性消失模型の表面に電着による金属層を形成する工程と、
表面に前記金属層が形成された導電性消失模型を電解槽から取出し加熱して前記導電性消失模型を消失させることにより前記金属層からなる金属製品を作製する工程と
を含む金属製品の電鋳による製造方法。
The model is placed in the liquid mixture or in the rubber block by pouring the liquid mixture of liquid rubber and liquid curing agent into the container in which the model is installed or by placing the model in a plurality of rubber blocks and applying heat and pressure. And the process of immersing in
Curing the liquid mixture in the container or cooling the rubber block to produce a rubber mold;
Removing the model from the rubber mold after removing the rubber mold from the container and forming a cavity having a shape corresponding to the model in the rubber mold;
Producing a conductive disappearance model by injecting and curing a disappearance material having conductivity into the rubber mold cavity; and
A step of immersing the conductive disappearance model and the electroformed metal in an electrolytic solution in an electrolytic cell after removing the conductive disappearance model from the rubber mold;
Forming a metal layer by electrodeposition on the surface of the conductive disappearance model by passing a current between the conductive disappearance model and the electroformed metal in the electrolyte; and
Removing a conductive disappearance model having the metal layer formed on the surface thereof from an electrolytic cell and heating to eliminate the conductive disappearance model to produce a metal product comprising the metal layer. By the manufacturing method.
前記ゴム型の耐熱温度が−40〜150℃であり、前記導電性消失模型が前記ゴム型の融点より低い融点−19〜98℃の低融点金属により形成された請求項1記載の金属製品の電鋳による製造方法。   2. The metal product according to claim 1, wherein the heat resistance temperature of the rubber mold is −40 to 150 ° C., and the conductive disappearance model is formed of a low melting point metal having a melting point −19 to 98 ° C. lower than the melting point of the rubber mold. Manufacturing method by electroforming. 前記低融点金属が、ビスマス、鉛、錫、インジウム、カドミウム、タリウム、ガリウム及びアンチモンからなる群より選ばれた3種以上の合金である請求項2記載の金属製品の電鋳による製造方法。   3. The method for producing a metal product by electroforming according to claim 2, wherein the low melting point metal is at least three kinds of alloys selected from the group consisting of bismuth, lead, tin, indium, cadmium, thallium, gallium and antimony.
JP2017098657A 2017-05-18 2017-05-18 Manufacturing method of metal products by electroforming Active JP6993108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098657A JP6993108B2 (en) 2017-05-18 2017-05-18 Manufacturing method of metal products by electroforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098657A JP6993108B2 (en) 2017-05-18 2017-05-18 Manufacturing method of metal products by electroforming

Publications (2)

Publication Number Publication Date
JP2018193587A true JP2018193587A (en) 2018-12-06
JP6993108B2 JP6993108B2 (en) 2022-01-13

Family

ID=64571585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098657A Active JP6993108B2 (en) 2017-05-18 2017-05-18 Manufacturing method of metal products by electroforming

Country Status (1)

Country Link
JP (1) JP6993108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322498A (en) * 2021-07-01 2021-08-31 河南理工大学 Demolding device and method for electroforming thin-wall metal fixing tube
IT202000022609A1 (en) * 2020-09-24 2022-03-24 Le Spighe S A S Di Pizzini Giovanni Battista & C SUNGLASSES MADE OF PRECIOUS METALS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672193A (en) * 1979-11-16 1981-06-16 Hitachi Cable Ltd Manufacture of heat exchanger member
JPH02232388A (en) * 1989-03-03 1990-09-14 Citizen Watch Co Ltd Production of hollow ornament having core inside
JP2000301289A (en) * 1999-04-22 2000-10-31 Ebara Corp Production of lost form pattern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090047A (en) 2002-08-30 2004-03-25 Ebara Corp Lost pattern for precision casting, manufacturing method for precision casting lost pattern and casting mold, precision cast part and rotary machine using it
CN1749439A (en) 2005-08-24 2006-03-22 番禺得意精密电子工业有限公司 Method for producing metal thin shell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672193A (en) * 1979-11-16 1981-06-16 Hitachi Cable Ltd Manufacture of heat exchanger member
JPH02232388A (en) * 1989-03-03 1990-09-14 Citizen Watch Co Ltd Production of hollow ornament having core inside
JP2000301289A (en) * 1999-04-22 2000-10-31 Ebara Corp Production of lost form pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000022609A1 (en) * 2020-09-24 2022-03-24 Le Spighe S A S Di Pizzini Giovanni Battista & C SUNGLASSES MADE OF PRECIOUS METALS
CN113322498A (en) * 2021-07-01 2021-08-31 河南理工大学 Demolding device and method for electroforming thin-wall metal fixing tube

Also Published As

Publication number Publication date
JP6993108B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US4464324A (en) Apparatus and method for injection moulding of plastic parts of irregular shape, hollow or undercut form
JP2018193587A (en) Method of producing metal product by electroforming
KR930702102A (en) Manufacture of complex cavities in castings or semi-solids
US2734243A (en) Method of securing a metal skin in a matrix block
JPH0484978A (en) Manufacture of golf ball
US7815839B2 (en) Hybrid mandrels
ATE255996T1 (en) CASTING MOLDS AND METHOD FOR THE PRODUCTION THEREOF
US3560350A (en) Irregular shaped tubing formed by electrodeposition
AU611296B2 (en) The production method of the cast for continuous casting
US3554875A (en) Method of fabricating a mandrel for electroforming
US3341432A (en) Method of making wave guides
JPS58209345A (en) Production of dental metal replacing parts
JP3552593B2 (en) Metal integrated resin molding method
US20050140070A1 (en) Method of manufacturing metal- or ceramic microparts
US3560349A (en) Method of electroforming containers having openings with thick sections at the openings
TWI414706B (en) Method for manufacture of pipes in an electro-forming manner
US5427676A (en) Method of making a cast-to-size mold for molding finished plastic parts
JPH02279311A (en) Mold and its manufacture
JPH01115607A (en) Manufacture of electroformed mold
JPS59193733A (en) Method for preventing generation of strain in electroformed nickel plating layer owing to shrinkage of molten metal for lining in case of producing injection molding die for plastic product
JPH05339778A (en) Electrocasting mold and its manufacture
JP2881721B2 (en) Manufacturing method of hollow electroformed products with precious metals
JPH0477647B2 (en)
JPS5896889A (en) Production of molding tool by electroforming
JP3650795B2 (en) Gate bush manufacturing method by electroforming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211209

R150 Certificate of patent or registration of utility model

Ref document number: 6993108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150