JP2018193520A - Resin material for sliding member and sliding member - Google Patents

Resin material for sliding member and sliding member Download PDF

Info

Publication number
JP2018193520A
JP2018193520A JP2017100960A JP2017100960A JP2018193520A JP 2018193520 A JP2018193520 A JP 2018193520A JP 2017100960 A JP2017100960 A JP 2017100960A JP 2017100960 A JP2017100960 A JP 2017100960A JP 2018193520 A JP2018193520 A JP 2018193520A
Authority
JP
Japan
Prior art keywords
sliding member
resin
additive
mpa
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017100960A
Other languages
Japanese (ja)
Other versions
JP6871059B2 (en
Inventor
トオル 川井
Toru Kawai
トオル 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2017100960A priority Critical patent/JP6871059B2/en
Publication of JP2018193520A publication Critical patent/JP2018193520A/en
Application granted granted Critical
Publication of JP6871059B2 publication Critical patent/JP6871059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To improve fatigue resistance in a resin material for a sliding member.SOLUTION: There is provided a resin material for a sliding member which comprises a polyimide resin 131 and an additive 132 dispersed in the polyimide resin 131, wherein the additive 132 contains graphite 1321 and clay 1322 and the fatigue resistance is 55 MPa or more.SELECTED DRAWING: Figure 1

Description

本発明は、摺動部材用樹脂材料及びこれを用いた摺動部材に関する。   The present invention relates to a resin material for a sliding member and a sliding member using the same.

摺動部材に用いる樹脂材料として、バインダー樹脂に黒鉛を添加した樹脂材料が知られている。例えば特許文献1には、球に近い形状を有する黒鉛粒子を含む樹脂材料が記載されている。   As a resin material used for the sliding member, a resin material obtained by adding graphite to a binder resin is known. For example, Patent Document 1 describes a resin material including graphite particles having a shape close to a sphere.

特許第5683571号公報Japanese Patent No. 5683571

特許文献1に記載の技術においては、樹脂材料の耐疲労性に改善の余地があった。   In the technique described in Patent Document 1, there is room for improvement in the fatigue resistance of the resin material.

これに対し本発明は、耐疲労性を改善した摺動部材用樹脂材料を提供する。   On the other hand, this invention provides the resin material for sliding members which improved fatigue resistance.

本発明は、ポリイミド樹脂と、前記ポリイミド樹脂中に分散された添加剤とを含み、前記添加剤が、黒鉛と、クレーとを含み、耐疲労強度が55MPa以上である摺動部材用樹脂材料を提供する。   The present invention includes a resin material for a sliding member that includes a polyimide resin and an additive dispersed in the polyimide resin, the additive includes graphite and clay, and has fatigue resistance of 55 MPa or more. provide.

前記耐疲労強度が80MPa以上であってもよい。   The fatigue strength may be 80 MPa or more.

また、本発明は、上記いずれかの摺動部材用で形成された樹脂層を有する摺動部材を提供する。   The present invention also provides a sliding member having a resin layer formed for any of the above sliding members.

本発明によれば、摺動部材用樹脂材料において耐疲労性を改善することができる。   According to the present invention, fatigue resistance can be improved in the resin material for sliding members.

一実施形態に係る摺動部材1の断面構造を例示する図。The figure which illustrates the cross-section of sliding member 1 concerning one embodiment.

1.構成
図1は、一実施形態に係る摺動部材1の断面構造を例示する図である。摺動部材1は、例えば燃料噴射ポンプにおけるブシュとして用いられる摺動部材である。摺動部材1は、基材11、焼結層12、及び樹脂層13を有する。基材11は摺動部材1の形状及び機械的強度を与えるための層である。基材11は、例えば鋼で形成される。焼結層12は、樹脂層13と基材11との密着性を向上させるための層であり、金属粉、例えば銅又は銅合金の粉末で形成される。
1. Configuration FIG. 1 is a diagram illustrating a cross-sectional structure of a sliding member 1 according to an embodiment. The sliding member 1 is a sliding member used as a bush in a fuel injection pump, for example. The sliding member 1 has a base material 11, a sintered layer 12, and a resin layer 13. The base material 11 is a layer for giving the shape and mechanical strength of the sliding member 1. The substrate 11 is made of, for example, steel. The sintered layer 12 is a layer for improving the adhesion between the resin layer 13 and the substrate 11 and is formed of a metal powder, for example, a copper or copper alloy powder.

樹脂層13は、摺動部材用樹脂材料で形成される。この樹脂材料は、バインダー樹脂131、及びバインダー樹脂131中に分散された添加剤132を含む。バインダー樹脂131としては、例えば熱硬化性樹脂、より具体的には、例えばポリイミド(PI)樹脂及びポリアミドイミド(PAI)樹脂の少なくとも一方が用いられる。なお、耐疲労性を向上させる観点から、PAI樹脂よりもPI樹脂を用いることが好ましく、PI樹脂の中でも高強度のもの(ここで「高強度」とは引張強度が150MPa以上のものをいう)が用いられることが好ましい。耐疲労性を向上させる観点からは、樹脂層13におけるバインダー樹脂の含有量は多い方が好ましく、例えば80体積%以上であることが好ましく、83体積%以上であることがより好ましく、85体積%以上であることがさらに好ましく、90体積%以上であることがさらに好ましい。   The resin layer 13 is formed of a sliding member resin material. This resin material includes a binder resin 131 and an additive 132 dispersed in the binder resin 131. As the binder resin 131, for example, a thermosetting resin, more specifically, for example, at least one of a polyimide (PI) resin and a polyamideimide (PAI) resin is used. From the viewpoint of improving fatigue resistance, it is preferable to use a PI resin rather than a PAI resin. Among PI resins, one having a high strength (here, “high strength” means one having a tensile strength of 150 MPa or more). Is preferably used. From the viewpoint of improving fatigue resistance, the content of the binder resin in the resin layer 13 is preferably large. For example, it is preferably 80% by volume or more, more preferably 83% by volume or more, and 85% by volume. More preferably, it is more preferably 90% by volume or more.

添加剤132とは樹脂層13の特性を改善するための物質であり、例えば、固体潤滑剤1321、硬質物(硬質粒子)1322、及びシランカップリング剤のうち少なくとも1つを含む(シランカップリング剤は図示略)。固体潤滑剤1321は樹脂層13の摩擦係数を低減するための添加物であり、例えば、黒鉛(グラファイト)及びMoS2のうち少なくとも一方を含む。MoS2は樹脂層において凝集しやすい場合があるので、固体潤滑剤1321としては黒鉛を用い、MoS2を用いないことが好ましい。固体潤滑剤1321として黒鉛を用いる場合、摩擦係数を低減する観点からその黒鉛化度は高い方が好ましく、例えば95%以上であることが好ましく、99%以上であることがより好ましい。硬質物1322は樹脂層13の耐焼付性及び耐摩耗性を向上させるための物質であり、例えば、クレー、ムライト、及びタルクのうち少なくとも1種を含む。シランカップリング剤はバインダー樹脂131と固体潤滑剤1321との結合を強化するための物質である。 The additive 132 is a substance for improving the characteristics of the resin layer 13 and includes, for example, at least one of a solid lubricant 1321, a hard material (hard particle) 1322, and a silane coupling agent (silane coupling). The agent is not shown). The solid lubricant 1321 is an additive for reducing the friction coefficient of the resin layer 13 and includes, for example, at least one of graphite (graphite) and MoS 2 . Since MoS 2 may easily aggregate in the resin layer, it is preferable to use graphite as the solid lubricant 1321 and not to use MoS 2 . When graphite is used as the solid lubricant 1321, the degree of graphitization is preferably higher from the viewpoint of reducing the friction coefficient, and is preferably 95% or more, and more preferably 99% or more. The hard material 1322 is a substance for improving the seizure resistance and wear resistance of the resin layer 13 and includes, for example, at least one of clay, mullite, and talc. The silane coupling agent is a substance for strengthening the bond between the binder resin 131 and the solid lubricant 1321.

耐疲労性を向上させる観点から、添加剤の含有量は少ない方が好ましく、例えば合計で20体積%以下であることが好ましく、17体積%以下であることがより好ましく、15体積%以下であることがさらに好ましく、10体積%以下であることがさらに好ましい。摩擦係数を低減する観点からは固体潤滑剤の含有量は多い方が好ましく、例えば9体積%以上であることが好ましい。添加剤の総量を減らす観点から固体潤滑剤の含有量は少ない方が好ましく、例えば18体積%以下であることが好ましい。耐焼付性及び耐摩耗性を向上させる観点からは硬質物の含有量は多い方が好ましく、例えば0.5体積%以上であることが好ましい。添加剤の総量を減らす観点から固体潤滑剤の含有量は少ない方が好ましく、例えば3体積%以下であることが好ましい。固体潤滑剤及び硬質物の双方を添加するためには、固体潤滑剤の含有量は9体積%以上17体積%以下であることが好ましく、14体積%以下であることがより好ましい。硬質物の含有量は0.5体積%以上3体積%以下であることが好ましい。シランカップリング剤の含有量は、バインダー樹脂に対して例えば0.1重量%以上であることが好ましく、0.2重量%以上であることがより好ましい。コスト削減の観点から、シランカップリング剤の含有量は、バインダー樹脂に対して例えば5重量%以下であることが好ましく、3重量%以下であることがより好ましい。   From the viewpoint of improving fatigue resistance, the content of additives is preferably small. For example, the total content is preferably 20% by volume or less, more preferably 17% by volume or less, and 15% by volume or less. More preferably, it is more preferably 10% by volume or less. From the viewpoint of reducing the coefficient of friction, the content of the solid lubricant is preferably as large as possible, for example, 9% by volume or more. From the viewpoint of reducing the total amount of the additive, the content of the solid lubricant is preferably as small as possible, for example, 18% by volume or less. From the viewpoint of improving seizure resistance and wear resistance, it is preferable that the content of the hard material is large, for example, 0.5% by volume or more is preferable. From the viewpoint of reducing the total amount of the additive, the content of the solid lubricant is preferably as small as possible, for example, 3% by volume or less. In order to add both the solid lubricant and the hard material, the content of the solid lubricant is preferably 9% by volume or more and 17% by volume or less, and more preferably 14% by volume or less. It is preferable that content of a hard material is 0.5 volume% or more and 3 volume% or less. The content of the silane coupling agent is, for example, preferably 0.1% by weight or more, and more preferably 0.2% by weight or more with respect to the binder resin. From the viewpoint of cost reduction, the content of the silane coupling agent is, for example, preferably 5% by weight or less, and more preferably 3% by weight or less with respect to the binder resin.

切削加工後における表面粗さを低減する観点から、材料として用いる添加剤132の粒径は小さいことが好ましく、例えば、添加剤132の平均粒径は、焼結層12に用いられる金属粉の平均粒径よりも小さいことが好ましい。さらに、固体潤滑剤1321及び硬質物1322のいずれも、平均粒径が5μm以下又は5μm未満であることが好ましく、3μm以下又は3μm未満であることがより好ましい。   From the viewpoint of reducing the surface roughness after cutting, the additive 132 used as a material preferably has a small particle size. For example, the average particle size of the additive 132 is the average of the metal powder used in the sintered layer 12. It is preferable to be smaller than the particle size. Further, both the solid lubricant 1321 and the hard material 1322 preferably have an average particle size of 5 μm or less or less than 5 μm, and more preferably 3 μm or less or less than 3 μm.

樹脂層13を摺動部材に用いるため、耐疲労強度すなわち疲労面圧は55MPa以上であることが好ましく、80MPa以上であることがより好ましく、90MPa以上であることがさらに好ましい。なお疲労面圧の測定方法は後述する。樹脂層13の耐疲労性を向上させる観点から、材料として用いる固体潤滑剤1321の平均粒径は小さいことが好ましく、例えば、硬質物1322の平均粒径の2倍以下であることが好ましく、硬質物1322の平均粒径よりも小さいことがより好ましい。   Since the resin layer 13 is used for the sliding member, the fatigue strength, that is, the fatigue surface pressure, is preferably 55 MPa or more, more preferably 80 MPa or more, and further preferably 90 MPa or more. The method for measuring the fatigue surface pressure will be described later. From the viewpoint of improving the fatigue resistance of the resin layer 13, the average particle size of the solid lubricant 1321 used as the material is preferably small, for example, preferably less than twice the average particle size of the hard material 1322, It is more preferable that the average particle size of the product 1322 is smaller.

樹脂層13においては、添加剤132の含有量が増えると樹脂層13の耐疲労性が低下すると考えられる。本実施形態においては、添加剤の含有量を抑えることにより耐疲労性を向上させる。   In the resin layer 13, it is considered that the fatigue resistance of the resin layer 13 decreases as the content of the additive 132 increases. In this embodiment, fatigue resistance is improved by suppressing the content of the additive.

2.実施例
本願の発明者らは、種々の条件で摺動部材の試験片を作製し、これらの試験片について耐疲労性を評価した。
2. Examples The inventors of the present application produced test pieces of sliding members under various conditions, and evaluated fatigue resistance of these test pieces.

2−1.試験片作製
基材としては、厚さ1.5mmの鋼板(SPCC(JIS))を用いた。基材の上に銅合金粉(平均粒径100μm)を厚さ100μmで散布した後、圧下せず、還元雰囲気で930℃に加熱して焼結した。表1の組成の樹脂層を形成するための前駆体溶液を調整し、この前駆体溶液を、焼結層の上にナイフコート法により塗布した。塗布後、室温〜約200℃の範囲で60〜90分程度、乾燥した。その後、約300℃まで昇温し、30〜90分程度焼成した。
2-1. Test piece preparation As a base material, a steel plate (SPCC (JIS)) having a thickness of 1.5 mm was used. After sprinkling copper alloy powder (average particle size 100 μm) with a thickness of 100 μm on the substrate, it was sintered by heating to 930 ° C. in a reducing atmosphere without reducing it. A precursor solution for forming a resin layer having the composition shown in Table 1 was prepared, and this precursor solution was applied onto the sintered layer by a knife coat method. After coating, the film was dried at room temperature to about 200 ° C. for about 60 to 90 minutes. Then, it heated up to about 300 degreeC and baked for about 30 to 90 minutes.

実験例1〜4においては黒鉛として平均粒径(体積基準によるd50)が1.5μmであり、黒鉛化度が99%のものを用いた。また、高強度PI樹脂として、引張強度が195MPa、伸びが90%、弾性率が3.8GPa、ガラス転移温度Tgが285℃のものを用いた。実験例5においては黒鉛として、平均粒径が12.5μmであり、黒鉛化度が90%のものを用いた。MoS2としては平均粒径が1.5μmのものを用いた。さらに、PI樹脂としては、引張強度が119MPa、伸びが47%、ガラス転移温度Tgが360℃のものを、PAI樹脂として、引張強度が112MPa、伸びが17%、弾性率が2.7GPa、ガラス転移温度Tgが288℃のものを用いた。実験例1〜4において、シランカップリング剤としては、化学式が3(H3CO)SiC3H6−NH−C3H6Si(OCH3)3のものを用いた。なお表1において、シランカップリング剤の含有量は、高強度PI樹脂に対する重量比で示されている。実験例1〜5において、クレーとしては、構造式がAl2O3・2SiO2であり、平均粒径が3μmのものを用いた。 In Experimental Examples 1 to 4, graphite having an average particle diameter (d50 based on volume) of 1.5 μm and a degree of graphitization of 99% was used. Further, a high-strength PI resin having a tensile strength of 195 MPa, an elongation of 90%, an elastic modulus of 3.8 GPa, and a glass transition temperature Tg of 285 ° C. was used. In Experimental Example 5, graphite having an average particle diameter of 12.5 μm and a graphitization degree of 90% was used. MoS 2 having an average particle size of 1.5 μm was used. Further, the PI resin has a tensile strength of 119 MPa, the elongation is 47%, and the glass transition temperature Tg is 360 ° C. The PAI resin has a tensile strength of 112 MPa, an elongation of 17%, an elastic modulus of 2.7 GPa, glass A transition temperature Tg of 288 ° C. was used. In Experimental Examples 1 to 4, a silane coupling agent having a chemical formula of 3 (H 3 CO) SiC 3 H 6 —NH—C 3 H 6 Si (OCH 3 ) 3 was used. In Table 1, the content of the silane coupling agent is shown as a weight ratio with respect to the high-strength PI resin. In Experimental Examples 1 to 5, a clay having a structural formula of Al 2 O 3 .2SiO 2 and an average particle diameter of 3 μm was used.

実験例1〜4において、固体潤滑剤としては黒鉛のみを用いた(すなわちMoS2は含まない)。添加剤は全て、平均粒径が3μm以下であった。 In Experimental Examples 1 to 4, only graphite was used as the solid lubricant (that is, MoS 2 was not included). All of the additives had an average particle size of 3 μm or less.

2−2.耐疲労性評価
実験例1及び実験例2の試験片に対し疲労試験を行った。疲労試験は以下の条件で行い、樹脂層に疲労が発生しなかった最大の面圧を疲労面圧とした。
・試験機:往復動荷重試験機
・回転速度:3000rpm
・試験温度(軸受背面温度):100℃
・相手材:S45C
・潤滑油:パラフィン油
2-2. Fatigue Resistance Evaluation A fatigue test was performed on the test pieces of Experimental Example 1 and Experimental Example 2. The fatigue test was performed under the following conditions, and the maximum surface pressure at which no fatigue occurred in the resin layer was defined as the fatigue surface pressure.
・ Tester: Reciprocating load tester ・ Rotation speed: 3000rpm
Test temperature (bearing back surface temperature): 100 ° C
-Partner material: S45C
・ Lubricant: Paraffin oil

表1は、実験例1〜6の組成及び疲労試験の結果を示す。

Figure 2018193520
Table 1 shows the compositions of Experimental Examples 1 to 6 and the results of fatigue tests.
Figure 2018193520

実験例1〜3の耐疲労面圧は90MPa以上であったのに対し、実験例4及び5の耐疲労面圧は40MPa以下であった。実験例4及び5を比較例とし、実験例1〜3を実施例とすると、比較例に係る樹脂材料は疲労面圧が55MPaに達しなかったが、本実施形態に係る樹脂材料は疲労面圧が55MPa以上であった。   The fatigue resistance surface pressure of Experimental Examples 1 to 3 was 90 MPa or more, whereas the fatigue resistance pressure of Experimental Examples 4 and 5 was 40 MPa or less. When Experimental Examples 4 and 5 were taken as comparative examples and Experimental Examples 1 to 3 were taken as examples, the resin material according to the comparative example did not reach a fatigue surface pressure of 55 MPa, but the resin material according to the present embodiment had a fatigue surface pressure. Was 55 MPa or more.

なお、上述の実施例において使用した各種の材料及びその組成はあくまで例示であり、本発明はこれに限定されるものではない。本発明に係る樹脂材料は不可避不純物を含んでもよい。また、摺動部材の具体的構造は図1で例示したものに限定されない。例えば、焼結層12は省略され、基材11の上に直接、樹脂層13が形成されてもよい。また、摺動部材1の用途は燃料噴射ポンプにおけるブシュとして用いられるものに限定されず、各種の軸受、又はコンプレッサー等に用いられてもよい。   In addition, the various materials used in the above-mentioned Example and its composition are illustrations to the last, and this invention is not limited to this. The resin material according to the present invention may contain inevitable impurities. Further, the specific structure of the sliding member is not limited to that illustrated in FIG. For example, the sintered layer 12 may be omitted, and the resin layer 13 may be formed directly on the substrate 11. Moreover, the use of the sliding member 1 is not limited to what is used as a bush in a fuel injection pump, You may use for various bearings or a compressor.

1…摺動部材
11…基材
12…焼結層
13…樹脂層
131…バインダー樹脂
132…添加剤
DESCRIPTION OF SYMBOLS 1 ... Sliding member 11 ... Base material 12 ... Sintered layer 13 ... Resin layer 131 ... Binder resin 132 ... Additive

Claims (3)

ポリイミド樹脂と、
前記ポリイミド樹脂中に分散された添加剤と
を含み、
前記添加剤が、
黒鉛と、
クレーと
を含み、
耐疲労強度が55MPa以上である
摺動部材用樹脂材料。
Polyimide resin,
An additive dispersed in the polyimide resin,
The additive is
Graphite,
Including clay and
A resin material for a sliding member having a fatigue strength of 55 MPa or more.
前記耐疲労強度が80MPa以上である
請求項1に記載の摺動部材用樹脂材料。
The resin material for a sliding member according to claim 1, wherein the fatigue strength is 80 MPa or more.
請求項1又は2に記載の摺動部材用で形成された樹脂層を有する摺動部材。   A sliding member having a resin layer formed for the sliding member according to claim 1.
JP2017100960A 2017-05-22 2017-05-22 Resin material for sliding members and sliding members Active JP6871059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100960A JP6871059B2 (en) 2017-05-22 2017-05-22 Resin material for sliding members and sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100960A JP6871059B2 (en) 2017-05-22 2017-05-22 Resin material for sliding members and sliding members

Publications (2)

Publication Number Publication Date
JP2018193520A true JP2018193520A (en) 2018-12-06
JP6871059B2 JP6871059B2 (en) 2021-05-12

Family

ID=64569929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100960A Active JP6871059B2 (en) 2017-05-22 2017-05-22 Resin material for sliding members and sliding members

Country Status (1)

Country Link
JP (1) JP6871059B2 (en)

Also Published As

Publication number Publication date
JP6871059B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6122488B2 (en) Sliding member
JP4921894B2 (en) Multi-layer lubricating coating composition, multi-layer lubricating coating and piston having the coating
KR101596658B1 (en) Plain Bearing Material
JPH01261514A (en) Sliding material
JP2018194152A (en) Resin material for slide members and slide member
US7101087B2 (en) Sliding member
WO2021106274A1 (en) Resin material for sliding members, and sliding member
CN104878272A (en) Nickel aluminum/copper oxide high-temperature self-lubricating composite material and preparation method thereof
JP6941476B2 (en) Resin material for sliding members and sliding members
JP6944811B2 (en) Resin material for sliding members and sliding members
JP2015200339A (en) Slide member
JP6871059B2 (en) Resin material for sliding members and sliding members
JP6382679B2 (en) Manufacturing method of sliding member
JP2018194154A (en) Resin material for slide members and slide member
JPH0859991A (en) Sliding material
WO2020162491A1 (en) Sliding member
JP5566394B2 (en) Bearing material
JPH0488209A (en) Sliding material
JP5816121B2 (en) Slide bearing and manufacturing method thereof
JP2019203553A (en) Half-split bearing and bearing
JP2020125838A (en) Slide member
JP2020125839A (en) Slide member
JP5717069B2 (en) Piston and sliding cover structure
JP2000240657A (en) Slide bearing
JP2018080282A (en) Resin composition and slide member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250