JP2018192424A - Classifier - Google Patents

Classifier Download PDF

Info

Publication number
JP2018192424A
JP2018192424A JP2017098328A JP2017098328A JP2018192424A JP 2018192424 A JP2018192424 A JP 2018192424A JP 2017098328 A JP2017098328 A JP 2017098328A JP 2017098328 A JP2017098328 A JP 2017098328A JP 2018192424 A JP2018192424 A JP 2018192424A
Authority
JP
Japan
Prior art keywords
seal air
classifier
classification rotor
powder
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098328A
Other languages
Japanese (ja)
Other versions
JP6980408B2 (en
Inventor
清水 健司
Kenji Shimizu
健司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2017098328A priority Critical patent/JP6980408B2/en
Publication of JP2018192424A publication Critical patent/JP2018192424A/en
Application granted granted Critical
Publication of JP6980408B2 publication Critical patent/JP6980408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a classifier allowing for reduction in cost of seal air and easily providing even powder of a smaller particle diameter, while maintaining classification accuracy of the powder.SOLUTION: The classifier comprises a classification rotor 4 for classifying powder, a discharge pipe 7 for taking out the powder classified by the classification rotor 4 to the outside and seal air supply means 11 for supplying seal air A to a clearance between the classification rotor 4 and the discharge pipe 7. A seal air outflow part 13 for causing the seal air A to flow out to the inside of the classification rotor 4 is formed along the outer periphery of an end part on the discharge flow passage inlet 10-side in the discharge pipe 7, and a value of a diameter D of the seal air outflow part 13/an inner diameter R of the classification rotor 4×100% is 75% or more.SELECTED DRAWING: Figure 1

Description

本発明は、粉体を分級処理する技術に関する。   The present invention relates to a technique for classifying powder.

従来の分級機としては、例えば、以下の特許文献1及び2に記載されるものが知られている。これらの特許文献に記載される分級機は、粉体を分級処理する分級ロータと分級した粉体を外部に取り出すための排出管との間の隙間に、シールエアを供給することによって、粗大粒子が当該隙間から排出管の内部に流入することを防ぐように構成されている。   As a conventional classifier, what is described in the following patent documents 1 and 2 is known, for example. The classifiers described in these patent documents supply coarse air to a gap between a classification rotor for classifying powder and a discharge pipe for taking out the classified powder to the outside. It is comprised so that it may prevent flowing into the inside of a discharge pipe from the crevice.

特許第4601055号公報Japanese Patent No. 4601555 特許第4225705号公報Japanese Patent No. 4225705

上述の従来の分級機において、粉体の分級精度を上げるには、所定量のシールエアを供給する必要があり、エアコンプレッサ等のシールエア供給装置を稼働させるユーティリティコストを低減するという点において改善する余地がある。また、粗大粒子の混入を防ぐためにシールエアの供給量を増加させると、分級により得られる粉体の粒子径が大きくなる傾向があり、より小さい粒子径の粉体を得ようとする場合にはあまり適さないことがある。また、より多くの量のシールエアを供給する場合、総風量が増加し、分級された微粉を捕集する集じん機やブロワを大型化する必要があり、それだけ設備コストが嵩むことにもなる。
従って、本発明の目的は、粉体の分級精度を維持したままでシールエアに係るコストを低減することができ、尚且つ、より小さい粒子径の粉体も得易い分級機を提供することにある。
In the conventional classifier described above, it is necessary to supply a predetermined amount of seal air in order to improve the powder classification accuracy, and there is room for improvement in terms of reducing utility costs for operating a seal air supply device such as an air compressor. There is. In addition, if the amount of seal air supplied is increased in order to prevent mixing of coarse particles, the particle size of the powder obtained by classification tends to increase, and it is not so much when trying to obtain a powder with a smaller particle size. May not be suitable. Further, when a larger amount of seal air is supplied, the total air volume increases, and it is necessary to increase the size of the dust collector and blower for collecting the classified fine powder, which increases the equipment cost.
Accordingly, an object of the present invention is to provide a classifier that can reduce the cost associated with seal air while maintaining the accuracy of classification of powder, and can easily obtain powder with a smaller particle diameter. .

本発明の分級機の特徴構成は、粉体を分級処理する分級ロータ、該分級ロータで分級した粉体を外部に取り出すための排出管、及び前記分級ロータと前記排出管との間の隙間にシールエアを供給するシールエア供給手段を備え、前記分級ロータの内部にシールエアを流出させるシールエア流出部が、前記排出管における排出流路入口の側の端部の外周に沿って形成されており、前記シールエア流出部の直径/前記分級ロータの内径×100%の値が、75%以上である点にある。   The classifier of the present invention has a classification rotor for classifying powder, a discharge pipe for taking out the powder classified by the classification rotor, and a gap between the classification rotor and the discharge pipe. A seal air supply means for supplying seal air, wherein a seal air outflow portion for allowing the seal air to flow out into the classification rotor is formed along an outer periphery of an end portion of the discharge pipe on the discharge channel inlet side; The value of the diameter of the outflow portion / the inner diameter of the classification rotor × 100% is 75% or more.

本発明の分級機の更なる特徴構成は、前記シールエア流出部の直径/前記分級ロータの内径×100%の値が、90%〜95%である点にある。   A further characteristic configuration of the classifier of the present invention is that the value of the diameter of the seal air outflow portion / the inner diameter of the classifying rotor × 100% is 90% to 95%.

本発明の分級機の更なる特徴構成は、(前記シールエア流出部の直径−前記排出流路入口の直径)/前記分級ロータの内径×100%の値が、15%以上である点にある。   A further characteristic configuration of the classifier of the present invention is that the value of (diameter of the seal air outflow portion−diameter of the discharge channel inlet) / inner diameter of the classification rotor × 100% is 15% or more.

本発明の分級機の更なる特徴構成は、(前記シールエア流出部の直径−前記排出流路入口の直径)/前記分級ロータの内径×100%の値が、20%〜50%である点にある。   A further characteristic configuration of the classifier according to the present invention is that the value of (diameter of the sealing air outflow portion−diameter of the discharge passage inlet) / inner diameter of the classification rotor × 100% is 20% to 50%. is there.

本発明によれば、分級ロータの径方向において、従来の分級機よりもより外側の位置に
シールエア流出部が設けられる。これにより、たとえ分級ロータと排出管との間の隙間から分級ロータの内部に粗大粒子が流入したとしても、再び分級ロータの外方に排出され易い。そのため、本発明によれば、分級精度を維持したままで、シールエアの供給量を低減することができる。従って、エアコンプレッサ等のシールエア供給装置を稼働させるユーティリティコストの低廉化と、エアコンプレッサ等の装置の小型化が可能となるだけでなく、分級機以降の集じん機、ブロワ等の装置の設備コストの低廉化と装置の小型化も可能となる。さらに、シールエアの供給量の低下に伴って、より小さい粒子径の粉体を得易くなる。
According to the present invention, the seal air outflow portion is provided at a position outside the conventional classifier in the radial direction of the classifying rotor. As a result, even if coarse particles flow into the classification rotor from the gap between the classification rotor and the discharge pipe, they are easily discharged to the outside of the classification rotor again. Therefore, according to the present invention, it is possible to reduce the supply amount of seal air while maintaining the classification accuracy. Therefore, not only can the utility cost for operating the seal air supply device such as an air compressor be reduced and the size of the device such as the air compressor can be reduced, but also the equipment cost of the dust collector and blower after the classifier. This makes it possible to reduce the cost and the size of the apparatus. Furthermore, it becomes easier to obtain a powder having a smaller particle diameter as the supply amount of the seal air decreases.

本発明に係る分級機の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the classifier which concerns on this invention. 本発明に係る分級機の要部を示す断面図である。It is sectional drawing which shows the principal part of the classifier which concerns on this invention. 従来の分級機(比較例1)の要部を示す断面図である。It is sectional drawing which shows the principal part of the conventional classifier (comparative example 1). 従来の分級機(比較例2)の要部を示す断面図である。It is sectional drawing which shows the principal part of the conventional classifier (comparative example 2). シールエア供給量と粗大粒子混入量との関係を示すグラフである。It is a graph which shows the relationship between sealing air supply amount and the coarse particle mixing amount. 従来の分級機(比較例1)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.93Nm/min)。It is a graph which shows the particle diameter distribution of the powder classified by the conventional classifier (comparative example 1) (sealing air supply amount: 0.93 Nm < 3 > / min). 従来の分級機(比較例1)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.74Nm/min)。It is a graph which shows the particle diameter distribution of the powder classified by the conventional classifier (comparative example 1) (sealing air supply amount: 0.74Nm < 3 > / min). 従来の分級機(比較例1)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.65Nm/min)。It is a graph which shows the particle size distribution of the powder classified by the conventional classifier (comparative example 1) (sealing air supply amount: 0.65Nm < 3 > / min). 従来の分級機(比較例2)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.93Nm/min)。It is a graph which shows the particle diameter distribution of the powder classified by the conventional classifier (comparative example 2) (sealing air supply amount: 0.93 Nm < 3 > / min). 従来の分級機(比較例2)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.56Nm/min)。It is a graph which shows the particle diameter distribution of the powder classified by the conventional classifier (comparative example 2) (sealing air supply amount: 0.56Nm < 3 > / min). 従来の分級機(比較例2)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.46Nm/min)。It is a graph which shows the particle diameter distribution of the powder classified by the conventional classifier (comparative example 2) (sealing air supply amount: 0.46Nm < 3 > / min). 本発明に係る分級機(実施例)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.56Nm/min)。It is a graph which shows the particle size distribution of the powder classified by the classifier (Example) which concerns on this invention (seal air supply amount: 0.56Nm < 3 > / min). 本発明に係る分級機(実施例)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.28Nm/min)。It is a graph which shows the particle size distribution of the powder classified by the classifier (Example) which concerns on this invention (sealing air supply amount: 0.28Nm < 3 > / min). 本発明に係る分級機(実施例)により分級処理した粉体の粒子径分布を示すグラフである(シールエア供給量:0.09Nm/min)。It is a graph which shows the particle diameter distribution of the powder classified by the classifier (Example) which concerns on this invention (sealing air supply amount: 0.09Nm < 3 > / min).

[実施形態]
以下、本発明の実施の形態を説明する。
(分級機)
図1に示されるように、分級機1は、装置本体2、分級ロータ4、回転駆動手段6、排出管7、シールエア供給手段11、及び図示しない吸引手段を備える。
[Embodiment]
Embodiments of the present invention will be described below.
(Classifier)
As shown in FIG. 1, the classifier 1 includes an apparatus main body 2, a classification rotor 4, a rotation drive unit 6, a discharge pipe 7, a seal air supply unit 11, and a suction unit (not shown).

装置本体2の内部に分級ロータ4が設けられている。分級ロータ4には、その回転軸心X方向の一方の側に開口部16が形成されており、回転軸心X方向の他方の側に回転駆動手段6が接続されている。排出管7の一端が分級ロータ4の開口部16に接続されており、排出管7の他端の側に図示しない吸引手段が設けられている。   A classification rotor 4 is provided inside the apparatus main body 2. The classifying rotor 4 is formed with an opening 16 on one side in the direction of the rotation axis X, and a rotation driving means 6 is connected to the other side in the direction of the rotation axis X. One end of the discharge pipe 7 is connected to the opening 16 of the classification rotor 4, and suction means (not shown) is provided on the other end side of the discharge pipe 7.

尚、吸引手段としては、例えば、一般的なブロワ等を用いて良い。この場合、吸引力の強弱を自在に変更できるような構成であることが望ましい。例えば、吸引ファンの回転速度を変更することによって、吸引時の空気の流速を適宜変更できるようにする。   For example, a general blower may be used as the suction means. In this case, it is desirable that the suction force can be freely changed. For example, by changing the rotation speed of the suction fan, the flow rate of air during suction can be changed as appropriate.

(装置本体)
装置本体2は、分級機1の最外方を構成するものであり、その内側が、粉体を分級処理する処理室3となる。尚、分級処理される粉体は、装置本体2に設けられている粉体投入部(図示せず)から投入されるように構成されている。
(Device body)
The apparatus main body 2 constitutes the outermost part of the classifier 1, and the inside thereof is a processing chamber 3 for classifying powder. The powder to be classified is input from a powder input unit (not shown) provided in the apparatus main body 2.

(分級ロータ)
分級ロータ4は、複数の羽根5を有しており、回転軸心X回りに高速回転可能に処理室3に設けられている。本実施形態では、水平方向の回転軸心X回りに回転するいわゆる水平型の分級ロータが示されている。分級ロータ4は、処理室3の外部に設けられている回転駆動手段6によって高速回転し、これにより粉体を分級処理する。回転駆動手段6としては、例えば公知の駆動モータを使用して良く、回転速度が適宜変更自在に構成されていることが望ましい。
(Classification rotor)
The classification rotor 4 has a plurality of blades 5 and is provided in the processing chamber 3 so as to be capable of high-speed rotation around the rotation axis X. In the present embodiment, a so-called horizontal classification rotor that rotates around a rotation axis X in the horizontal direction is shown. The classification rotor 4 is rotated at a high speed by a rotation driving means 6 provided outside the processing chamber 3, thereby classifying the powder. As the rotation driving means 6, for example, a known drive motor may be used, and it is desirable that the rotation speed is appropriately changeable.

(排出管)
排出管7の内側は、分級ロータ4で分級した粉体を外部に取り出すための排出流路8として構成される。また、排出管7における分級ロータ4側の端部には、絞り部9が形成されている。排出管7は、その外周にジャケット11を備える。
(Discharge pipe)
The inside of the discharge pipe 7 is configured as a discharge flow path 8 for taking out the powder classified by the classification rotor 4 to the outside. Further, a narrowed portion 9 is formed at the end of the discharge pipe 7 on the classifying rotor 4 side. The discharge pipe 7 includes a jacket 11 on the outer periphery thereof.

絞り部9は、分級ロータ4の開口部16から分級ロータ4の内側に進入した状態で設けられており、絞り部9の内径は分級ロータ4の回転駆動手段6側ほど小さく所謂テーパ状になっている。本実施形態において、分級された粉体が流入する排出流路入口10は、内径が最も小さい絞り部9の先端部分によって構成される。   The throttle portion 9 is provided in a state of entering the inside of the classifying rotor 4 from the opening 16 of the classifying rotor 4. ing. In the present embodiment, the discharge channel inlet 10 into which the classified powder flows is constituted by the tip portion of the throttle portion 9 having the smallest inner diameter.

(シールエア供給手段)
シールエア供給手段は、ジャケット11と、図示しない公知のエアー供給源とを備えて構成されている。ジャケット11の内側にエアー供給路12が形成されており、エアー供給源からのシールエア(空気)が、エアー供給路12を通って、分級ロータ4と排出管7との間の隙間Sに供給される。これにより隙間Sがシールされ、粗大粒子の混入を防止する。尚、エアー供給源としては、例えば、公知のエアコンプレッサを用いて良いが、コンプレッサ等を用いず、大気を自然に吸引させても良い。
(Sealing air supply means)
The seal air supply means includes a jacket 11 and a known air supply source (not shown). An air supply path 12 is formed inside the jacket 11, and seal air (air) from an air supply source is supplied to the gap S between the classification rotor 4 and the discharge pipe 7 through the air supply path 12. The As a result, the gap S is sealed, and coarse particles are prevented from being mixed. As an air supply source, for example, a known air compressor may be used, but the air may be naturally sucked without using a compressor or the like.

(分級処理)
原料の粉体が粉体投入部から装置本体2の処理室3に投入されると、高速回転する分級ロータ4によって分級処理され、所定の粒子径以下の粉体が排出管7より取り出される(図1の白抜き矢印参照)。詳細には、吸引手段を駆動させることで、分級ロータ4の内部の空気が吸引され、これにより、処理室3の内部の空気が、高速回転する分級ロータ4の各羽根5の間を通って分級ロータ4の内部に引き込まれる。この時、所定の粒子径以下の粉体は分級ロータ4の内部に取り込まれるが、粒子径が過大な粗大粒子は、回転する羽根5によって分級ロータ4の内部に流入することを阻止される。分級ロータ4で分級された粉体は、この後、排出流路入口10から排出流路8に流入し、例えばバクフィルタ等の捕集手段に導かれて製品として取り出される。
(Classification process)
When the raw material powder is charged into the processing chamber 3 of the apparatus main body 2 from the powder charging unit, it is classified by the classification rotor 4 that rotates at high speed, and powder having a predetermined particle diameter or less is taken out from the discharge pipe 7 ( (See the white arrow in FIG. 1). Specifically, by driving the suction means, the air inside the classification rotor 4 is sucked, so that the air inside the processing chamber 3 passes between the blades 5 of the classification rotor 4 that rotates at high speed. It is drawn into the classification rotor 4. At this time, powder having a predetermined particle diameter or less is taken into the classification rotor 4, but coarse particles having an excessive particle diameter are prevented from flowing into the classification rotor 4 by the rotating blades 5. Thereafter, the powder classified by the classification rotor 4 flows into the discharge flow path 8 from the discharge flow path inlet 10 and is guided to a collecting means such as a back filter, for example, and taken out as a product.

(シール構成)
排出管7のジャケット11の端部、及び分級ロータ4の端部のそれぞれに、円環面である対向面14,15が形成されている。それぞれの対向面14,15は、所定の隙間Sを維持した状態に近接配置されている。ジャケット11の対向面14の端(ジャケット11の径方向内側の端)に、シールエアAを吹き出すシールエア流出部13が設けられている。シールエア流出部13は、排出管7における排出流路入口10の側の端部の外周に沿って円環状に形成されている。
(Seal configuration)
Opposing surfaces 14 and 15 that are annular surfaces are formed on the end portion of the jacket 11 of the discharge pipe 7 and the end portion of the classifying rotor 4, respectively. The opposing surfaces 14 and 15 are arranged close to each other while maintaining a predetermined gap S. A seal air outflow portion 13 that blows out the seal air A is provided at the end of the facing surface 14 of the jacket 11 (end on the radially inner side of the jacket 11). The seal air outflow portion 13 is formed in an annular shape along the outer periphery of the end portion of the discharge pipe 7 on the discharge channel inlet 10 side.

図2に示されるように、エアー供給源からエアー供給路12を通って流れてきたシールエアAは、対向面14,15の間の隙間Sと、シールエア流出部13に分かれて流れる。対向面14,15の間の隙間Sに流れたシールエアAは処理室3に流出し、シールエア流出部13に流れたシールエアAは、分級ロータ4の内部に流出する。これにより隙間Sがシールされるため、粗大粒子の混入が防止される。   As shown in FIG. 2, the seal air A that has flowed from the air supply source through the air supply path 12 is divided into the gap S between the facing surfaces 14 and 15 and the seal air outflow portion 13. Seal air A that flows into the gap S between the opposed surfaces 14 and 15 flows out into the processing chamber 3, and the seal air A that flows into the seal air outflow portion 13 flows out into the classification rotor 4. As a result, the gap S is sealed, so that coarse particles are prevented from being mixed.

(シールエア流出部の位置とシール性能との関係)
本発明に係る分級機1は、従来の分級機1とは異なり、分級ロータ4の径方向において、より外側の位置にシールエア流出部13が設けられることを特徴とする。この特徴を備えることによって、粉体の分級精度を維持したままでシールエアに係るコストを低減することが可能となり、尚且つ、より小さい粒子径の粉体も得易いものとなる。
(Relationship between seal air outflow position and seal performance)
Unlike the conventional classifier 1, the classifier 1 according to the present invention is characterized in that a seal air outflow portion 13 is provided at an outer position in the radial direction of the classifying rotor 4. By providing this feature, it is possible to reduce the cost of sealing air while maintaining the powder classification accuracy, and it is easy to obtain powder with a smaller particle diameter.

具体的には、図1及び図2に示されるように、シールエア流出部13の直径D/分級ロータ4の内径R×100%の値が75%以上、より好ましくは、90%〜95%となる位置に、シールエア流出部13が設けられている。さらにこの場合、(シールエア流出部13の直径D−排出流路入口10の直径d)/分級ロータ4の内径R×100%の値が15%以上、より好ましくは、20%〜50%となるように構成すると尚良い。尚、本実施形態における分級ロータ4の内径Rとは、分級ロータ4における羽根5の内側面の間の距離を言うものとする。   Specifically, as shown in FIGS. 1 and 2, the diameter D of the seal air outflow portion 13 / the value of the inner diameter R × 100% of the classification rotor 4 is 75% or more, more preferably 90% to 95%. The seal air outflow part 13 is provided in the position. Further, in this case, the value of (diameter D of the seal air outflow portion 13−diameter d of the discharge passage inlet 10) / inner diameter R × 100% of the classification rotor 4 is 15% or more, more preferably 20% to 50%. It is still better to configure as follows. Note that the inner diameter R of the classification rotor 4 in the present embodiment refers to the distance between the inner surfaces of the blades 5 in the classification rotor 4.

〔その他の実施形態〕
1.上述の実施形態では、水平方向の回転軸心X回りに回転するいわゆる水平型の分級ロータ4に適用する例が示されているが、これに限定されるものではなく、この他にも、垂直方向の回転軸心回りに回転する分級ロータに適用しても良い。
2.本発明に係る分級機については、そのサイズによらず、小型機にも大型機にも適用することができる。
3.本発明に係る分級機については、粉砕機、乾燥機、粒子設計装置等に適用することができる。
[Other Embodiments]
1. In the above-described embodiment, the example applied to the so-called horizontal classifying rotor 4 rotating around the rotation axis X in the horizontal direction is shown, but the present invention is not limited to this, and other than this, The present invention may also be applied to a classification rotor that rotates around the rotation axis in the direction.
2. The classifier according to the present invention can be applied to a small machine or a large machine regardless of its size.
3. The classifier according to the present invention can be applied to a pulverizer, a dryer, a particle design apparatus, and the like.

(シールエア流出部の位置の検討)
以下の表1に示されるように、図2における、シールエア流出部の直径D/分級ロータの内径R×100%の値、及び(シールエア流出部の直径D−排出流路入口の直径d)/分級ロータの内径R×100%の値を種々変更した試験機を用意し、それぞれのシール性能を比較した。
(Examination of position of seal air outflow part)
As shown in Table 1 below, in FIG. 2, the diameter D of the sealing air outflow portion / the value of the inner diameter R × 100% of the classification rotor, and (the diameter D of the sealing air outflow portion−the diameter d of the discharge channel inlet) / Test machines with various values of the inner diameter R × 100% of the classification rotor were prepared, and the sealing performances were compared.

試験機として、分級部を変更した流動層式対向型ジェットミル(ホソカワミクロン株式会社製)を用いて試験を行った。原料粉体はタルク(平均粒子径D50=20μm)を使用し、分級ロータの回転数は10500rpmで行った。シールエア供給量を段階的に少なくし、分級後の製品中に含まれる粗大粒子の混入率を比較することにより、シール性能を評価した。なお、粉体供給量は、シールエア供給量一条件につき3kg程度を使用し、試験時間は、シールエア供給量一条件につき2時間であった。   The test was performed using a fluidized bed type opposed jet mill (manufactured by Hosokawa Micron Co., Ltd.) with a different classification section as a tester. As the raw material powder, talc (average particle diameter D50 = 20 μm) was used, and the rotation speed of the classification rotor was 10500 rpm. The seal performance was evaluated by reducing the amount of seal air supplied stepwise and comparing the mixing rate of coarse particles contained in the classified product. The powder supply amount was about 3 kg per condition for the seal air supply amount, and the test time was 2 hours per condition for the seal air supply amount.

Figure 2018192424
Figure 2018192424

表1に示されるように、D/R×100の値がおよそ80%以上で、(D−d)/R×100%の値が15%以上であれば、シール性能が維持されて製品への粗大粒子の混入が防止されることが確認された。また特に、D/R×100の値が90%〜95%で、(D−d)/R×100%の値が20%〜50%であれば、非常に高いシール性能が発揮されることも確認された。尚、dの値が小さくなり過ぎると、分級ロータの圧力損失が大きくなり、シール性能が低下する傾向が見られた。   As shown in Table 1, if the value of D / R × 100 is about 80% or more and the value of (D−d) / R × 100% is 15% or more, the sealing performance is maintained and the product is maintained. It was confirmed that mixing of coarse particles was prevented. In particular, if the value of D / R × 100 is 90% to 95% and the value of (D−d) / R × 100% is 20% to 50%, very high sealing performance is exhibited. Was also confirmed. In addition, when the value of d became too small, the pressure loss of the classifying rotor was increased, and the sealing performance tended to be lowered.

(分級性能の比較試験)
次いで、本発明の分級機(実施例)と、従来の分級機(比較例1及び比較例2)について、それぞれの分級性能を測定して比較した。
(Classification performance comparison test)
Next, the classification performance of the classifier (Example) of the present invention and the conventional classifier (Comparative Example 1 and Comparative Example 2) were measured and compared.

分級機として、分級部を変更した流動層式対向型ジェットミル(ホソカワミクロン株式会社製)を用いて試験を行った。原料粉体はタルク(平均粒子径D50=20μm)を使用し、分級ロータの回転数は10500rpmで行った。シールエア供給量を段階的に少なくし、分級後の製品中に含まれる粗大粒子の混入率を比較した。なお、粉体供給量は、シールエア供給量一条件につき3kg程度を使用し、試験時間は、シールエア供給量一条件につき2時間であった。   As a classifier, a test was performed using a fluidized bed type opposed jet mill (manufactured by Hosokawa Micron Co., Ltd.) with a different classification part. As the raw material powder, talc (average particle diameter D50 = 20 μm) was used, and the rotation speed of the classification rotor was 10500 rpm. The amount of seal air supplied was reduced stepwise, and the mixing ratio of coarse particles contained in the products after classification was compared. The powder supply amount was about 3 kg per condition for the seal air supply amount, and the test time was 2 hours per condition for the seal air supply amount.

この比較試験で使用した本発明の分級機(実施例)は、上述の表1の試験機No.1であって、D/R×100の値は93.3%であり、(D−d)/R×100%の値は45.6%であった。   The classifier (Example) of the present invention used in this comparative test is the tester No. 1 in Table 1 above. 1 and the value of D / R × 100 was 93.3%, and the value of (D−d) / R × 100% was 45.6%.

図3には、比較例1の要部が示されており、この分級機では、シールエア流出部13が、排出管の排出流路8に向けて開口している。そのため、エアー供給源からエアー供給路12を通って流れてきたシールエアAは、処理室3と排出流路8に分かれて流れるように構成されている。   FIG. 3 shows the main part of the comparative example 1. In this classifier, the seal air outflow part 13 opens toward the discharge flow path 8 of the discharge pipe. Therefore, the seal air A that has flowed from the air supply source through the air supply path 12 is configured to flow separately into the processing chamber 3 and the discharge flow path 8.

図4には、比較例2の要部が示されており、この分級機では、分級ロータ4の径方向において、本発明に係る分級機における位置よりも内側の位置に、シールエア流出部13が設けられている。具体的には、この比較例2の分級機は、上述の表1の試験機No.8であって、D/R×100の値は54%であり、(D−d)/R×100%の値は6.3%
であった。尚、この比較例2の分級機では、本発明の分級機の場合と同様に、エアー供給源からエアー供給路12を通って流れてきたシールエアAが、処理室3と分級ロータ4の内部に分かれて流れるように構成されている。
FIG. 4 shows the main part of Comparative Example 2. In this classifier, the seal air outflow part 13 is located at a position inside the classifier according to the present invention in the radial direction of the classifying rotor 4. Is provided. Specifically, the classifier of this comparative example 2 is the test machine No. 8. The value of D / R × 100 is 54%, and the value of (D−d) / R × 100% is 6.3%
Met. In the classifier of this comparative example 2, as in the classifier of the present invention, the seal air A that has flowed from the air supply source through the air supply path 12 is introduced into the processing chamber 3 and the classifying rotor 4. It is configured to flow separately.

比較例1、比較例2、実施例のそれぞれの分級性能が、以下の表2〜表4に示されている。尚、表中の粒子径D50とは、粒子径分布を細かい側から累積した場合に50%となるときの分級後の製品粒子径を意味し、粒子径D97とは、粒子径分布を細かい側から累積した場合に97%となるときの分級後の製品粒子径を意味する。また、D97/D50の値は、分級後の製品中に含まれる粗大粒子の混入率を示すものであり、この値が1に近いほど粗大粒子の混入が少なく、分級性能が高いことを意味する。   The classification performances of Comparative Example 1, Comparative Example 2, and Examples are shown in Tables 2 to 4 below. The particle size D50 in the table means the product particle size after classification when the particle size distribution is accumulated from the fine side and becomes 50%. The particle size D97 means the particle size distribution on the fine side. It means the product particle size after classification when it becomes 97% when accumulated from the above. Moreover, the value of D97 / D50 indicates the mixing rate of coarse particles contained in the product after classification, and the closer this value is to 1, the less coarse particles are mixed and the higher the classification performance. .

Figure 2018192424
Figure 2018192424

表2及び図5に示されるように、比較例1の分級機では、シールエア供給量を減少させていくと、粗大粒子混入量が大幅に増加した。また、図6〜図8に示されるように、比較例1の分級機では、シールエア供給量を減少させていくと、粉体の粒子径分布を示すピーク形状がブロードな状態となり、分級精度が大きく低下した。   As shown in Table 2 and FIG. 5, in the classifier of Comparative Example 1, as the amount of seal air supplied was decreased, the amount of coarse particles mixed up significantly increased. Further, as shown in FIGS. 6 to 8, in the classifier of Comparative Example 1, when the seal air supply amount is decreased, the peak shape indicating the particle size distribution of the powder becomes broad, and the classification accuracy is improved. It was greatly reduced.

Figure 2018192424
Figure 2018192424

表3及び図5に示されるように、比較例2の分級機では、シールエア供給量を減少させていくと、比較例1の分級機ほどではないものの、やはり粗大粒子混入量の増加が見られた。また、図9〜図11に示されるように、比較例2の分級機では、シールエア供給量を減少させていくと、粉体の粒子径分布を示すピーク形状が、比較例1の分級機ほどではないものの、やはりブロードな状態となり、分級精度が低下した。   As shown in Table 3 and FIG. 5, in the classifier of Comparative Example 2, when the seal air supply amount is decreased, the amount of coarse particles mixed is also increased, although not as much as that of the classifier of Comparative Example 1. It was. Further, as shown in FIGS. 9 to 11, in the classifier of Comparative Example 2, when the seal air supply amount is decreased, the peak shape indicating the particle size distribution of the powder is the same as that of the classifier of Comparative Example 1. Although it was not, it was still broad and classification accuracy was reduced.

Figure 2018192424
Figure 2018192424

一方、表4及び図5に示されるように、本発明に係る分級機(実施例)では、シールエア供給量を減少させても、粒子混入量の増加がほとんど見られなかった。また、図12〜図14に示されるように、本発明に係る分級機(実施例)では、シールエア供給量を減少させても、粉体の粒子径分布を示すピーク形状がブロードな状態にならず、分級精度が維持されていた。   On the other hand, as shown in Table 4 and FIG. 5, in the classifier (Example) according to the present invention, even if the seal air supply amount was decreased, there was hardly any increase in the particle mixing amount. Further, as shown in FIGS. 12 to 14, in the classifier (example) according to the present invention, the peak shape indicating the particle size distribution of the powder is in a broad state even when the seal air supply amount is decreased. The classification accuracy was maintained.

本発明は、粉体を分級処理する技術の分野において好適に利用することができる。   The present invention can be suitably used in the technical field of classifying powder.

1 分級機
2 装置本体
3 処理室
4 分級ロータ
5 羽根
6 回転駆動手段
7 排出管
8 排出流路
9 絞り部
10 排出流路入口
11 ジャケット(シールエア供給手段)
12 エアー供給路
13 シールエア流出部
14,15 対向面
16 開口部
A シールエア
X 回転軸心
S 隙間
DESCRIPTION OF SYMBOLS 1 Classifier 2 Apparatus main body 3 Processing chamber 4 Classification rotor 5 Blade 6 Rotation drive means 7 Discharge pipe 8 Discharge flow path 9 Restriction part 10 Discharge flow path inlet 11 Jacket (seal air supply means)
12 Air supply path 13 Seal air outflow portions 14 and 15 Opposing surface 16 Opening portion A Seal air X Rotating shaft center S Clearance

Claims (4)

粉体を分級処理する分級ロータ、該分級ロータで分級した粉体を外部に取り出すための排出管、及び前記分級ロータと前記排出管との間の隙間にシールエアを供給するシールエア供給手段を備え、
前記分級ロータの内部にシールエアを流出させるシールエア流出部が、前記排出管における排出流路入口の側の端部の外周に沿って形成されており、
前記シールエア流出部の直径/前記分級ロータの内径×100%の値が、75%以上であることを特徴とする分級機。
A classification rotor for classifying powder, a discharge pipe for taking out the powder classified by the classification rotor to the outside, and a seal air supply means for supplying seal air to a gap between the classification rotor and the discharge pipe,
A seal air outflow portion for allowing seal air to flow out into the classification rotor is formed along an outer periphery of an end of the discharge pipe on the discharge channel inlet side;
A classifier having a value of diameter of the seal air outflow portion / inner diameter of the classification rotor × 100% is 75% or more.
前記シールエア流出部の直径/前記分級ロータの内径×100%の値が、90%〜95%であることを特徴とする請求項1に記載の分級機。   2. The classifier according to claim 1, wherein a value of diameter of the seal air outflow portion / inner diameter of the classification rotor × 100% is 90% to 95%. (前記シールエア流出部の直径−前記排出流路入口の直径)/前記分級ロータの内径×100%の値が、15%以上であることを特徴とする請求項1又は2に記載の分級機。   3. The classifier according to claim 1, wherein a value of (diameter of the seal air outflow portion−diameter of the discharge channel inlet) / inner diameter of the classification rotor × 100% is 15% or more. (前記シールエア流出部の直径−前記排出流路入口の直径)/前記分級ロータの内径×100%の値が、20%〜50%であることを特徴とする請求項3に記載の分級機。   4. The classifier according to claim 3, wherein a value of (diameter of the seal air outflow portion−diameter of the discharge passage inlet) / inner diameter of the classification rotor × 100% is 20% to 50%.
JP2017098328A 2017-05-17 2017-05-17 Rating machine Active JP6980408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098328A JP6980408B2 (en) 2017-05-17 2017-05-17 Rating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098328A JP6980408B2 (en) 2017-05-17 2017-05-17 Rating machine

Publications (2)

Publication Number Publication Date
JP2018192424A true JP2018192424A (en) 2018-12-06
JP6980408B2 JP6980408B2 (en) 2021-12-15

Family

ID=64571435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098328A Active JP6980408B2 (en) 2017-05-17 2017-05-17 Rating machine

Country Status (1)

Country Link
JP (1) JP6980408B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128380A (en) * 1997-07-14 1999-02-02 Hosokawa Micron Corp Crusher
JP2002355612A (en) * 2001-05-30 2002-12-10 Hosokawa Micron Corp Classifier
US6644479B1 (en) * 1999-09-23 2003-11-11 Krupp Polysius Ag Method and air separator for classifying charging material reduced in size
JP2005199126A (en) * 2004-01-13 2005-07-28 Kurimoto Ltd Rotary classifier
JP2006136870A (en) * 2004-10-14 2006-06-01 Hosokawa Funtai Gijutsu Kenkyusho:Kk Grinder and powder production method using the grinder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128380A (en) * 1997-07-14 1999-02-02 Hosokawa Micron Corp Crusher
US6644479B1 (en) * 1999-09-23 2003-11-11 Krupp Polysius Ag Method and air separator for classifying charging material reduced in size
JP2002355612A (en) * 2001-05-30 2002-12-10 Hosokawa Micron Corp Classifier
JP2005199126A (en) * 2004-01-13 2005-07-28 Kurimoto Ltd Rotary classifier
JP2006136870A (en) * 2004-10-14 2006-06-01 Hosokawa Funtai Gijutsu Kenkyusho:Kk Grinder and powder production method using the grinder

Also Published As

Publication number Publication date
JP6980408B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
CN105536957B (en) A kind of impeller and connected superfine pulverizer, System of Ultra Thin Power Rubbing
CN110788005B (en) Centrifugal air classifier for superfine powder
JP2022153642A (en) Classifier and mill with classifier
JP4225705B2 (en) Classifier
CA2680393C (en) Apparatus and method for sifting feedstock
JP2008036567A (en) Powder treatment apparatus and toner particle manufacturing method
WO2012036113A1 (en) Pneumatic pulverizing device
JP6980408B2 (en) Rating machine
CN106884804A (en) Cfentrifugal blower
JP6328229B2 (en) Classifier
JPS594477A (en) Powder classifier
JP3592520B2 (en) Airflow classifier
JP3999497B2 (en) Powder classifier
JP6445314B2 (en) Powder processing equipment and powder processing equipment
MX2014003059A (en) Separator for granular materials.
JP2011224423A (en) Classifier
JP4601055B2 (en) Classifier
JP4303852B2 (en) Powder classifier
JP7009349B2 (en) Crushing device with classification function and crushing method of the object to be processed
JP6009349B2 (en) Classification mechanism and classification method
CN103341446A (en) Multistage winnowing machine
CN103816721A (en) Vehicle axial flow type dust suction device
JP5795253B2 (en) Classifier
JP6704240B2 (en) Classifier
JP5474465B2 (en) Classification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6980408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150