JP2018190686A - Ultraviolet light source device and manufacturing method thereof - Google Patents

Ultraviolet light source device and manufacturing method thereof Download PDF

Info

Publication number
JP2018190686A
JP2018190686A JP2017094923A JP2017094923A JP2018190686A JP 2018190686 A JP2018190686 A JP 2018190686A JP 2017094923 A JP2017094923 A JP 2017094923A JP 2017094923 A JP2017094923 A JP 2017094923A JP 2018190686 A JP2018190686 A JP 2018190686A
Authority
JP
Japan
Prior art keywords
ultraviolet
glass
light source
source device
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017094923A
Other languages
Japanese (ja)
Inventor
篠田 傳
Tsutae Shinoda
傳 篠田
平川 仁
Hitoshi Hirakawa
仁 平川
粟本 健司
Kenji Awamoto
健司 粟本
武文 日▲高▼
Takefumi Hidaka
武文 日▲高▼
純一郎 ▲高▼橋
純一郎 ▲高▼橋
Junichiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoh Tech LLC
Original Assignee
Shikoh Tech LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoh Tech LLC filed Critical Shikoh Tech LLC
Priority to JP2017094923A priority Critical patent/JP2018190686A/en
Publication of JP2018190686A publication Critical patent/JP2018190686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vacuum ultraviolet light source device which has a simple configuration at low cost, easy assembly repairing and excellent light emission efficiency.SOLUTION: A vacuum ultraviolent light source device is formed of: a light emitting structure having at least one light emitting tube consisting of a fine tube made of ultraviolet transmitting glass having thickness of 50 to 70 μm, into which discharge gas emitting ultraviolet light is sealed; and an electrode structure in which at least a pair of discharge electrodes extending to both sides across a gap constituting a discharge gap is arranged on one surface of an insulation substrate having ultraviolet resistance. The light emitting structure is formed by arranging it on the electrode structure in a direction in which the light emitting tube crosses a gap.SELECTED DRAWING: Figure 1

Description

本発明は、ガス放電を利用した紫外光源装置に関し、特にガス放電に伴う真空紫外線を発光する新しい紫外光源デバイスとその製造方法に関するものである。   The present invention relates to an ultraviolet light source device using gas discharge, and more particularly to a new ultraviolet light source device that emits vacuum ultraviolet light accompanying gas discharge and a method for manufacturing the same.

従来、ガス放電を利用した紫外光源装置として、高圧水銀ランプやエキシマ放電ランプなどがよく知られている。また、紫外発光蛍光体を用いた細管構成の外部電極型ガス放電デバイスが新しい紫外光源装置として最近提案されている(例えば、特許文献1、2参照)。また、紫外光源用の紫外線透過ガラスも提案されてきている(例えば、特許文献3参照)。   Conventionally, high-pressure mercury lamps and excimer discharge lamps are well known as ultraviolet light source devices using gas discharge. Further, an external electrode type gas discharge device having a thin tube structure using an ultraviolet light emitting phosphor has recently been proposed as a new ultraviolet light source device (see, for example, Patent Documents 1 and 2). Further, an ultraviolet transmissive glass for an ultraviolet light source has been proposed (see, for example, Patent Document 3).

特開2016−225070号公開特許公報(紫光技研)Japanese Patent Laid-Open No. 2016-2225070 (Shikko Giken) 特開2017−027912号公開特許公報(紫光技研)Japanese Patent Laid-Open No. 2017-027912 (Shikko Giken) 特開2015−193521号公開特許公報(日本電気硝子)Japanese Patent Laid-Open No. 2015-193521 (Nippon Electric Glass)

しかしながら従来の高圧水銀ランプやハロゲンランプは、発生した紫外線を透過させるために高価な石英ガラス外囲器を必要とする問題がある。また、石英ガラスは軟化点が高く加工が難しいという難点がある。一方、特許文献1や2に開示された紫外光源装置は、内部に紫外線蛍光体層を形成した細長い硼珪酸ガラスチューブを主体とした構成を有し、デバイス設計の自由度が高く、かつ安価に製造できる特徴を持つ。しかしながら、ガス放電に伴う真空紫外線を直接放射できる安価な光源デバイスは未だ実現していない。   However, the conventional high-pressure mercury lamp and halogen lamp have a problem that an expensive quartz glass envelope is required to transmit the generated ultraviolet rays. In addition, quartz glass has a drawback that it has a high softening point and is difficult to process. On the other hand, the ultraviolet light source device disclosed in Patent Documents 1 and 2 has a configuration mainly composed of an elongated borosilicate glass tube having an ultraviolet phosphor layer formed therein, and has a high degree of freedom in device design and is inexpensive. Features that can be manufactured. However, an inexpensive light source device that can directly emit vacuum ultraviolet rays accompanying gas discharge has not yet been realized.

本発明はこのような事情を考慮してなされたもので、波長100〜200nmの真空紫外線を放射する安価で、構成の簡単な外部電極型のガス放電を利用する紫外光源装置の提供を目的とするものである。また本発明は、上記特許文献3に開示された硼珪酸系の紫外線透過ガラスからの知見に基づいた新しい真空紫外光源デバイスの提供を目的とするものである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultraviolet light source device that uses an external electrode type gas discharge that emits vacuum ultraviolet rays having a wavelength of 100 to 200 nm and that is inexpensive and has a simple configuration. To do. Another object of the present invention is to provide a new vacuum ultraviolet light source device based on the findings from the borosilicate ultraviolet transparent glass disclosed in Patent Document 3.

簡単に述べると本発明は、内部に紫外線を放射する放電ガスを封入した照射面側の厚さが100μm以下の薄い紫外線透過ガラスから成る外囲器を主体とする発光構造体と、該発光構体に対して交番駆動電圧を印加する電極構造体とを互いに独立のパーツとして構成し、両者を容量結合する形で重ね合わせた新しい形式の真空紫外線発光用の光源装置を提供するものである。   Briefly, the present invention relates to a light-emitting structure mainly composed of an envelope made of a thin ultraviolet-transmitting glass having a thickness of 100 μm or less on the irradiation surface side in which a discharge gas that emits ultraviolet rays is enclosed, and the light-emitting structure A new type of light source device for vacuum ultraviolet light emission is provided, in which an electrode structure for applying an alternating drive voltage is formed as an independent part and is superposed in a capacitively coupled manner.

即ち、本発明者等は、特許文献1及び2に開示された紫外蛍光体を利用する細管構成の紫外光源装置における開発の経験から、ガラス細管の肉厚を薄くすることで市販の硼素珪酸ガラスであってもUV−C帯域(波長250〜270nm)の紫外線に対して70%以上の十分な透過率が得られることを確認し、この波長領域における深紫外光源デバイスの実用化を達成した。しかしながら従来の硼珪酸ガラスでは肉厚を薄くしても100〜200nmの真空紫外線の透過率は20%以下であり外囲器外への真空紫外線の放出は困難であった。一方特許文献3において、厚さ1mmでも波長200nmにおける透過率が50%以上という上記とは異なる硼珪酸系紫外線透過ガラスの存在を知覚した。しかし、透過率が50%に満たないガラス外囲器では紫外光源装置、特に真空紫外光源デバイスの商品化には不向きである。   That is, the present inventors, based on experience in developing an ultraviolet light source device having a thin tube structure using ultraviolet phosphors disclosed in Patent Documents 1 and 2, have made commercially available boron silicate glass thin by reducing the thickness of the glass thin tube. Even so, it was confirmed that a sufficient transmittance of 70% or more with respect to ultraviolet rays in the UV-C band (wavelength 250 to 270 nm) was obtained, and practical application of a deep ultraviolet light source device in this wavelength region was achieved. However, in the conventional borosilicate glass, the transmittance of vacuum ultraviolet rays of 100 to 200 nm is 20% or less even when the wall thickness is reduced, and it is difficult to release the vacuum ultraviolet rays outside the envelope. On the other hand, in Patent Document 3, the existence of a borosilicate ultraviolet transmissive glass different from the above was perceived as having a transmittance of 50% or more at a wavelength of 200 nm even with a thickness of 1 mm. However, a glass envelope having a transmittance of less than 50% is not suitable for commercialization of an ultraviolet light source device, particularly a vacuum ultraviolet light source device.

かくして本発明は、肉厚1mmにおいて波長250nmの紫外線に対する透過率が80%以上ある一方、波長200nmの紫外線に対しては透過率が70%以下となる硼珪酸系紫外線透過ガラスを、厚さ100μm以下、特に好ましくは70μm〜50μmの範囲まで薄くして外囲器を構成した放電デバイスにおいて、内部に封入したガスの放電に伴う波長200nm以下の真空紫外線を実用化の目安となる70%以上の透過率で直接取り出すことに成功したものである。発光構造体の主体となるガラス外囲器の形状は、断面が扁平楕円形や円形、方形の細管形態であってもよいし、或いは平面パネル形態であってもよい。ガラスの肉厚が極めて薄く機械的強度が弱いので、従来の放電ランプのように電極を外囲器に直接形成するのは困難であるところ、本発明の光源デバイスでは電極構造体をガラス外囲器を主体とした発光構造体とは独立した構成としているので、電極形成のための機械的強度の心配は不要となる。   Thus, the present invention provides a borosilicate ultraviolet transmissive glass having a thickness of 100 μm with a transmittance of 80% or more for ultraviolet light having a wavelength of 250 nm at a thickness of 1 mm, while having a transmittance of 70% or less for ultraviolet light having a wavelength of 200 nm. Hereinafter, in a discharge device in which the envelope is configured to be thinned to a range of 70 μm to 50 μm particularly preferably, a vacuum ultraviolet ray having a wavelength of 200 nm or less accompanying discharge of gas enclosed therein is 70% or more which is a standard for practical use. It was successfully taken out directly with transmittance. The shape of the glass envelope that is the main component of the light emitting structure may be a flat elliptical shape, a circular shape, a rectangular tube shape, or a flat panel shape. Since the thickness of the glass is extremely thin and the mechanical strength is weak, it is difficult to form the electrode directly on the envelope as in the case of a conventional discharge lamp. However, in the light source device of the present invention, the electrode structure is formed on the glass envelope. Since the structure is independent from the light-emitting structure mainly composed of a vessel, there is no need to worry about mechanical strength for electrode formation.

電極構造体に設ける電極対は、紫外線耐性を有する絶縁基板の上に放電間隙となる隙間を挟んで両側に延びる電極対のパターンをもって設けられる。発光構体がガラス細管で構成される場合、発光構造体と電極構造体とは当該発光管の長手方向が前記電極対間の隙間を横切る方向となるよう重ねて配置される。電極対を支持する絶縁基板としては、ガラス、セラミック、或いは紫外線耐性を有する樹脂を選択して用いるのが望ましい。また真空紫外線は強力な酸化機能を有し、背面側への放出は光源デバイスの一部構成部材として用いられる有機材料の樹脂等を分解するので好ましくない。背面側への真空紫外線の漏洩を防ぐため、発光構造体と電極構造体との間に紫外線カット層を設けるのが好ましい。発光管の底部内面に酸化マグネシュウム(MgO)粉末等からなる紫外線不透過膜を形成して紫外線カット層とすることもできる。   The electrode pair provided in the electrode structure is provided with an electrode pair pattern extending on both sides of a gap serving as a discharge gap on an insulating substrate having ultraviolet resistance. When the light emitting structure is constituted by a glass thin tube, the light emitting structure and the electrode structure are arranged so that the longitudinal direction of the light emitting tube is in a direction crossing the gap between the electrode pairs. As the insulating substrate for supporting the electrode pair, it is desirable to select and use glass, ceramic, or ultraviolet resistant resin. Further, vacuum ultraviolet rays have a strong oxidation function, and emission to the back side is not preferable because it decomposes a resin or the like of an organic material used as a part of the light source device. In order to prevent leakage of vacuum ultraviolet rays to the back side, it is preferable to provide an ultraviolet cut layer between the light emitting structure and the electrode structure. An ultraviolet light-impermeable film made of magnesium oxide (MgO) powder or the like may be formed on the inner surface of the bottom of the arc tube to form an ultraviolet cut layer.

対となる長い電極間に正弦波形またはランプ波形等の交番駆動電圧を印加した際、電圧の上昇に伴って電極近接端間で最初に発生するトリガ放電が種火となり、その後、漸次電極の長手方向に向けて放電が拡張して発光部全長に亘る効率的な紫外発光が得られる。   When an alternating drive voltage such as a sine waveform or ramp waveform is applied between a pair of long electrodes, the first trigger discharge that occurs between the adjacent electrodes of the electrode as the voltage rises becomes a seed, and then the length of the gradual electrode is increased. As the discharge expands in the direction, efficient ultraviolet light emission over the entire length of the light emitting portion can be obtained.

更に具体的に述べると、本発明の第1の特徴は、内部に放電ガスを封入した厚み100μm以下の紫外線透過ガラスからなる管状ガラス外囲器を主体とする発光構造体と、紫外線耐性を有する絶縁基板上に放電間隙を構成する隙間を隔てて両側に延びる少なくとも1対の放電電極を配置した電極構造体とから成り、該電極構造体の上に前記発光構造体を前記管状ガラス外囲器の長手方向が前記電極対間の隙間を横切る方向に重ねて配置した構成にある。   More specifically, the first feature of the present invention is that a light emitting structure mainly composed of a tubular glass envelope made of an ultraviolet transmitting glass having a thickness of 100 μm or less, in which a discharge gas is enclosed, and ultraviolet resistance. An electrode structure in which at least one pair of discharge electrodes extending on both sides of a gap constituting a discharge gap is disposed on an insulating substrate, and the light emitting structure is placed on the electrode structure on the tubular glass envelope Are arranged so as to overlap each other in the direction across the gap between the electrode pairs.

また本発明の第2の特徴は、厚み100μm以下の前面側紫外線透過ガラスシートと、背面側ガラスシートとの間に放電ガスを封入したパネル状ガラス外囲器を主体としてなる紫外線発光部と、紫外線耐性を有する絶縁基板上に放電間隙となる隙間を挟んで両側に延びる少なくとも一対の電極を配置した電極基板とからなり、該電極基板の上に、前記パネル状ガラス外囲器の背面側ガラスシートが対向し、内部のガス放電空間が前記電極対間の隙間を横切るよう当該パネル状ガラス外囲器を重ねて配置した構成にある。   Further, the second feature of the present invention is that the ultraviolet light emitting part mainly composed of a panel-shaped glass envelope in which a discharge gas is sealed between a front side ultraviolet transmissive glass sheet having a thickness of 100 μm or less and a back side glass sheet, An electrode substrate on which an at least one pair of electrodes extending on both sides of a gap serving as a discharge gap is disposed on an insulating substrate having ultraviolet resistance, and on the electrode substrate, a rear side glass of the panel-shaped glass envelope The panel-like glass envelopes are arranged so that the sheets face each other and the internal gas discharge space crosses the gap between the electrode pairs.

真空紫外線の放出面となるガラスとしては、前述のように厚さ100μm以下好ましくは70μm〜50μmとなるよう線引き加工またはフロート加工した硼珪酸系の紫外線透過ガラスが好適に用いられる。他方、上記第1の特徴に従う細管構成の紫外線発光装置においては、細管の強度を保つ観点から細管断面の長径寸法を5mm以下好ましくは2mm程度とし、ガラスの厚さは50μm以上好ましくは70μm程度が適当である。細管構成の場合、発光管の長さは要求される光源の大きさに応じて数cm若しくはそれ以上の寸法で適宜きめられる。   As the glass to be the vacuum ultraviolet ray emitting surface, a borosilicate ultraviolet ray transmitting glass which is drawn or floated to have a thickness of 100 μm or less, preferably 70 μm to 50 μm as described above is preferably used. On the other hand, in the ultraviolet light emitting device having the thin tube structure according to the first feature, the major axis dimension of the thin tube cross section is 5 mm or less, preferably about 2 mm, and the glass thickness is 50 μm or more, preferably about 70 μm, from the viewpoint of maintaining the strength of the thin tube. Is appropriate. In the case of a thin tube configuration, the length of the arc tube is appropriately determined with a size of several centimeters or more depending on the required size of the light source.

また、本発明によれば、上記ガラス細管構成の紫外線発光管を複数本平行に配列した発光造構体と、各発光管に共通の電極対を備えた電極構造体とを重ねてフレキシブルな紫外面光源デバイスを構成することができる。発光波長の異なる複数の発光管を組み合わせて配列することでマルチバンドの面光源デバイスを構成してもよい。或いはガラス細管内に紫外線励起の蛍光体層を設けた発光管を組み合わせて真空紫外線及びそれとは波長の異なる蛍光発光紫外線を発光するブロードバンドの紫外面光源デバイスを構成してもよい。   Further, according to the present invention, a flexible ultraviolet surface is obtained by superimposing a light emitting structure in which a plurality of ultraviolet light emitting tubes having a glass thin tube structure are arranged in parallel and an electrode structure having a common electrode pair on each light emitting tube. A light source device can be constructed. A multiband surface light source device may be configured by combining and arranging a plurality of arc tubes having different emission wavelengths. Alternatively, a broadband ultraviolet surface light source device that emits vacuum ultraviolet light and fluorescent light emitting ultraviolet light having a wavelength different from that of a light emitting tube provided with an ultraviolet-excited phosphor layer in a glass thin tube may be configured.

更に本発明の第3の特徴によれば、厚さ1mmにおいて波長250nmの紫外線に対する80%以上の透過率を有する硼珪酸系の紫外線透過ガラスから成る管状母材を、100〜50μmの肉厚を有し、長径寸法5mm以下の扁平楕円断面を有する細管にリドロウし、該細管に紫外線を放射する放電ガスを密封して発光管を製作し、該発光管を、放電間隙を構成する隙間を挟んで両側に延びる少なくとの1対の放電電極を備えた電極構体の上に重ねて配置する工程を含んだ紫外光源装置の製造方法が提供される。   Furthermore, according to the third feature of the present invention, a tubular base material made of a borosilicate-based ultraviolet transmissive glass having a transmittance of 80% or more with respect to an ultraviolet ray having a wavelength of 250 nm at a thickness of 1 mm is formed with a thickness of 100 to 50 μm. The tube is redrawn into a thin tube having a flat elliptical cross section with a major axis dimension of 5 mm or less, and a discharge gas that radiates ultraviolet rays is sealed in the thin tube to produce a light tube, and the light tube is sandwiched between gaps forming a discharge gap. A method of manufacturing an ultraviolet light source device is provided, which includes a step of placing the electrode assembly on an electrode assembly including at least a pair of discharge electrodes extending on both sides.

本発明によれば、発光構体の主体となる紫外線透過ガラスの細管外囲器(発光管)又はパネル外囲器(発光パネル)は、それ自体では電極を持たないので、厚さ100μm以下の薄いガラス外囲器でも十分に機械的強度を保つことができる。また、発光構造体と電極構造体とが独立に構成されており、しかも、発光構造体のガラス外囲を電極構造体の対となる電極間隙を横切る方向に置くだけで放電間隙長が自動的に定まるので、組み立ては勿論、発光部の破損や劣化に伴う交換・修復が極めて容易となり、全体として安価で高効率の真空紫外線発光装置を提供することができる。ガラス外囲器を構成する硼珪酸系の紫外線透過ガラスは石英ガラスよりも格段に安価に入手でき、しかも加工が容易である。   According to the present invention, a thin tube envelope (light emitting tube) or panel envelope (light emitting panel) of ultraviolet light transmitting glass, which is the main component of the light emitting structure, does not have an electrode by itself, and is thin with a thickness of 100 μm or less. Even a glass envelope can maintain sufficient mechanical strength. In addition, the light emitting structure and the electrode structure are configured independently, and the discharge gap length is automatically set just by placing the glass envelope of the light emitting structure in a direction crossing the electrode gap that forms a pair of electrode structures. Therefore, it is possible to provide a vacuum ultraviolet light emitting device that is inexpensive and highly efficient as a whole, as well as being easily assembled and replaced / repaired due to breakage or deterioration of the light emitting portion. Borosilicate UV-transmitting glass constituting the glass envelope is available at a much lower price than quartz glass and is easy to process.

また、複数本の紫外発光管を並べることにより或いはパネル外囲器を構成することにより容易に大面積で高出力の真空紫外平面光源を構成することができるので、水銀レスの深紫外光源として殺菌・滅菌用途、露光用途など応用範囲を大幅に拡大することができる。   In addition, a large-area, high-output vacuum ultraviolet plane light source can be easily constructed by arranging a plurality of ultraviolet arc tubes or configuring a panel envelope, so it can be sterilized as a mercury-less deep ultraviolet light source. -The range of applications such as sterilization and exposure can be greatly expanded.

本発明による紫外光源装置の基本的構成を実施形態1として示す縦断面図と横断面図である。It is the longitudinal cross-sectional view which shows the basic composition of the ultraviolet light source device by this invention as Embodiment 1, and a cross-sectional view. 従来の硼珪酸系ガラス(パイレックス:商品名)の透過率特性を示す線図である。It is a diagram which shows the transmittance | permeability characteristic of the conventional borosilicate type glass (Pyrex: brand name). 新しい硼珪酸系紫外線透過ガラスの透過率特性を示す線図である。It is a diagram which shows the transmittance | permeability characteristic of a new borosilicate type | system | group ultraviolet transmission glass. 実施形態1の紫外光源装置における発光スペクトルを示す線図。FIG. 3 is a diagram showing an emission spectrum in the ultraviolet light source device of the first embodiment. 本発明による実施形態2としての発光管アレイ型の紫外面光源の構成を示す模式的斜視図と変形例の模式的断面図である。It is the typical perspective view which shows the structure of the arc tube array type ultraviolet surface light source as Embodiment 2 by this invention, and typical sectional drawing of a modification. 本発明による実施形態3としての平面パネル型紫外面光源の構成を示す平面図と縦横断面図である。It is the top view and longitudinal and cross-sectional view which show the structure of the flat panel type ultraviolet surface light source as Embodiment 3 by this invention.

(実施形態1)
図1(a)、(b)は、本発明によるガス放電を利用した紫外光源装置の基本的構成を実施形態1として示す縦断面図と横断面図である。本発明の紫外光源装置は、それぞれ独立したパーツ構成を有する発光構造体(assembly)10と電極構造体(assembly)20とからなる。
(Embodiment 1)
1A and 1B are a longitudinal sectional view and a transverse sectional view showing a basic configuration of an ultraviolet light source device using gas discharge according to the present invention as a first embodiment. The ultraviolet light source device of the present invention comprises a light emitting structure 10 and an electrode structure 20 each having an independent part configuration.

発光構造体10は、内部にネオン(Ne)とキセノン(Xe)を混合した放電ガスを封入して両端を気密封着した紫外線透過ガラスの細管11からなる発光管12を主体として構成される。発光管12は、熱伝導性の良好なシリコーン樹脂のような粘着剤17(図1(b))により離脱可能な接着状態で紫外線カットフィルム13の上に配置されている。本発明の特徴として、この発光構造体10は、管内にも管外にも電極を持たない細長いガラス管が主体である。なお、放電ガスとしてはNe+Xeガスに限らず、Xe、Ar、Kr等の希ガスや窒素やネオン等との混合ガス、或いはKrFのようなフッ化物等、放電により真空紫外線を発生する種々のガスを用いることができる。   The light-emitting structure 10 is mainly composed of a light-emitting tube 12 composed of a thin tube 11 made of UV-transmitting glass sealed with a discharge gas in which neon (Ne) and xenon (Xe) are mixed and hermetically sealed at both ends. The arc tube 12 is disposed on the ultraviolet cut film 13 in an adhesive state that can be detached by an adhesive 17 such as a silicone resin having good thermal conductivity (FIG. 1B). As a feature of the present invention, the light emitting structure 10 is mainly an elongated glass tube having no electrode inside or outside the tube. The discharge gas is not limited to Ne + Xe gas, but various gases that generate vacuum ultraviolet rays by discharge, such as rare gases such as Xe, Ar, and Kr, mixed gases with nitrogen and neon, and fluorides such as KrF. Can be used.

ガラス細管11は、酸化珪素(SiO2)と酸化硼素(B2O3)を主成分とし、微量のフッ素を添加した透明な硼珪酸系紫外線透過ガラスのパイプ状母材を、図1(b)の横断面図に示すような肉厚が70μmで、長径2mm、短径1mmの扁平楕円断面形状を有する細管となるようにリドロウ(線引き)して形成してある。 The glass thin tube 11 is a pipe-shaped base material of transparent borosilicate ultraviolet transmitting glass mainly composed of silicon oxide (SiO 2 ) and boron oxide (B 2 O 3 ) and added with a small amount of fluorine, as shown in FIG. ) Is formed by redrawing (drawing) so as to form a thin tube having a flat elliptical cross-sectional shape with a major axis of 2 mm and a minor axis of 1 mm, as shown in the transverse sectional view of FIG.

先に参照した特許文献3で提案されたフッ素含有の硼珪酸系紫外線透過ガラスにおいては、資料番号3のガラスに見られるように、厚さ1mmでも波長200nmの紫外線に対して略50%の透過率が得られ、波長250nmの紫外線に対しては80%以上の透過率を得ることが可能となっている。本発明者等は、代表的な硼珪酸系ガラスであるパイレックス(登録商標)の厚さ1mmにおける透過率曲線と、同ガラスの厚みを70μmに薄くした時の透過率曲線との関係から、後述するように硼珪酸系紫外線透過ガラスの厚みを70μmまで薄くした場合の紫外線透過率を推定した。この結果、肉厚を70μmとした場合、波長150nmにおいて80%以上の透過率が得られ、肉厚100μm以下で実用的な目安である70%以上の透過率が得られるであろうことを確信した。   In the fluorine-containing borosilicate ultraviolet transmissive glass proposed in Patent Document 3 referred to above, even when the thickness is 1 mm, the transmittance of about 50% with respect to the ultraviolet light having a wavelength of 200 nm is seen. A transmittance of 80% or more can be obtained for ultraviolet rays having a wavelength of 250 nm. From the relationship between the transmittance curve at a thickness of 1 mm of Pyrex (registered trademark), which is a typical borosilicate glass, and the transmittance curve when the thickness of the glass is reduced to 70 μm, the present inventors described later. Thus, the ultraviolet transmittance was estimated when the thickness of the borosilicate ultraviolet transparent glass was reduced to 70 μm. As a result, when the wall thickness is 70 μm, a transmittance of 80% or more is obtained at a wavelength of 150 nm, and it is certain that a transmittance of 70% or more, which is a practical standard, will be obtained at a wall thickness of 100 μm or less. did.

即ち、従来の代表的硼珪酸ガラス(パイレックス)の厚さ1mmにおける透過率は、図2の特性曲線(B)に示すような双曲線特性を有している。またこのガラスの厚み0.07mm(70μm)における透過率は同じく図2の特性曲線(A)のような双曲線特性を有し、厚み1mmの場合の特性曲線(A)よりほぼ60nm相当短波長側にシフトした相似特性を呈していることが分かる。しかしながらこの通常の硼珪酸ガラスでは厚さを70μmまで薄くしても波長200nm以下の真空紫外域の深紫外線に対しては透過率が20%以下しかなく、光源デバイスの外囲器としては使えない。   That is, the transmittance of a conventional representative borosilicate glass (Pyrex) at a thickness of 1 mm has a hyperbolic characteristic as shown in the characteristic curve (B) of FIG. Further, the transmittance of this glass at a thickness of 0.07 mm (70 μm) has a hyperbolic characteristic similar to the characteristic curve (A) of FIG. 2, and is about 60 nm shorter than the characteristic curve (A) when the thickness is 1 mm. It can be seen that a similar characteristic shifted to is exhibited. However, even if the thickness of this normal borosilicate glass is reduced to 70 μm, the transmittance is only 20% or less for deep ultraviolet rays in the vacuum ultraviolet region with a wavelength of 200 nm or less, and it cannot be used as an envelope of a light source device. .

ここにおいて本発明者等は、上記図2に示した硼珪酸系ガラスの厚みの変化に対する透過率特性の相似的なシフト形態に着目して次のような仮説をたてて実証を試みた。   Here, the present inventors tried to verify the following hypothesis by paying attention to the similar shift form of the transmittance characteristic with respect to the change in thickness of the borosilicate glass shown in FIG.

特許文献3に開示された紫外線透過ガラスは波長200nm以上の透過率しか示されていないが、その特性曲線の変化具合は、上記図2に示した従来の代表的硼珪酸ガラスの透過率特性曲線の変化具合と良く似ていることが分かる。ここで図2の特性曲線(B)が実質的に双曲線を描いているものとして、これを近似して、透過率Fを次の双曲線関数の式(1)で表した。   The ultraviolet transmissive glass disclosed in Patent Document 3 shows only the transmittance of a wavelength of 200 nm or more, but the change in the characteristic curve is the transmittance characteristic curve of the conventional typical borosilicate glass shown in FIG. It turns out that it is very similar to the degree of change. Here, assuming that the characteristic curve (B) of FIG. 2 is substantially a hyperbola, this is approximated and the transmittance F is expressed by the following hyperbolic function formula (1).

F = [tanh (X-X0)(m×10)-3]×Y0/2 ・・・・・・(1)
ここでXは波長、X0は透過率0の最大波長、Y0は透過波長が長くなるところの最大透過率、mは透過率曲線の中央略直線部の傾きを示す。
F = [tanh (XX 0) (m × 10) -3] × Y 0/2 ······ (1)
Here, X is the wavelength, X 0 is the maximum wavelength of transmittance 0 , Y 0 is the maximum transmittance where the transmission wavelength is long, and m is the slope of the substantially linear portion of the center of the transmittance curve.

かくして特許文献3の図3に開示された厚み1mmの紫外線透過ガラスの200nm以下の波長域における透過率を上記の双曲線関数式で近似相関して描くと、図3の特性曲線(D)のようになる。従って、これを従来の硼珪酸ガラスの厚みの変更(1mmから0.07mm)に伴う透過率の変化に準じて短波長側に60nmシフトすると、同図の曲線(C)のようになり、波長150nmにおいて80%以上の透過率が得られることが分かる。   Thus, when the transmittance in the wavelength region of 200 nm or less of the 1 mm-thick ultraviolet transmissive glass disclosed in FIG. 3 of Patent Document 3 is approximated and drawn by the above hyperbolic function equation, the characteristic curve (D) of FIG. 3 is obtained. become. Therefore, when this is shifted by 60 nm to the short wavelength side in accordance with the change in transmittance due to the change in the thickness of the conventional borosilicate glass (from 1 mm to 0.07 mm), the curve (C) in FIG. It can be seen that a transmittance of 80% or more can be obtained at 150 nm.

以上の推定に基づいて本発明者等は、硼珪酸系紫外線透過ガラスの管状母材を入手し、リドロウして上述したような長さ8cmのガス入り発光管12を作成し、紫外線カットフィルム13の上に、粘着剤17(図1(b))により粘着配置して発光管構造体10を構成した。発光管12の中にはネオン(Ne)に10%のキセノン(Xe)を添加した混合ガスを全圧0.7気圧で封入した。背面側への真空紫外線の放出を防いで支持基板を兼ねる紫外線カットフィルム13には、「スコッチティント(登録商標)」の商品名で販売されている薄い多層ポリエステルシートを用いることができる。   Based on the above estimation, the present inventors obtain a tubular base material of borosilicate ultraviolet transmissive glass, redraw and produce the gas-containing arc tube 12 having the length of 8 cm as described above, and the ultraviolet cut film 13. The arc tube structure 10 was constructed by adhering to the adhesive 17 (FIG. 1B). In the arc tube 12, a mixed gas in which 10% xenon (Xe) was added to neon (Ne) was sealed at a total pressure of 0.7 atm. A thin multilayer polyester sheet sold under the trade name “Scotch Tint (registered trademark)” can be used for the ultraviolet cut film 13 that prevents the release of vacuum ultraviolet rays to the back side and also serves as a support substrate.

他方、図1の構成において、発光構造体10とは独立したパーツを構成する電極構造体20は、例えば、カプトンテープ(登録商標)のようなポリイミド樹脂製の絶縁基板21の上にギャップ寸法Dgの間隙部Gを開けて配置された一対の細長い電極23Xと24Yを有してなる。説明の便宜上、一方の電極23XをX電極と称し、他方の電極24YをY電極と称する。カプトンテープは十分な紫外線耐性を有するので好適であるが、用途によってはポリカーボネイトの硬質基板を用いてもよい。   On the other hand, in the configuration of FIG. 1, an electrode structure 20 constituting a part independent of the light emitting structure 10 is, for example, a gap dimension Dg on an insulating substrate 21 made of polyimide resin such as Kapton tape (registered trademark). And a pair of elongated electrodes 23X and 24Y arranged with a gap G therebetween. For convenience of explanation, one electrode 23X is referred to as an X electrode, and the other electrode 24Y is referred to as a Y electrode. Kapton tape is suitable because it has sufficient ultraviolet light resistance, but a polycarbonate hard substrate may be used depending on the application.

電極構造体20の上に発光構造体10が載置された状態で、対となる長電極の互いに隣接する近接端がトリガ電極部23aと24aを構成し、間隙部Gのギャップ寸法Dgに対応した発光管12内のガス空間にトリガ放電部15が形成される。また、トリガ電極部23aと24aから両側に離間する方向に延びる延長部が主電極部23b、24bを構成し、主電極部23bと24bの対応ガス空間16が主ガス放電部となる。   In the state where the light emitting structure 10 is placed on the electrode structure 20, adjacent adjacent ends of the pair of long electrodes constitute trigger electrode portions 23 a and 24 a, and correspond to the gap dimension Dg of the gap portion G. A trigger discharge portion 15 is formed in the gas space inside the arc tube 12. Further, the extension portions extending in the direction away from the trigger electrode portions 23a and 24a on both sides constitute main electrode portions 23b and 24b, and the corresponding gas space 16 of the main electrode portions 23b and 24b becomes the main gas discharge portion.

X電極23XとY電極24Yは、紫外線耐性を有する絶縁基板21上に貼り付けた銅箔、アルミ箔等の金属導体箔でもよいし、蒸着法や印刷法などで直接形成した導電膜をパターニングして構成してもよい。   The X electrode 23X and the Y electrode 24Y may be a metal conductor foil such as a copper foil or an aluminum foil attached on the insulating substrate 21 having an ultraviolet resistance, or a conductive film directly formed by a vapor deposition method or a printing method is patterned. May be configured.

発光構造体10が、電極構造体20の上に載置されることにより、この発明のガス放電発光装置が完成する。細長い発光管12は、電極構造体20におけるX,Y電極23X、24Yに沿って間隙部Gを横切る(跨ぐ)方向に置かれるだけで動作可能となる。   The light emitting structure 10 is placed on the electrode structure 20, whereby the gas discharge light emitting device of the present invention is completed. The elongated arc tube 12 can be operated only by being placed in a direction across (crossing) the gap G along the X and Y electrodes 23X and 24Y in the electrode structure 20.

発光構造体10と電極構造体20との間では厳密な位置合わせは必要ないが、載置状態を安定に保つために図示しない粘着手段または機械的クランプ手段が適宜設けられる。ギャップ寸法DgとX,Y電極23X、24Yの有効長さを合わせた範囲が有効発光領域となる。   Strict alignment is not required between the light emitting structure 10 and the electrode structure 20, but an adhesive means or a mechanical clamp means (not shown) is appropriately provided in order to keep the mounting state stable. A range obtained by combining the gap dimension Dg and the effective lengths of the X and Y electrodes 23X and 24Y is an effective light emitting region.

本発明者等は、図1に示した外部電極型のガス放電発光デバイスでもある紫外光源装置において、封入ガスに含まれるXeからの172nmの真空紫外線の放出を確認すべく、発光管12の内部底面に予め中心波長258nmの紫外線を放射する紫外線蛍光体層14を形成した。駆動時において、ガス放電に伴う真空紫外線で励起されて発光する蛍光体層14からの矢印22(図1(b))方向の発光を観測できれば、発光管内部で真空紫外線が発生していることは確かである。また同時に真空紫外域を含む発光波長のスペクトルを観測することで172nmの真空紫外線の放出を確認することが可能となる。   In the ultraviolet light source device which is also an external electrode type gas discharge light emitting device shown in FIG. 1, the present inventors have confirmed the inside of the arc tube 12 in order to confirm the emission of 172 nm vacuum ultraviolet rays from Xe contained in the sealed gas. An ultraviolet phosphor layer 14 that emits ultraviolet light having a central wavelength of 258 nm was previously formed on the bottom surface. When driving, if the light emission in the direction of the arrow 22 (FIG. 1B) from the phosphor layer 14 that emits light by being excited by the vacuum ultraviolet light accompanying the gas discharge can be observed, the vacuum ultraviolet light is generated inside the arc tube. Is certain. At the same time, it is possible to confirm the emission of vacuum ultraviolet light at 172 nm by observing the emission wavelength spectrum including the vacuum ultraviolet region.

図1に示したガス放電発光デバイス、即ち紫外光源装置の駆動は、先に参照した先行特許文献2に開示された駆動技術と同じであり、対となるX電極23XとY電極24Yとの間にインバータ電源を接続し、周波数40KHzの正弦波電圧を印加して行われる。正弦波電圧がトリガ電極部23aと24a間の放電開始電圧を超えたところでトリガ放電部15でトリガ放電が起こり、印加正弦波電圧の上昇に伴ってその放電が壁電荷の蓄積を伴いながら主電極部23b、24bの長手方向に拡張して行くことになる。そしてこの放電動作は正弦波電圧の極性が反転する毎に繰り返される。   The driving of the gas discharge light emitting device shown in FIG. 1, that is, the ultraviolet light source device, is the same as the driving technique disclosed in the above-mentioned prior patent document 2, and is between the paired X electrode 23X and Y electrode 24Y. This is done by connecting an inverter power supply to and applying a sine wave voltage with a frequency of 40 kHz. When the sine wave voltage exceeds the discharge start voltage between the trigger electrode parts 23a and 24a, trigger discharge occurs in the trigger discharge part 15, and as the applied sine wave voltage rises, the discharge is accompanied by the accumulation of wall charges and the main electrode. The parts 23b and 24b are expanded in the longitudinal direction. This discharge operation is repeated every time the polarity of the sine wave voltage is reversed.

図4は、上記実施形態1のガス放電デバイスを駆動した時の発光スペクトルを従来のデバイスと比較して示す線図である。曲線(F)で示すスペクトルは、従来の硼珪酸ガラス(登録商標:パイレックス)の肉厚を70μmとした細管内に中心波長258nmで発光する紫外線蛍光体層を形成したデバイスの発光特性を示す。他方の曲線(E)は新たに入手した硼珪酸系紫外線透過ガラスの肉厚を70μmとした細管内に同じく中心波長258nmで発光する紫外線蛍光体層を形成した実施形態1のデバイスの発光特性を示す。   FIG. 4 is a diagram showing an emission spectrum when the gas discharge device of Embodiment 1 is driven in comparison with a conventional device. The spectrum shown by the curve (F) shows the light emission characteristics of a device in which an ultraviolet phosphor layer emitting light at a central wavelength of 258 nm is formed in a thin tube having a thickness of 70 μm of conventional borosilicate glass (registered trademark: Pyrex). The other curve (E) shows the light emission characteristics of the device of Embodiment 1 in which an ultraviolet phosphor layer that also emits light at a central wavelength of 258 nm is formed in a thin tube having a thickness of 70 μm of a newly obtained borosilicate ultraviolet transmission glass. Show.

この図4から、従来の硼珪酸系ガラスを使用した発光管では、ごく僅かに真空紫外域の発光が見られるものの、光源としての利用は無理であることが分かる。他方、紫外線透過ガラスを使用した本発明の発光管においては、曲線(E)から明らかなように、放電時にXeの発する波長172nmの真空紫外線が蛍光体層14からの258nmの発光強度の半分程度の強度で管外に放出されていることが分かる。   FIG. 4 shows that the arc tube using the conventional borosilicate glass can emit light in the vacuum ultraviolet region, but cannot be used as a light source. On the other hand, in the arc tube of the present invention using ultraviolet transmissive glass, as is clear from the curve (E), the vacuum ultraviolet ray having a wavelength of 172 nm emitted by Xe during discharge is about half of the emission intensity of 258 nm from the phosphor layer 14. It can be seen that it is discharged outside the tube with the intensity of.

つまり、一般的な硼珪酸ガラスの厚みと透過率との関係を、紫外線透過ガラスに当てはめて推定した真空紫外域での透過率が、図4で実証できたわけである。かくしてこれまで石英ガラス以外では無理とされていた真空紫外光源を安価な硼珪酸系ガラスの外囲器で実現することが可能となる。本発明者等の実験によれば、紫外線透過ガラスであっても実用的な80%以上の透過率で200nm以下の深紫外線を透過できるのは200μmの厚みが限界であり、透過率80%の実用限界壁は、厚み200μmにおいて波長194nm、厚み100μmにおいての波長180nmと観測されている。   That is, the transmittance in the vacuum ultraviolet region estimated by applying the relationship between the thickness and transmittance of a general borosilicate glass to the ultraviolet transmissive glass can be demonstrated in FIG. Thus, it is possible to realize a vacuum ultraviolet light source that has been impossible except for quartz glass with an inexpensive borosilicate glass envelope. According to the experiments by the present inventors, the thickness of 200 μm is the limit for transmitting deep ultraviolet rays of 200 nm or less with a practical transmittance of 80% or more even with ultraviolet transmissive glass, and the transmittance is 80%. The practical limit wall is observed to have a wavelength of 194 nm at a thickness of 200 μm and a wavelength of 180 nm at a thickness of 100 μm.

なお、深紫外域における透過率はガラスの厚みが薄い程良くなるが、70μmほどの薄いガラスの外囲器でガス放電デバイスを製作することは、電極一体化が基本の従来の光源デバイスの発想からは機械的強度の観点から容易に思い及ばないところであり、この点にこそ、リドロウで薄肉化の容易なチューブ構成の発光構体を採用し、かつ発光構造体と電極構造体とを独立した組み立て体として構成するようにした本発明のユニークな特徴がある。   The transmittance in the deep ultraviolet region is better as the glass thickness is thinner. However, manufacturing a gas discharge device with a glass envelope as thin as 70 μm is the idea of a conventional light source device based on electrode integration. From this point of view, it is difficult to imagine from the viewpoint of mechanical strength. This is the reason why a light-emitting structure with a tube structure that is easy to make thin and thin is adopted, and the light-emitting structure and the electrode structure are assembled independently. There is a unique feature of the present invention configured as a body.

(実施形態2:発光管アレイ型真空紫外面光源デバイス)
図5(a)は本発明の実施形態2としての発光管アレイ型の真空紫外面光源デバイスの模式的斜視図である。図1に示した紫外線透過ガラスの発光管12をその長手方向と交差する方向に複数本平行に並べてアレイ構成の面光源デバイス4が作られる。
(Embodiment 2: arc tube array type vacuum ultraviolet surface light source device)
FIG. 5 (a) is a schematic perspective view of an arc tube array type vacuum ultraviolet surface light source device as Embodiment 2 of the present invention. The surface light source device 4 having an array configuration is formed by arranging a plurality of ultraviolet ray transmitting glass arc tubes 12 shown in FIG. 1 in parallel in a direction crossing the longitudinal direction.

発光管アレイ形態の発光管アレイ構造体1を構成する複数本の発光管12は、図1に示したが図5では便宜上図示省略した耐熱性を有する薄い(数10μm)紫外線カットフィルム13の上に前述のようにシリコーン樹脂のような熱伝導性の良好な粘着剤17により離脱可能な粘着状態で配置されている。隣接する発光管12の相互間には面光源デバイス4にフレキシビリティを付与するため同じ幅寸法又は部分的に異なる幅寸法の隙間が設けられている。   A plurality of arc tubes 12 constituting the arc tube array structure 1 in the arc tube array form are provided on a thin (several tens of μm) ultraviolet cut film 13 having heat resistance, which is shown in FIG. In addition, as described above, it is disposed in an adhesive state that can be detached by the adhesive 17 having good thermal conductivity such as a silicone resin. A gap having the same width dimension or a partially different width dimension is provided between the adjacent arc tubes 12 in order to provide flexibility to the surface light source device 4.

他方、発光管アレイ構造体1の下には、例えば、ポリイミド系樹脂から成るフレキシブルな絶縁基板21とその上に形成した電極対23X、24Yとから成る電極構造体20が粘着(非接着)状態で設けられている。   On the other hand, under the arc tube array structure 1, an electrode structure 20 comprising, for example, a flexible insulating substrate 21 made of polyimide resin and electrode pairs 23X and 24Y formed thereon is adhered (non-adhered). Is provided.

電極造構体20の電極対は、発光管アレイ構造体1を構成する各発光管12の底部背面に対向して、共通の間隙部Gを挟んで両側に広がる帯状のX電極23XとY電極24Yとからなる。   An electrode pair of the electrode structure 20 is opposed to the back of the bottom of each arc tube 12 constituting the arc tube array structure 1 and has a belt-like X electrode 23X and Y electrode 24Y extending on both sides with a common gap G interposed therebetween. It consists of.

即ち、X電極23XとY電極24Yとは、全体としては各発光管12の長手方向と交差する方向に延びる共通の電極パターンを有するが、個々の発光管10に対しては当該発光管内に初期放電を発生させる0.1〜10mm程度の間隙部Gを挟んで長手方向の両側に対称的に延びる長電極対の構成を持つ。X電極23X、Y電極24Yの発光管長手方向における長さは間隙部Gの幅の5〜10倍またはそれ以上となる。   That is, the X electrode 23X and the Y electrode 24Y have a common electrode pattern that extends in a direction intersecting with the longitudinal direction of each arc tube 12 as a whole, but the individual arc tubes 10 are initially in the arc tube. It has a configuration of long electrode pairs that extend symmetrically on both sides in the longitudinal direction with a gap G of about 0.1 to 10 mm that generates discharge. The length of the X electrode 23X and the Y electrode 24Y in the longitudinal direction of the arc tube is 5 to 10 times the width of the gap G or more.

因に、発光管10を長径2mm、短径1mmの扁平楕円断面を持つ長さ8cmのガラス細管で構成し、これを1mm間隔で20本配列して図5に示したような発光管アレイ構造体1を構成した場合、X電極23XとY電極24Yは、3mmの間隙幅の間隙部Gの両側にそれぞれ38.5mmの幅を持って各発光管10と交差する方向に延びるパターンで設けられる。   Incidentally, the arc tube 10 is composed of 8 cm long glass capillaries having a flat elliptical cross section with a major axis of 2 mm and a minor axis of 1 mm, and 20 arcuate tubes are arranged at intervals of 1 mm to form an arc tube array structure as shown in FIG. When the body 1 is configured, the X electrode 23X and the Y electrode 24Y are provided on both sides of the gap G having a gap width of 3 mm in a pattern extending in a direction intersecting with each arc tube 10 with a width of 38.5 mm. .

この結果、8×6=48cm2の発光面の背面側は、間隙部Gの間隙幅に対応した0.3×6=1.8cm2の隙間を除いて全て電極面でカバーされた形となる。発光面積に対する電極のカバー率は96%に相当する。 As a result, the back side of the light emitting surface of 8 × 6 = 48 cm 2 is entirely covered with the electrode surface except for a gap of 0.3 × 6 = 1.8 cm 2 corresponding to the gap width of the gap G. Become. The electrode coverage with respect to the light emitting area corresponds to 96%.

X電極23XとY電極24Yは、紫外線耐性を有する絶縁基板21の上に銀ペースト等の導電性インクを印刷して直接形成してもよいし、あらかじめ整形した銅やアルミ等の金属導体箔を粘着または接着して構成してもよい。勿論、絶縁基板21の上に形成した導電体層をパターニングして電極対を構成することもできる。   The X electrode 23X and the Y electrode 24Y may be directly formed by printing a conductive ink such as silver paste on the insulating substrate 21 having ultraviolet resistance, or a preliminarily formed metal conductor foil such as copper or aluminum. It may be formed by adhesion or adhesion. Of course, an electrode pair can be formed by patterning a conductor layer formed on the insulating substrate 21.

駆動に際しては、X電極23XとY電極24Yの間にインバータ電源を接続し、正弦波又はランプ波のような立ち上がりの傾斜した交番駆動電圧を印加することで、発光管アレイ面から効率よく真空紫外線を放射することができる。この場合、交番電圧の印加を所定のバースト周期で断続的に行うようにし、印加時間と非印加時間のデューティ比を調整することで紫外線の発光強度を調整することができる。   In driving, an inverter power supply is connected between the X electrode 23X and the Y electrode 24Y, and an alternating drive voltage having a rising slope such as a sine wave or a ramp wave is applied, so that the vacuum ultraviolet rays can be efficiently discharged from the arc tube array surface. Can be emitted. In this case, it is possible to adjust the emission intensity of the ultraviolet light by intermittently applying the alternating voltage at a predetermined burst cycle and adjusting the duty ratio between the application time and the non-application time.

図5(b)は、上記発光管アレイ型面光源デバイスの変形例を模式的に示す断面図である。この発光管アレイ構造体においては、発光管12よりも高さ寸法の高い補強部材としてのガラスロッド120がアレイ構造体の両サイドを含めて発光管と交互に配列され、発光管12の発光面がガラスロッド120の頂面より下に位置するように構成されている。この構成により、紫外線照射面に異物等が触れた場合においても薄いガラス細管の発光管に直接外力が及ぶ危険を避けることができる。勿論前記補強部材はガラスロッドに限らず、耐紫外線材料の樹脂等を適宜選択して用いることができるし、その断面形状も円形の他、楕円形や長方形など適宜選択できる。またこの補強部材120は、両サイド以外は発光管1本毎の交互配列に限らず複数本おきに配置してもよい。更に補強部材の頂面で支持される形で照射面全体を図示しない紫外線透過シートでカバーしてもよい。   FIG. 5B is a cross-sectional view schematically showing a modification of the arc tube array type surface light source device. In this arc tube array structure, glass rods 120 as reinforcing members having a height higher than that of the arc tube 12 are arranged alternately with the arc tubes including both sides of the array structure, and the light emitting surface of the arc tube 12 Is located below the top surface of the glass rod 120. With this configuration, even when a foreign substance or the like touches the ultraviolet irradiation surface, it is possible to avoid a risk that an external force is directly applied to the thin glass capillary tube. Of course, the reinforcing member is not limited to a glass rod, and an ultraviolet resistant resin or the like can be appropriately selected and used. The cross-sectional shape of the reinforcing member can be appropriately selected such as an ellipse or a rectangle in addition to a circle. Further, the reinforcing members 120 are not limited to the alternate arrangement for each arc tube except for both sides, and may be arranged every plural number. Further, the entire irradiation surface may be covered with an ultraviolet ray transmitting sheet (not shown) so as to be supported by the top surface of the reinforcing member.

(実施形態3:平面パネル型真空紫外光源デバイス)
本発明の紫外光源装置は、上記のようなガス放電発光管10を複数本配列した発光管アレイ構成を有するものの他、パネル構成としたものでも良い。図6(a)、(b)及び(c)はそのようなパネル構成の面光源デバイス40を説明するための透視平面図と縦横の断面図である。
(Embodiment 3: Flat panel vacuum ultraviolet light source device)
The ultraviolet light source device of the present invention may have a panel configuration in addition to the arc tube array configuration in which a plurality of gas discharge arc tubes 10 are arranged as described above. 6A, 6B, and 6C are a perspective plan view and vertical and horizontal sectional views for explaining the surface light source device 40 having such a panel configuration.

この光源デバイス40の構成は、図5に示した発光管アレイ構造体1を一つのパネル外囲器100で置き換えた構成と実質的に変わらない。図6においてパネル外囲器100は、前面基板101と背面基板102を備え、それらの間に密封されたガス封入空間103を形成している。ガス空間103はスペーサ機能を持つガラスロッド104、又は背面基板102の上に同様の配置パターンで予め形成したリブ(図示せず)で複数のストライプ状放電チャネルに仕切られ、周辺も同様のガラスロッドを介して封着されている。またガラスロッド104は中央でトリガ放電間隙Gに対応した隙間を持って両サイドに分割され、その分割部共通空間に連通して排気パイプ105が設けられている。   The configuration of the light source device 40 is not substantially different from the configuration in which the arc tube array structure 1 shown in FIG. 5 is replaced with one panel envelope 100. In FIG. 6, the panel envelope 100 includes a front substrate 101 and a rear substrate 102, and a sealed gas filled space 103 is formed between them. The gas space 103 is partitioned into a plurality of striped discharge channels by a glass rod 104 having a spacer function, or ribs (not shown) previously formed in the same arrangement pattern on the back substrate 102, and the periphery is also similar to the glass rod. Is sealed through. The glass rod 104 is divided into both sides with a gap corresponding to the trigger discharge gap G at the center, and an exhaust pipe 105 is provided in communication with the common space of the divided portions.

前面基板101は、実施形態1の発光管を構成するガラスと同様、厚さ100μm以下の薄い硼珪酸系紫外線透過ガラスで作られる。背面基板102も同材質の硼珪酸系のマイクロシートガラスで作られても良いが、前面基板のような紫外線透過性能は要求されないので、むしろ紫外線カットガラスで構成するのが好ましい。スペーサ機能を有するガラスロッドは放電空間の基板間隔を規定すると共に、薄い前面基板の機械的強度を補強する役目を持つ。   The front substrate 101 is made of a thin borosilicate ultraviolet transmissive glass having a thickness of 100 μm or less, like the glass constituting the arc tube of the first embodiment. The back substrate 102 may also be made of borosilicate microsheet glass of the same material, but it is preferably made of ultraviolet cut glass because it does not require ultraviolet light transmission performance unlike the front substrate. The glass rod having a spacer function serves to reinforce the mechanical strength of the thin front substrate while defining the substrate spacing in the discharge space.

背面基板102の裏側には電極対106X、106Yを挟む形でガラス又はセラミックの支持基板108が熱伝導性の良好な粘着剤で取り付けられている。電極対106X、106Yは支持基板108の上に予め形成しておくのが好ましい。この支持基板108は、薄い前面基板101と背面基板102とから成るパネル状ガラス外囲器を支える役目を有するほか、電極基板や放熱板としての役目も持つ。また実施形態1の場合と同様、パネル外囲器の背面基板102と電極支持基板108の間に図示省略した薄い背面側への真空紫外線の放射を防ぐ紫外線カットフィルムを介在させても良い。   On the back side of the back substrate 102, a support substrate 108 made of glass or ceramic is attached with an adhesive having good thermal conductivity so as to sandwich the electrode pairs 106X and 106Y. The electrode pairs 106X and 106Y are preferably formed in advance on the support substrate 108. The support substrate 108 serves not only to support the panel-shaped glass envelope composed of the thin front substrate 101 and the back substrate 102, but also serves as an electrode substrate and a heat sink. Further, as in the case of the first embodiment, an ultraviolet cut film for preventing the emission of vacuum ultraviolet rays to the thin back side (not shown) may be interposed between the back substrate 102 and the electrode support substrate 108 of the panel envelope.

上記パネル構成の紫外面光源デバイス40も、先に説明した発光管アレイ構成の面光源デバイス10と同様に駆動することができる。なお電極対106X、106Yとしては、必ならずしも図示したような共通のベタパターンである必要はなく、スペーサ104で仕切られたストライプ状の各ガス放電チャネルに対応してそれぞれの長手方向に延びるストライプ状の電極パターンとして形成し、両端部でそれぞれ共通接続するようにしても良い。   The ultraviolet surface light source device 40 having the panel configuration can be driven in the same manner as the surface light source device 10 having the arc tube array configuration described above. The electrode pairs 106X and 106Y do not necessarily have the common solid pattern as shown in the figure, and correspond to the striped gas discharge channels partitioned by the spacers 104 in the respective longitudinal directions. It may be formed as an extended stripe-shaped electrode pattern and commonly connected at both ends.

(その他の変形例)
真空紫外線は、封入された放電ガス固有の波長で放射され、その強度は分圧に依存する。深紫外域の真空紫外線を得るための好ましいガスはキセノン(Xe)であり、キセノンは波長147nmと172nmの真空紫外線を放射する。またクリプトン(Kr)を混合した放電ガスは波長153nmの真空紫外線を放射する。この他にも、アルゴンガス(Ar)等の希ガスや塩素(Cl)、フッ素(F)等のハロゲン、及びその合成ガス封入して放電をさせるとそれぞれのガスに固有の真空紫外線を発生させることができる。因みにAr2では126nm、Kr2では146nm、KrClでは222nm、XeClでは308nmの真空紫外線を放射することができる。このような真空紫外線は、従来は安価な構成で外囲器外に取り出すことが難しく、もっぱら外囲器内部に形成した蛍光体層の励起にのみ利用されていた。本発明においては、この真空紫外線を安価な構成で外囲器外に取り出して利用できるほか、同時に蛍光体の励起にも利用することができる。
(Other variations)
Vacuum ultraviolet radiation is emitted at a wavelength specific to the enclosed discharge gas, and its intensity depends on the partial pressure. A preferable gas for obtaining vacuum ultraviolet rays in the deep ultraviolet region is xenon (Xe), and xenon emits vacuum ultraviolet rays having wavelengths of 147 nm and 172 nm. The discharge gas mixed with krypton (Kr) emits vacuum ultraviolet rays having a wavelength of 153 nm. In addition, when a rare gas such as argon gas (Ar) or the like, halogen such as chlorine (Cl), fluorine (F), or a synthetic gas thereof is filled and discharged, vacuum ultraviolet rays specific to each gas are generated. be able to. By the way, it is possible to emit vacuum ultraviolet rays of 126 nm for Ar 2 , 146 nm for Kr 2 , 222 nm for KrCl, and 308 nm for XeCl. Conventionally, such vacuum ultraviolet rays are difficult to be taken out of the envelope with an inexpensive structure, and have been used only for exciting the phosphor layer formed inside the envelope. In the present invention, this vacuum ultraviolet ray can be used by taking it out of the envelope with an inexpensive configuration, and at the same time, it can also be used for excitation of a phosphor.

即ち、先に述べたように、本発明の発光管12(図1、図5)や、発光パネル100(図6)の内部底面に特許文献1に開示されたようなUV−C波長域の紫外線蛍光体層14を形成した構成を採ることにより、例えば、キセノンからの波長172nmの真空紫外線と蛍光体層からの258nmの紫外線を放出することができる。ここで真空紫外線は空気中に放出されると酸素を分解してオゾン(O3)を発生する性質がある。従って、例えばこのような深紫外域におけるマルチ波長の光源デバイスを殺菌室に配置して被殺菌物体に照射するようにすれば、直進する258nmの紫外線による殺菌効果と、空気と一緒に被殺菌物体の背後まで回り込むオゾンによる殺菌効果を共に利用することが可能となる。 That is, as described above, the arc tube 12 (FIGS. 1 and 5) of the present invention or the inner bottom surface of the light emitting panel 100 (FIG. 6) has a UV-C wavelength region as disclosed in Patent Document 1. By adopting the configuration in which the ultraviolet phosphor layer 14 is formed, for example, vacuum ultraviolet rays having a wavelength of 172 nm from xenon and ultraviolet rays having a wavelength of 258 nm from the phosphor layer can be emitted. Here, vacuum ultraviolet rays have the property of decomposing oxygen and generating ozone (O 3 ) when released into the air. Therefore, for example, if such a multi-wavelength light source device in the deep ultraviolet region is arranged in the sterilization chamber to irradiate the object to be sterilized, the sterilization effect by the 258 nm ultraviolet light that goes straight and the object to be sterilized together with air It is possible to use the bactericidal effect of ozone that wraps around behind.

また、発光管アレイ型の面光源を構成する場合、真空紫外線専用の発光管の他に蛍光体層14を用いた紫外域または可視域の発光管を任意の本数比で組み合わせて配列することにより、応用分野に応じた発光エネルギーの分布設計を行うことが可能となる。この場合、発光波長の異なる発光管同士に対しては、対応する電極組み立て体の電極対パターンを発光管の長手方向に延長させて絶縁基板上で適宜共通化させることにより発光波長の選択駆動を行わせることができる。或は発光管毎の電極対を個別に、または複数本の組にして導出し、間引き駆動や発光エリアの選択駆動を行わせることもできる。   In the case of constructing an arc tube array type surface light source, in addition to an arc tube dedicated for vacuum ultraviolet rays, an ultraviolet or visible arc tube using the phosphor layer 14 is combined and arranged in an arbitrary number ratio. Therefore, it is possible to design the distribution of light emission energy according to the application field. In this case, for the light emitting tubes having different light emission wavelengths, the electrode pair pattern of the corresponding electrode assembly is extended in the longitudinal direction of the light emitting tube, and the light emission wavelength is selectively driven on the insulating substrate as appropriate. Can be done. Alternatively, electrode pairs for each arc tube can be derived individually or as a plurality of groups, and thinning driving or light emitting area selection driving can be performed.

なお、上記のような薄い紫外線透過ガラスを用いて可視及び紫外域を含めたマルチ波長の光源デバイスを構成する場合には、可視または紫外蛍光体層14を設けた発光管からもそれらの発光波長の透過率が向上してより強い発光が得られるが、当然真空紫外線も同時に放出されることになる。しかし真空紫外線発光と、その他の可視や紫外線とを選択的に切り換えて照射する構成においては、蛍光体を利用する発光管からの真空紫外線の放出は防ぐのが望ましい。この場合には可視または紫外蛍光体層を設けた発光管の底面側に対向する前面側内面に利用波長に対しては透明なフィルタ機能を有する真空紫外線のカット層を設けるのが好ましい。真空紫外線に対する内面カット層の一例として酸化マグネシュウム(MgO)または酸化アルミニューム(Al23)や二酸化珪素(SiO2)の膜を用いることができる。 In the case where a multi-wavelength light source device including the visible and ultraviolet regions is formed using the thin ultraviolet transmissive glass as described above, the emission wavelength is also obtained from the arc tube provided with the visible or ultraviolet phosphor layer 14. However, naturally, vacuum ultraviolet rays are also emitted at the same time. However, it is desirable to prevent the emission of vacuum ultraviolet rays from the arc tube using a phosphor in a configuration in which the irradiation is selectively switched between vacuum ultraviolet emission and other visible and ultraviolet rays. In this case, it is preferable to provide a vacuum ultraviolet ray cut layer having a filter function transparent to the used wavelength on the inner surface on the front side facing the bottom side of the arc tube provided with a visible or ultraviolet phosphor layer. As an example of the inner surface cut layer against vacuum ultraviolet rays, a film of magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), or silicon dioxide (SiO 2 ) can be used.

また背面側への紫外線の放出をカットする紫外線カットフィルム13に代えて、或いはそれに加えて発光管12または発光パネル100の照射面と対向する底部内面に紫外線に対する吸収または反射機能を有する厚さ1μm以下の紫外線不透過層を設けることも可能である。前記紫外線不透過層の一例としては、発光管12の底部内面に設けた蛍光体層14を利用しても良いし、或いは蛍光体層14に代えて酸化マグネシュウム(MgO)粉末等からなる紫外線不透過層を設けてもよい。MgO層は、発光管の背面側への真空紫外線の漏出を防ぐとともに、放電電圧を低減する効果や、ガラス内面をイオン衝撃から保護する効果を得ることができる。ガラス細管11の発光面側に対向する内部底面側にこのようなMgOの紫外線不透過層を形成するには、例えば特開2013−134950号公開公報記載の技術を、前面側と背面側を反対にして利用することができる。   Further, in place of or in addition to the ultraviolet cut film 13 for cutting off the emission of ultraviolet rays to the back side, a thickness of 1 μm having a function of absorbing or reflecting ultraviolet rays on the inner surface of the bottom facing the irradiation surface of the arc tube 12 or the light emitting panel 100 It is also possible to provide the following ultraviolet opaque layer. As an example of the ultraviolet-opaque layer, the phosphor layer 14 provided on the inner surface of the bottom of the arc tube 12 may be used, or an ultraviolet-ray-impermeable layer made of magnesium oxide (MgO) powder or the like instead of the phosphor layer 14 may be used. A transmission layer may be provided. The MgO layer can prevent the leakage of vacuum ultraviolet rays to the back side of the arc tube, and can obtain the effect of reducing the discharge voltage and the effect of protecting the glass inner surface from ion bombardment. In order to form such an ultraviolet opaque layer of MgO on the inner bottom surface facing the light emitting surface side of the glass capillary 11, for example, the technique described in JP 2013-134950 A is reversed with the front side and the back side reversed. Can be used.

以上の説明から明らかなように、本発明は、発光面側を厚さ100μm以下の薄い紫外線透過ガラスで構成した、それ自体では電極を持たないガス封入外囲器を主体とて成る発光組み立て体と、前記ガス封入外囲器に駆動電圧を印加する電極組み立て体とをそれぞれ独立のパーツとして構成し、両者を重ね合わせて真空紫外線の発光装置としたことを特徴とする。このような真空紫外線の光源デバイスの発明は、新しい硼珪酸系紫外線透過ガラスの出現が契機となったものの、当業者の予測を超えたものである。   As is apparent from the above description, the present invention is a light-emitting assembly mainly composed of a gas-filled envelope that does not have an electrode itself, in which the light-emitting surface side is made of a thin ultraviolet-transmitting glass having a thickness of 100 μm or less. And an electrode assembly for applying a driving voltage to the gas-filled envelope are configured as independent parts, and they are overlapped to form a vacuum ultraviolet light emitting device. Although the invention of such a vacuum ultraviolet light source device was triggered by the appearance of a new borosilicate ultraviolet transparent glass, it exceeded the prediction of those skilled in the art.

本発明の紫外線発光装置においては、電極を持たないシンプルな発光管を部品として用意しておくだけで、発光管の破損や劣化に際して低いコストで容易に交換対応することができる。また本発明を用いることにより、水銀レスで面積当たりの発光強度の高い平面状の真空紫外線発光を効率よく得ることができる。   In the ultraviolet light emitting device of the present invention, it is possible to easily replace at a low cost when the arc tube is broken or deteriorated by preparing a simple arc tube without electrodes as a component. Further, by using the present invention, it is possible to efficiently obtain planar vacuum ultraviolet light emission that is mercury-free and has high emission intensity per area.

10:発光構造体
11:ガラス細管
12:発光管
13:紫外線カットフィルム
14:蛍光体層
20:電極構造体
21:絶縁基板
23:X電極
24:Y電極
1:発光管アレイ構造体
100:パネル外囲器
120:ガラスロッド
10: Light-emitting structure 11: Glass capillary 12: Light-emitting tube 13: Ultraviolet cut film 14: Phosphor layer 20: Electrode structure 21: Insulating substrate 23: X electrode 24: Y electrode 1: Arc tube array structure 100: Panel Envelope 120: Glass rod

Claims (18)

照射面側を厚み100μm以下の紫外線透過ガラスで構成し、内部に紫外線を放射する放電ガスを封入したガラス外囲器を主体してなる発光構造体と、絶縁基板上に放電間隙を構成する隙間を挟んで両側に延びる少なくとも1対の放電電極を配置した電極構造体とからなり、前記電極構造体の上に前記発光構造体を当該発光構造体の放電ガス封入空間が前記隙間を横切る方向に配置してなることを特徴とする紫外光源装置。   A light-emitting structure mainly composed of a glass envelope in which an irradiation surface side is made of an ultraviolet transmitting glass having a thickness of 100 μm or less and in which a discharge gas that emits ultraviolet rays is enclosed, and a gap that forms a discharge gap on an insulating substrate An electrode structure in which at least one pair of discharge electrodes extending on both sides of the electrode structure is disposed, and the light emitting structure is disposed on the electrode structure in a direction in which a discharge gas sealed space of the light emitting structure crosses the gap. An ultraviolet light source device characterized by being arranged. 前記ガラス外囲器が厚さ1mmにおいて波長250nmの紫外光に対し80%以上の透過率を有するフッ素含有の硼珪酸系ガラスからなることを特徴とする請求項1に記載の紫外光源装置。   2. The ultraviolet light source device according to claim 1, wherein the glass envelope is made of fluorine-containing borosilicate glass having a transmittance of 80% or more with respect to ultraviolet light having a wavelength of 250 nm at a thickness of 1 mm. 前記放電ガスが希ガスとハロゲンの単体ガス或いは合成ガスからなり、放電により真空紫外線を放出することを特徴とする請求項1または2に記載の紫外光源装置。   3. The ultraviolet light source device according to claim 1, wherein the discharge gas is composed of a rare gas and a halogen single gas or a synthesis gas, and emits vacuum ultraviolet rays by discharge. 前記放電ガスがネオンとキセノンの混合ガスであり、放電によりキセノンの発する真空紫外線を放射することを特徴とする請求項1または2記載の紫外光源装置。   3. The ultraviolet light source device according to claim 1, wherein the discharge gas is a mixed gas of neon and xenon and emits a vacuum ultraviolet ray emitted by xenon by discharge. 前記ガラス外囲器の照射面側の厚みが50μm〜100μmの範囲にあることを特徴とする請求項1、2、3及び4の何れか1項に記載の紫外光源装置。   5. The ultraviolet light source device according to claim 1, wherein a thickness of the glass envelope on an irradiation surface side is in a range of 50 μm to 100 μm. 前記発光構造体が、厚み50μm〜100μmの紫外線透過ガラスから成る細管形態の外囲器からなる発光管を主体として成ることを特徴とする請求項1,2、3、4及び5項の何れか1項に記載の紫外光源装置。   6. The light emitting structure according to any one of claims 1, 2, 3, 4 and 5, wherein the light emitting structure is mainly composed of a light emitting tube made of an envelope in the form of a thin tube made of an ultraviolet light transmitting glass having a thickness of 50 μm to 100 μm. 2. An ultraviolet light source device according to item 1. 前記発光構造体が、複数本の発光管を平行に配置して発光管アレイの構成を有し、前記電極構造体が、前記複数本の発光管に共通の電極対を有してなることを特徴とする請求項6記載の紫外光源装置。   The light emitting structure has a structure of an arc tube array in which a plurality of arc tubes are arranged in parallel, and the electrode structure has an electrode pair common to the plurality of arc tubes. The ultraviolet light source device according to claim 6. 前記ガラス外囲器が、厚み50〜100μmの紫外線透過ガラスから成る前面側基板と、間に支持スペーサを挟んで気密に対向配置された背面側基板とから成る平面パネル構成を有することを特徴とする請求項1、2、3、4及び5の何れか1項に記載の紫外光源装置。   The glass envelope has a flat panel structure comprising a front side substrate made of ultraviolet transmissive glass having a thickness of 50 to 100 μm and a back side substrate disposed in an airtight manner with a support spacer interposed therebetween. The ultraviolet light source device according to any one of claims 1, 2, 3, 4, and 5. 前記ガラス外囲器の背面側が紫外線カット層で支持されて成ることを特徴とする請求項1−8の何れか1項に記載の紫外光源装置。   The ultraviolet light source device according to claim 1, wherein a back side of the glass envelope is supported by an ultraviolet cut layer. 前記ガラス外囲器の内部底面に紫外線不透過層を設けてなることを特徴とする請求項1−8の何れか1項に記載の紫外光源装置。   The ultraviolet light source device according to any one of claims 1 to 8, wherein an ultraviolet opaque layer is provided on an inner bottom surface of the glass envelope. 前記紫外線不透過層が、酸化マグネシュウムの粉末からなる厚さ1μm以下の層であることを特徴とする請求項10記載の紫外光源装置。   The ultraviolet light source device according to claim 10, wherein the ultraviolet opaque layer is a layer made of magnesium oxide powder and having a thickness of 1 μm or less. 厚さ1mmにおける波長250nmの紫外線に対する透過率が80%以上の硼珪酸系ガラスで構成した肉厚200μm以下のガラス細管からなり、内部に紫外線を放射する放電ガスを封入した少なくとも1本の発光管を備える発光構造体と、絶縁基板の一面に放電間隙を構成する隙間を挟んで両側に延びる少なくとも1対の放電電極を配置した電極構造体とからなり、前記電極構造体の上に前記発光構造体を前記発光管が前記隙間を横切る方向に載置した構成を特徴とする紫外光源装置。   At least one arc tube composed of a glass tube having a thickness of 200 μm or less and made of borosilicate glass having a transmittance of 80% or more for ultraviolet light having a wavelength of 250 nm at a thickness of 1 mm, and having a discharge gas emitting ultraviolet light enclosed therein. And an electrode structure in which at least one pair of discharge electrodes extending on both sides of the gap constituting the discharge gap is disposed on one surface of the insulating substrate, and the light emitting structure is disposed on the electrode structure. An ultraviolet light source device characterized in that a body is placed in a direction in which the arc tube crosses the gap. 前記発光構造体が、複数本の発光管を平行に配置した発光管アレイ構成を有し、かつ、前記電極構造体が、前記複数本の発光管に対して共通の放電電極対を有することを特徴とする請求項12記載の紫外光源装置。   The light emitting structure has an arc tube array configuration in which a plurality of arc tubes are arranged in parallel, and the electrode structure has a common discharge electrode pair for the plurality of arc tubes. The ultraviolet light source device according to claim 12. 厚さ1mmにおいて波長250nmの紫外線に対する80%以上の透過率を有するフッ素を含有した硼珪酸系の紫外線透過ガラスから成る管状母材を、100〜50μmの肉厚を有し、長径寸法5mm以下の扁平楕円断面を有するガラス細管にリドロウし、該ガラス細管内に紫外線を放射する放電ガスを密封して発光管を製作し、該発光管を、放電間隙を構成する隙間を挟んで両側に延びる少なくとの1対の放電電極を備えた電極構造体の上に当該発光管が前記隙間を横切る方向に重ねて配置する工程を含んだ紫外光源装置の製造方法。   A tubular base material made of a borosilicate ultraviolet transparent glass containing fluorine having a transmittance of 80% or more with respect to an ultraviolet ray having a wavelength of 250 nm at a thickness of 1 mm has a thickness of 100 to 50 μm and a major axis dimension of 5 mm or less. A glass thin tube having a flat elliptical cross section is redrawn, and a discharge gas that emits ultraviolet rays is sealed in the glass thin tube to produce a light emitting tube, and the light emitting tube extends to both sides with a gap constituting a discharge gap therebetween. A method of manufacturing an ultraviolet light source device, including a step of placing the arc tube in a direction crossing the gap on an electrode structure including a pair of discharge electrodes. 前記ガラス細管に放電ガスを密封するに先立って、当該ガラス細管の発光面に対向する底部内面に酸化マグネシュウムの粉末からなる紫外線不透過層を形成する工程を含むことを特徴とする請求項14記載の紫外光源装置の製造方法。   15. The method according to claim 14, further comprising the step of forming an ultraviolet opaque layer made of magnesium oxide powder on the inner surface of the bottom of the glass capillary before the discharge gas is sealed in the glass capillary. Manufacturing method of ultraviolet light source apparatus. 内部に紫外線を放射する放電ガスを封入したガラス外囲器を主体してなる発光構造体と、絶縁基板上に放電間隙を構成する隙間を挟んで両側に延びる少なくとも1対の放電電極を配置した電極構造体とからなり、前記電極構造体の上に前記発光構造体を当該発光構造体の放電ガス封入空間が前記隙間を横切る方向に配置した構成のガス放電を利用した光源装置において、前記ガラス外囲器を、厚さ1mmにおいて波長250nmの紫外線に対する透過率が80%以上の硼珪酸系ガラスからなる肉厚100μm以下のガラス細管で構成したことを特徴とする真空紫外線発光用の紫外光源装置。   A light emitting structure mainly comprising a glass envelope in which a discharge gas that emits ultraviolet rays is enclosed, and at least a pair of discharge electrodes extending on both sides of the gap constituting the discharge gap are arranged on the insulating substrate. A light source device using a gas discharge having a structure in which the light emitting structure is disposed on the electrode structure in a direction in which a discharge gas sealed space of the light emitting structure crosses the gap. An ultraviolet light source device for vacuum ultraviolet light emission, characterized in that the envelope is composed of a glass capillary having a thickness of 100 μm or less made of borosilicate glass having a transmittance of 80% or more with respect to ultraviolet rays having a wavelength of 250 nm at a thickness of 1 mm . 前記ガラス細管の前記電極構造体と対向する底部内面に酸化マグネシュウムの紫外線不透過層を形成したことを特徴とする請求項16記載の紫外光源装置。   17. The ultraviolet light source device according to claim 16, wherein an ultraviolet opaque layer made of magnesium oxide is formed on the inner surface of the bottom portion of the glass capillary facing the electrode structure. 前記発光構造体が、前記ガラス細管からなる発光管を該発光管よりも高い寸法の間隙部材を隣接発光管の間に挟んで複数本平行に配置した発光管アレイ構成を有し、かつ、前記電極構造体が、前記複数本の発光管に対して共通の放電電極対を有することを特徴とする請求項16または17記載の紫外光源装置。   The light emitting structure has an arc tube array configuration in which a plurality of arc tubes made of the glass thin tubes are arranged in parallel with a gap member having a dimension higher than that of the arc tube interposed between adjacent arc tubes, and The ultraviolet light source device according to claim 16 or 17, wherein the electrode structure has a common discharge electrode pair for the plurality of arc tubes.
JP2017094923A 2017-05-11 2017-05-11 Ultraviolet light source device and manufacturing method thereof Pending JP2018190686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017094923A JP2018190686A (en) 2017-05-11 2017-05-11 Ultraviolet light source device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017094923A JP2018190686A (en) 2017-05-11 2017-05-11 Ultraviolet light source device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2018190686A true JP2018190686A (en) 2018-11-29

Family

ID=64480420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017094923A Pending JP2018190686A (en) 2017-05-11 2017-05-11 Ultraviolet light source device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2018190686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092968A (en) * 2018-12-14 2020-06-18 ウシオ電機株式会社 Ultraviolet irradiation apparatus
WO2022038802A1 (en) * 2020-08-20 2022-02-24 株式会社紫光技研 Ozone generator for sterilization
CN114342042A (en) * 2019-10-07 2022-04-12 优志旺电机株式会社 Ultraviolet irradiation device
WO2022113943A1 (en) * 2020-11-24 2022-06-02 株式会社紫光技研 Ultraviolet radiation apparatus
WO2023100495A1 (en) * 2021-12-01 2023-06-08 日本電気硝子株式会社 Glass tube

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092968A (en) * 2018-12-14 2020-06-18 ウシオ電機株式会社 Ultraviolet irradiation apparatus
US11469093B2 (en) 2018-12-14 2022-10-11 Ushio Denki Kabushiki Kaisha Ultraviolet irradiation apparatus
JP7327932B2 (en) 2018-12-14 2023-08-16 ウシオ電機株式会社 UV irradiation device
CN114342042A (en) * 2019-10-07 2022-04-12 优志旺电机株式会社 Ultraviolet irradiation device
WO2022038802A1 (en) * 2020-08-20 2022-02-24 株式会社紫光技研 Ozone generator for sterilization
WO2022113943A1 (en) * 2020-11-24 2022-06-02 株式会社紫光技研 Ultraviolet radiation apparatus
JP7137891B1 (en) * 2020-11-24 2022-09-15 株式会社紫光技研 UV irradiation device
JP2022174128A (en) * 2020-11-24 2022-11-22 株式会社紫光技研 Ultraviolet irradiation device and optical filter
JP7349188B2 (en) 2020-11-24 2023-09-22 株式会社紫光技研 UV irradiation device
WO2023100495A1 (en) * 2021-12-01 2023-06-08 日本電気硝子株式会社 Glass tube

Similar Documents

Publication Publication Date Title
JP2018190686A (en) Ultraviolet light source device and manufacturing method thereof
JP2812736B2 (en) High power beam generator
JP3856473B2 (en) Incoherent radiation source lighting method and illumination device suitable therefor
US20090179547A1 (en) Flat uv lamp with coplanar discharge and uses thereof
US20020030437A1 (en) Light-emitting device and backlight for flat display
WO2021025064A1 (en) Light irradiation device
JP2004350946A (en) Narrow-band uv-b phototherapeutic device
JP5888256B2 (en) Excimer lamp
JP6524477B2 (en) Gas discharge light emitting device and its driving circuit
JP6103730B2 (en) Gas discharge light emitting device
JP2013098015A (en) Ultraviolet irradiation device
US8541946B2 (en) Variable electric field strength metal and metal oxide microplasma lamps and fabrication
JP6485780B2 (en) Gas discharge light emitting device
JP2003178717A5 (en)
JP6265392B2 (en) Manufacturing method of gas discharge arc tube and manufacturing method of arc tube array type surface light source
JP5682306B2 (en) Light irradiation unit
US8164263B2 (en) Excimer discharge lamp
JP4144871B2 (en) Flat type rare gas discharge lamp, manufacturing method and driving method thereof
JP2002100324A (en) Dielectric barrier discharge lamp and dielectric barrier discharge lamp device
JP4752943B2 (en) Excimer discharge lamp
JP2003100258A (en) Fluorescent lamp and bulb type fluorescent lamp
JP2003223868A5 (en)
JP2012064381A (en) Fluorescent lamp
JP2022000863A (en) Ultraviolet irradiation apparatus and driving method therefor
JP3102430B2 (en) Dielectric barrier discharge lamp