JP2018190508A - Inspection method of power storage device - Google Patents

Inspection method of power storage device Download PDF

Info

Publication number
JP2018190508A
JP2018190508A JP2017089727A JP2017089727A JP2018190508A JP 2018190508 A JP2018190508 A JP 2018190508A JP 2017089727 A JP2017089727 A JP 2017089727A JP 2017089727 A JP2017089727 A JP 2017089727A JP 2018190508 A JP2018190508 A JP 2018190508A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
distance
width direction
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089727A
Other languages
Japanese (ja)
Other versions
JP6819449B2 (en
Inventor
栄克 河端
Yoshikatsu Kawabata
栄克 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017089727A priority Critical patent/JP6819449B2/en
Publication of JP2018190508A publication Critical patent/JP2018190508A/en
Application granted granted Critical
Publication of JP6819449B2 publication Critical patent/JP6819449B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method of power storage device capable of determining lamination deviation of a positive electrode and a negative electrode in an electrode assembly easily.SOLUTION: A secondary battery includes a battery assembly 12 laminating a positive electrode 20 having a positive electrode tab 23 projecting from a first marginal part 20a, and a negative electrode 30 having a negative electrode tab 33 projecting from a first marginal part 30a. A direction along the first marginal part 20a, and a direction along the first marginal part 30a are matched as width direction. An inspection method of secondary battery includes: a measurement step of measuring a first distance A between the inner end face 18a of a positive electrode tab group 18 where positive electrode tabs 23 are laminated and the inner end face 19a of a negative electrode tab group 19 where negative electrode tabs 33 are laminated, in the side view of viewing the battery assembly 12 from the lamination direction, and measuring a second distance B between the outer end face 18b of the positive electrode tab group 18 and the outer end face 19b of the negative electrode tab group 19; and a determination step of determining lamination deviation of the positive electrode 20 and the negative electrode 30 in the width direction based on the first and second distances A, B.SELECTED DRAWING: Figure 4

Description

本発明は、正極タブを有する正極電極と負極タブを有する負極電極とを積層した電極組立体を備える蓄電装置の検査方法に関する。   The present invention relates to an inspection method for a power storage device including an electrode assembly in which a positive electrode having a positive electrode tab and a negative electrode having a negative electrode tab are stacked.

従来から、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、電動機などへの供給電力を蓄える蓄電装置としてリチウムイオン二次電池やニッケル水素二次電池などが搭載されている。二次電池は、シート状の正極電極及び負極電極をシート状のセパレータを介して積層した電極組立体と、該電極組立体を収容する直方体状及び金属製のケースとを備える(例えば、特許文献1参照)。正極電極及び負極電極は、集電体としての金属箔と、該金属箔の両面又は片面に存在する活物質層とを備える。正極電極及び負極電極は、金属箔の一辺の一部から突出した形状のタブを有する。   Conventionally, vehicles such as EVs (Electric Vehicles) and PHVs (Plug in Hybrid Vehicles) have been mounted with lithium-ion secondary batteries or nickel-hydrogen secondary batteries as power storage devices that store power supplied to electric motors and the like. . A secondary battery includes an electrode assembly in which a sheet-like positive electrode and a negative electrode are stacked via a sheet-like separator, and a rectangular parallelepiped and metal case that accommodates the electrode assembly (for example, Patent Documents). 1). Each of the positive electrode and the negative electrode includes a metal foil as a current collector and an active material layer present on both surfaces or one surface of the metal foil. The positive electrode and the negative electrode have a tab having a shape protruding from a part of one side of the metal foil.

特開2014−49193号公報JP 2014-49193 A

ところで、このような電極組立体では、正極電極及び負極電極が金属箔の一辺に沿う方向(幅方向)にずれて積層されることがある。積層ずれが生じた電極組立体では、例えば、正極電極の活物質層の全面がセパレータを介して負極電極の活物質層に対向しなくなることで、二次電池におけるエネルギ密度が低下してしまう。このため、電極組立体において正極電極及び負極電極が積層ずれしているか否かを判定する二次電池の検査が行われている。例えば、特許文献1では、負極電極に形成された孔と正極電極を収納するセパレータに形成された孔の位置によって積層ずれを判定している。しかしながら、この方法では、負極電極及びセパレータに検査用の孔を形成しなければならず、二次電池の製造工程が煩雑になる。   By the way, in such an electrode assembly, the positive electrode and the negative electrode may be stacked while being displaced in a direction (width direction) along one side of the metal foil. In the electrode assembly in which the stacking deviation has occurred, for example, the entire surface of the active material layer of the positive electrode is not opposed to the active material layer of the negative electrode via the separator, thereby reducing the energy density in the secondary battery. For this reason, the secondary battery is inspected to determine whether or not the positive electrode and the negative electrode are misaligned in the electrode assembly. For example, in Patent Document 1, the stacking deviation is determined based on the positions of the holes formed in the negative electrode and the holes formed in the separator housing the positive electrode. However, in this method, inspection holes must be formed in the negative electrode and the separator, and the manufacturing process of the secondary battery becomes complicated.

本発明は、上記課題を解決するためになされたものであり、その目的は、電極組立体における正極電極及び負極電極の積層ずれを容易に判定できる蓄電装置の検査方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for inspecting a power storage device that can easily determine the misalignment between the positive electrode and the negative electrode in an electrode assembly.

上記問題点を解決するための蓄電装置の検査方法は、シート状の複数の正極電極及び負極電極が絶縁された状態で交互に積層されるとともに、前記正極電極の一辺の一部から突出した形状の正極タブが積層された正極タブ群、及び前記負極電極の一辺の一部から突出した形状の負極タブが積層された負極タブ群を有する電極組立体を備えた蓄電装置の検査方法であって、前記正極電極の一辺に沿う方向と前記負極電極の一辺に沿う方向とを一致させて幅方向とし、前記電極組立体を積層方向から見た側面視において、前記幅方向に互いに対向する前記正極タブ群の前記幅方向の一端面と前記負極タブ群の前記幅方向の一端面との距離を第1距離として測定し、前記正極タブ群の前記幅方向の他端面と前記負極タブ群の前記幅方向の他端面との距離を第2距離として測定する測定工程と、前記第1距離及び前記第2距離に基づいて、前記電極組立体における前記正極電極及び前記負極電極の前記幅方向への積層ずれを判定する判定工程と、を含むことを要旨とする。   A method for inspecting a power storage device for solving the above problem is a shape in which a plurality of sheet-like positive electrodes and negative electrodes are alternately stacked in a state of being insulated and protruded from a part of one side of the positive electrode A method for inspecting a power storage device comprising a positive electrode tab group in which positive electrode tabs are stacked and a negative electrode tab group in which negative electrode tabs having a shape protruding from a part of one side of the negative electrode electrode are stacked. The positive electrodes that face each other in the width direction in a side view when the electrode assembly is viewed from the laminating direction are made to coincide with a direction along one side of the positive electrode and a direction along one side of the negative electrode. The distance between the one end surface in the width direction of the tab group and the one end surface in the width direction of the negative electrode tab group is measured as a first distance, and the other end surface in the width direction of the positive electrode tab group and the negative tab group With the other end in the width direction A measurement step of measuring separation as a second distance, and a determination step of determining stacking displacement in the width direction of the positive electrode and the negative electrode in the electrode assembly based on the first distance and the second distance It is a summary to include.

電極組立体において複数の正極電極及び負極電極のうち一部の正極電極や負極電極が幅方向に積層ずれしている場合、積層ずれしていない場合と比べて、第1距離が短くなったり、第2距離が長くなったりする。例えば、積層ずれしていない場合の第1距離と測定された第1距離との差の絶対値、及び積層ずれしていない場合の第2距離と測定された第2距離との差の絶対値の少なくとも一方が、正極タブ23及び負極タブ33の幅方向の寸法の公差の絶対値より大きい場合、電極組立体において正極電極及び負極電極が積層ずれしていると判定する。このように電極組立体において正極電極が有する正極タブ及び負極電極が有する負極タブを利用して第1距離及び第2距離を測定し、正極電極及び負極電極の幅方向への積層ずれを判定することにより、蓄電装置を検査することができる。この場合、正極電極や負極電極に対して検査用の加工等を施す必要が無く、電極組立体における正極電極及び負極電極の幅方向への積層ずれを容易に判定できる。   In the electrode assembly, when some of the positive electrodes and negative electrodes out of the plurality of positive electrodes and negative electrodes are misaligned in the width direction, the first distance is shorter than when the stack is not misaligned, The second distance becomes longer. For example, the absolute value of the difference between the first distance and the measured first distance when there is no stacking deviation, and the absolute value of the difference between the second distance and the measured second distance when there is no stacking deviation Is larger than the absolute value of the tolerance of the dimension in the width direction of the positive electrode tab 23 and the negative electrode tab 33, it is determined that the positive electrode and the negative electrode are misaligned in the electrode assembly. As described above, in the electrode assembly, the first distance and the second distance are measured using the positive electrode tab of the positive electrode and the negative electrode tab of the negative electrode, and the stacking deviation in the width direction of the positive electrode and the negative electrode is determined. Thus, the power storage device can be inspected. In this case, it is not necessary to perform inspection processing or the like on the positive electrode or the negative electrode, and the stacking deviation in the width direction of the positive electrode and the negative electrode in the electrode assembly can be easily determined.

また、上記蓄電装置の検査方法について、前記測定工程は、前記電極組立体の側面視の投影を用いて行われるのが好ましい。
これによれば、電極組立体を積層方向から見た側面視の投影を用いることで、電極組立体が存在する部分が暗い領域となり、存在しない部分が明るい領域となる。このため、投影を用いない場合と比較して、電極組立体が存在する部分と存在しない部分との境界、すなわち正極タブ群及び負極タブ群の一端面及び他端面の位置を精度良く特定することができる。よって、第1距離及び第2距離を精度良く測定でき、電極組立体における正極電極及び負極電極の幅方向への積層ずれの検査の精度を向上できる。
In the method for inspecting the power storage device, it is preferable that the measurement step is performed using a side view projection of the electrode assembly.
According to this, by using the projection in a side view when the electrode assembly is viewed from the stacking direction, a portion where the electrode assembly is present is a dark region, and a portion where the electrode assembly is not present is a bright region. Therefore, compared with the case where no projection is used, the boundary between the portion where the electrode assembly is present and the portion where the electrode assembly is not present, that is, the positions of the one end surface and the other end surface of the positive electrode tab group and the negative electrode tab group are specified with high accuracy. Can do. Therefore, the first distance and the second distance can be measured with high accuracy, and the accuracy of the inspection of the stacking deviation in the width direction of the positive electrode and the negative electrode in the electrode assembly can be improved.

本発明によれば、電極組立体における正極電極及び負極電極の積層ずれを容易に判定できる。   According to the present invention, it is possible to easily determine the stacking deviation between the positive electrode and the negative electrode in the electrode assembly.

実施形態の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of embodiment. 実施形態の電極組立体の分解斜視図。The disassembled perspective view of the electrode assembly of embodiment. 実施形態の二次電池の検査方法を示す側面図。The side view which shows the inspection method of the secondary battery of embodiment. (a),(b)は電極組立体の平面図、(c),(d)は電極組立体の側面図。(A), (b) is a top view of an electrode assembly, (c), (d) is a side view of an electrode assembly.

以下、蓄電装置の検査方法を二次電池の検査方法に具体化した一実施形態を図1〜図4にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10は、ケース11を備える。二次電池10は、ケース11に収容された電極組立体12を備える。ケース11は、直方体状のケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状の蓋14とを有する。ケース11を構成するケース本体13と蓋14は、何れも金属製(例えば、ステンレスやアルミニウム)である。また、本実施形態の二次電池10は、その外観が角型をなす角型電池である。また、本実施形態の二次電池10は、リチウムイオン電池である。
Hereinafter, an embodiment in which a method for inspecting a power storage device is embodied as a method for inspecting a secondary battery will be described with reference to FIGS.
As shown in FIG. 1, a secondary battery 10 as a power storage device includes a case 11. The secondary battery 10 includes an electrode assembly 12 accommodated in a case 11. The case 11 includes a rectangular parallelepiped case main body 13 and a rectangular flat lid 14 that closes the opening 13 a of the case main body 13. Both the case main body 13 and the lid 14 constituting the case 11 are made of metal (for example, stainless steel or aluminum). Further, the secondary battery 10 of the present embodiment is a prismatic battery whose appearance is square. Further, the secondary battery 10 of the present embodiment is a lithium ion battery.

二次電池10は、電極組立体12から電気を取り出すための正極端子15と負極端子16を備える。正極端子15と負極端子16は、蓋14に所定の間隔をあけて並設された一対の孔14aからケース11の外部に露出される。また、正極端子15及び負極端子16には、ケース11から絶縁するためのリング状の絶縁リング17がそれぞれ取り付けられている。   The secondary battery 10 includes a positive electrode terminal 15 and a negative electrode terminal 16 for taking out electricity from the electrode assembly 12. The positive electrode terminal 15 and the negative electrode terminal 16 are exposed to the outside of the case 11 through a pair of holes 14 a arranged in parallel with the lid 14 at a predetermined interval. Further, a ring-shaped insulating ring 17 for insulating from the case 11 is attached to each of the positive terminal 15 and the negative terminal 16.

図2に示すように、電極組立体12は、シート状の複数の正極電極20と負極電極30とセパレータ40とを備える。電極組立体12は、正極電極20と負極電極30との間にセパレータ40を介在させ、かつ相互に絶縁させた状態で積層した層状構造を備える。   As shown in FIG. 2, the electrode assembly 12 includes a plurality of sheet-like positive electrodes 20, negative electrodes 30, and separators 40. The electrode assembly 12 has a layered structure in which separators 40 are interposed between the positive electrode 20 and the negative electrode 30 and are laminated in a mutually insulated state.

正極電極20は、矩形シート状の集電体としての正極金属箔(例えばアルミニウム箔)21と、正極金属箔21の両面に存在する正極活物質層22とを有する。正極電極20は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部20aを備え、第1縁部20aの対辺となる他方の縁部に第2縁部20bを備える。さらに、正極電極20は、第1縁部20aと第2縁部20b同士を繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部20cを備え、第3縁部20cの対辺となる他方の縁部に第4縁部20dを備える。以下、第1縁部20a及び第2縁部20bに沿う方向を正極電極20の幅方向とし、第3縁部20c及び第4縁部20dに沿う方向を正極電極20の高さ方向として説明する。また、幅方向において、第3縁部20c側を幅方向一方とし、第4縁部20d側を幅方向他方とする。   The positive electrode 20 includes a positive metal foil (for example, an aluminum foil) 21 as a rectangular sheet-shaped current collector, and a positive electrode active material layer 22 present on both surfaces of the positive metal foil 21. The positive electrode 20 includes a first edge 20a on one edge of the pair of long sides, and a second edge 20b on the other edge that is the opposite side of the first edge 20a. . Further, the positive electrode 20 includes a third edge 20c on one edge of a pair of short edges connecting the first edge 20a and the second edge 20b, and the third edge 20c. A fourth edge portion 20d is provided on the other edge portion which is the opposite side. Hereinafter, the direction along the first edge 20a and the second edge 20b will be described as the width direction of the positive electrode 20, and the direction along the third edge 20c and the fourth edge 20d will be described as the height direction of the positive electrode 20. . In the width direction, the third edge 20c side is one side in the width direction, and the fourth edge 20d side is the other side in the width direction.

正極電極20は、第1縁部20aの一部から高さ方向に突出した矩形状の正極タブ23を有する。正極タブ23は、正極活物質層22が存在せず、正極金属箔21そのもので構成されている。正極タブ23は、第1縁部20aの幅方向中央からずれた位置に存在する。本実施形態の正極タブ23は、第1縁部20aの幅方向中央から幅方向一方にずれた位置に存在する。正極タブ23は、幅方向に向かい合う一対の縁部のうち、幅方向中央に近い一方の縁部に内側縁部23aを備え、他方の縁部に外側縁部23bを備える。   The positive electrode 20 has a rectangular positive electrode tab 23 protruding in the height direction from a part of the first edge portion 20a. The positive electrode tab 23 is composed of the positive electrode metal foil 21 itself without the positive electrode active material layer 22. The positive electrode tab 23 exists at a position shifted from the center in the width direction of the first edge portion 20a. The positive electrode tab 23 of this embodiment exists in the position shifted | deviated from the width direction center of the 1st edge part 20a to the width direction one side. The positive electrode tab 23 includes an inner edge portion 23a at one edge portion close to the center in the width direction, and an outer edge portion 23b at the other edge portion, out of a pair of edge portions facing in the width direction.

負極電極30は、矩形シート状の集電体としての負極金属箔(例えば銅箔)31と、負極金属箔31の両面に存在する負極活物質層32とを有する。負極電極30は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部30aを備え、第1縁部30aの対辺となる他方の縁部に第2縁部30bを備える。さらに、負極電極30は、第1縁部30aと第2縁部30b同士を繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部30cを備え、第3縁部30cの対辺となる他方の縁部に第4縁部30dを備える。以下、第1縁部30a及び第2縁部30bに沿う方向を負極電極30の幅方向とし、第3縁部30c及び第4縁部30dに沿う方向を負極電極30の高さ方向として説明する。また、幅方向において、第3縁部30c側を幅方向一方とし、第4縁部30d側を幅方向他方とする。   The negative electrode 30 includes a negative electrode metal foil (for example, a copper foil) 31 as a rectangular sheet-shaped current collector, and negative electrode active material layers 32 present on both surfaces of the negative electrode metal foil 31. The negative electrode 30 includes a first edge 30a on one edge of the pair of long edges, and a second edge 30b on the other edge that is the opposite side of the first edge 30a. . Further, the negative electrode 30 includes a third edge 30c on one edge of the pair of short edges connecting the first edge 30a and the second edge 30b, and the third edge 30c. A fourth edge 30d is provided on the other edge opposite to the other edge. Hereinafter, the direction along the first edge 30a and the second edge 30b will be described as the width direction of the negative electrode 30, and the direction along the third edge 30c and the fourth edge 30d will be described as the height direction of the negative electrode 30. . In the width direction, the third edge 30c side is one side in the width direction, and the fourth edge 30d side is the other side in the width direction.

負極電極30は、第1縁部30aの一部から高さ方向に突出した矩形状の負極タブ33を有する。負極タブ33は、負極活物質層32が存在せず、負極金属箔31そのもので構成されている。負極タブ33は、第1縁部30aの幅方向中央からずれた位置に存在する。本実施形態の負極タブ33は、第1縁部30aの幅方向中央から幅方向他方にずれた位置に存在する。負極タブ33は、幅方向に向かい合う一対の縁部のうち、幅方向中央に近い一方の縁部に内側縁部33aを備え、他方の縁部に外側縁部33bを備える。   The negative electrode 30 has a rectangular negative electrode tab 33 protruding in the height direction from a part of the first edge 30a. The negative electrode tab 33 is composed of the negative electrode metal foil 31 itself without the negative electrode active material layer 32. The negative electrode tab 33 exists at a position shifted from the center in the width direction of the first edge portion 30a. The negative electrode tab 33 of the present embodiment exists at a position shifted from the center in the width direction of the first edge portion 30a to the other in the width direction. The negative electrode tab 33 includes an inner edge portion 33a at one edge portion close to the center in the width direction, and an outer edge portion 33b at the other edge portion, out of a pair of edge portions facing in the width direction.

セパレータ40は、矩形シート状の絶縁性材料からなる。セパレータ40は、正極電極20と負極電極30とを絶縁する。セパレータ40は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部40aを備え、第1縁部40aの対辺となる他方の縁部に第2縁部40bを備える。また、セパレータ40は、第1縁部40aと第2縁部40b同士を繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部40cを備え、第3縁部40cの対辺となる他方の縁部に第4縁部40dを備える。   The separator 40 is made of a rectangular sheet-like insulating material. The separator 40 insulates the positive electrode 20 and the negative electrode 30 from each other. The separator 40 includes a first edge 40a at one of the edges along the pair of long sides, and a second edge 40b at the other edge that is the opposite side of the first edge 40a. In addition, the separator 40 includes a third edge 40c on one edge of the pair of short edges connecting the first edge 40a and the second edge 40b, and the third edge 40c. A fourth edge 40d is provided on the other edge that is the opposite side.

図4(a)に示すように、負極電極30の第1縁部30aの長さは、正極電極20の第1縁部20aの長さより長く、負極電極30の第2縁部30bの長さは、正極電極20第2縁部20bの長さより長い。さらに、負極電極30の第3縁部30cの長さは、正極電極20の第3縁部20cの長さより長く、負極電極30の第4縁部30dの長さは、正極電極20の第4縁部20dの長さより長い。つまり、負極電極30の外形は、正極電極20の外形より一回り大きい。   As shown in FIG. 4A, the length of the first edge 30a of the negative electrode 30 is longer than the length of the first edge 20a of the positive electrode 20, and the length of the second edge 30b of the negative electrode 30. Is longer than the length of the second edge 20b of the positive electrode 20. Further, the length of the third edge 30 c of the negative electrode 30 is longer than the length of the third edge 20 c of the positive electrode 20, and the length of the fourth edge 30 d of the negative electrode 30 is the fourth length of the positive electrode 20. It is longer than the length of the edge 20d. That is, the outer shape of the negative electrode 30 is slightly larger than the outer shape of the positive electrode 20.

また、セパレータ40の第1縁部40aの長さは、負極電極30の第1縁部30aの長さと等しく、セパレータ40の第2縁部40bの長さは、負極電極30の第2縁部30bの長さと等しい。さらに、セパレータ40の第3縁部40cの長さは、負極電極30の第3縁部30cの長さと等しく、セパレータ40の第4縁部40dの長さは、負極電極30の第4縁部30dの長さと等しい。つまり、セパレータ40の外形は、正極電極20の外形より一回り大きく、負極電極30の外形と等しい大きさである。   The length of the first edge 40 a of the separator 40 is equal to the length of the first edge 30 a of the negative electrode 30, and the length of the second edge 40 b of the separator 40 is the second edge of the negative electrode 30. It is equal to the length of 30b. Further, the length of the third edge 40 c of the separator 40 is equal to the length of the third edge 30 c of the negative electrode 30, and the length of the fourth edge 40 d of the separator 40 is the fourth edge of the negative electrode 30. Equal to 30d length. That is, the outer shape of the separator 40 is slightly larger than the outer shape of the positive electrode 20 and is equal to the outer shape of the negative electrode 30.

積層ずれが生じていない電極組立体12を積層方向から見たとき、正極電極20の第1縁部20a及び第2縁部20bは、高さ方向において負極電極30及びセパレータ40の第1縁部30a,40a及び第2縁部30b,40bよりも内側に位置する。また、正極電極20の第3縁部20c及び第4縁部20dは、幅方向において負極電極30及びセパレータ40の第3縁部30c,40c及び第4縁部30d,40dよりも内側に位置する。   When the electrode assembly 12 in which no stacking deviation occurs is viewed from the stacking direction, the first edge portion 20a and the second edge portion 20b of the positive electrode 20 are connected to the first edge portion of the negative electrode 30 and the separator 40 in the height direction. 30a, 40a and the 2nd edge part 30b, 40b are located inside. Further, the third edge portion 20c and the fourth edge portion 20d of the positive electrode 20 are positioned inside the third edge portions 30c, 40c and the fourth edge portions 30d, 40d of the negative electrode 30 and the separator 40 in the width direction. .

図1に示すように、各正極電極20は、それぞれの正極タブ23が電極組立体12の積層方向に沿って列状に配置されるように積層される。電極組立体12は、積層方向の一端から他端までの範囲の正極タブ23が集められた正極タブ群18を備える。正極タブ群18には、正極端子15が電気的に接合される。図4(a)に示すように、正極タブ群18は、幅方向の一端面としての内側端面18aと、幅方向の他端面としての外側端面18bとを備える。内側端面18aは、幅方向において負極タブ群19と対向している。   As shown in FIG. 1, each positive electrode 20 is stacked such that the respective positive electrode tabs 23 are arranged in a row along the stacking direction of the electrode assembly 12. The electrode assembly 12 includes a positive electrode tab group 18 in which positive electrode tabs 23 in a range from one end to the other end in the stacking direction are collected. The positive electrode terminal 15 is electrically joined to the positive electrode tab group 18. As shown in FIG. 4A, the positive electrode tab group 18 includes an inner end face 18a as one end face in the width direction and an outer end face 18b as the other end face in the width direction. The inner end face 18a faces the negative electrode tab group 19 in the width direction.

同様に、図1に示すように、各負極電極30は、それぞれの負極タブ33が電極組立体12の積層方向に沿って列状に配置されるように積層される。また、電極組立体12は、積層方向の一端から他端までの範囲の負極タブ33が集められた負極タブ群19を備える。負極タブ群19は、幅方向において正極タブ群18と異なる位置に存在する。負極タブ群19には、負極端子16が電気的に接続される。図4(a)に示すように、負極タブ群19は、幅方向の一端面としての内側端面19aと、幅方向の他端面としての外側端面19bとを備える。内側端面19aは、幅方向において正極タブ群18の内側端面18aと対向している。   Similarly, as shown in FIG. 1, each negative electrode 30 is stacked such that the respective negative electrode tabs 33 are arranged in a row along the stacking direction of the electrode assembly 12. The electrode assembly 12 includes a negative electrode tab group 19 in which negative electrode tabs 33 in a range from one end to the other end in the stacking direction are collected. The negative electrode tab group 19 exists at a position different from the positive electrode tab group 18 in the width direction. A negative electrode terminal 16 is electrically connected to the negative electrode tab group 19. As shown in FIG. 4A, the negative electrode tab group 19 includes an inner end face 19a as one end face in the width direction and an outer end face 19b as the other end face in the width direction. The inner end surface 19a faces the inner end surface 18a of the positive electrode tab group 18 in the width direction.

図4(a)及び図4(c)に示すように、正極電極20及び負極電極30に幅方向への積層ずれがない電極組立体12の場合、正極タブ群18の内側端面18aは、正極タブ23の内側縁部23aが積層されて構成され、外側端面18bは、正極タブ23の外側縁部23bが積層されて構成される。同様に、負極タブ群19の内側端面19aは、負極タブ33の内側縁部33aが積層されて構成され、外側端面19bは、負極タブ33の外側縁部33bが積層されて構成される。電極組立体12を積層方向から見た側面視において、正極タブ群18の内側端面18aと負極タブ群19の内側端面19aとの幅方向の距離を第1距離Aとし、正極タブ群18の外側端面18bと負極タブ群19の外側端面19bとの幅方向の距離を第2距離Bとする。全ての正極電極20及び負極電極30に積層ずれがない電極組立体12の場合の第1及び第2距離A,Bを第1及び第2基準距離A0,B0とする。   As shown in FIG. 4A and FIG. 4C, in the case of the electrode assembly 12 in which the positive electrode 20 and the negative electrode 30 are not misaligned in the width direction, the inner end face 18a of the positive electrode tab group 18 is The inner edge portion 23a of the tab 23 is laminated, and the outer end surface 18b is constituted of the outer edge portion 23b of the positive electrode tab 23 being laminated. Similarly, the inner end surface 19a of the negative electrode tab group 19 is configured by stacking the inner edge portion 33a of the negative electrode tab 33, and the outer end surface 19b is configured by stacking the outer edge portion 33b of the negative electrode tab 33. In a side view of the electrode assembly 12 as viewed from the stacking direction, the distance in the width direction between the inner end surface 18a of the positive electrode tab group 18 and the inner end surface 19a of the negative electrode tab group 19 is defined as a first distance A, and the outer side of the positive electrode tab group 18 A distance in the width direction between the end face 18 b and the outer end face 19 b of the negative electrode tab group 19 is defined as a second distance B. The first and second distances A and B in the case of the electrode assembly 12 in which all the positive electrodes 20 and the negative electrodes 30 are not misaligned are defined as first and second reference distances A0 and B0.

一方、図4(b)及び図4(d)に示す電極組立体12aでは、複数の正極電極20のうち1枚の正極電極200が幅方向一方にずれた状態で積層されている。この場合、正極タブ群18の内側端面18aは、ずれている正極電極200を除く他の正極電極20の正極タブ23の内側縁部23aが積層されて構成され、外側端面18bは、ずれている正極電極200の正極タブ23の外側縁部23bによって構成される。負極タブ群19の内側端面19aは、負極タブ33の内側縁部33aが積層されて構成され、外側端面19bは、負極タブ33の外側縁部33bが積層されて構成される。つまり、正極タブ群18の内側端面18aと負極タブ群19の内側端面19a及び外側端面19bの幅方向の位置は、積層ずれがない電極組立体12の場合と同じ位置になる。一方、正極タブ群18の外側端面18bは、積層ずれがない電極組立体12の場合よりも幅方向外側(幅方向一方)に位置する。第1距離A1は第1基準距離A0と同じ長さになり、第2距離B1は第2基準距離B0よりも長くなる。なお、正極タブ23の幅方向の寸法に公差が存在し、負極タブ33の幅方向の寸法に公差が存在しないと想定した場合、第2距離B1と第2基準距離B0との差の絶対値は、正極タブ23の幅方向の寸法の公差の絶対値よりも大きくなる。   On the other hand, in the electrode assembly 12a shown in FIG. 4B and FIG. 4D, one positive electrode 200 among the plurality of positive electrodes 20 is stacked in a state shifted to one side in the width direction. In this case, the inner end face 18a of the positive electrode tab group 18 is configured by laminating inner edge portions 23a of the positive electrode tabs 23 of the other positive electrodes 20 excluding the displaced positive electrode 200, and the outer end face 18b is displaced. The outer edge 23 b of the positive electrode tab 23 of the positive electrode 200 is configured. The inner end surface 19 a of the negative electrode tab group 19 is configured by stacking the inner edge portion 33 a of the negative electrode tab 33, and the outer end surface 19 b is configured by stacking the outer edge portion 33 b of the negative electrode tab 33. That is, the positions in the width direction of the inner end face 18a of the positive electrode tab group 18 and the inner end face 19a and the outer end face 19b of the negative electrode tab group 19 are the same positions as those of the electrode assembly 12 with no stacking deviation. On the other hand, the outer end face 18b of the positive electrode tab group 18 is positioned on the outer side in the width direction (one in the width direction) than in the case of the electrode assembly 12 with no stacking deviation. The first distance A1 is the same length as the first reference distance A0, and the second distance B1 is longer than the second reference distance B0. When it is assumed that there is a tolerance in the dimension in the width direction of the positive electrode tab 23 and no tolerance in the dimension in the width direction of the negative electrode tab 33, the absolute value of the difference between the second distance B1 and the second reference distance B0. Is larger than the absolute value of the tolerance of the dimension in the width direction of the positive electrode tab 23.

なお、図示しないが、複数の正極電極20のうち1枚の正極電極200が幅方向他方にずれた状態で積層されている場合、正極タブ群18の内側端面18aは、ずれている正極電極200の正極タブ23の内側縁部23aによって構成される。正極タブ群18の外側端面18bは、ずれている正極電極200を除く他の正極電極20の正極タブ23の外側縁部23bが積層されて構成される。負極タブ群19の内側端面19aは、負極タブ33の内側縁部33aが積層されて構成され、外側端面19bは、負極タブ33の外側縁部33bが積層されて構成される。つまり、正極タブ群18の外側端面18bと負極タブ群19の内側端面19a及び外側端面19bの位置は、積層ずれがない電極組立体12の場合と同じ位置になる。一方、正極タブ群18の内側端面18aは、積層ずれがない電極組立体12の場合よりも幅方向内側(幅方向他方)に位置する。第2距離Bは第2基準距離B0と同じ長さになり、第1距離Aは第1基準距離A0よりも短くなる。なお、正極タブ23の幅方向に公差が存在し、負極タブ33の幅方向の寸法に公差が存在しないと想定した場合、第1距離Aと第1基準距離A0との差の絶対値は、正極タブ23の幅方向の寸法の公差の絶対値よりも大きくなる。   Although not shown, when one positive electrode 200 of the plurality of positive electrodes 20 is stacked in a state shifted to the other in the width direction, the inner end face 18a of the positive electrode tab group 18 is shifted from the positive electrode 200. It is comprised by the inner edge part 23a of the positive electrode tab 23 of this. The outer end face 18b of the positive electrode tab group 18 is configured by laminating the outer edge 23b of the positive electrode tab 23 of the other positive electrode 20 excluding the shifted positive electrode 200. The inner end surface 19 a of the negative electrode tab group 19 is configured by stacking the inner edge portion 33 a of the negative electrode tab 33, and the outer end surface 19 b is configured by stacking the outer edge portion 33 b of the negative electrode tab 33. That is, the positions of the outer end face 18b of the positive electrode tab group 18 and the inner end face 19a and the outer end face 19b of the negative electrode tab group 19 are the same positions as those of the electrode assembly 12 with no stacking deviation. On the other hand, the inner end face 18a of the positive electrode tab group 18 is located on the inner side in the width direction (the other in the width direction) than in the case of the electrode assembly 12 with no stacking deviation. The second distance B has the same length as the second reference distance B0, and the first distance A is shorter than the first reference distance A0. When it is assumed that there is a tolerance in the width direction of the positive electrode tab 23 and no tolerance in the dimension in the width direction of the negative electrode tab 33, the absolute value of the difference between the first distance A and the first reference distance A0 is It becomes larger than the absolute value of the tolerance of the dimension in the width direction of the positive electrode tab 23.

次に、正極電極20及び負極電極30の幅方向への積層ずれを検査する電極組立体12の検査方法について説明する。
電極組立体12の検査工程は、正極電極20、負極電極30、及びセパレータ40を積層した後に行われる。図3に示すように、検査工程は、搬送路R上に配置された電極組立体12を搬送しながら行う。電極組立体12は、積層方向が搬送方向と直交するように搬送路R上に配置されている。検査工程は、形状取得工程、測定工程、及び判定工程を含む。検査工程は、検査装置50によって行われる。
Next, an inspection method of the electrode assembly 12 that inspects the stacking deviation in the width direction of the positive electrode 20 and the negative electrode 30 will be described.
The inspection process of the electrode assembly 12 is performed after the positive electrode 20, the negative electrode 30, and the separator 40 are stacked. As shown in FIG. 3, the inspection process is performed while transporting the electrode assembly 12 disposed on the transport path R. The electrode assembly 12 is disposed on the transport path R so that the stacking direction is orthogonal to the transport direction. The inspection process includes a shape acquisition process, a measurement process, and a determination process. The inspection process is performed by the inspection apparatus 50.

形状取得工程は、積層方向から見た電極組立体12の形状を取得する工程である。形状取得工程には、検査装置50の投光部51及びCCDカメラ52が用いられる。投光部51は、搬送路Rの下方に配置され、CCDカメラ52は、搬送路Rの上方に配置される。投光部51とCCDカメラ52は、搬送路Rを挟んで、電極組立体12の積層方向に対向配置されている。投光部51は、電極組立体12が搬送路Rの所定の位置まで搬送されると、電極組立体12全体に向けて投光する。搬送路Rには光が透過可能な材料が用いられている。よって、投光された光は搬送路Rを透過した後、その一部が電極組立体12によって遮られる。このとき、CCDカメラ52は、電極組立体12とその周辺を撮影することで投影画像を取得する。投影画像において、電極組立体12が存在する部分は暗い領域(図4(a)及び図4(b)のドット部分参照)、電極組立体12が存在しない部分は明るい領域となる。これにより、電極組立体12の側面視の形状を取得できる。   The shape acquisition step is a step of acquiring the shape of the electrode assembly 12 viewed from the stacking direction. In the shape acquisition process, the light projecting unit 51 and the CCD camera 52 of the inspection apparatus 50 are used. The light projecting unit 51 is disposed below the transport path R, and the CCD camera 52 is disposed above the transport path R. The light projecting unit 51 and the CCD camera 52 are arranged to face each other in the stacking direction of the electrode assembly 12 with the conveyance path R interposed therebetween. When the electrode assembly 12 is transported to a predetermined position on the transport path R, the light projecting unit 51 projects light toward the entire electrode assembly 12. The transport path R is made of a material that can transmit light. Therefore, the projected light passes through the transport path R, and a part thereof is blocked by the electrode assembly 12. At this time, the CCD camera 52 acquires a projection image by photographing the electrode assembly 12 and its periphery. In the projected image, a portion where the electrode assembly 12 is present is a dark region (see the dot portions in FIGS. 4A and 4B), and a portion where the electrode assembly 12 is not present is a bright region. Thereby, the shape of the electrode assembly 12 in a side view can be acquired.

測定工程は、電極組立体12の正極タブ群18と負極タブ群19との第1距離A及び第2距離Bを測定する工程である。測定工程は、検査装置50の測定部53によって行われる。測定部53には、CCDカメラ52が接続され、電極組立体12の投影画像が送信される。測定部53は、電極組立体12の投影画像を用いて第1距離A及び第2距離Bを測定する。   The measuring step is a step of measuring the first distance A and the second distance B between the positive electrode tab group 18 and the negative electrode tab group 19 of the electrode assembly 12. The measurement process is performed by the measurement unit 53 of the inspection device 50. A CCD camera 52 is connected to the measurement unit 53 and a projection image of the electrode assembly 12 is transmitted. The measurement unit 53 measures the first distance A and the second distance B using the projection image of the electrode assembly 12.

判定工程は、測定工程で測定された第1距離A及び第2距離Bに基づいて、正極電極20及び負極電極30の積層ずれを判定する工程である。判定工程は、検査装置50の判定部54によって行われる。判定部54には、測定部53が接続され、第1距離A及び第2距離Bの測定結果が送信される。判定部54は、測定された第1距離Aと予め設定された第1基準距離A0とを比較する。また、判定部54は、測定された第2距離Bと予め設定された第2基準距離B0とを比較する。判定部54は、第1距離Aと第1基準距離A0との差の絶対値、及び第2距離Bと第2基準距離B0との差の絶対値の少なくとも一方が、正極タブ23及び負極タブ33の幅方向の寸法の公差の絶対値よりも大きい場合、電極組立体12において正極電極20及び負極電極30が幅方向へ積層ずれしていると判定する。判定部54は、第1距離Aと第1基準距離A0との差の絶対値、及び第2距離Bと第2基準距離B0との差の絶対値が、正極タブ23及び負極タブ33の幅方向の寸法の公差の絶対値以下の場合、電極組立体12において正極電極20及び負極電極30が幅方向へ積層ずれしていないと判定する。なお、判定工程において、積層ずれしていると判定された電極組立体12は、図示しない他の搬送路へと送られる。   The determination step is a step of determining the stacking deviation between the positive electrode 20 and the negative electrode 30 based on the first distance A and the second distance B measured in the measurement step. The determination process is performed by the determination unit 54 of the inspection apparatus 50. The determination unit 54 is connected to the measurement unit 53, and the measurement results of the first distance A and the second distance B are transmitted. The determination unit 54 compares the measured first distance A with a preset first reference distance A0. The determination unit 54 compares the measured second distance B with a preset second reference distance B0. The determination unit 54 determines that at least one of the absolute value of the difference between the first distance A and the first reference distance A0 and the absolute value of the difference between the second distance B and the second reference distance B0 is the positive electrode tab 23 and the negative electrode tab. If the absolute value of the dimension tolerance in the width direction 33 is larger than the absolute value, it is determined in the electrode assembly 12 that the positive electrode 20 and the negative electrode 30 are misaligned in the width direction. The determination unit 54 determines that the absolute value of the difference between the first distance A and the first reference distance A0 and the absolute value of the difference between the second distance B and the second reference distance B0 are the widths of the positive electrode tab 23 and the negative electrode tab 33. When the absolute value of the dimensional tolerance is less than the absolute value, it is determined in the electrode assembly 12 that the positive electrode 20 and the negative electrode 30 are not misaligned in the width direction. In the determination step, the electrode assembly 12 that is determined to be out of stack is sent to another conveyance path (not shown).

次に、本実施形態の作用を記載する。
上述したように、複数の正極電極20のうち1枚の正極電極200が幅方向外側にずれた状態で積層されている場合、積層ずれしていない電極組立体12の場合と比較して、第2距離B1が第2基準距離B0よりも長くなる。また、複数の正極電極20のうち1枚の正極電極200が幅方向内側にずれた状態で積層されている場合、積層ずれしていない電極組立体12の場合と比較して、第1距離Aが第1基準距離A0よりも短くなる。第2距離B1と第2基準距離B0との差の絶対値、及び第1距離Aと第1基準距離A0との差の絶対値が、正極タブ23及び負極タブ33の幅方向の寸法の公差の絶対値以下の場合、積層ずれしていないと判定し、正極タブ23及び負極タブ33の幅方向の寸法の公差の絶対値よりも大きい場合、積層ずれしていると判定する。このように第1距離A及び第2距離Bを測定することにより、電極組立体12における正極電極20及び負極電極30の幅方向への積層ずれを判定する。
Next, the operation of this embodiment will be described.
As described above, when one positive electrode 200 of the plurality of positive electrodes 20 is stacked in a state of being shifted outward in the width direction, compared to the case of the electrode assembly 12 that is not stacked and shifted, The two distances B1 are longer than the second reference distance B0. In addition, when one positive electrode 200 of the plurality of positive electrodes 20 is stacked in a state of being shifted inward in the width direction, the first distance A is compared with the case of the electrode assembly 12 that is not stacked and shifted. Becomes shorter than the first reference distance A0. The absolute value of the difference between the second distance B1 and the second reference distance B0 and the absolute value of the difference between the first distance A and the first reference distance A0 are the tolerances of the dimensions of the positive electrode tab 23 and the negative electrode tab 33 in the width direction. If the absolute value of the positive electrode tab 23 and the negative electrode tab 33 is larger than the absolute value of the tolerance in the width direction, it is determined that the stacking has shifted. By measuring the first distance A and the second distance B in this manner, the stacking deviation in the width direction of the positive electrode 20 and the negative electrode 30 in the electrode assembly 12 is determined.

次に、本実施形態の効果を記載する。
(1)複数の正極電極20及び負極電極30のうち一部の正極電極20や負極電極30が幅方向に積層ずれしていると判定された電極組立体12の場合、積層ずれしていないと判定された電極組立体12の場合と比べて、第1距離Aが短くなったり、第2距離Bが長くなったりする。このように正極電極20が有する正極タブ23及び負極電極30が有する負極タブ33を利用して第1距離A及び第2距離Bを測定し、正極電極20及び負極電極30の幅方向への積層ずれを判定することにより、二次電池10を検査できる。この場合、正極電極20や負極電極30に対して検査用の加工等を施す必要が無く、電極組立体12における正極電極20及び負極電極30の幅方向への積層ずれを容易に判定できる。
Next, the effect of this embodiment will be described.
(1) In the case of the electrode assembly 12 in which a part of the positive electrodes 20 and the negative electrodes 30 among the plurality of positive electrodes 20 and negative electrodes 30 are determined to be misaligned in the width direction, Compared to the determined electrode assembly 12, the first distance A becomes shorter or the second distance B becomes longer. Thus, the first distance A and the second distance B are measured using the positive electrode tab 23 of the positive electrode 20 and the negative electrode tab 33 of the negative electrode 30, and the positive electrode 20 and the negative electrode 30 are stacked in the width direction. By determining the deviation, the secondary battery 10 can be inspected. In this case, there is no need to perform inspection processing or the like on the positive electrode 20 or the negative electrode 30, and the stacking deviation in the width direction of the positive electrode 20 and the negative electrode 30 in the electrode assembly 12 can be easily determined.

(2)電極組立体12を積層方向から見た側面視の投影画像では、電極組立体12が存在する部分が暗い領域となり、存在しない部分が明るい領域となる。このため、投影を用いない場合と比較して、電極組立体12が存在する部分と存在しない部分の境界、すなわち正極タブ群18及び負極タブ群19の内側端面18a,19a及び外側端面18b,19bの位置を精度良く特定することができる。よって、第1距離A及び第2距離Bを精度良く測定でき、電極組立体12における正極電極20及び負極電極30の幅方向への積層ずれの検査の精度を向上できる。   (2) In the projection image in a side view when the electrode assembly 12 is viewed from the stacking direction, a portion where the electrode assembly 12 is present is a dark region, and a portion where the electrode assembly 12 is not present is a bright region. Therefore, as compared with the case where no projection is used, the boundary between the portion where the electrode assembly 12 is present and the portion where the electrode assembly 12 is not present, that is, the inner end surfaces 18a and 19a and the outer end surfaces 18b and 19b of the positive electrode tab group 18 and the negative electrode tab group 19. Can be accurately identified. Therefore, the first distance A and the second distance B can be measured with high accuracy, and the accuracy of the inspection of misalignment in the width direction of the positive electrode 20 and the negative electrode 30 in the electrode assembly 12 can be improved.

なお、上記実施形態は、以下のように変更してもよい。
○ 正極電極20は、正極金属箔21の片面に正極活物質層22が存在する構造でもよい。同様に、負極電極30は、負極金属箔31の片面に負極活物質層32が存在する構成でもよい。
In addition, you may change the said embodiment as follows.
The positive electrode 20 may have a structure in which the positive electrode active material layer 22 exists on one side of the positive electrode metal foil 21. Similarly, the negative electrode 30 may be configured such that the negative electrode active material layer 32 exists on one surface of the negative electrode metal foil 31.

○ 負極電極30の外形は、正極電極20の外形と同じ大きさ、又は正極電極20の外形より小さくてもよい。
○ セパレータ40の外形は、正極電極20及び負極電極30のうち外形が大きい方の電極の外形より大きくてもよい。
The outer shape of the negative electrode 30 may be the same size as the outer shape of the positive electrode 20 or smaller than the outer shape of the positive electrode 20.
The outer shape of the separator 40 may be larger than the outer shape of the larger electrode of the positive electrode 20 and the negative electrode 30.

○ 電極組立体12は、複数の正極電極20と複数の負極電極30とをセパレータ40を介して交互に積層した構造であったが、電極組立体12の構造はこれに限定されない。例えば、電極組立体12は、正極電極を収納した電極収納セパレータと負極電極とを交互に積層した構造であってもよい。ただし、正極電極の正極タブは、電極収納セパレータに収納されず、電極収納セパレータから突出した状態にある。   The electrode assembly 12 has a structure in which a plurality of positive electrodes 20 and a plurality of negative electrodes 30 are alternately stacked via separators 40, but the structure of the electrode assembly 12 is not limited to this. For example, the electrode assembly 12 may have a structure in which electrode storage separators that store positive electrodes and negative electrodes are alternately stacked. However, the positive electrode tab of the positive electrode is not housed in the electrode housing separator and is in a state of protruding from the electrode housing separator.

○ 正極タブ群18及び負極タブ群19の幅方向の位置は適宜変更してよい。ただし、正極タブ群18と負極タブ群19とが幅方向で重ならないようにする。
○ 上記実施形態では、電極組立体12を積層方向から見た側面視の投影画像を用いて第1距離A及び第2距離Bを測定したが、測定方法は限定されず、第1距離A及び第2距離Bを測定できれば他の方法であってもよい。例えば、電極組立体12の側面視の投影をスクリーンに映し、スクリーン上で第1距離A及び第2距離Bを測定してもよい。また、実物の電極組立体12を用いて、第1距離A及び第2距離Bを実測してもよい。
The positions in the width direction of the positive electrode tab group 18 and the negative electrode tab group 19 may be changed as appropriate. However, the positive electrode tab group 18 and the negative electrode tab group 19 should not overlap in the width direction.
In the above embodiment, the first distance A and the second distance B are measured using a projection image in a side view when the electrode assembly 12 is viewed from the stacking direction, but the measurement method is not limited, and the first distance A and Other methods may be used as long as the second distance B can be measured. For example, the projection of the electrode assembly 12 in a side view may be projected on a screen, and the first distance A and the second distance B may be measured on the screen. Alternatively, the first distance A and the second distance B may be measured using the actual electrode assembly 12.

○ 上記実施形態では、電極組立体12において正極電極20のみが幅方向に積層ずれしている例を挙げたが、負極電極30のみ又は正極電極20及び負極電極30の両方が幅方向に積層ずれしている場合についても、第1距離A及び第2距離Bを測定することにより、幅方向の積層ずれを判定できる。   In the above embodiment, an example in which only the positive electrode 20 is misaligned in the width direction in the electrode assembly 12 has been given, but only the negative electrode 30 or both the positive electrode 20 and the negative electrode 30 are misaligned in the width direction. Even in the case where the first and second distances are measured, the stacking deviation in the width direction can be determined by measuring the first distance A and the second distance B.

○ 上記実施形態では、電極組立体12において複数の正極電極20のうち1枚の正極電極20が幅方向に積層ずれしている例を挙げたが、複数の正極電極20が幅方向に積層ずれしている場合についても、第1距離A及び第2距離Bを測定することにより、幅方向の積層ずれを判定できる。なお、積層ずれの量が正極電極20ごとに異なる場合、ずれ量の最も大きい正極電極20における正極タブ23の内側縁部23a又は外側縁部23bが正極タブ群18の内側端面18a又は外側端面18bとなる。また、例えば、全ての正極電極20が幅方向外側に積層ずれしている場合、第1距離Aは第1基準距離A0よりも長くなり、かつ第2距離Bは第2基準距離B0よりも長くなる。全ての正極電極20が幅方向内側に積層ずれしている場合、第1距離Aは第1基準距離A0よりも短くなり、かつ第2距離Bは第2基準距離B0よりも短くなる。   In the above embodiment, an example in which one positive electrode 20 out of the plurality of positive electrodes 20 in the electrode assembly 12 is misaligned in the width direction has been given, but the plurality of positive electrodes 20 are misaligned in the width direction. Even in the case where the first and second distances are measured, the stacking deviation in the width direction can be determined by measuring the first distance A and the second distance B. When the amount of misalignment differs for each positive electrode 20, the inner edge 23a or the outer edge 23b of the positive electrode tab 23 in the positive electrode 20 having the largest deviation is the inner end surface 18a or outer end surface 18b of the positive electrode tab group 18. It becomes. In addition, for example, when all the positive electrodes 20 are misaligned outward in the width direction, the first distance A is longer than the first reference distance A0, and the second distance B is longer than the second reference distance B0. Become. When all the positive electrodes 20 are stacked and displaced inward in the width direction, the first distance A is shorter than the first reference distance A0, and the second distance B is shorter than the second reference distance B0.

○ 二次電池10は、リチウムイオン二次電池でもよいし、他の二次電池であってもよい。要は、正極用の活物質と負極用の活物質との間をイオンが移動するとともに電荷の授受を行うものであればよい。   The secondary battery 10 may be a lithium ion secondary battery or another secondary battery. In short, any ion may be used as long as ions move between the active material for the positive electrode and the active material for the negative electrode and charge is transferred.

○ 蓄電装置は、例えばキャパシタなど、二次電池以外の蓄電装置にも適用可能である。
次に、上記実施形態から把握できる技術的思想を、その効果とともに記載する。
The power storage device can also be applied to power storage devices other than secondary batteries, such as capacitors.
Next, the technical idea that can be grasped from the above embodiment will be described together with the effects thereof.

(イ)前記正極電極の外形は、前記負極電極の外形よりも小さく、前記正極電極及び前記負極電極の一辺と直交する辺に沿う方向を高さ方向とすると、前記電極組立体を積層方向から見た側面視において、前記正極電極は、前記負極電極の全ての縁部よりも幅方向内側及び高さ方向内側に位置し、前記正極タブは、前記負極電極の一辺よりも高さ方向外側に位置する蓄電装置の検査方法。   (A) The external shape of the positive electrode is smaller than the external shape of the negative electrode, and when the direction along the side perpendicular to one side of the positive electrode and the negative electrode is defined as the height direction, the electrode assembly is removed from the stacking direction. In the viewed side view, the positive electrode is located on the inner side in the width direction and the inner side in the height direction than all the edges of the negative electrode, and the positive electrode tab is on the outer side in the height direction than one side of the negative electrode. An inspection method of a power storage device located.

これによれば、電極組立体を積層方向から見た側面視において、正極電極の全ての縁部は、負極電極によって視認できない状態にあるため、正極電極の縁部を利用して積層ずれを判定することは困難である。したがって、負極電極の縁部よりも高さ方向外側に位置する正極タブを利用して第1距離及び第2距離を測定することで、電極組立体における正極電極及び負極電極の幅方向の積層ずれを容易に判定できる。   According to this, in the side view of the electrode assembly viewed from the stacking direction, since all the edges of the positive electrode are not visible by the negative electrode, the misalignment is determined using the edges of the positive electrode. It is difficult to do. Accordingly, by measuring the first distance and the second distance using the positive electrode tab located on the outer side in the height direction from the edge of the negative electrode, the stacking displacement in the width direction of the positive electrode and the negative electrode in the electrode assembly is measured. Can be easily determined.

10…蓄電装置としての二次電池、12…電極組立体、18…正極タブ群、18a…一端面としての内側端面、18b…他端面としての外側端面、19…負極タブ群、19a…一端面としての内側端面、19b…他端面としての外側端面、20…正極電極、23…正極タブ、30…負極電極、33…負極タブ、A…第1距離、B…第2距離。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery as a power storage device, 12 ... Electrode assembly, 18 ... Positive electrode tab group, 18a ... Inner end face as one end face, 18b ... Outer end face as other end face, 19 ... Negative electrode tab group, 19a ... One end face An inner end face, 19b ... an outer end face as the other end face, 20 ... a positive electrode, 23 ... a positive electrode tab, 30 ... a negative electrode, 33 ... a negative electrode tab, A ... a first distance, B ... a second distance.

Claims (2)

シート状の複数の正極電極及び負極電極が絶縁された状態で交互に積層されるとともに、
前記正極電極の一辺の一部から突出した形状の正極タブが積層された正極タブ群、及び前記負極電極の一辺の一部から突出した形状の負極タブが積層された負極タブ群を有する電極組立体を備えた蓄電装置の検査方法であって、
前記正極電極の一辺に沿う方向と前記負極電極の一辺に沿う方向とを一致させて幅方向とし、
前記電極組立体を積層方向から見た側面視において、前記幅方向に互いに対向する前記正極タブ群の前記幅方向の一端面と前記負極タブ群の前記幅方向の一端面との距離を第1距離として測定し、前記正極タブ群の前記幅方向の他端面と前記負極タブ群の前記幅方向の他端面との距離を第2距離として測定する測定工程と、
前記第1距離及び前記第2距離に基づいて、前記電極組立体における前記正極電極及び前記負極電極の前記幅方向への積層ずれを判定する判定工程と、
を含むことを特徴とする蓄電装置の検査方法。
A plurality of sheet-like positive electrodes and negative electrodes are alternately stacked in an insulated state,
An electrode set having a positive electrode tab group in which a positive electrode tab having a shape protruding from a part of one side of the positive electrode is laminated, and a negative electrode tab group in which a negative electrode tab having a shape protruding from a part of one side of the negative electrode is laminated. A method for inspecting a power storage device including a three-dimensional object,
The direction along the one side of the positive electrode and the direction along the one side of the negative electrode are matched to form a width direction,
In a side view of the electrode assembly viewed from the stacking direction, a distance between one end surface in the width direction of the positive electrode tab group facing each other in the width direction and one end surface in the width direction of the negative electrode tab group is a first distance. Measuring as a distance, and measuring the distance between the other end surface in the width direction of the positive electrode tab group and the other end surface in the width direction of the negative electrode tab group as a second distance;
A determination step of determining a stacking deviation in the width direction of the positive electrode and the negative electrode in the electrode assembly based on the first distance and the second distance;
A method for inspecting a power storage device, comprising:
前記測定工程は、前記電極組立体の側面視の投影を用いて行われる請求項1に記載の蓄電装置の検査方法。
The method for inspecting a power storage device according to claim 1, wherein the measurement step is performed using a side view projection of the electrode assembly.
JP2017089727A 2017-04-28 2017-04-28 Inspection method of power storage device Expired - Fee Related JP6819449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089727A JP6819449B2 (en) 2017-04-28 2017-04-28 Inspection method of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089727A JP6819449B2 (en) 2017-04-28 2017-04-28 Inspection method of power storage device

Publications (2)

Publication Number Publication Date
JP2018190508A true JP2018190508A (en) 2018-11-29
JP6819449B2 JP6819449B2 (en) 2021-01-27

Family

ID=64478611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089727A Expired - Fee Related JP6819449B2 (en) 2017-04-28 2017-04-28 Inspection method of power storage device

Country Status (1)

Country Link
JP (1) JP6819449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832169A (en) * 2022-01-07 2023-03-21 宁德时代新能源科技股份有限公司 Deviation rectifying process, pole piece deviation rectifying device, single battery, battery and electricity utilization device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274960A1 (en) * 2010-05-04 2011-11-10 Chang-Bum Ahn Electrode assembly and secondary battery using the same
JP2013143213A (en) * 2012-01-10 2013-07-22 Ckd Corp Inspecting device used in manufacturing process of laminated battery
WO2013146513A1 (en) * 2012-03-30 2013-10-03 三洋電機株式会社 Laminated battery
KR20130124098A (en) * 2012-05-04 2013-11-13 주식회사 엘지화학 Method for preparing bi-cell
JP2015176699A (en) * 2014-03-14 2015-10-05 株式会社豊田自動織機 Lamination device of sheet-like object
JP2018060699A (en) * 2016-10-06 2018-04-12 株式会社日立製作所 Manufacturing method for laminated secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274960A1 (en) * 2010-05-04 2011-11-10 Chang-Bum Ahn Electrode assembly and secondary battery using the same
JP2013143213A (en) * 2012-01-10 2013-07-22 Ckd Corp Inspecting device used in manufacturing process of laminated battery
WO2013146513A1 (en) * 2012-03-30 2013-10-03 三洋電機株式会社 Laminated battery
KR20130124098A (en) * 2012-05-04 2013-11-13 주식회사 엘지화학 Method for preparing bi-cell
JP2015176699A (en) * 2014-03-14 2015-10-05 株式会社豊田自動織機 Lamination device of sheet-like object
JP2018060699A (en) * 2016-10-06 2018-04-12 株式会社日立製作所 Manufacturing method for laminated secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832169A (en) * 2022-01-07 2023-03-21 宁德时代新能源科技股份有限公司 Deviation rectifying process, pole piece deviation rectifying device, single battery, battery and electricity utilization device

Also Published As

Publication number Publication date
JP6819449B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
KR102217201B1 (en) Apparatus for inspecting alignment of electrode assembly and method of inspecting electrode assembly using the same
US10811721B2 (en) Accumulator device
US20190006698A1 (en) Power storage device and manufacturing method thereof
KR20160040323A (en) Battery pack having a plurality of electrochemical battery cells having a device for measuring a difference between two cell currents of two different battery cells
US20170018753A1 (en) Electric accumulation device
JP2017111966A (en) Method of manufacturing electricity storage device
US9741987B2 (en) Accumulator device
JP6772687B2 (en) Inspection method of electrode laminate
JP2014038706A (en) Power storage device
US10991985B2 (en) Secondary battery
US20160276713A1 (en) Laminated secondary battery
JP2016139586A (en) Power storage device
JP6819449B2 (en) Inspection method of power storage device
JP6658956B2 (en) Method for manufacturing power storage device
US10147919B2 (en) Power storage apparatus
US9853319B2 (en) Electricity-storage device
US20230184690A1 (en) System for Detecting Defect of Electrode Tab and Method for Detecting Defect of Electrode Tab Using the Same
JP6413708B2 (en) Electrode assembly manufacturing equipment
JP6221856B2 (en) Power storage device and method for manufacturing power storage device
JP6365045B2 (en) Power storage device
JP5962276B2 (en) Power storage device
JP2015125943A (en) Power storage device
JP2018190507A (en) Inspection method of power storage device
JP6287542B2 (en) Power storage device inspection method
KR20240097777A (en) Apparatus for inspecting electrode and battery cell comprising electrodes produced using the same, and battery pack and vehicle comprising battery cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R151 Written notification of patent or utility model registration

Ref document number: 6819449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees